2018中考数学试题分类汇编:方程

合集下载

2018年四川省中考数学真题汇编解析:数与式、方程不等式

2018年四川省中考数学真题汇编解析:数与式、方程不等式

2018年全国各地中考数学真题汇编(四川专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.2.(2018•乐山)方程组==x+y﹣4的解是()A.B.C.D.解:由题可得,,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选:D.3.(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴+1≈3.236,故选:C.4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.5.(2018•绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1923 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.7.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.8.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.9.(2018•南充)已知=3,则代数式的值是()A.B.C.D.解:∵=3,∴=3,∴x﹣y=﹣3xy,则原式====,故选:D.10.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.二.填空题(共10小题)11.(2018•自贡)分解因式:ax2+2axy+ay2=a(x+y)2.解:原式=a(x2+2xy+y2)…(提取公因式)=a(x+y)2.…(完全平方公式)12.(2018•成都)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.13.(2018•自贡)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.14.(2018•绵阳)已知a>b>0,且++=0,则=.解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,整理得:2()2+﹣1=0,解得=,∵a>b>0,∴=,故答案为.15.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.16.(2018•达州)若关于x的分式方程=2a无解,则a的值为1或.解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.17.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.18.(2018•眉山)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为k<6且k≠3.解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程程﹣2=有一个正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.19.(2018•达州)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.20.(2018•遂宁)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.三.解答题(共16小题).(2018•攀枝花)解方程:﹣=1.解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.22.(2018•遂宁)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.解:原式=3+1+2×+2﹣=4++2﹣=6.23.(2018•自贡)解不等式组:,并在数轴上表示其解集.解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.24.(2018•遂宁)先化简,再求值•+.(其中x=1,y=2)解:当x=1,y=2时,原式=•+=+==﹣325.(2018•攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.26.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.27.(2018•宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.28.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.29.(2018•绵阳)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:4m+1.5(10﹣m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车1辆,30.(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是00元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=300(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.31.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣10m+20m=25m2+10m+1=(5m+1)2≥0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.32.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=333.(2018•广安)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元、1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.34.(2018•资阳)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?解:(1)设改建后的绿化区面积为x亩.由题意:x+20%•x=162,解得x=135,162﹣135=27,答:改建后的绿化区面积为135亩和休闲区面积有27亩.(2)设绿化区的面积为m亩.由题意:35000m+25000(162﹣m)≤5500000,解得m≤145,答:绿化区的面积最多可以达到145亩.35.(2018•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log6,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=1.解:(1)由题意可得,指数式43=64写成对数式为:3=log 464,故答案为:3=log 464;(2)设log a M=m ,log a N=n ,则M=a m ,N=a n ,∴==a m ﹣n ,由对数的定义得m ﹣n=log a ,又∵m ﹣n=log a M ﹣log a N ,∴log a =log a M ﹣log a N (a >0,a ≠1,M >0,N >0);(3)log 32+log 36﹣log 34,=log 3(2×6÷4),=log 33,=1,故答案为:1.36.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).解:(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为(x +100)元根据题意得:解得400=x经检验,400=x 为原方程的解 500100=+x答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m的取值范围为:16≤m≤25②设销售这批丝绸的利润为y根据题意得:y=(800﹣500﹣2n)m+(600﹣400﹣n)•(50﹣m)=(100﹣n)m+10000﹣50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100﹣n>0m=25时,销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100﹣n<0当m=16时,销售这批丝绸的最大利润w=﹣66n+11600。

2018年中考数学知识分类汇编《方程》

2018年中考数学知识分类汇编《方程》

方程一、单选题1.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】C2.关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【来源】湖南省娄底市2018年中考数学试题【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.3.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A. ﹣2B. 1C. 2D. 0【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网4.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%【来源】四川省宜宾市2018年中考数学试题【答案】C5.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【来源】山东省潍坊市2018年中考数学试题【答案】A6.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【来源】山东省泰安市2018年中考数学试题【答案】C8.方程组的解是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2018年中考数学试卷【答案】A10.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】A11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【来源】2018年浙江省舟山市中考数学试题【答案】B12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得. 【详解】x(x+1)+ax=0, x 2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a 1=a 2=-1, 故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根. 13.一元二次方程根的情况是( )A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3 【来源】山东省泰安市2018年中考数学试题 【答案】D【解析】分析:直接整理原方程,进而解方程得出x 的值. 详解:(x +1)(x ﹣3)=2x ﹣5整理得:x 2﹣2x ﹣3=2x ﹣5,则x 2﹣4x +2=0,(x ﹣2)2=2,解得:x 1=2+>3,x 2=2﹣,故有两个正根,且有一根大于3. 故选D .点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A. B.C.D.【来源】山东省淄博市2018年中考数学试题 15.分式方程的解是( )A.B.C.D.【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.学科#网16.分式方程的解为()A. B. C. D. 无解【来源】山东省德州市2018年中考数学试题【答案】D17.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题18.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.19.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

2018年全国各地中考数学真题汇编:数与式、方程不等式(湖南专版)(解析卷)

2018年全国各地中考数学真题汇编:数与式、方程不等式(湖南专版)(解析卷)

2018年全国各地中考数学真题汇编(湖南专版)数与式、方程不等式参考答案与试题解析一.选择题(共13小题)1.(2018•长沙)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间解:∵32=9,42=16,∴,∴+1在4到5之间.故选:C.2.(2018•株洲)关于x的分式方程解为x=4,则常数a的值为()A.a=1 B.a=2 C.a=4 D.a=10解:把x=4代入方程,得+=0,解得a=10.故选:D.3.(2018•长沙)不等式组的解集在数轴上表示正确的是()A.B.C.D.解:解不等式x+2>0,得:x>﹣2,解不等式2x﹣4≤0,得:x≤2,则不等式组的解集为﹣2<x≤2,将解集表示在数轴上如下:故选:C.4.(2018•株洲)下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>0解:5x>8+2x,解得:x>,根据大小小大中间找可得另一个不等式的解集一定是x<5,故选:C.5.(2018•湘潭)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<1解:∵方程x2﹣2x+m=0有两个不相同的实数根,∴△=(﹣2)2﹣4m>0,解得:m<1.故选:D.6.(2018•衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D. +=10解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:﹣=10.故选:A.7.(2018•张家界)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,则2+22+23+24+25+…+22018的末位数字是()A.8 B.6 C.4 D.0解:∵2n的个位数字是2,4,8,6四个一循环,2018÷4=504…2,∴22018的个位数字与22的个位数字相同是4,故2+22+23+24+25+…+22018的末位数字是2+4+8+6+…+2+4的尾数,则2+22+23+24+25+…+22018的末位数字是:2+4=6.故选:B.8.(2018•娄底)不等式组的最小整数解是()A.﹣1 B.0 C.1 D.2解:解不等式2﹣x≥x﹣2,得:x≤2,解不等式3x﹣1>﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的最小整数解为0,故选:B.9.(2018•永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.10.(2018•娄底)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≥2且x≠3 D.x≠3解:根据题意得:,解得:x≥2且x≠3.故选:C.11.(2018•怀化)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=解:江水的流速为v km/h,则以最大航速沿江顺流航行的速度为(30+v)km/h,以最大航速逆流航行的速度为(30﹣v)km/h,根据题意得,,故选:C.12.(2018•娄底)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k)C.f(k+1)≥f(k)D.f(k)=0或1解:f(1)=[]﹣[]=0﹣0=0,故选项A正确;f(k+4)=[]﹣[]=[+1]﹣[+1]=[]﹣[]=f(k),故选项B正确;C、当k=3时,f(3+1)=[]﹣[]=1﹣1=0,而f(3)=1,故选项C错误;D、当k=3+4n(n为自然数)时,f(k)=1,当k为其它的正整数时,f(k)=0,所以D 选项的结论正确;故选:C.13.(2018•邵阳)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.二.填空题(共9小题)14.(2018•长沙)化简:=1.解:原式==1.故答案为:1.15.(2018•长沙)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为2.解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为:2.16.(2018•湘潭)阅读材料:若a b=N,则b=log a N,称b为以a为底N的对数,例如23=8,则log28=log223=3.根据材料填空:log39=2.解:∵32=9,∴log39=log332=2.故答案为2.17.(2018•常德)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.18.(2018•永州)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=4.解:log216=log2(2×2×2×2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.19.(2018•娄底)设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1﹣1)2﹣(a n ﹣1)2,则a2018=4035.解:∵4a n=(a n+1﹣1)2﹣(a n﹣1)2,∴(a n﹣1)2=(a n﹣1)2+4a n=(a n+1)2,+1∵a1,a2,a3……是一列正整数,﹣1=a n+1,∴a n+1=a n+2,∴a n+1∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n﹣1,∴a2018=4035.故答案为4035.20.(2018•湘西州)按照如图的操作步骤,若输入x的值为2,则输出的值是2.(用科学计算器计算或笔算)解:将x=2代入得:3×(2)2﹣10=12﹣10=2.故答案为:2.21.(2018•湘西州)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是1.解:∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1.故答案为:1.22.(2018•怀化)根据下列材料,解答问题.等比数列求和:概念:对于一列数a1,a2,a3,…a n…(n为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即=q(常数),那么这一列数a1,a2,a3,…,a n,…成等比数列,这一常数q叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和,解:令S=1+3+32+33+…+3100则3S=3+32+33+…+3100+3101因此,3S﹣S=3101﹣1,所以S=即1+3+32+33 (3100)仿照例题,等比数列1,5,52,53,…,52018的和为解:令S=1+5+52+53+…+52017+52018则5S=1+5+52+53+…+52017+52019因此,5S﹣S=52019﹣1,所以S=.故答案为:..三.解答题(共14小题)23.(2018•长沙)计算:(﹣1)2018﹣+(π﹣3)0+4cos45°.解:原式=1﹣2+1+4×=1﹣2+1+2=2.24.(2018•常德)先化简,再求值:(+)÷,其中x=.解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.25.(2018•郴州)解不等式组:并把解集在数轴上表示出来.解:解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:26.(2018•长沙)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:,解得:.答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1﹣80%)+100×80×(1﹣75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.27.(2018•湘潭)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?解:(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,意,,∴50≤y≤52,∵y为正整数,∴y为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,费用为50y+150(100﹣y)=﹣100y+15000,当y=52时,所需资金最少,最少是9800元.28.(2018•邵阳)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B 型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?解:(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得=,解得x=120.经检验,x=120是所列方程的解.当x=120时,x+30=150.答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥.∵a是整数,∴a≥14.答:至少购进A型机器人14台.29.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.30.(2018•常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.31.(2018•张家界)列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?解:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(元),答:买羊人数为21人,羊价为150元.32.(2018•郴州)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.33.(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和妈妈的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,依题意得:,解得,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.34.(2018•怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.解:(1)根据题意,得:y=90x+70(21﹣x)=20x+1470,所以函数解析式为:y=20x+1470;(2)∵购买B种树苗的数量少于A种树苗的数量,∴21﹣x<x,解得:x>10.5,又∵y=20x+1470,且x取整数,∴当x=11时,y有最小值=1690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.35.(2018•娄底)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?解:(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据题意,得12x+15(10﹣x)≥140,解得x≤3,∵x为正整数,∴x=1,2,3.∴该景区有三种设计方案:方案一:购买A种设备1台,B种设备9台;方案二:购买A种设备2台,B种设备8台;方案三:购买A种设备3台,B种设备7台;(2)各方案购买费用分别为:方案一:3×1+4.4×9=42.6>40,实际付款:42.6×0.9=38.34(万元);方案二:3×2+4.4×8=41.2>40,实际付款:41.2×0.9=37.08(万元);方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.04<39.8,∴采用(1)设计的第二种方案,使购买费用最少.36.(2018•湘西州)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.。

【中小学资料】全国2018年中考数学真题分类汇编 滚动小专题(三)方程、不等式的实际应用(答案不全)

【中小学资料】全国2018年中考数学真题分类汇编 滚动小专题(三)方程、不等式的实际应用(答案不全)

滚动小专题(三)方程、不等式的实际应用(2018玉林)(2018苏州)(2018赤峰)(2018资阳)(2018包头)(2018铜仁)(2018湘潭)23.(8分)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?解:(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,意,,∴≤y≤52,∵y为正整数,∴y为42,43,44,45,46,47,48,49,50,51,52,共11中方案;即:温馨提示牌42个,垃圾箱58个,温馨提示牌43个,垃圾箱57个,温馨提示牌44个,垃圾箱56个,温馨提示牌45个,垃圾箱55个,温馨提示牌46个,垃圾箱54个,温馨提示牌47个,垃圾箱53个,温馨提示牌48个,垃圾箱52个,温馨提示牌49个,垃圾箱51个,温馨提示牌50个,垃圾箱50个,温馨提示牌51个,垃圾箱49个,温馨提示牌52个,垃圾箱48个,根据题意,费用为30y+150(100﹣y)=﹣120y+15000,当y=52时,所需资金最少,最少是8760元.(2018烟台)(2018哈尔滨)(2018大庆)(2018贵阳)(2018安顺)23.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意得21280(1)12801600x +=+,解得:0.5x =或 2.5x =-(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%; (2)设2017年该地有a 户享受到优先搬迁租房奖励,根据题意得, ∵8100040032000005000000⨯⨯=<,∴1000a >,10008400(1000)54005000000a ⨯⨯+-⨯⨯≥,解得:1900a ≥,答:2017年该地至少有1900户享受到优先搬迁租房奖励.(2018郴州)21. 郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A 、B 两种奖品以鼓励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元. (1)A 、B 两种奖品每件各多少元?(2)现要购买A 、B 两种奖品共100件,总费用不超过900元,那么A 种奖品最多购买多少件?(2018山西)(2018咸宁)22.为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2 名老师,可知租用客车总数为_____辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.(2018广东)20.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相符.(1)求该公司购买A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?(2018德阳)(2018宜昌)22.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”( 下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算,第一年有40家工厂用乙方案治理,共使Q值降低了12. 经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加一个相同的数值a. 在(2) 的情况下, 第二年,用乙方案所治理的工厂 合计降低的Q 值与当年因甲方案治理降低的Q 值相等、第三年,用甲方案使Q 值降低了39.5.求第一年用甲方案治理降低的Q 值及a 的值. 解:(1)4012n =0.3n ∴=(2)24040(1)40(1)190m m ++++=解得:1217,22m m ==-(舍去) ∴第二年用乙方案治理的工厂数量为40(1)40(150%)60m +=⨯+=(家) (3)设第一年用甲方案整理降低的Q 值为x ,第二年Q 值因乙方案治理降低了1001000.330n =⨯=, 解法一:()30239.5a a -+=9.5a ∴=20.5x ∴=解法二:30239.5x a x a +=⎧⎨+=⎩20.5x ∴=,9.5a =(2018深圳)21.某超市预测某种饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这种饮料。

2018年中考数学试题分类汇编 知识点12 一元二次方程

2018年中考数学试题分类汇编 知识点12 一元二次方程

一元二次方程一、选择题1. (2018四川泸州,9题,3分)已知关于x 的一元一次方程2210x x k -+-=有两个不相等的实数根,则实数k 的取值范围是( )A. 2k ≤B. 0k ≤C.2k <D.0k < 【答案】C【解析】由题可知,△>0,即 (-2)2-4(k-1)>0,解得k <2 【知识点】一元二次方程跟的判别式,解不等式2. (2018安徽省,7,4分)若关于x 的一元二次方程x (x +1)+ax =0有两个相等的实数根,则实数a 的值为( ) A. 1- B.1 C.22-或 D. 3-或1 【答案】A【解析】将原方程变形为一般式,根据根的判别式△=0即可得出关于a 的一元二次方程,解之即可得出结论. 解:原方程可变形为x 2+(a+1)x=0. ∵该方程有两个相等的实数根,∴△=(a+1)2﹣4×1×0=0, 解得:a=﹣1. 故选:A .【知识点】利用根的判别式确定二次方程解的情况3. (2018甘肃白银,7,3) 关于x 的一元二次方程240x x k ++=有两个实数根,则k 的取值范围是( ) A.4k ≤- B.4<k - C. 4k ≤ D.4<k【答案】C【解析】:∵方程有两个实数根,∴2244410=b ac k ∆-=-⨯⨯≥,解得:4k ≤。

故选C【知识点】一元二次方程根的判别式。

一元二次方程有两个不相等的实数根,则240b ac ->,一元二次方程有两个相等的实数根,则240=b ac -,一元二次方程没实数根,则240<b ac -。

这里题干中说有两个实数根,则根的判别式应是大于或等于0.这是不少同学易错之处。

4. (2018湖南岳阳,11,4分)关于x 的一元二次方程220x x k ++=有两个不相等的实数根,则k 的取值范围是 . 【答案】k <1.【解析】解:∵一元二次方程220x x k ++=有两个不相等的实数根, ∴△=22-4k >0,解得k <1. 故答案为k <1..【知识点】一元二次方程根的判别式的应用5. (2018山东潍坊,11,3分)已知关于x 的一元二次方程2(2)04mmx m x -++=有两个不相等的实数根x 1,x 2.若12114,m x x += 则m 的值是( ) A .2B .-1C .2或-1D .不存在【答案】A【思路分析】根据方程有两个不相等的实数根可知△>0,从而求出m 的取值范围,结合一元二次方程根与系数的关系代入12114,m x x +=求出m 的值,再根据取值范围进行取舍即可. 【解题过程】解:由题意得:2[(2)]44404mm m m ∆=-+-⋅⋅=+>, 解得:m >-1.121212211414m x x m m x x x x +++===.解得:m 1=2,m 2=-1(舍去) 所以m 的值为2,故选择A.【知识点】一元二次方程根的判别式,根与系数的关系6.(2018江苏泰州,5,3分)已知1x 、2x 是关于x 的方程220x ax --=的两根,下列结论一定正确的是( ) A.12x x ≠B.120x x +>C.120x x ⋅>D.10x <,20x <【答案】A 【解析】∵△=280a+>,∴无论a 为何值,方程总有两个不相等的实数根,根据“根与系数的关系”得122x x =-,∴12x x 、异号,故选A.【知识点】根的判别式,根与系数的关系7. (2018江苏省盐城市,8,3分)已知一元二次方程x 2+kx -3=0有一根为1,则k 的值为( ).A .-2B .2C .-4D .4 【答案】B【解析】把x =1代入一元二次方程,得12+k -3=0,解得k =2.故选B . 【知识点】一元二次方程的根8. (2018山东临沂,4,3分)一元二次方程2304y y --=配方后可化为( ) A .2112y ⎛⎫+= ⎪⎝⎭ B .2112y ⎛⎫-= ⎪⎝⎭ C .21324y ⎛⎫+= ⎪⎝⎭ D .21324y ⎛⎫-= ⎪⎝⎭【答案】B 【解析】由y 2-y -43=0得y 2-y =43,配方得y 2-y +41=43+41,∴(y -21)2=1,故选B. 【知识点】一元二次方程的解法 配方法9.(2018四川省宜宾市,4,3分)一元二次方程x 2–2x=0的两根分别为x 1和x 2 , 则为x 1 x 2为( ) A.-2 B.1 C.2 D.0 【答案】D【解析】根据根于系数的关系可知x 1+x 2=ca=0,故选择D. 【知识点】一元二次方程根于系数的关系1. (2018山东菏泽,5,3分)关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( ) A .0k ≥ B .0k ≤ C .0k <且1k ≠- D .0k ≤且1k ≠- 【答案】D【解析】△=b 2-4ac=(-2)2-4(k+1)≥0,解得k≤0,又∵k+1≠0,即k≠-1,∴k≤0且k≠-1.故选D . 【知识点】一元二次方程根的判别式2. (2018贵州遵义,9题,3分)已知x 1,x 2是关于x 的方程x 2+bx-3=0的两根,且满足x 1+x 2-3x 1x 2=5,那么b 的值为A.4B.-4C.3D.-3 【答案】A【解析】由一元二次方程根与系数的关系可知,x 1+x 2=-b ,x 1x 2=-3,又因为x 1+x 2-3x 1x 2=5,代入可得-b-3×(-3)=5,解得b=4,故选A【知识点】一元二次方程根与系数的关系3. (2018江苏淮安,7,3) 若关于x 的一元二次方程x 2-2x-k+1=0有两个相等的实数根,则k 的值是 A.-1B.0C.1D.2【答案】B【解析】分析: 本题考查一元二次方程根的判别式,由一元二次方程有两个相等的实数根,可得判别式为零,进而可得k 的值.解:由一元二次方程x 2-2x-k+1=0有两个相等的实数根 所以根的判别式44(1)0k ∆=--+=,解得:k=0故选:B .【知识点】一元二次方程;一元二次方程根的判别式4. (2018福建A 卷,10,4)已知关于x 的一元二次方程21210a x bx a 有两个相等的实数根,下列判断正确的是 ( ) A .1一定不是关于x 的方程20xbx a 的根 B.0一定不是关于x 的方程20xbx a 的根C.1和-1都是关于x 的方程20x bx a 的根D. 1和-1不都是关于x 的方程20x bx a 的根【答案】D【解析】根据一元二次方程有两个相等的,方程根的判别式等于零,从而建立关于a 、b 的等式,再逐一判断20x bx a 根的情况即可. 解:由关于x 的方程21210a x bxa 有两个相等的实数根,所以△=0,所以224410ba ,110b a b a ,解得10a b 或10a b ,∴1是关于x 的方程20x bx a 的根,或-1是关于x 的方程20x bx a 的根;另一方面若1和-1都是关于x 的方程20xbx a 的根,则必有11a b a b,解得1a b ,此时有10a ,这与已知21210a x bx a 是关于x 的一元二次方程相矛盾,所以1和-1不都是关于x 的方程20x bx a 的根,故选D.【知识点】一元二次方程;根的判别式5. (2018福建B 卷,10,4)已知关于x 的一元二次方程21210a x bx a 有两个相等的实数根,下列判断正确的是 ( ) A .1一定不是关于x 的方程20xbx a 的根 B.0一定不是关于x 的方程20xbx a 的根 C.1和-1都是关于x 的方程20xbx a 的根D. 1和-1不都是关于x 的方程20x bx a 的根【答案】D【解析】根据一元二次方程有两个相等的,方程根的判别式等于零,从而建立关于a 、b 的等式,再逐一判断20x bx a 根的情况即可. 解:由关于x 的方程21210a x bxa 有两个相等的实数根,所以△=0,所以224410ba ,110b a b a ,解得10a b 或10a b ,∴1是关于x 的方程20x bx a 的根,或-1是关于x 的方程20x bx a 的根;另一方面若1和-1都是关于x 的方程20x bx a 的根,则必有11a b a b,解得1a b ,此时有10a ,这与已知21210a x bx a 是关于x 的一元二次方程相矛盾,所以1和-1不都是关于x 的方程20x bx a 的根,故选D.【知识点】一元二次方程;根的判别式6.(2018河南,7,3分)下列一元二次方程中,有两个不相等实数根的是 (A )2690x x ++= (B )2x x = (C )232x x += (D )2(1)10x -+= 【答案】B【解析】本题考查了一元二次方程ax 2+bx+c=0根的判别式Δ=b 2-4ac;当Δ>0时,方程有两个不相等的实数根. 选项A :Δ=b 2-4ac=62-4×1×9=0;选项B :先将原方程转化为一般式:x 2-x =0,则Δ=b 2-4ac=(-1)2-4×1×0=1>0;选项C :将原方程转化为一般式:x 2-2x +3=0,则Δ=b 2-4ac=(-2)2-4×1×3= -8 < 0;选项D :将原方程转化为一般式:x 2-2x +2=0,则Δ=b 2-4ac=(-2)2-4×1×2= -4 < 0.故选项B 正确. 【知识点】一元二次方程根的判别式7. (2018四川凉山州,7,4分)若n (n ≠ 0)是关于x 的方程220x mx n ++=的一个根,则m +n 的值是( )A.1B.2C.-1D.-2【答案】D【解析】∵n (n ≠ 0)是关于x 的方程220x mx n ++=的一个根,∴220n mn n ++=,∴20n m n ++=(), ∵n ≠ 0,∴20m n ++=,∴2m n +=-.故选择D. 【知识点】方程的根,因式分解. 8. 9. 10.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.37. 38. 39. 二、填空题1.(2018四川泸州,题,3分) 已知1x ,2x 是一元二次方程2210x x --=的两实数根,则12112121x x +++的值是 .【答案】6【解析】由韦达定理可得x 1+x 2=2,x 1x 2=-1,6122)1(42221)(242)(2)12)(12(12122121212121=+⨯+-⨯+⨯=+++++=+++++=x x x x x x x x x x 原式【知识点】韦达定理,分式加减2.(2018山东滨州,17,5分)若关于x ,y 的二元二次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组3()()5,2()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解是___________.【答案】3212a b ⎧=⎪⎪⎨⎪=-⎪⎩【解析】根据题意,对比两个方程组得出方程组12a b a b +=⎧⎨-=⎩,所以3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.【知识点】整体思想,二元一次方程组加减消元法3. (2018四川内江,15,5)关于x 的一元二次方程x 2+4x -k =0有实数根,则k 的取值范围是 . 【答案】k ≥-4【解析】解:∵关于x 的一元二次方程x 2+4x -k =0有实数根,∴△=b 2-4ac =42-4×1×(-k )≥0,解得k ≥-4.【知识点】一元二次方程根的判别式4. (2018四川内江,22,6)已知关于x 的方程2ax +bx +1=0的两根为1x =1,2x =2,则方程()21a x ++b (x+1)+1=0的两根之和为 . 【答案】1【思路分析】将方程()21a x ++b (x +1)+1=0中的(x +1)换元成y ,原方程化为ay 2+by +1=0,再由方程2ax +bx +1=0的两根为1x =1,2x =2,可知ay 2+by +1=0的两根也分别为1和2,将y 换回(x +1)就可以求出原方程的两个根,从而得出两根之和.【解题过程】解:令(x +1)=y ,则原方程变形为ay 2+by +1=0,∵方程ax 2+bx +1=0的两根为1x =1,2x =2,∴1y =1,2y =2,即x +1=1,x +1=2,∴1x =0,2x =1,∴1x +2x =1. 【知识点】一元二次方程根与系数关系5. (2018四川绵阳,17,3分) 已知a >b >0,且0312=-++a b b a ,则ab = 【答案】231+- 【解析】解:由题意得:2b (b-a )+a (b-a )+3ab =0, 整理得:2(a b )2+ab 2-1=0,解答ab =231±-,∵a >b >0,∴ab =231+-故答案为231+- 【知识点】分式的加减法,解一元二次方程6.(2018山东聊城,13,3分)已知关于x 的方程2(1)230k x kx k --+-=有两个相等的实根,则k 的值是 . 【答案】34【解析】∵关于x 的方程2(1)230k x kx k --+-=有两个相等的实根,∴2(2)4(1)(3)=010k k k k ⎧----⎨-≠⎩,解得34k =. 【知识点】一元二次方程的定义、一元二次方程根与系数的关系、一元一次方程的解法7. (2018四川省南充市,第14题,3分)若2(0)n n ≠是关于x 的方程2220x mx n -+=的根,则m n -的值为 . 【答案】12【解析】解:∵若()02≠n n 是关于x 的方程0222=+-n mx x 的根,∴()022222=+⨯-n n m n ,原方程整理得:02442=+-n mn n ,∴()01222=+-m n n ,∵n ≠0,∴0122=+-m n 即122-=-m n ,∴21=-n m .故答案为:12. 【知识点】一元二次方程的概念;因式分解8. (2018湖南长沙,17题,3分)已知关于x 的方程x 2-3x+a=0有一个根为1,则方程的另一个根为______。

2018年中考数学试题分项版解析汇编:专题03+方程(组)与不等式(组)(第01期)(各省统一命题版)

2018年中考数学试题分项版解析汇编:专题03+方程(组)与不等式(组)(第01期)(各省统一命题版)

一、选择题:1.(2015.安徽省,第6题,4分)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x ,则下列方程正确的是( )A .1.4(1+x )=4.5B .1.4(1+2x )=4.5C .1.4(1+x )2=4.5 D .1.4(1+x )+1.4(1+x )2=4.5 2. (2015.河北省,第11题,2分)利用加减消元法解方程组2510536x y x y +=⎧⎨-=⎩,①②,下列做法正确的是( )A.要消去y ,可以将①×5+②×2B.要消去x ,可以将①×3+②×(-5)C.要消去y ,可以将①×5+②×3D.要消去x ,可以将①×(-5)+②×23. (2015.河北省,第12题,2分)若关于x 的方程x 2+2x +a =0不存在...实数根,则a 的取值范围是( )A.a <lB.a >1C.a ≤1D.a ≥1 4. (2015.河南省,第5题,3分)不等式组⎩⎨⎧>-≥+13,05x x 的解集在数轴上表示为( ).5.(2015.宁夏,第5题,3分) 关于x 的一元二次方程20x x m ++=有实数根,则m 的取值范围是 ( )A. m ≥14-B. m ≤14- C. m ≥14 D. m ≤146. (2015.宁夏,第7题,3分)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x 米,则可以列出关于x 的方程是( )A. 2980x x +-=B. 2980x x --=C. 2980x x -+=D. 22980x x -+=7.(2015.重庆市A 卷,第8题,4分)一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C.121,2x x ==- D. 120,2x x ==8. (2015.重庆市B 卷,第8题,4分)已知一元二次方程22530x x -+=,则该方程根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .两个根都是自然数D .无实数根9. (2015.天津市,第8题,3分)分式方程233x x=-的解为( ) (A )x = 0 (B )x = 3 (C )x =5 (D )x = 910. (2015.陕西省,第7题,3分)不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.4二、填空题:1.(2015.上海市,第8题,4分)2=的解是_______________.2.(2015.上海市,第10题,4分)如果关于x 的一元二次方程240x x m +-=没有实数根,那么m 的取值范围是________.3. (2015.重庆市A 卷,第17题,4分)从3,2,1,0,4---这五个数中随机抽取一个数记为a ,a 的值既是.不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x=+的自变量取值范围内的概率是 . 4. (2015.重庆市B 卷,第8题,4分)从-2,-1,0,1,2这5个树种,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a -⎧≥-⎪⎨⎪-<⎩,有解,且使关于x 的一元一次方程32123x a x a-++= 的解为负数的概率为________. 5. (2015.北京市,第13题,3分)《九章算数》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,它的代数成就主要包括开方数、正负数和方程数,其中,方程数是《九章算数》最高的数学成就.《九章算数》中记载:“今年牛五、羊二,直金十两;牛二、羊五,直金八两。

最新-2018年全国各地中考数学分类:方程类(附部分答案

最新-2018年全国各地中考数学分类:方程类(附部分答案

2018年全国各地中考数学卷分类题解方程类2018年安徽7.方程()33+=+x x x 的解是 ( )A.1=xB.3,021-==x xC. 3,121==x xD. 3,121-==x x2018年安徽升学20.张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.解:设李明上次购买书籍的原价是x 元,由题意有12208.0-=+x x ,解得160=x .2018年大连课改区26.现有含盐15%的盐水20克,含盐40%的盐水15克,另有足够的纯盐和水,要配制成含盐20%的盐水30克.⑴试设计一种配制方案;⑵试设计一种用纯盐最省的方案;⑶试设计一种现有盐水浪费最少的方案.2018年广东茂名课改区7.若关于x 的一元二次方程的两个根为2,121==x x ,则这个方程是:A.0232=-+x xB.0232=+-x xC.0322=+-x xD.0232=++x x12.若1=x 时一元二次方程022=-+bx ax 的根,则=+b a . 20.解法一:设一本笔记本需x 元,则一只钢笔需()x -6元,依题意,得…………1分18)6(4=-+x x ……………………………………………4分解这个方程,得 2=x ………………………………………5分4266=-=-∴x …………………………7分答:1本笔记本需2元,1支钢笔需4元…………………8分解法二:设一本笔记本需x 元,则一只钢笔需y 元,依题意,得…………1分⎩⎨⎧=+=+1846y x y x ………………………………………4分 解这个方程,得 ⎩⎨⎧==42y x ………………………7分答:1本笔记本需2元,1支钢笔需4元…………………8分2018年广东课改区7.方程x x 22=的解是 . 12.解方程11121=++-+x x x . 21.某夏令营的活动时间为15天,营员的宿舍安装了空调.如果某间宿舍每天比原计划多开2小时的空调,那么开空调的总时间超过150小时;如果每天比原计划少开2小时的空调,那么开空调的总时间不足120小时,问原计划每天开空调时间为多少小时?2018年河南课改区19.某商场购进甲.乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲.乙两种服装分别按标价的八折和九折出售.某顾客购买甲.乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?解:设甲种服装的标价是x 元,则进价是4.1x 元;乙种服装的标价是y 元,则进价是4.1y 元. ……………………2分 依题意,得⎩⎨⎧=+=+1829.08.0210y x y x ……………………5分 解之,得⎩⎨⎧==14070y x ……………………7分)(504.1704.1元==x ,)(1004.11404.1元==y . 答:甲进价50元,标价是70元;乙进价100元,标价是140元. ……………8分2018年荆州6.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了.则这次生意的盈亏情况为( )A .赚6元B .不亏不赚C .亏4元D .亏24元8. 若,αβ是方程2220050x x +-=的两个实数根,则23ααβ++的值为( )A .2018B .2003C .-2018D .4010 13.方程31144x x x-+=--的解为 . 14. 用换元法解方程:63521x x x x -+=-时,若令21x y x =-,则原方程可化为关于y 的一元二次方程是 .2018年南京14.写出两个一元二次方程,使每个方程都有一个根为0,并且二次项系数都为1: .18.解方程组⎩⎨⎧=+=-82302y x y x 2018年陕西4.一件商品按成本价提高40%后的标价,再打8折(标价的80%)销售,售价为240元,设这件商品成本价为x 元,根据题意,下面所列的方程正确的是 【 】A.240%80%40=⋅⋅x B .()240%80%401=⋅+⋅xC.x =⨯⨯%80%40240D.%80240%40⨯=⋅x19.已知:21x x 、是关于x 的方程()01222=+-+a x a x 的两个实数根,且()()112221=++x x ,求a 的值.2018年上海8. 已知一元二次方程有一个根为1,那么这个方程可以是 (只需写出一个方程)9. 如果关于x 的方程240x x a ++=有两个相等的实数根,那么=a .20. 解方程:228124x x x x x ++=+-- 2018年四川课改区 16.⑶解方程:1144-=+x x . 2018年苏州19.(本题5分)解方程组:⎪⎩⎪⎨⎧=+=+-10231312y x y x2018年武汉一.判断题:1.方程2532+=x x 的二次项系数为3,一次项系为5.11.一元二次方程012=-x 的根为( ).A.1=xB.1-=xC.1,121-==x xD.2=x12.不解方程,判别方程05752=+-x x 的根的情况是( ).A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根39.(本题8分)2004年8月中旬,我市受14号台风“云娜”的影响后,部分街道路面积水比较严重.为了改善这一状况,市政公司决定将一总长为1200m 的排水工程承包给甲.乙两工程队来施工.若甲.乙两队合做需12天完成此项工程;若甲队先做了8天后,剩下的由乙队单独做还需18天才能完工.问甲.乙两队单独完成此项工程各需多少天?又已知甲队每施工一天需要费用2万元,乙队每施工一天需要费用1万元,要使完成该工程所需费用不超过35万元,则乙工程队至少要施工多少天?2018年湖北宜昌课改区19.小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?解法一:设他行走剩下的一半路程的速度为x , …………1分 则2.14.26012-≥x …………3分 6≥x …………5分 答:他行走剩下的一半路程的速度至少为6千米/小时. …………6分解法二:设他行走剩下的一半路程的速度为x ,…………1分则2.14.212-=x …………3分 1.0=x …………5分所以只要行走速度大于0.1千米/分,小华都能按时到校(不答此点不扣分).答:他行走剩下的一半路程的速度至少为0.1千米/分. …………6分(注:任何正确解法都可以同样评分,结果还有100米/分;35米/秒,无速度的单位或速度的单位错误扣1分)24.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.⑴若我市2018年初中毕业生中环保意识较强的5万人,能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐.⑵宜昌市从2001年初开始实施天然林保护工程,到2003年初成效显著,森林面积大约由1374.184万亩增加到1500.545万亩.假设我市年用纸量的15%可以作为废纸回收.森林面积年均增长率保持不变,请你按宜昌市总人口约为415万计算:在从2018年初到2018年初这一年度内,我市新增加的森林面积与因回收废纸所能保护的森林面积之和最多可能达到多少亩.(精确到1亩)解:(1) 5万初中毕业生利用废纸回收使森林免遭砍伐的最少亩数是:5×104×10÷1000×18÷80=112.5(亩) …………3分或分步骤计算:5万初中毕业生①废纸回收的数量:5×104×10=5×118(公斤)= 500(吨)…………1分②因废纸回收使森林免遭砍伐的数量:500×18=9000 …………2分③因废纸回收使森林免遭砍伐的最少亩数是:9000÷80=112.5(亩)…………3分 (注:学生因简单叙述或无文字叙述直接得出计算结果不扣分)(2)设2001年初到2003年初我市森林面积年均增长率为x ,依题意可得()545.15001094.13742=+x ………… 5分 解得:%5.4045.0==x ………… 6分∴ 2018年初到2018年初全市新增加的森林面积:1500.545×104×(1+4.5%)2×4.5% = 737385(亩)………… 7分又全市因回收废纸所能保护最多的森林面积:415×104×28×15%÷1000×18÷50=6275(亩) ………… 9分(结果正确即评2分,此点可单独评分)∴新增加的森林面积与保护的森林面积之和最多可能达到的亩数:737385(亩)+ 6275(亩)= 743660(亩) ………… 10分2018年浙江金华6.如果一元二次方程0242=+-x x 的两个根是21x x 、,那么21x x +等于( )A.4 B.-4 C.2 D.-2 8.方程组⎩⎨⎧=-=-3122y x y x 的解是( ) A.⎩⎨⎧==12y x B.⎩⎨⎧-=-=21y x C.⎩⎨⎧==23y x D.⎩⎨⎧==21y x11.用换元法解方程()622=--+x x x x 时,如果设y x x =-2,那么原方程可变为( )A.062=-+y y B.062=++y y C.062=--y y D.062=+-y y20.(本题8分)解方程:03223=--x x x2018年浙江台州6.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A.012=+xB.0122=++x xC.0322=++x xD.0322=-+x x9.若21x x 、是一元二次方程0572=+-x x 的两根,则2111x x +的值是( ) A.57 B. 57- C. 75 D. 75- 21.(本小题8分)解方程:02323=+-x x x 2018年重庆16. 方程xx 527=-的解是 . 19.已知方程0932=+-m x x 的一个根是1,则m 的值是 .。

2018年广西地区中考数学考题分类汇编【函数与方程类】含解析

2018年广西地区中考数学考题分类汇编【函数与方程类】含解析

2018年广西地区中考数学考题分类汇编【函数与方程类】一.选择题(共8小题)1.(2018•广西)将抛物线y=x2﹣6x+向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3解:y=x2﹣6x+=(x2﹣12x)+= [(x﹣6)2﹣36]+=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.2.(2018•桂林)已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3 D.解:∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2,故选:A.3.(2018•贵港)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1 B.2 C.3 D.4解:∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,∴点A(﹣2,0)、B(8,0),∴抛物线的对称轴为x==3,故①正确;∵⊙D的直径为8﹣(﹣2)=10,即半径为5,∴⊙D的面积为25π,故②错误;在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,∴点C(0,﹣4),当y=﹣4时,x2﹣x﹣4=﹣4,解得:x1=0、x2=6,所以点E(6,﹣4),则CE=6,∵AD=3﹣(﹣2)=5,∴AD≠CE,∴四边形ACED不是平行四边形,故③错误;∵y=x2﹣x﹣4=(x﹣3)2﹣,∴点M(3,﹣),设直线CM解析式为y=kx+b,将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,所以直线CM解析式为y=﹣x﹣4;设直线CD解析式为y=mx+n,将点C(0,﹣4)、D(3,0)代入,得:,解得:,所以直线CD解析式为y=x﹣4,由﹣×=﹣1知CM⊥CD于点C,∴直线CM与⊙D相切,故④正确;故选:B.4.(2018•玉林)如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A.B.2C.4 D.3解:点C在双曲线y=上,AC∥y轴,BC∥x轴,设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故选:B.5.(2018•桂林)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△PAB与△NCA中,,∴△PAB∽△NCA,∴=,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,∴=,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.6.(2018•玉林)如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+ x3,则t的取值范围是()A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤12解:翻折后的抛物线的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,∵设x1,x2,x3均为正数,∴点P1(x1,y1),P2(x2,y2)在第四象限,根据对称性可知:x1+x2=8,∵2<x3≤4,∴10<x1+x2+x3≤12即10<t≤12,7.(2018•贺州)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.8.(2018•贵港)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣3解:∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1+2=1,二.填空题(共6小题)9.(2018•广西)如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=(x>0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S=7,k1+3k2=0,则k1等于9 .△BEF解:设点B的坐标为(a,0),则A点坐标为(﹣a,0)由图象可知,点C(a,),E(﹣a,﹣),D(﹣a,),F(﹣,)矩形ABCD面积为:2a•=2k1∴S△DEF=S△BCF=S△ABE=∵S△BEF=7∴2k1+﹣+k1=7 ①∵k1+3k2=0∴k2=﹣k1代入①式得解得k1=9故答案为:910.(2018•柳州)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.解:设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,故答案为.11.(2018•桂林)如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE的面积是,则k的值是3.解:如图,作EM⊥x轴于点M,则EM=1.∵△ODE的面积是,∴OD•EM=,∴OD=.在直角△OAD中,∵∠A=90°,∠AOD=30°,∴∠ADO=60°,∴∠EDM=∠ADO=60°.在直角△EMD中,∵∠DME=90°,∠EDM=60°,∴DM===,∴OM=OD+DM=3,∴E(3,1).∵反比例函数y=(k>0)的图象过点E,∴k=3×1=3.故答案为3.12.(2018•梧州)已知直线y=ax(a≠0)与反比例函数y=(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是(﹣2,﹣4).解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称,∴该点的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).13.(2018•贵港)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为(2n﹣1,0 ).解:∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.14.(2018•贺州)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为25 元.解:设利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.三.解答题(共16小题)15.(2018•柳州)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.解:(1)∵反比例函数y=的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得﹣n=3,解得n=﹣6,∴B(﹣,﹣6),把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5.16.(2018•桂林)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?解:(1)设二号施工队单独施工需要x天,根据题意得: +=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.17.(2018•广西)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.解:(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,∴抛物线解析式为y=﹣x2+x+4;∵AC=BC,CO⊥AB,∴OB=OA=3,∴B(3,0),∵BD⊥x轴交抛物线于点D,∴D点的横坐标为3,当x=3时,y=﹣×9+×3+4=5,∴D点坐标为(3,5);(2)在Rt△OBC中,BC===5,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,∵∠MCN=∠OCB,∴当=时,△CMN∽△COB,则∠CMN=∠COB=90°,即=,解得m=,此时M点坐标为(0,);当=时,△CMN∽△CBO,则∠CNM=∠COB=90°,即=,解得m=,此时M点坐标为(0,);综上所述,M点的坐标为(0,)或(0,);(3)连接DN,AD,如图,∵AC=BC,CO⊥AB,∴OC平分∠ACB,∴∠ACO=∠BCO,∵BD∥OC,∴∠BCO=∠DBC,∵DB=BC=AC=5,CM=BN,∴△ACM≌△DBN,∴AM=DN,∴AM+AN=DN+AN,而DN+AN≥AD(当且仅当点A、N、D共线时取等号),∴DN+AN的最小值==,∴AM+AN的最小值为.18.(2018•柳州)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.解:(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x﹣),把C(0,﹣3)代入得到a=,∴抛物线的解析式为y=x2+x﹣3.(2)在Rt△AOC中,tan∠OAC==,∴∠OAC=60°,∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y=x﹣1,由题意P(m,m2+m﹣3),H(m,m﹣1),F(m,0),∵FH=PH,∴1﹣m=m﹣1﹣(m2+m﹣3)解得m=﹣或(舍弃),∴当FH=HP时,m的值为﹣.(3)如图,∵PF是对称轴,∴F(﹣,0),H(﹣,﹣2),∵AH⊥AE,∴∠EAO=60°,∴EO=OA=3,∴E(0,3),∵C(0,﹣3),∴HC==2,AH=2FH=4,∴QH=CH=1,在HA上取一点K,使得HK=,此时K(﹣,﹣),∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,可得△QHK∽△AHQ,∴==,∴KQ=AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值==.19.(2018•广西)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.解:(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,由题意,得,解得,甲仓库存放原料240吨,乙仓库存放原料0吨;(2)由题意,从甲仓库运m吨原料到工厂,则从乙仓库云原料(300﹣m)吨到工厂,总运费W=(120﹣a)m+100(300﹣m)=(20﹣a)m+30000;(3)①当10≤a<20时,20﹣a>0,由一次函数的性质,得W随m的增大而增大,②当a=20是,20﹣a=0,W随m的增大没变化;③当20≤a≤30时,则20﹣a<0,W随m的增大而减小.20.(2018•桂林)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.解:(1)将A,B的坐标代入函数解析式,得,解得,抛物线y的函数表达式y=﹣2x2﹣4x+6,当x=0时,y=6,即C(0,6);(2)由MA=MB=MC,得M点在AB的垂直平分线上,M在AC的垂直平分线上,设M(﹣1,x),MA=MC,得(﹣1+2)2+x2=(x﹣6)2+(﹣1﹣0)2,解得x=∴若MA=MB=MC,点M的坐标为(﹣1,);(3)①过点A作DA⊥AC交y轴于点F,交CB的延长线于点D,如图1,∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°∴∠DAO=∠ACO,∠CAO=AFO∴△AOF∽△COA∴=∴AO2=OC×OF∵OA=3,OC=6∴OF==∴∵A(﹣6,0),F(0,﹣)∴直线AF的解析式为:,∵B(1,0),(0,6),∴直线BC的解析式为:y=﹣6x+6∴,解得∴∴∴tan∠ACB=∵4tan∠ABE=11tan∠ACB∴tan∠ABE=2过点A作AM⊥x轴,连接BM交抛物线于点E ∵AB=4,tan∠ABE=2∴AM=8∴M(﹣3,8),∵B(1,0),(﹣3,8)∴直线BM的解析式为:y=﹣2x+2,联立BM与抛物线,得∴,解得x=﹣2或x=1(舍去)∴y=6∴E(﹣2,6)②当点E在x轴下方时,如图2,过点E作EG⊥AB,连接BE,设点E(m,﹣2m2﹣4m+6)∴tan∠ABE==2∴m=﹣4或m=1(舍去)可得E(﹣4,﹣10),综上所述:E点坐标为(﹣2,6),(﹣4,﹣10)..(2018•梧州)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A 型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?解:(1)设A、B两种型号电动自行车的进货单价分别为x元(x+500)元.由题意:=,解得x=2500,经检验:x=2500是分式方程的解.答:A、B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30),(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20时,y有最大值,最大值为11000元.22.(2018•贵港)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.23.(2018•梧州)如图,抛物线y=ax2+bx﹣与x轴交于A(1,0)、B(6,0)两点,D是y轴上一点,连接DA,延长DA交抛物线于点E.(1)求此抛物线的解析式;(2)若E点在第一象限,过点E作EF⊥x轴于点F,△ADO与△AEF的面积比为=,求出点E的坐标;(3)若D是y轴上的动点,过D点作与x轴平行的直线交抛物线于M、N两点,是否存在点D,使DA2= DM•DN?若存在,请求出点D的坐标;若不存在,请说明理由.解:(1)将A(1,0),B(6,0)代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+x﹣;(2)∵EF⊥x轴于点F,∴∠AFE=90°.∵∠AOD=∠AFE=90°,∠OAD=∠FAE,∴△AOD∽△AFE.∵==,∵AO=1,∴AF=3,OF=3+1=4,当x=4时,y=﹣×42+×4﹣=,∴E点坐标是(4,),(3)存在点D,使DA2=DM•DN,理由如下:设D点坐标为(0,n),AD2=1+n2,当y=n时,﹣x2+x﹣=n化简,得﹣3x2+x﹣18﹣4n=0,设方程的两根为x1,x2,x1•x2=DM=x1,DN=x2,DA2=DM•DN,即1+n2=,化简,得3n2﹣4n﹣15=0,解得n1=,n2=3,∴D点坐标为(0,﹣)或(0,3).24.(2018•贵港)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用才合算?解:(1)设这批学生有x人,原计划租用45座客车y辆,根据题意得:,解得:.答:这批学生有240人,原计划租用45座客车5辆.(2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5﹣1=4辆.220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.25.(2018•玉林)已知关于x的一元二次方程:x2﹣2x﹣k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)给k取一个负整数值,解这个方程.解:(1)根据题意得△=(﹣2)2﹣4(﹣k﹣2)>0,解得k>﹣3;(2)取k=﹣2,则方程变形为x2﹣2x=0,解得x1=0,x2=2.26.(2018•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析式为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,当n=时,PM最大=;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=n2=0(不符合题意,舍),n3=2n2﹣2n﹣3=﹣3,P(2,﹣3).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣7(不符合题意,舍),n3=2,n2﹣2n﹣3=4﹣4﹣3=﹣3,P(2,﹣3);综上所述:P(2,﹣3).27.(2018•玉林)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?解:(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据题意得:=,解得:x=900,经检验,x=900是原分式方程的解.答:二月份每辆车售价是900元.(2)设每辆山地自行车的进价为y元,根据题意得:900×(1﹣10%)﹣y=35%y,解得:y=600.答:每辆山地自行车的进价是600元.28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D 两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.解:(1)由抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,得A点坐标(﹣3,0),B点坐标(1,0);(2)设抛物线的解析式为y=a(x+3)(x﹣1),把C点坐标代入函数解析式,得a(0+3)(0﹣1)=3,解得a=﹣1,抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(3)EF+EG=8(或EF+EG是定值),理由如下:过点P作PQ∥y轴交x轴于Q,如图.设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,AQ=3+t,QB=1﹣t,∵PQ∥EF,∴△AEF∽△AQP,∴=,∴EF===×(﹣t2﹣2t+3)=2(1﹣t);又∵PQ∥EG,∴△BEG∽△BQP,∴=,∴EG===2(t+3),∴EF+EG=2(1﹣t)+2(t+3)=8.29.(2018•贺州)某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:.答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆.(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20.答:至多能购进B型车20辆.30.(2018•玉林)如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y =c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.解:(1)当y=c时,有c=﹣x2+bx+c,解得:x1=0,x2=b,∴点C的坐标为(0,c),点P的坐标为(b,c).∵直线y=﹣3x+3与x轴、y轴分别交于A、B两点,∴点A的坐标为(1,0),点B的坐标为(0,3),∴OB=3,OA=1,BC=c﹣3,CP=b.∵△PCB≌△BOA,∴BC=OA,CP=OB,∴b=3,c=4,∴点P的坐标为(3,4),抛物线的解析式为y=﹣x2+3x+4.(2)当y=0时,有﹣x2+3x+4=0,解得:x1=﹣1,x2=4,∴点F的坐标为(4,0).过点M作ME∥y轴,交直线AB于点E,如图1所示.∵点M的横坐标为m(0≤m≤4),∴点M的坐标为(m,﹣m2+3m+4),点E的坐标为(m,﹣3m+3),∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,∴S=OA•ME=﹣m2+3m+=﹣(m﹣3)2+5.∵﹣<0,0≤m≤4,∴当m=0时,S取最小值,最小值为;当m=3时,S取最大值,最大值为5.(3)①当点M在线段OP上方时,∵CP∥x轴,∴当点C、M重合时,∠MPO=∠POA,∴点M的坐标为(0,4);②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA.设点D的坐标为(n,0),则DO=n,DP=,∴n2=(n﹣3)2+16,解得:n=,∴点D的坐标为(,0).设直线PD的解析式为y=kx+a(k≠0),将P(3,4)、D(,0)代入y=kx+a,,解得:,∴直线PD的解析式为y=﹣x+.联立直线PD及抛物线的解析式成方程组,得:,解得:,.∴点M的坐标为(,).综上所述:满足∠MPO=∠POA的点M的坐标为(0,4)或(,).。

2018年中考数学试题分类汇编一元二次方程

2018年中考数学试题分类汇编一元二次方程

2018中考数学试题分类汇编:考点10 一元二次方程一.选择题(共18小题)1.(2018•泰州)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0【分析】A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1、x2异号,结论D错误.综上即可得出结论.【解答】解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1、x2异号,结论D错误.故选:A.2.(2018•包头)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.3【分析】根据方程的系数结合根的判别式△≥0,即可得出m≤3,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论.【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.故选:B.3.(2018•宜宾)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.0【分析】根据根与系数的关系可得出x1x2=0,此题得解.【解答】解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选:D.4.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯且一共碰杯55次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设参加酒会的人数为x人,根据题意得: x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.5.(2018•临沂)一元二次方程y 2﹣y ﹣=0配方后可化为( )A .(y+)2=1B .(y ﹣)2=1C .(y+)2=D .(y ﹣)2=【分析】根据配方法即可求出答案.【解答】解:y 2﹣y ﹣=0y 2﹣y=y 2﹣y+=1(y ﹣)2=1 故选:B .6.(2018•眉山)若α,β是一元二次方程3x 2+2x ﹣9=0的两根,则+的值是( )A .B .﹣C .﹣D .【分析】根据根与系数的关系可得出α+β=﹣、αβ=﹣3,将其代入+=中即可求出结论.【解答】解:∵α、β是一元二次方程3x 2+2x ﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C .7.(2018•泰安)一元二次方程(x+1)(x ﹣3)=2x ﹣5根的情况是( ) A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于3【分析】直接整理原方程,进而解方程得出x 的值. 【解答】解:(x+1)(x ﹣3)=2x ﹣5 整理得:x 2﹣2x ﹣3=2x ﹣5,则x 2﹣4x+2=0, (x ﹣2)2=2,解得:x 1=2+>3,x 2=2﹣,故有两个正根,且有一根大于3. 故选:D .8.(2018•宜宾)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( ) A .2% B .4.4%C .20%D .44%【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x ,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x ,根据题意得:2(1+x )2=2.88,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%. 故选:C .9.(2018•湘潭)若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m ≥1B .m ≤1C .m >1D .m <1【分析】根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.【解答】解:∵方程x 2﹣2x+m=0有两个不相同的实数根, ∴△=(﹣2)2﹣4m >0, 解得:m <1. 故选:D .10.(2018•盐城)已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为()A.﹣2 B.2 C.﹣4 D.4【分析】根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1﹣3+k=0,然后解一次方程即可.【解答】解:把x=1代入方程得1+k﹣3=0,解得k=2.故选:B.11.(2018•嘉兴)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长 B.AD的长 C.BC的长 D.CD的长【分析】表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.12.(2018•铜仁市)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3【分析】利用因式分解法求出已知方程的解.【解答】解:x2﹣4x+3=0,分解因式得:(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,故选:C.13.(2018•台湾)若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?()A.﹣25 B.﹣19 C.5 D.17【分析】先利用因式分解法解方程得到a=11,b=﹣3,然后计算代数式a﹣2b的值.【解答】解:(x﹣11)(x+3)=0,x﹣11=0或x﹣3=0,所以x1=11,x2=﹣3,即a=11,b=﹣3,所以a﹣2b=11﹣2×(﹣3)=11+6=17.故选:D.14.(2018•安顺)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或9【分析】求出方程的解,即可得出三角形的边长,再求出即可.【解答】解:x2﹣7x+10=0,(x﹣2)(x﹣5)=0,x﹣2=0,x﹣5=0,x 1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选:A.15.(2018•广西)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【解答】解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.16.(2018•乌鲁木齐)宾馆有50间房供游客居住,当毎间房毎天定价为180元时,宾馆会住满;当毎间房毎天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房毎天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890 B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890 D.(x+180)(50﹣)﹣50×20=10890【分析】设房价定为x元,根据利润=房价的净利润×入住的房间数可得.【解答】解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.故选:B.17.(2018•黑龙江)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.18.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%【分析】设平均每次下调的百分率为x,则两次降价后的价格为6000(1﹣x)2,根据降低率问题的数量关系建立方程求出其解即可.【解答】解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.二.填空题(共14小题)19.(2018•扬州)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为2018 .【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=2018故答案为:201820.(2018•苏州)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= ﹣2 .【分析】根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.【解答】解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.21.(2018•荆门)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为﹣3 .【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k的值.【解答】解:把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因为k≠0,所以k的值为﹣3.故答案为﹣3.22.(2018•资阳)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= 2 .【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【解答】解:∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2.故答案是:2.23.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.【分析】根据一元二次方程的解的定义,把x=2n代入方程得到x2﹣2mx+2n=0,然后把等式两边除以n即可.【解答】解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.24.(2018•柳州)一元二次方程x2﹣9=0的解是x1=3,x2=﹣3 .【分析】利用直接开平方法解方程得出即可.【解答】解:∵x2﹣9=0,∴x2=9,解得:x1=3,x2=﹣3.故答案为:x1=3,x2=﹣3.25.(2018•绵阳)已知a>b>0,且++=0,则= .【分析】先整理,再把等式转化成关于的方程,解方程即可.【解答】解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,整理得:2()2+﹣1=0,解得=,∵a>b>0,∴=,故答案为.26.(2018•十堰)对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为 1 .【分析】根据题意列出方程,解方程即可.【解答】解:由题意得,(x+1)2﹣(x+1)(x﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为:1.27.(2018•淮安)一元二次方程x2﹣x=0的根是x1=0,x2=1 .【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.28.(2018•黄冈)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为16 .【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.29.(2018•黔南州)三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形周长是13 .【分析】求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=4时,看看是否符合三角形三边关系定理;求出即可.【解答】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x 1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.30.(2018•通辽)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为x(x﹣1)=21 .【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x (x﹣1),即可列方程.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为: x(x﹣1)=21.31.(2018•南通模拟)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是100(1+x)2=160 .【分析】设二,三月份每月平均增长率为x,根据一月份生产机器100台,三月份生产机器160台,可列出方程.【解答】解:设二,三月份每月平均增长率为x,100(1+x)2=160.故答案为:100(1+x)2=160.32.(2018•泰州)已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a 的值为 3 .【分析】根据题意列出关于x、y的方程组,然后求得x、y的值,结合已知条件x≤y来求a的取值.【解答】解:依题意得:,解得∵x≤y,∴a2≤6a﹣9,整理,得(a﹣3)2≤0,故a﹣3=0,解得a=3.故答案是:3.三.解答题(共11小题)33.(2018•绍兴)(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1.(2)解方程:x2﹣2x﹣1=0.【分析】(1)首先计算特殊角的三角函数、二次根式的化简、零次幂、负整数指数幂,然后再计算加减即可;(2)首先计算△,然后再利用求根公式进行计算即可.【解答】解:(1)原式=2﹣2﹣1+3=2;(2)a=1,b=﹣2,c=﹣1,△=b2﹣4ac=4+4=8>0,方程有两个不相等的实数根,x===1,则x 1=1+,x 2=1﹣.34.(2018•齐齐哈尔)解方程:2(x ﹣3)=3x (x ﹣3).【分析】移项后提取公因式x ﹣3后利用因式分解法求得一元二次方程的解即可.【解答】解:2(x ﹣3)=3x (x ﹣3), 移项得:2(x ﹣3)﹣3x (x ﹣3)=0, 整理得:(x ﹣3)(2﹣3x )=0, x ﹣3=0或2﹣3x=0,解得:x 1=3或x 2=.35.(2018•遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量. (2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元? 【分析】(1)根据表格内的数据,利用待定系数法可求出y 与x 之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y 与x 之间的函数关系式为y=kx+b , 将(22.6,34.8)、(24,32)代入y=kx+b ,,解得:,∴y 与x 之间的函数关系式为y=﹣2x+80. 当x=23.5时,y=﹣2x+80=33. 答:当天该水果的销售量为33千克.(2)根据题意得:(x ﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.36.(2018•德州)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?【分析】(1)根据点的坐标,利用待定系数法即可求出年销售量y与销售单价x的函数关系式;(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,根据总利润=单台利润×销售数量,即可得出关于x的一元二次方程,解之取其小于70的值即可得出结论.【解答】解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),将(40,600)、(45,550)代入y=kx+b,得:,解得:,∴年销售量y与销售单价x的函数关系式为y=﹣10x+1000.(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,根据题意得:(x﹣30)(﹣10x+1000)=10000,整理,得:x2﹣130x+4000=0,解得:x1=50,x2=80.∵此设备的销售单价不得高于70万元,∴x=50.答:该设备的销售单价应是50万元/台.37.(2018•沈阳)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.38.(2018•重庆)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a%,8a%,求a的值.【分析】(1)设2018年前5个月要修建x个沼气池,则2018年前5个月要修建(50﹣x)个垃圾集中处理点,根据沼气池的个数不低于垃圾集中处理点个数的4倍,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论;(2)根据单价=总价÷数量可求出修建每个沼气池的平均费用,进而可求出修建每个垃圾集中点的平均费用,设y=a%结合总价=单价×数量即可得出关于y的一元二次方程,解之即可得出y值,进而可得出a的值.【解答】解:(1)设2018年前5个月要修建x个沼气池,则2018年前5个月要修建(50﹣x)个垃圾集中处理点,根据题意得:x≥4(50﹣x),解得:x≥40.答:按计划,2018年前5个月至少要修建40个沼气池.(2)修建每个沼气池的平均费用为78÷[40+(50﹣40)×2]=1.3(万元),修建每个垃圾处理点的平均费用为1.3×2=2.6(万元).根据题意得:1.3×(1+a%)×40×(1+5a%)+2.6×(1+5a%)×10×(1+8a%)=78×(1+10a%),设y=a%,整理得:50y2﹣5y=0,解得:y1=0(不合题意,舍去),y2=0.1,∴a的值为10.39.(2018•盐城)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为26 件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【解答】解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.故答案为26;(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40﹣x)(20+2x)=1200,整理,得x2﹣30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,解得:x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.40.(2018•宜昌)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.【分析】(1)直接利用第一年有40家工厂用乙方案治理,共使Q值降低了12,得出等式求出答案;(2)利用从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m ,三年来用乙方案治理的工厂数量共190家得出等式求出答案; (3)利用n 的值即可得出关于a 的等式求出答案. 【解答】解:(1)由题意可得:40n=12, 解得:n=0.3;(2)由题意可得:40+40(1+m )+40(1+m )2=190,解得:m 1=,m 2=﹣(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m )=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=100×0.3=30, 则(30﹣a )+2a=39.5, 解得:a=9.5, 则Q=20.5.设第一年用甲方案整理降低的Q 值为x ,第二年Q 值因乙方案治理降低了100n=100×0.3=30, 解法一:(30﹣a )+2a=39.5 a=9.5 x=20.5解法二:解得:41.(2018•安顺)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少? (2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.【分析】(1)设该地投入异地安置资金的年平均增长率为x,根据2015年及2017年该地投入异地安置资金,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设2017年该地有a户享受到优先搬迁租房奖励,根据投入的总资金=前1000户奖励的资金+超出1000户奖励的资金结合该地投入的奖励资金不低于500万元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=1280+1600,解得:x1=0.5=50%,x2=﹣2.5(舍去).答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.(2)设2017年该地有a户享受到优先搬迁租房奖励,根据题意得:8×1000×400+5×400(a﹣1000)≥5000000,解得:a≥1900.答:2017年该地至少有1900户享受到优先搬迁租房奖励.42.(2018•内江)对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大数,例如:M{﹣2,﹣1,0}=﹣1,max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=解决问题:(1)填空:M{sin45°,cos60°,tan60°}= ,如果max{3,5﹣3x,2x﹣6}=3,则x的取值范围为;(2)如果2•M{2,x+2,x+4}=max{2,x+2,x+4},求x的值;(3)如果M{9,x2,3x﹣2}=max{9,x2,3x﹣2},求x的值.【分析】(1)根据定义写出sin45°,cos60°,tan60°的值,确定其中位数;根据max{a,b,c}表示这三个数中最大数,对于max{3,5﹣3x,2x﹣6}=3,可得不等式组:则,可得结论;(2)根据新定义和已知分情况讨论:①2最大时,x+4≤2时,②2是中间的数时,x+2≤2≤x+4,③2最小时,x+2≥2,分别解出即可;(3)不妨设y1=9,y2=x2,y3=3x﹣2,画出图象,根据M{9,x2,3x﹣2}=max{9,x2,3x﹣2},可知:三个函数的中间的值与最大值相等,即有两个函数相交时对应的x的值符合条件,结合图象可得结论.【解答】解:(1)∵sin45°=,cos60°=,tan60°=,∴M{sin45°,cos60°,tan60°}=,∵max{3,5﹣3x,2x﹣6}=3,则,∴x的取值范围为:,故答案为:,;(2)2•M{2,x+2,x+4}=max{2,x+2,x+4},分三种情况:①当x+4≤2时,即x≤﹣2,原等式变为:2(x+4)=2,x=﹣3,②x+2≤2≤x+4时,即﹣2≤x≤0,原等式变为:2×2=x+4,x=0,③当x+2≥2时,即x≥0,原等式变为:2(x+2)=x+4,x=0,综上所述,x的值为﹣3或0;(3)不妨设y1=9,y2=x2,y3=3x﹣2,画出图象,如图所示:结合图象,不难得出,在图象中的交点A、B点时,满足条件且M{9,x2,3x﹣2}=max{9,x2,3x﹣2}=yA =yB,此时x2=9,解得x=3或﹣3.43.(2018•重庆)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a >0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.【分析】(1)根据道路硬化的里程数至少是道路拓宽的里程数的4倍,列不等式可得结论;(2)先根据道路硬化和道路拓宽的里程数之比为2:1,设未知数为2x千米、x 千米,列方程可得各自的里程数,同理可求得每千米的道路硬化和道路拓宽的经费,最后根据题意列方程,并利用换元法解方程可得结论.【解答】解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y千米、2y千米,30y+15×2y=780,y=13,2y=26,由题意得:13(1+a%)•40(1+5a%)+26(1+5a%)•10(1+8a%)=780(1+10a%),设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m2﹣m=0,m 1=0.1,m2=0(舍),∴a=10.。

全国2018年中考数学真题分类汇编第6讲一元二次方程(无答案)

全国2018年中考数学真题分类汇编第6讲一元二次方程(无答案)
第6讲
一元二次方程
知识点 1 一元二次方程的相关概念及解法 知识点 2 一元二次方程根的判别式 知识点 3 一元二次方程根与系数的关系 知识点 4 一元二次方程的应用 知识点 1 一元二次方程的相关概念及解法
(2018 南充)14.若 2n(n 0) 是关于 x 的方程 x 2 2mx 2n 0 的根,则 m n 的值为 (2018 苏州)
(2018 眉山)8.若 α,β 是一元二次方程 3x2+2x-9=0 的两根,则
4 27 4 27 58 27
+ 的值是( C )
A.
B.-
C.-
D.
58 27
( 2018 潍 坊 ) 11. 已 知 关 于 x 的 一 元 二 次 方 程 mx 2 ( m 2) x
m 0 有 两 个 不 相 等 的 实 数 根 x1 , x2 , 若 4
2 2
mn n 1 的值为 3 . n
6
知识点 4 一元二次方程的应用 (2018 绵阳)8.在一次酒会上,每两人都只碰一次杯,如果一共碰杯 55 次,则参加酒会的人数为( A.9 人 B.10 人 C.11 人 D.12 人
C

(2018 眉山)10.我市某楼盘准备以每平方 6000 元的均价对外销售,由于国务院有关房地产的新政策出台后,购 房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方 4860 元的均价开盘 销售,则平均每次下调的百分率是( C ) A.8% B.9% C.10% D.11% (2018 宜宾)6.某市从 2017 年开始大力发展“竹文化”旅游产业。据统计,该市 2017 年“竹文化”旅游收入约为 2 亿元。预计 2019“竹文化”旅游收入达到 2.88 亿元,据此估计该市 2018 年、2019 年“竹文化”旅游收入的年平 均增长率约为( ) A.2% B.4.4% C.20% D.44% (2018 赤峰)

2018年四川省中考数学真题汇编解析:数与式、方程不等式

2018年四川省中考数学真题汇编解析:数与式、方程不等式

2018年全国各地中考数学真题汇编(四川专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.2.(2018•乐山)方程组==x+y﹣4的解是()A.B.C.D.解:由题可得,,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选:D.3.(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴+1≈3.236,故选:C.4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.5.(2018•绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1923 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.7.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.8.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.9.(2018•南充)已知=3,则代数式的值是()解:∵=3,∴=3,∴x﹣y=﹣3xy,则原式====,故选:D.10.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.二.填空题(共10小题)11.(2018•自贡)分解因式:ax2+2axy+ay2=a(x+y)2.解:原式=a(x2+2xy+y2)…(提取公因式)=a(x+y)2.…(完全平方公式)12.(2018•成都)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.13.(2018•自贡)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.14.(2018•绵阳)已知a>b>0,且++=0,则=.解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,整理得:2()2+﹣1=0,解得=,∵a>b>0,∴=,故答案为.15.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.16.(2018•达州)若关于x的分式方程=2a无解,则a的值为1或.解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.17.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.18.(2018•眉山)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为k<6且k ≠3.解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程程﹣2=有一个正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.19.(2018•达州)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.20.(2018•遂宁)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.三.解答题(共16小题).(2018•攀枝花)解方程:﹣=1.解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.22.(2018•遂宁)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.解:原式=3+1+2×+2﹣=4++2﹣=6.23.(2018•自贡)解不等式组:,并在数轴上表示其解集.解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.24.(2018•遂宁)先化简,再求值•+.(其中x=1,y=2)解:当x=1,y=2时,原式=•+=+==﹣325.(2018•攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.26.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a 的取值范围.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.27.(2018•宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.28.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.29.(2018•绵阳)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:4m+1.5(10﹣m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车1辆,30.(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是00元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=300(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.31.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣10m+20m=25m2+10m+1=(5m+1)2≥0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.32.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=333.(2018•广安)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元、1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.34.(2018•资阳)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?解:(1)设改建后的绿化区面积为x亩.由题意:x+20%•x=162,解得x=135,162﹣135=27,答:改建后的绿化区面积为135亩和休闲区面积有27亩.(2)设绿化区的面积为m亩.由题意:35000m+25000(162﹣m)≤5500000,解得m≤145,答:绿化区的面积最多可以达到145亩.35.(2018•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log6,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=1.解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设log a M=m,log a N=n,则M=a m,N=a n,∴==a m ﹣n ,由对数的定义得m ﹣n=log a ,又∵m ﹣n=log a M ﹣log a N ,∴log a =log a M ﹣log a N (a >0,a ≠1,M >0,N >0);(3)log 32+log 36﹣log 34,=log 3(2×6÷4),=log 33,=1,故答案为:1.36.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).解:(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为(x +100)元根据题意得:解得400=x经检验,400=x 为原方程的解 500100=+x答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m 的取值范围为:16≤m ≤25②设销售这批丝绸的利润为y根据题意得:y=(800﹣500﹣2n )m +(600﹣400﹣n )•(50﹣m )=(100﹣n )m +10000﹣50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100﹣n>0m=25时,销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100﹣n<0当m=16时,销售这批丝绸的最大利润w=﹣66n+11600。

全国2018年中考数学真题分类汇编 滚动小专题(三)方程、不等式的实际应用(答案不全)

全国2018年中考数学真题分类汇编 滚动小专题(三)方程、不等式的实际应用(答案不全)

滚动小专题(三)方程、不等式的实际应用(2018玉林)(2018苏州)(2018赤峰)(2018资阳)(2018包头)(2018铜仁)(2018湘潭)23.(8分)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?解:(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,意,,∴≤y≤52,∵y为正整数,∴y为42,43,44,45,46,47,48,49,50,51,52,共11中方案;即:温馨提示牌42个,垃圾箱58个,温馨提示牌43个,垃圾箱57个,温馨提示牌44个,垃圾箱56个,温馨提示牌45个,垃圾箱55个,温馨提示牌46个,垃圾箱54个,温馨提示牌47个,垃圾箱53个,温馨提示牌48个,垃圾箱52个,温馨提示牌49个,垃圾箱51个,温馨提示牌50个,垃圾箱50个,温馨提示牌51个,垃圾箱49个,温馨提示牌52个,垃圾箱48个,根据题意,费用为30y+150(100﹣y)=﹣120y+15000,当y=52时,所需资金最少,最少是8760元.(2018烟台)(2018哈尔滨)(2018大庆)(2018贵阳)(2018安顺)23.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意得21280(1)12801600x +=+,解得:0.5x =或 2.5x =-(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%; (2)设2017年该地有a 户享受到优先搬迁租房奖励,根据题意得, ∵8100040032000005000000⨯⨯=<,∴1000a >,10008400(1000)54005000000a ⨯⨯+-⨯⨯≥,解得:1900a ≥,答:2017年该地至少有1900户享受到优先搬迁租房奖励.(2018郴州)21. 郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A 、B 两种奖品以鼓励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元. (1)A 、B 两种奖品每件各多少元?(2)现要购买A 、B 两种奖品共100件,总费用不超过900元,那么A 种奖品最多购买多少件?(2018山西)(2018咸宁)22.为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2 名老师,可知租用客车总数为_____辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.(2018广东)20.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相符.(1)求该公司购买A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?(2018德阳)(2018宜昌)22.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”( 下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算,第一年有40家工厂用乙方案治理,共使Q值降低了12. 经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加一个相同的数值a. 在(2) 的情况下, 第二年,用乙方案所治理的工厂 合计降低的Q 值与当年因甲方案治理降低的Q 值相等、第三年,用甲方案使Q 值降低了39.5.求第一年用甲方案治理降低的Q 值及a 的值. 解:(1)4012n =0.3n ∴=(2)24040(1)40(1)190m m ++++=解得:1217,22m m ==-(舍去) ∴第二年用乙方案治理的工厂数量为40(1)40(150%)60m +=⨯+=(家) (3)设第一年用甲方案整理降低的Q 值为x ,第二年Q 值因乙方案治理降低了1001000.330n =⨯=, 解法一:()30239.5a a -+=9.5a ∴=20.5x ∴=解法二:30239.5x a x a +=⎧⎨+=⎩20.5x ∴=,9.5a =(2018深圳)21.某超市预测某种饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这种饮料。

全国2018年中考数学真题分类汇编滚动小专题二方程不等式的解法答案不全20180919220

全国2018年中考数学真题分类汇编滚动小专题二方程不等式的解法答案不全20180919220

滚动小专题(二)方程、不等式的解法类型1 方程(组)的解法类型2 不等式(组)的解法类型3 一元二次方程的判别式与根与系数的关系类型1 方程(组)的解法(2018大庆)(2018徐州)(2018柳州)(2018齐齐哈尔)(2018湘西)(2018兰州)(2018广西六市同城)(2018武汉)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x(2018呼和浩特)(2018宿迁)19.解方程组:20346x y x y +=⎧⎨+=⎩(2018南通)(2)解方程:11322xx x-=---. (2018绍兴)(2)解方程:2210x x --=.解:22x ±=,11x =,21x =.(2018绵阳)19.(2)解分式方程:x -2322-x 1-x =+.解:方程两边同时乘以x-2得: x-1+2(x-2)=-3, 去括号得:x-1+2x-4=-3, 移项得:x+2x=-3+1+4, 合并同类项得:3x=2, 系数化为1得:x= .检验:将x= 代入最简公分母不为0,故是原分式方程的根, ∴原分式方程的解为:x= .(2018连云港)解方程:3201x x-=-.(2018巴中)22. 解分式方程:2316111x x x +=+--类型2 不等式(组)的解法(2018黄石)19、(本小题7分)解不等式组1(1)222323xx x⎧+≤⎪⎪⎨++⎪≥⎪⎩,并求出不等式组的整数解之和. (2018苏州)(2018徐州)(2018福建)(2018桂林)20.(本题满分6分)解不等式1315+<-x x ,并把它的解集在数轴上表示出来.(2018北京)(2018宜昌)17.解不等式组1021320xx x -⎧≤+⎪⎨⎪-<⎩,并把它的解集在数轴上表示出来.解:解不等式①,得1x ≥ 解不等式②,得2x < ∴原不等式组的解集12x ≤< 在数轴上表示解集为:如图.(2018淮安)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.解:13x ≤<.(2018荆州)求不等式组21211224x x x x -≥-⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩①②的整数解. (2018郴州)18. 解不等式组:()3221,4232x x x x +>-⎧⎪⎨-≤-⎪⎩①②并把解集在数轴上表示出来.(2018盐城)18.解不等式:312(1)x x -≥-,并把它的解集在数轴上表示出来.(2018青岛)解不等式组:21,321614x x -⎧<⎪⎨⎪+>⎩(2018巴中)23.解不等式组10223x x x +>⎧⎪-⎨≤+⎪⎩,并把解集在数轴上表示出来.(2018张家界)16. 解不等式组21521{x x -<+≥,写出其整数解.解:解.由(1)得:62<x3<x ……………………1分由(2)得:1-≥x ……………………2分 ∴不等式组的解集为:31<≤-x ……………………4分 ∴满足条件的整数为:-1; 0; 1; 2 ……………………5分(2018黄冈)15.求满足不等式组()328131322x x x x--≤⎧⎪⎨-<-⎪⎩的所有整数解.(2018南通)20.解不等式组()3214213212x x x x ⎧--≤⎪⎪⎨+⎪>-⎪⎩①②,并写出x 的所有整数解.(2018永州)20. 解不等式组()2112,112x x x -+<+⎧⎪⎨->-⎪⎩,并把解集在数轴上表示出来.(2018台州)18.解不等式组:133(2)0 xx x-<⎧⎨-->⎩.(2018无锡)(2018连云港)解不等式组:3242(1)31 xx x-<⎧⎨-≤+⎩.(2018湖州)(2018怀化)(2018威海)19.解不等式组,并将解集在数轴上表示出来.()()27311542x x x x -<-⎧⎪⎨-+≥⎪⎩①② 解:解不等式①得,4x >-. 解不等式②得,2x ≤.在同一条数轴上表示不等式①②解集因此,原不等式组的解集为42x -<≤.(2018江西)解不等式:2132x x --≥+. 解:去分母:.移项,合并:.(2018常德)18.求不等式组475(1)2332x x x x -<-⎧⎪-⎨≤-⎪⎩的正整数解.解:,解不等式①,得x >﹣2, 解不等式②,得x ≤,不等式组的解集是﹣2<x ≤,不等式组的正整数解是1,2,3,4. (2018上海)(2018广州)17.解不等式组1+0213x x ⎧⎨-⎩><解:-1<x <2.(2018东营)解不等式组: ⎩⎨⎧≥+-+.331203x x x )(,>并判断-1,2这两个数是否为该不等式组的解.解: 302133x x x +⎧⎨-+≥⎩>①()②所以不等式组的解集为: -3<x ≤1. …………………………………………………2分 则-1是不等式组的解,2不是不等式组的解.…………………………………………3分(2018自贡)20.(本题满分8分)解不等式组:3x 5113x 4x 3⎧-≤⎪⎪⎨-⎪<⎪⎩,并在数轴上表示其解集.(2018金华、丽水)18.(本题6分) 解不等式组:232+23(1).xx x x +<-⎧⎪⎨⎪⎩,①≥②解:类型3 一元二次方程的判别式与根与系数的关系(2018呼和浩特)(2018遂宁)已知关于x的一元二次方程x2-2x+a=0的两实数根满足x1x2+x1+x2>0,求a的取值范围.(2018黄石)20、(本小题8分)已知关于x 的方程220x x m -+=有两个不相等的实数根1x 、2x(1)求实数m 的取值范围;(2)若12x x -=2,求实数m 的值.(2018十堰)21.已知关于x 的一元二次方程22(21)10x k x k k --++-=有实数根.(1)求k 的取值范围;(2)若此方程的两实数根1x ,2x 满足221211x x +=,求k 的值.(2018南充)20.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值.(2018江汉油田、潜江、天门、仙桃)20. 已知关于x 的一元二次方程22(21)2x m x m +++-=0.(1)若该方程有两个实数根,求m 的最小整数值;(2)若方程的两个实数根为x 1,x 2,且2212()x x m -+=21,求m 的值.(2018随州)(2018孝感)21.已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.(1)试证明:无论p 取何值此方程总有两个实数根;(2)若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.解:(1)证明:∵(3)(2)(1)x x p p --=+,∴22560x x p p -+--=, 22(5)4(6)p p ∆=----22252444441p p p p =-++=++22(21)0p =+≥.∴无论p 取何值此方程总有两个实数根.(2)由(1)知:原方程可化为22560x x p p -+--=,∴125x x +=,2126x x p p =--,又222121231x x x x p +-=+,∴221212()331x x x x p +-=+, ∴22253(6)31p p p ---=+, 2225183331p p p -++=+,∴36p =-,∴2p =-.。

全国中考数学真题分类汇编滚动小专题(二)方程、不等式的解法(答案不全)(2021年整理)

全国中考数学真题分类汇编滚动小专题(二)方程、不等式的解法(答案不全)(2021年整理)

全国2018年中考数学真题分类汇编滚动小专题(二)方程、不等式的解法(答案不全)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(全国2018年中考数学真题分类汇编滚动小专题(二)方程、不等式的解法(答案不全))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为全国2018年中考数学真题分类汇编滚动小专题(二)方程、不等式的解法(答案不全)的全部内容。

滚动小专题(二)方程、不等式的解法类型1 方程(组)的解法类型2 不等式(组)的解法类型3 一元二次方程的判别式与根与系数的关系类型1 方程(组)的解法(2018大庆)(2018徐州)(2018柳州)(2018齐齐哈尔)(2018湘西)(2018兰州)(2018广西六市同城)(2018武汉)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x(2018呼和浩特)(2018宿迁)19.解方程组:20346x y x y +=⎧⎨+=⎩(2018南通)(2)解方程:11322x x x-=---. (2018绍兴)(2)解方程:2210x x --=。

解:2222x ±=, 112x =+,212x =-。

(2018绵阳)19。

(2)解分式方程:x -2322-x 1-x =+。

解:方程两边同时乘以x-2得: x-1+2(x-2)=—3, 去括号得:x —1+2x —4=—3, 移项得:x+2x=—3+1+4, 合并同类项得:3x=2, 系数化为1得:x= .检验:将x= 代入最简公分母不为0,故是原分式方程的根, ∴原分式方程的解为:x= 。

(2018连云港)解方程:3201x x-=-.(2018巴中)22。

2018中考数学真题分类汇编解析版-22.3.二次函数的应用

2018中考数学真题分类汇编解析版-22.3.二次函数的应用

一、选择题1.(2018·连云港,7,3分)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139m D.大箭升空的最大高度为145m答案:D,解析:因为h=-t2+24t+1=-(t-12)2+145,故对称轴为t=12,显然t=9和t=13时h不等;而t=24时,h=1≠0;当t=10时,h=145≠139;当t=12时,h有最大值145;故选项A、B、C均不正确,故选D.二、填空题1.(2018·绵阳,16,3分)右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.4m2m答案:4,解析:如图,以拱桥顶为坐标原点建立平面直角坐标系,根据题意可知A(2,-2),则抛物线的解析式为:y=-x2,水面下降2m,即y=-4时,-12x2=-4,解得:x1=22,x2=-22,此时水面的宽度为42,所以水面宽度增加了:(424)m.xyAO三、解答题1.(2018滨州,23,12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=-5x²+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行的时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?第23题图思路分析:(1)小球飞行高度为15m,即y=-5x²+20x中y的值为15,解方程求出x的值,即为飞行时间;(2)小球飞出时和落地时的高度为0,据此可以得出0=-5x²+20x,求出x的值,再求差即可;(3)求小球飞行高度何时最大?最大高度是多少?即求x为何值时,二次函数有最大值,最大值是多少?解答过程:(1)当y =15时有-5x ²+20x =15,化简得x ²-4x +3=0因式分解得(x -1)(x -3)=0,故x =1或3,即飞行时间是1秒或者3秒(2)飞出和落地的瞬间,高度都为0,故y =0.所以有0=-5x ²+20x ,解得x =0或4,所以从飞出到落地所用时间是4-0=4秒(3)当x =2b a-=202(5)--=2时,小球的飞行高度最大,最大高度为20米.2.(2018安徽,22,12分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元; ②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元)(1)用含x 的代数式分别表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少? 思路分析:(1)分别用含x 的代数式表示第二期培植的盆景和花卉的数量,根据利润=每盆的利润×数量可求解;(2)先根据W =W 1+W 2用含x 的代数式表示W ,并配成顶点形式,再结合抛物线的开口方向、自变量x 的取值范围和x 是正整数可求出W 的最大值.解答过程:(1)W 1=(x +50)(160-2x )=-2x 2+60x +8000;W 2=19(50-x )=-19x +950.(2)W =W 1+W 2=(-2x 2+60x +8000)+(-19x +950)=-2x 2+41x +8950=-2(x -441)2+916081.∵-2<0,∴抛物线开口向下,又0<x <50,且x 是整数,当x =10时,W 最大=-2×(10-441)2+916081=9160(元);当x =11时,W 最大=-2×(11-441)2+916081=9159(元).综上所述当x =10时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大利润是9160元.3.(2018眉山市,24,9分)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足如下关系:34(06)2080(620)x x y x x ≤≤⎧=⎨+<≤⎩ (1)李明第几天生产的粽子数量为280只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)思路分析:(1)观察,分析题意可以发现,前六天中第6天生产粽子数量最多共34×6=204只,所以只能讲280代入第二个解析式即可.(2)依据函数图象分别求出p 与x 的函数关系式,根据公式w =(4-p )y ,将p 、y 代入函数解析式,得w 与x 的二次函数关系,最后依据二次函数的性质求出最大值.解答过程:(1)∵6×34=204,∴前六天中第6天生产的粽子最多达到204只,将280代入20x +80得:20x +80=280,∴x =10 答:第10天生产的粽子数量为280只.(2)当0≤x <10时,p =2,当10≤x ≤20时,设p =kx +b ,将(10,2)和(20,3)代入得:102203k b k b +=⎧⎨+=⎩解得:1101k b ⎧=⎪⎨⎪=⎩,∴p =110x +1; 当0≤x ≤6时,w =(4-2)×34x =68x ,w 随x 的增大而增大,∴当x =6时最大值为408元;当6<x ≤10时,w =(4-2)×(20x +80)=40x +160,w 随x 的增大而增大,∴当x =10时最大值为560元;当10<x ≤20时,w =(4-110x -1) (20x +80)=-2x 2+60x +232,对称轴为:直线x =15,在10<x ≤20内,将x =15代入得w =682元.综上所述,w 与x 的函数表达式为268(06)40160(610)260232(1020)x x w x x x x x ≤≤⎧⎪=+<≤⎨⎪-++<≤⎩第15天的时候利润最大,最大利润为682元.4..(2018·达州市,21,7分) “绿水青山就是金山银山”的理念已融入人们的日常生活中,因此越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价与标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3 辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?思路分析:(1))本小题的等量关系是按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.根据等量关系列、解方程即可解决问题.(2)本小题的等量关系是每月的利润W =实际售价×销售数量.根据等量关系列、解方程可得.解答过程:解:(1)设该型号自行车的进价为x 元,则标价为(1+50%)x 元.根据题意,得8[(1+50%)x ×0.9-x ]=7[(1+50%)x -100-x ]整理,得2.8x =3.5x -700解得x =1000(元),(1+50%)x =1500(元) .答: 该型号自行车的进价为1000元,则标价为1500元.(2)设该型号自行车降价a 元时,每月获利W 最大.根据题意,得W =(155-1000-a )(51+320x ) =-320a 2+48020a +25500 =-320(a 2-160a +802-802)+25500 =-320(a -80)2+26460. 当a =80时,每月获利最大,最大利润是26460元.即该型号自行车降价80元时,每月获利最大,最大利润是26460元.5.(2018·金华市,22,10分)如图,抛物线2y ax bx =+(a ≠0)过点E (10,0), 矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C,D 在抛物线上.设A (t ,0),当t =2时,AD=4.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t =2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线..GH 平分矩形的面积时,求抛物线平移的距离.思路分析:(1)由点E 的坐标设抛物线的交点式,再把点D 的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE =OA =t ,据此知AB =10﹣2t ,再由x =t 时AD =21542t t -+,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t =2得出点A 、B 、C 、D 及对角线交点P 的坐标,由直线GH 平分矩形的面积知直线GH 必过点P ,根据AB ∥CD 知线段OD 平移后得到的线段是GH ,由线段OD 的中点Q 平移后的对应点是P 知PQ 是△OBD 中位线,由此可求.解答过程:解:(1)设抛物线的函数表达式为y =ax (x ﹣10),∵当t =2时,AD =4,∴点D 的坐标为(2,4).∴4=()2210a ⨯⨯- ,解得a =14-, ∴抛物线的函数表达式为21542y x x =-+; (2)由抛物线的对称性得BE =OA =t ,∴AB =10﹣2t ,当x =t 时,AD =21542t t -+. ∴矩形ABCD 的周长=2(AB +AD )=()215210242t t t ⎡⎤⎛⎫-+-+ ⎪⎢⎥⎝⎭⎣⎦=21202t t -++ =()2141122t --+ ∵-12<0, ∴当t =1时,矩形ABCD 的周长有最大值,最大值为412; (3)当t =2时,点A 、B 、C 、D 的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD 对角线的交点P 的坐标为(5,2),当平移后的抛物线过点A 时,点H 的坐标为(4,4),此时GH 不能将矩形面积平分;当平移后的抛物线过点C 时,点G 的坐标为(6,0),此时GH 也不能将矩形面积平分.∴当G 、H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形的面积平分,当点G 、H 分别落在线段AB 、DC 上时,直线GH 过点P ,必平分矩形ABCD 的面积.∵AB ∥CD ,∴线段OD 平移后得到的线段GH ,∴线段OD 的中点Q 平移后的对应点是P ,在△OBD 中,PQ 是中位线,D CE B A O yx第22题图∴PQ =12OB =4, ∴抛物线向右平移的距离是4个单位.6.(2018·扬州市,26,10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30 元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大, 最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每 天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.思路分析:(1)从图像中获取两点坐标,再运用待定系数法求一次函数的表达式;(2)先根据“销售利润=单件利润×销售量”这一关系式列出利润与销售单价的函数关系式,再根据条件“销售量不低于240件”可求出自变量x 的取值范围,最后运用二次函数的增减性求出最大利润;(3)根据纯利润不低于3600列出的是一个二次不等式,可以运用图像法求出自变量x 的取值范围. 解答过程:(1)设y =kx +b ,有图像可知x =40时,y =300;x =55时,y =150,即有方程组4030055150k b k b +=⎧⎨+=⎩,解得10700k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为y =-10x +700; (2)设每天获取的利润为w (元),则w =(x -30)y =2(30)(10700)10(50)4000x x x --+=--+由于每天漆器笔筒的销售量不低于240件,∴y =-10x +700≥240,解得x ≤46∵当x <50时,w 随x 的增大而增大∴当x =46时,w 有最大值,最大值=210(4650)4000-⨯-+=3840即当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)由题意得210(50)4000x --+-150≥3600,解方程210(50)4000x --+-150=3600得:x 1=45,x 2=55∴不等式210(50)4000x --+-150≥3600的解集为45≤x ≤55即该漆器笔筒销售单价x 的范围为45≤x ≤55.7.(2018浙江台州,23,12)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立模型:设第t 个月该原料药的月销售量为P (单位:吨).P 与t 之间存在如图所示的函数关系,其图象是是函数4t 120+=P (0<t ≤8)的图象与线段AB 的组合;设第t 个月销售该原料药每吨的毛利润为Q (单位:万元),Q 与t 之间满足如下关系:28(08)=44(224)t t Q t t +<≤⎧⎨-+<≤⎩x y (元)(件)3001505540O 第26题图(1)当8<t ≤24时,求P 关于t 的函数解析式;(2)设第t 个月销售该原料药的月毛利润为w (单位:万元).①求W 关于t 的函数解析式;②该药厂销售部门分析认为,336≤w ≤513是最有利于该原料药可持续生产和销售的月毛利润范围.求此范围对应的月销售量P 的最小值和最大值.思路分析:考察一次函数、二次函数和分段函数的相关知识解:(1)当824t <≤时,设解析式为P kt b =+将(8,10),(24,26)带入得8102426k b k b +=⎧⎨+=⎩ 解得12k b =⎧⎨=⎩2(817)P t t ∴=+<≤(2)①当08t <≤时,120(28)2404w t t =+=+当812t <≤时,2(28)(2)21216w t t t t =++=++当1224t <≤时,2(44)(2)4288w t t t t =-++=-++∴解析式为22240212164288w t t t t ⎧⎪=++⎨⎪-++⎩ ,08,812,1224t t t <≤<≤<≤②当812t <≤时,22212162(3)1w t t t ⎡⎤=++=+-⎣⎦,令221216336w t t =++=得1210,16t t ==-(舍去) 又12t =时,448513w =<1012t ∴≤≤时,满足336513w ≤≤;当1224t <≤时,224288(21)529w t t t =-++=--+,令24288513w t t =-++=,得1217,25t t ==(舍去)又12t =时,448336w =>1217t ∴≤≤时,满足336513w ≤≤.综上,当1017t ≤≤时,336513w ≤≤ 而2(1017)P t t =+≤≤,P ∴最小值为12,最大值为19.8.(2018浙江台州,24,14)如图,是ABC Δ☉O 的内接三角形,点D 在弧BC 上,点E 在弦AB 上(E不与A 重合),且四边形BDCE 为菱形.(1)求证:AC =CE ;(2)求证:2BC -2AC =AC AB •;(3)已知☉O 的半径为3, ①若AC AB =35, 求BC 的长;②当ACAB 为何值时,AC AB •的值最大?思路分析:(1)利用菱形四边相等和同弧所对应的圆周角相等;(2)根据等腰三角形的性质、勾股定理得出代数式,用平方差公式展开化简(3)①利用第二问结论和勾股定理即得②设未知数,将所求最值表示成二次函数,通过二次函数性质求最值点.(1)证明:连接ADAC 所对应的圆周角ABC=ADC ∠∠,CD 所对应的圆周角BC=DAC D ∠∠又ABC=DBC ∠∠∴∠ADC=∠DAC ,即ADC ∆为等腰三角形AC CD ∴=又四边形BDCE 为菱形 CD=CE ∴ C=CE A ∴(2)证明:作CH AE ⊥ACE ∆为等腰三角形 H ∴为AE 中点,即AH EH =在Rt CHB ∆中,222BC CH BH -=;在Rt AHC ∆中,222AC CH AH -=. 2222()()BC AC BH AH BH AH BH AH AB AC ∴-=-=+-=∙(3)解:①连接OD ,记OD 与BC 交点为P .OD 3= 由53AB AC =,可设5,3AB a AC a ==. 又22295315BC a a a a -=∙=,∴2224BC a =,则226PC a =223PD CD PC a ∴=-= 从而33OP a =-22(33)69a a ∴-+= 解得233a =,2642BC a ∴== ②连接OC ,设AB m AC=,则AB mAC = 设,,AC a OP b ==则3PD b =- 22229(3)PC b a b ∴=-=-- 得236a b =-42236a PC a ∴=-42249a BC a ∴=- 22221(27)99x BC AC x x ∴-=-=-- 当272x =时,取得最值814,即2272a =时,2814AB AC ma == 32m ∴=即32AB AC =时,AB AC 的值最大8.(2018威海,23,10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款,小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款,已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元,该产品每月销售量y (万件)与销售单价x (元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?思路分析:(1)先用待定系数法求出直线AB 与BC 的函数表达式,然后在4≤x ≤6与6≤x ≤8时,根据“每月利润=销售单价×每月销售量-工资及其他费用”列出W 与x 之间的函数表达式;(2)先求出每月的最大利润,然后求出最快还款的时间.解答过程:(1)设直线AB 的函数表达式为y AB =kx +b ,代入A (4,4),B (6,2),得4426k b k b =+⎧⎨=+⎩,解得18k b =-⎧⎨=⎩.∴直线AB 的函数表达式为y AB =-x +8. 设直线BC 的函数表达式为y BC =k 1x +b 1,代入B (6,2),C (8,1),得11112618k b k b =+⎧⎨=+⎩,解得11125k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为y BC =-21x +5. 工资及其他费用为0.4×5+1=3(万元).当4≤x ≤6时,∴()()1483W x x =--+-,即211235W x x =-+-.当6≤x ≤8时,∴()214532W x x ⎛⎫=--+- ⎪⎝⎭,即2217232W x x =-+-. (2)当4≤x ≤6时,()221123561W x x x =-+-=--+,∴当6x =时,1W 取得最大值1. 当6≤x ≤8时,()2221137237222W x x x =-+-=--+,∴当x =7时,2W 取得最大值1.5. ∴1020261.533==,即第7个月可以还清全部贷款. 9.(2018·温州市,23题号,12分)温州某企业安排 65 名工人生产甲、乙两种产品,每人每天生产 2 件甲或 1 件乙,甲产品每件可获利 15 元.根据市场需求和生产经验,乙产品每天产量不少于 5 件,当每天生产 5 件时,每件可获利 120 元,每增加 1 件,当天平均每件利润减少 2 元.设每天安排 x 人生产乙产品.(1)根据信息填表: 产品种类 每天工人数(人) 每天产量(件) 每件产品可获利润(元)甲 15乙 x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多 550 元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产 1 件丙(每人每天只能生产一种产品),丙产品每件可获利 30 元,求每天生产三种产品可获得的总利润 W (元)的最大值及相应 x 的值.思路分析:(1) x 人生产乙产品,则生产甲产品的人数就是(65- x );每人每天生产 2 件甲,则甲产品每天的产量为2(65- x );当每天生产 5 件乙产品时,每件可获利 120 元,每增加 1 件,当天平均每件利润减少 2 元,则每件乙产品可获利润120-2(x -5)=130-2x.(2) 由(1)可列方程15×2(65-x )=x(130-2x)+550,解得x 1=10,x 2=70,但一共有65 名工人,所以x 2舍去;则每件乙产品可获得的利润为110.(3)设生产甲产品m 人,则生产丙产品65-x-m 人,可列方程W=x (130-2x)+15×2m+30(65-x-m)=-2(x-25)2+3200;因为每天甲、丙两种产品的产量相等,则2m=65-x-m ,又因为x,m 都是非负整数,所以当x=26时,W 最大值=3198。

2018年中考数学试题分项版解析汇编(第02期)专题2.1 方程(含解析)

2018年中考数学试题分项版解析汇编(第02期)专题2.1 方程(含解析)

专题2.1 方程一、单选题1.【北京市2018年中考数学试卷】方程组的解为A. B. C. D.【答案】D【解析】分析:根据方程组解的概念,将4组解分别代入原方程组,一一进行判断即可.详解:将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.点睛:考查方程组的解的概念,能同时满足方程组中每个方程的未知数的值,叫做方程组的解.2.【山东省东营市2018年中考数学试题】小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19 B. 18 C. 16 D. 15【答案】B点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.【湖南省湘西州2018年中考数学试卷】若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A. 1 B.﹣3 C. 3 D. 4【答案】C【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.4.【云南省昆明市2018年中考数学试题】关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A. m<3 B. m>3 C.m≤3 D.m≥3【答案】A【解析】分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m的取值范围即可.详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m>0,∴m<3,故选:A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5.【广西钦州市2018年中考数学试卷】某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. 80(1+x)2=100 B. 100(1﹣x)2=80 C. 80(1+2x)=100 D. 80(1+x2)=100【答案】A【解析】【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.6.【四川省眉山市2018年中考数学试题】我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是().A. 8% B. 9% C. 10% D. 11%【答案】C点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.7.【湖南省怀化市2018年中考数学试题】一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.= B.= C.= D.=【答案】C点睛:此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.8.【云南省昆明市2018年中考数学试题】甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.9.【黑龙江省哈尔滨市2018年中考数学试题】方程的解为()A. x=﹣1 B. x=0 C. x= D. x=1【答案】D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.10.【山东省淄博市2018年中考数学试题】“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【答案】C点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选:A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.【湖南省张家界市2018年初中毕业学业考试数学试题】若关于的分式方程的解为,则的值为( )A. B. C. D.【答案】C点睛:此题主要考查了分式方程的解,正确解方程是解题关键.13.【台湾省2018年中考数学试卷】若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A. 24 B. 0 C.﹣4 D.﹣8【答案】A【解析】分析:利用加减法解二元一次方程组,求得a、b的值,再代入计算可得答案.详解:,①﹣②×3,得:﹣2x=﹣16,解得:x=8,将x=8代入②,得:24﹣y=8,解得:y=16,即a=8、b=16,则a+b=24,故选:A.点睛:本题主要考查二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组的能力.14.【新疆自治区2018年中考数学试题】某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A. B. C. D.【答案】B点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.15.【湖南省常德市2018年中考数学试卷】阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A. B. C. D.方程组的解为【答案】C【解析】【分析】根据阅读材料中提供的方法逐项进行计算即可得.【详解】A、D==2×(-2)-3×1=﹣7,故A选项正确,不符合题意;B、D x==﹣2﹣1×12=﹣14,故B选项正确,不符合题意;C、D y==2×12﹣1×3=21,故C选项不正确,符合题意;D、方程组的解:x==2,y==﹣3,故D选项正确,不符合题意,故选C.【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.16.【广西壮族自治区桂林市2018年中考数学试题】若,则x,y的值为()A. B. C. D.【答案】D点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.17.【浙江省台州市2018年中考数学试题】甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A. 5 B. 4 C. 3 D. 2【答案】B【解析】分析:可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.详解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.18.【河北省2018年中考数学试卷】有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A. B.C. D.【答案】A【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.19.【湖南省邵阳市2018年中考数学试卷】程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人【答案】A【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.20【湖北省恩施州2018年中考数学试题】.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元【答案】C【解析】分析:设两件衣服的进价分别为x、y元,根据利润=销售收入-进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240-两件衣服的进价后即可找出结论.详解:设两件衣服的进价分别为x、y元,根据题意得:120-x=20%x,y-120=20%y,解得:x=100,y=150,∴120+120-100-150=-10(元).故选:C.点睛:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【湖北省武汉市2018年中考数学试卷】将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019 B. 2018 C. 2016 D. 2013【答案】D【解析】【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题22.【上海市2018年中考数学试卷】方程组的解是_____.【答案】,【解析】【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.【详解】,②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,故答案为,.【点睛】本题考查了解二元二次方程组,根据方程组的结构特点灵活选取合适的方法求解是关键.这里体现的消元与转化的数学思想.23.【湖南省长沙市2018年中考数学试题】已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.【答案】2点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.24.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【解析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【详解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1,故答案为:1.【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.25.【山东省聊城市2018年中考数学试题】已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是_____.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.26.【湖南省邵阳市2018年中考数学试卷】已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是_____.【答案】0【解析】【分析】设方程的另一个解是n,根据根与系数的关系可得出关于n的一元一次方程,解之即可得出方程的另一个解.【详解】设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为:0.【点睛】本题考查了一元二次方程的解以及根与系数的关系,熟记一元二次方程ax2+bx+c=0(a≠0)的两根之和等于﹣、两根之积等于是解题的关键.27.【山东省烟台市2018年中考数学试卷】已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是_____.【答案】3<m≤5.点睛:本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.28.【江苏省淮安市2018年中考数学试题】若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=_____.【答案】4【解析】分析:把x与y的值代入方程计算即可求出a的值.详解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.点睛:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.29.【湖北省襄阳市2018年中考数学试卷】我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是_____元.【答案】53【解析】【分析】设该商品的价格是x元,共同购买该物品的有y人,根据“每人出8元,则多3元;每人出7元,则差4元”,即可得出关于x、y的二元一次方程组,解方程组即可得出结论.【详解】设该商品的价格是x元,共同购买该物品的有y人,根据题意得:,解得:,故答案为:53.【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是解题的关键. 30.【四川省内江市2018年中考数学试题】已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为__________.【答案】1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.31.【四川省内江市2018年中考数学试题】关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.【答案】k≥﹣4【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+4x-k=0有实数根,∴△=42-4×1×(-k)=16+4k≥0,解得:k≥-4.故答案为:k≥-4.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.32.【四川省内江市2018年中考数学试卷】已知关于的方程的两根为,,则方程的两根之和为___________.【答案】1【解析】分析:设t=x+1,则方程a(x+1)2+b(x+1)+1=0化为at2+at+1=0,利用方程的解是x1=1,x2=2得到t1=1,t2=2,然后分别计算对应的x的值可确定方程a(x+1)2+b(x+1)+1=0的解.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.33.【四川省内江市2018年中考数学试】关于的一元二次方程有实数根,则的取值范围是__________.【答案】k≥﹣4.点睛:此题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.34.【山东省威海市2018年中考数学试题】用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为__.【答案】44﹣16.【解析】分析:图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得:,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6+6)2=44﹣16,故答案为:44﹣16.点睛:本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.35.【山东省威海市2018年中考数学试题】关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.【答案】m=4.点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.36.【湖南省张家界市2018年初中毕业学业考试数学试题】关于x的一元二次方程有两个相等的实数根,则______.【答案】【解析】分析:根据题意可得△=0,进而可得k2-4=0,再解即可.详解:由题意得:△=k2-4=0,解得:k=±2,故答案为:±2.点睛:此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.37.【新疆自治区2018年中考数学试题】某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是_____元.【答案】4详解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.38.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.39.【山东省聊城市2018年中考数学试卷】已知关于的方程有两个相等的实根,则的值是__________.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.三、解答题40.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A 种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.41.【北京市2018年中考数学试卷】关于的一元二次方程.(1)当时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的,的值,并求此时方程的根.【答案】(1)原方程有两个不相等的实数根.(2),,.【解析】分析:(1)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(1)解:由题意:.∵,∴原方程有两个不相等的实数根.(2)答案不唯一,满足()即可,例如:解:令,,则原方程为,解得:.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.42.【湖北省随州市2018年中考数学试卷】己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若=﹣1,求k的值.【答案】(1)k>﹣;(2)k=3.【解析】【分析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次方程,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=﹣2k﹣3、x1x2=k2,结合=﹣1即可得出关于k的分式方程,解之经检验即可得出结论.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)根据根与系数的关系结合=﹣1找出关于k的分式方程.43.【湖北省孝感市2018年中考数学试题】已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.44.【山东省东营市2018年中考数学试题】关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A 是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【答案】(1)sinA=;(2)△ABC的周长为或16.【解析】分析:(1)利用判别式的意义得到△=25sin2A-16=0,解得sinA=;(2)利用判别式的意义得到100-4(k2-4k+29)≥0,则-(k-2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.详解:(1)根据题意得△=25sin2A-16=0,∴sin2A=,∴sinA=±,∵∠A为锐角,∴sinA=;分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5,∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=2.∴△ABC的周长为10+2;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴AD=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为10+2或16.点睛:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.45.【湖北省黄石市2018年中考数学试卷】已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.【答案】(1)m<1;(2)0.(2)由根与系数的关系得:x1+x2=2,即,解得:x1=2,x2=0,由根与系数的关系得:m=2×0=0.点睛:本题考查了根与系数的关系和根的判别式、一元二次方程的解,能熟记根与系数的关系的内容和根的判别式的内容是解此题的关键.46.【江苏省盐城市2018年中考数学试题】一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?。

【2018中考数学真题+分类汇编】二期9一元二次方程及其应用试题含解析396【2018数学中考真题分项汇编系列】

【2018中考数学真题+分类汇编】二期9一元二次方程及其应用试题含解析396【2018数学中考真题分项汇编系列】

一元二次方程及其应用一.选择题1.(2018•江苏淮安•3分)若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A.﹣1 B.0 C.1 D.2【分析】根据判别式的意义得到△=(﹣2)2﹣4(﹣k+1)=0,然后解一次方程即可.【解答】解:根据题意得△=(﹣2)2﹣4(﹣k+1)=0,解得k=0.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.2.(2018•江苏苏州•3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12【分析】由tan∠AOD==可设AD=3A.OA=4a,在表示出点D.E的坐标,由反比例函数经过点D.E列出关于a的方程,解之求得a的值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3A.OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D.E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D.E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.3.(2018•内蒙古包头市•3分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.3【分析】根据方程的系数结合根的判别式△≥0,即可得出m≤3,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论.【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.故选:B.【点评】本题考查了根的判别式以及一元二次方程的整数解,牢记“当△≥0时,方程有实数根”是解题的关键.4.(2018•上海•4分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【解答】解:∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.5. (2018•乌鲁木齐•4分)宾馆有50间房供游客居住,当毎间房毎天定价为180元时,宾馆会住满;当毎间房毎天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房毎天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890 B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890 D.(x+180)(50﹣)﹣50×20=10890【分析】设房价定为x元,根据利润=房价的净利润×入住的房间数可得.【解答】解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.故选:B.【点评】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.6. (2018•嘉兴•3分)欧几里得的《原本》记载.形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长.B. 的长C. 的长D. 的长【答案】B【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.【解答】用求根公式求得:∵∴∴AD的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.6. (2018•贵州安顺•3分)一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是()A. B. C. D. 或【答案】A【解析】试题分析:∵,∴,即,,①等腰三角形的三边是2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.7. (2018•广西桂林•3分)已知关于x的一元二次方程有两个相等的实根,则k的值为()A. B. C. 2或3 D. 或【答案】A【解析】分析:根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.详解:∵方程有两个相等的实根,∴△=k2-4×2×3=k2-24=0,解得:k=.故选:A.点睛:本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.8. (2018•广西南宁•3分)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【解答】解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.【点评】此题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.9. (2018·黑龙江龙东地区·3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x ﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.【点评】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.10.(2018•福建A卷•4分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.11.(2018•福建B卷•4分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.12.(2018•广东•3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.1.. (2018•广西北海•3分)某种植基地 2016 年蔬菜产量为 80 吨,预计 2018 年蔬菜产量达到 100 吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为ρ则可列方程为A. 80(1 + ):= 100B. 100(1 −):= 80C. 80(1 + 2) = 100D. 80(1 + :) = 100【答案】 A【考点】由实际问题抽象出一元二次方程【解析】由题意知,蔬菜产量的年平均增长率为,根据 2016 年蔬菜产量为 80 吨,则2017 年蔬菜产量为80(1 + )吨,2018 年蔬菜产量为80(1 + ) (1 + )吨. 预计 2018 年蔬菜产量达到 100 吨,即80(1 + )(1 + ) =100,即80(1 + ):= 100.故选 A.【点评】此题考查了一元二次方程的应用(增长率问题).解题的关键是在于理清题目的意思,找到 2017 年和 2018 年的产量的代数式,根据条件找出等量关系式,列出方程.14.(2018•广西贵港•3分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣3【分析】据根与系数的关系α+β=﹣1,αβ=﹣2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.【解答】解:∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1﹣2=﹣3,故选:D.【点评】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数关系的公式是关键.15.(2018•贵州铜仁•4分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3【分析】利用因式分解法求出已知方程的解.【解答】解:x2﹣4x+3=0,分解因式得:(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,故选:C.16.(2018•贵州遵义•3分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣3【分析】直接利用根与系数的关系得出x1+x2=﹣b,x1x2=﹣3,进而求出答案.【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,则x1+x2﹣3x1x2=5,﹣b﹣3×(﹣3)=5,解得:b=4.故选:A.16.(2018年湖南省娄底市)关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根 B.有两相等实数根C.无实数根 D.不能确定【分析】先计算判别式得到△=(k+3)2﹣4×k=(k+1)2+8,再利用非负数的性质得到△>0,然后可判断方程根的情况.【解答】解:△=(k+3)2﹣4×k=k2+2k+9=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,所以方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.17.(2018湖南湘西州4.00分)若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A.1 B.﹣3 C.3 D.4【分析】设方程的另一个解为x1,根据两根之和等于﹣,即可得出关于x1的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个解为x1,根据题意得:﹣1+x1=2,解得:x1=3.故选:C.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.18.(2018•上海•4分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【解答】解:∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.19. (2018•乌鲁木齐•4分)宾馆有50间房供游客居住,当毎间房毎天定价为180元时,宾馆会住满;当毎间房毎天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房毎天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890 B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890D.(x+180)(50﹣)﹣50×20=10890【分析】设房价定为x元,根据利润=房价的净利润×入住的房间数可得.【解答】解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.故选:B.【点评】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.二.填空题1. (2018·湖南郴州·3分)已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为 2 .【分析】根据根与系数的关系得出a+(﹣3)=﹣k,﹣3a=﹣6,求出即可.【解答】解:设方程的另一个根为a,则根据根与系数的关系得:a+(﹣3)=﹣k,﹣3a=﹣6,解得:a=2,故答案为:2.【点评】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.2. (2018·湖南怀化·4分)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m 的值是 1 .【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.3.(2018•江苏徐州•3分)若x1.x2为方程x2+x﹣1=0的两个实数根,则x1+x2= ﹣1 .【分析】直接根据根与系数的关系求解.【解答】解:根据题意得x1+x2=﹣1.故答案为﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.4.(2018•江苏淮安•3分)一元二次方程x2﹣x=0的根是x1=0,x2=1 .【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.5.(2018•江苏苏州•3分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= ﹣2 .【分析】根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.【解答】解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.6.(2018•山东烟台市•3分)已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是3<m≤5.【分析】根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.【解答】解:依题意得:,解得3<m≤5.故答案是:3<m≤5.【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(A.B.c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.7.(2018•山东聊城市•3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.【分析】根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.【解答】解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.8. (2018•达州•3分)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为.【分析】将n2+2n﹣1=0变形为﹣﹣1=0,据此可得m,是方程x2﹣2x﹣1=0的两根,由韦达定理可得m+=2,代入=m+1+可得.【解答】解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.【点评】本题主要考查根与系数的关系,解题的关键是将方程变形后得出m,是方程x2﹣2x﹣1=0的两根及韦达定理.9.(2018•资阳•3分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= .【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【解答】解:∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2.故答案是:2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.11.(2018•贵州黔西南州•3分)三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形周长是13 .【分析】求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=4时,看看是否符合三角形三边关系定理;求出即可.【解答】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点评】本题考查了三角形的三边关系定理和解一元二次方程等知识点,关键是确定第三边的大小,三角形的两边之和大于第三边,分类讨论思想的运用,题型较好,难度适中.12.(2018湖南省邵阳市)(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是0 .【分析】设方程的另一个解是n,根据根与系数的关系可得出关于n的一元一次方程,解之即可得出方程的另一个解.【解答】解:设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0.故答案为:0.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.13.2018湖南长沙3.00分)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为 2 .【分析】设方程的另一个根为m,根据两根之和等于﹣,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为:2.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣是解题的关键14. (2018湖南张家界3.00分)关于x的一元二次方程x2﹣kx+1=0有两个相等的实数根,则k= ±2.【分析】根据题意可得△=0,进而可得k2﹣4=0,再解即可.【解答】解:由题意得:△=k2﹣4=0,故答案为:±2.【点评】此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.15. (2018•达州•3分)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为.【分析】将n2+2n﹣1=0变形为﹣﹣1=0,据此可得m,是方程x2﹣2x﹣1=0的两根,由韦达定理可得m+=2,代入=m+1+可得.【解答】解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.【点评】本题主要考查根与系数的关系,解题的关键是将方程变形后得出m,是方程x2﹣2x﹣1=0的两根及韦达定理.16. (2018•资阳•3分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= .【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【解答】解:∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,故答案是:2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·7分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.2. (2018·湖北随州·7分)己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=﹣1,求k的值.【分析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次方程,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=﹣2k﹣3.x1x2=k2,结合+=﹣1即可得出关于k的分式方程,解之经检验即可得出结论.【解答】解:(1)∵关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,∴△=(2k+3)2﹣4k2>0,解得:k>﹣.(2)∵x1.x2是方程x2+(2k+3)x+k2=0的实数根,∴x1+x2=﹣2k﹣3,x1x2=k2,∴+==﹣=﹣1,解得:k1=3,k2=﹣1,经检验,k1=3,k2=﹣1都是原分式方程的根.又∵k>﹣,∴k=3.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)根据根与系数的关系结合+=﹣1找出关于k 的分式方程.3.(2018•江苏苏州•8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.【分析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【解答】解:(1)由x2﹣4=0得,x1=﹣2,x2=2,∵点A位于点B的左侧,∴A(﹣2,0),∵直线y=x+m经过点A,∴﹣2+m=0,解得,m=2,∴点D的坐标为(0,2),∴AD==2;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+)2+2﹣,则点C′的坐标为(﹣,2﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′的解析式为:y=x﹣4,∴2﹣=﹣﹣4,解得,b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣4x+2或y=x2+6x+2.【点评】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.4.(2018•山东东营市•8分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A 是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【分析】(1)利用判别式的意义得到△=25sin2A﹣16=0,解得sinA=;(2)利用判别式的意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.【解答】解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sinA=或,∵∠A为锐角,∴sinA=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5 ∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴A D=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为或16.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.5. (2018•遂宁•8分)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.【分析】由方程根的个数,利用根的判别式可得到关于a的不等式,可求得a的取值范围,再由根与系数的关系可用a表示出x1x2和x1+x2的值,代入已知条件可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.【点评】本题主要考查根的判别式及根与系数的关系,掌握根的个数与根的判别式的关系及一元二次方程的两根之和、两根之积与方程系数的关系是解题的关键.6. (2018•杭州•10分)设一次函数(是常数,)的图象过A(1,3),B(-1,-1)(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值;(3)已知点C(x1, y1),D(x2, y2)在该一次函数图象上,设m=(x1-x2)(y1-y2),判断反比例函数的图象所在的象限,说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学试题分类汇编方程一、单选题1.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】C2.关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【来源】湖南省娄底市2018年中考数学试题【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.3.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A. ﹣2B. 1C. 2D. 0【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网4.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%【来源】四川省宜宾市2018年中考数学试题【答案】C5.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【来源】山东省潍坊市2018年中考数学试题【答案】A6.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】C8.方程组的解是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2018年中考数学试卷【答案】A10.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】A11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【答案】B12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【来源】山东省泰安市2018年中考数学试题【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【来源】山东省淄博市2018年中考数学试题15.分式方程的解是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.学科#网16.分式方程的解为()A. B. C. D. 无解【来源】山东省德州市2018年中考数学试题【答案】D17.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题18.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.19.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

问牛羊各值金几何?”译文:今有牛5头,羊2头,共值金10两,牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金两、两,依题意,可列出方程为___________________ .【来源】江西省2018年中等学校招生考试数学试题【答案】20.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=_____________.【来源】山东省德州市2018年中考数学试题【答案】60【解析】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案.详解:由题意可知:,解得:.∵x<y,∴原式=5×12=60.故答案为:60.点睛:本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.21.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克粗粮,1千克粗粮,1千克粗粮;乙种粗粮每袋装有1千克粗粮,2千克粗粮,2千克粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中三种粗粮的成本价之和.已知粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________.()【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】22.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为__________尺,竿子长为__________尺.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】201523.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.【来源】湖北省黄冈市2018年中考数学试题【答案】16【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.24.一元二次方程的两根为,,则的值为____________ .【来源】江西省2018年中等学校招生考试数学试题【答案】225.若是方程的一个根,则的值为__________.【来源】江苏省扬州市2018年中考数学试题【答案】2018【解析】分析:根据一元二次方程的解的定义即可求出答案.详解:由题意可知:2m2-3m-1=0,∴2m2-3m=1∴原式=3(2m2-3m)+2015=2018故答案为:2018点睛:本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.26.关于的方程有两个不相等的实数根,那么的取值范围是__________.【来源】江苏省扬州市2018年中考数学试题【答案】且【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>0且m≠0,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4-12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.学科#网27.设、是一元二次方程的两个根,且,则__________,__________.【来源】江苏省南京市2018年中考数学试卷【答案】,28.若是一元二次方程的两个实数根,则=__________.【来源】山东省德州市2018年中考数学试题【答案】-3【解析】分析:根据根与系数的关系即可求出答案.详解:由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2,∴x1+x2+x1x2=﹣3故答案为:﹣3.点睛:本题考查了根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.29.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.【来源】江苏省宿迁市2018年中考数学试卷【答案】12030.当____________时,解分式方程会出现增根.【来源】山东省潍坊市2018年中考数学试题【答案】2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.31.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:__________.【来源】2018年浙江省舟山市中考数学试题【答案】【解析】【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:.故答案为:【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.三、解答题32.《孙子算经》中有过样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【来源】安徽省2018年中考数学试题【答案】城中有75户人家.33.解方程组:【来源】江苏省宿迁市2018年中考数学试卷【答案】原方程组的解为【解析】【分析】利用代入法进行求解即可得.【详解】,由①得:x=-2y ③将③代入②得:3(-2y)+4y=6,解得:y=-3,将y=-3代入③得:x=6,∴原方程组的解为.【点睛】本题考查了解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键. 34.某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调査.获取信息如下:购买数量低于5000块购买数量不低于5000块红色地砖原价销售以八折销售蓝色地砖原价销售以九折销售如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.【来源】江苏省连云港市2018年中考数学试题【答案】(1)红色地砖每块8元,蓝色地砖每块10元;(2)购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元.35.在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.【来源】湖北省黄冈市2018年中考数学试题【答案】A型粽子40千克,B型粽子60千克.【解析】分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.详解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得,解得.答:订购了A型粽子40千克,B型粽子60千克.点睛:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.36.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米.每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元.(1)分别求每台型, 型挖掘机一小时挖土多少立方米?(2)若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?【来源】山东省潍坊市2018年中考数学试题【答案】(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;(2)共有三种调配方案.方案一: 型挖据机7台,型挖掘机5台;方案二: 型挖掘机8台,型挖掘机4台;方案三: 型挖掘机9台,型挖掘机3台.当A型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元.37.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】合伙买鸡者有9人,鸡价为70文钱.38.用消元法解方程组时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.(2)请选择一种你喜欢的方法,完成解答.【来源】2018年浙江省舟山市中考数学试题【答案】(1)解法一中的计算有误;(2)原方程组的解是.【解析】【分析】根据加减消元法和代入消元法进行判断即可.【解答】(1)解法一中的计算有误(标记略).(2)用消元法解方程组时,两位同学的解法如下:由①-②,得,解得,把代入①,得,解得,所以原方程组的解是.【点评】考查加减消元法和代入消元法解二元一次方程组,熟练掌握两种方法是解题的关键. 39.用消元法解方程组时,两位同学的解法如下:解法一: 解法二:由②,得, ③由①-②,得. 把①代入③,得.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“”.(2)请选择一种你喜欢的方法,完成解答.【来源】浙江省嘉兴市2018年中考数学试题40.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【来源】江苏省盐城市2018年中考数学试题【答案】(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.41.已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【来源】湖北省孝感市2018年中考数学试题【答案】(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p 值.详解:(1)证明:原方程可变形为x2-5x+6-p2-p=0.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥0,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.42.若关于的一元二次方程有两个不相等的实数根,求的取值范围.【来源】四川省成都市2018年中考数学试题【答案】43.某地年为做好“精准扶贫”,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年的基础上增加投入资金万元.(1)从年到年,该地投入异地安置资金的年平均增长率为多少?(2)在年异地安置的具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励.【来源】贵州省安顺市2018年中考数学试题【答案】(1)从年到年,该地投入异地安置资金的年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.【解析】分析:(1)设年平均增长率为x,根据:2015年投入资金给×(1+增长率)2=2017年投入资金,列出方程求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.详解:(1)设该地投入异地安置资金的年平均增长率为,根据题意得,解得:或(舍),答:从年到年,该地投入异地安置资金的年平均增长率为;(2)设年该地有户享受到优先搬迁租房奖励,根据题意得,∵,∴,,解得:.答:年该地至少有户享受到优先搬迁租房奖励.点睛:本题主要考查一元二次方程与一元一次不等式的应用,由题意准确抓住相等关系并据此列出方程或不等式是解题的关键.44.(1)计算:.(2)解方程:.【来源】浙江省义乌市2018年中考数学试题【答案】(1)2;(2),.45.为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价(单位:万元)成一次函数关系.(1)求年销售量与销售单价的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?【来源】山东省德州市2018年中考数学试题【答案】(1);(2)该公可若想获得10000万元的年利润,此设备的销售单价应是50万元.46.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划是今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化和里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1 : 2,且里程数之比为2 : 1,为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)40千米;(2)10.47.(1)计算:.(2)解方程:.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】(1)2;(2),.48.解方程:﹣=0【来源】江苏省连云港市2018年中考数学试题【答案】x=2【解析】分析:根据等式的性质去分母,可得整式方程,然后解这个整式方程,最后检验可得答案.详解:方程两边同乘以x(x-1),去分母得,3x-2(x-1)=0,解得x=-2,经检验:x=-2是原分式方程的解.点睛:本题考查了解分式方程,利用等式的性质将分式方程转化成整式方程是解题关键,要检验方程的根.49.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【来源】广东省深圳市2018年中考数学试题【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.50.我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.【来源】四川省宜宾市2018年中考数学试题【答案】每月实际生产智能手机30万部.【解析】分析:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x 万部,根据工作时间=工作总量÷工作效率结合提前5个月完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.51.京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用,那么货车的速度是多少?(精确到)【来源】江苏省扬州市2018年中考数学试题。

相关文档
最新文档