1力学量的平均值随时间的变化
力学量期望值随时间的变化 守恒定律
[ x,pˆ x ] i [Lˆ x,Lˆ y ] iLˆz
(x)2
•(px
)2
2 4
(Lx )2
•(Ly )2
2 4
2
Lz
一、力学量的平均值随时间的变化
量子力学中,处于一定状态下的体系,在每一 时刻,不是所有的力学量都具有确定的值,而只是 具有确定的平均值及几率分布。
力学量F的平均值
F *Fˆ d *(x,t)Fˆ (x,t)dx
经典力学中守恒量:体系取确定值! ①
量子力学守恒量:不一定确定值! 但测量值几率不随时间变化!
② 量子力学定态特点:测量值几率不随时间变化!
守恒量:1、是体系特殊的力学量。
——与H对易!
VS
2、在一切状态(不管是否是定态)
——平均值、测量几率分布不随时间变化!
定态:1、是体系特殊的状态。 ——能量本征态!
Hˆ ]
[Lˆx ,
1
2r2
Lˆ2 ]
1
2r2
[Lˆx ,
Lˆ2 ]
0
同理 [Ly , L2] [Lz , L2] 0
所以
d Lˆ2 1 [Lˆ2 , Hˆ ] 0 dt i
d Lˆx dt
1 i
[Lˆx , Hˆ ] 0
d Lˆy dt
1 i
[Lˆy , Hˆ ] 0
d Lˆz dt
②力学量的可能测值的几率分布不随时间变化
如:(i)自由粒子动量
Hˆ 1 pˆ 2
2
d p 1 [ pˆ Hˆ ] 0 dt i
动量守恒 (ii)粒子在中心力场中运动的角动量
Hˆ
2
2r2
r
(r 2
) r
量子力学-第三章3.8力学量期望值随时间的变化--守恒定律
商可表述为: dF dt
Fˆ dx
t
Fˆ dx t
Fˆ
t
dx
而薛定谔方程及其复数共轭方程为:
t
1 i
Hˆ
;
且 Hˆ 为厄米算符:
t
1 i
(Hˆ
)
于是: dF dt
1 i
(Hˆ )Fˆ dx
Fˆ dx t
1 i
Fˆ Hˆ dx
Fˆ t
dx
1 i
(Fˆ Hˆ
Hˆ Fˆ )dx
①
则 Pˆ 2(x, t) CPˆ (x, t) C2(x, t)
而 Pˆ (x, t) (x, t)
②
Pˆ 2(x, t) Pˆ (x, t) (x, t)
于是: C2 1,即C 1
所以 Pˆ 的本征值 C 1。
即: Pˆ 1 (x, t) 1 (x, t) ; Pˆ 2 (x, t) 2 (x, t) 称 Pˆ 的本征函数中本征值为 1的 1 为有偶宇称态,本征值为 1 的 2 为有奇宇称态。
1. dF 和 dF dt dt 在经典力学中,任一力学量 F 在任何时刻都有确定值,因而
F对时间的微商: dF lim F(t t) F(t) 有确定的意义。在量
dt t0
t
子力学中则不然,除了在 Fˆ 的本征态中 F 有确定值(这时无需考
虑 F随 t 的变化)外,在一般态中, F 并没有确定值,它可以以
即: dF dt
Fˆ t
1 i
[Fˆ ,
Hˆ ]
(1)
此即为海森伯运动方程。其中右边第一项是由于 Fˆ 显含时间而引 起的,即使 不随 t 变化这一项也存在;第二项是由于 随 t 变 化而引起的,即使 F不随 t 变化这一项也存在。
曾谨言《量子力学教程》(第3版)配套题库【课后习题-力学量随时间的演化与对称性】
第4章力学量随时间的演化与对称性4.1 判断下列提法的正误:(正确○,错误×)(a)在非定态下,力学量的平均值随时间变化;(×)(b)设体系处于定态,则不含时力学量的测值的概率分布不随时间变化;(○)(c)设Hamilton量为守恒量,则体系处于定态;(×)(d)中心力场中的粒子,处于定态,则角动量取确定值;(×)(e)自由粒子处于定态,则动量取确定值;(×)(f)一维粒子的能量本征态无简并;(×)(g)中心力场中的粒子能级的简并度至少为(2ι/+1),ι=0,1,2,….(○)4.2 设体系有两个粒子,每个粒子可处于三个单粒子态φ1、φ2、φ3中的任何一个态.试求体系可能态的数目,分三种情况讨论:(a)两个全同Bose子;(b)两个全同Fermi子;(c)两个不同粒子.【解答与分析见《量子力学习题精选与剖析》[下],7.1题.】7.1 考虑由两个全同粒子组成的体系.设可能的单粒子态为φ1、φ2、φ3,试求体系的可能态数目.分三种情况讨论:(a)粒子为Bose子(Bose统计);(b)粒子为Fermi 子(Fermi统计);(c)粒子为经典粒子(Boltzmann统计).解:以符号△、○、口分别表示φ1、φ2、φ3态.Bose子体系的量子态对于两个粒子的交换必须是对称的,Fermi子体系则必须是反对称的,经典粒子被认为是可区分的,体系状态没有对称性的限制.当两个粒子处于相同的单粒子态时,体系的状态必然是交换对称的,这种状态只能出现于Bose子体系和经典粒子体系,体系波函数的构造方式为当两个粒子处于不同的单粒子态(φi和φj,i≠j)时,如果是经典粒子,有两种体系态,即由单粒子态φi和φj可以构成对称和反对称的体系态各一种,即对称态适用于Bose子体系,反对称态适用于Fermi子体系.对于两粒子体系来说,Bose子体系的可能态总数与Fermi子体系的可能态总数之和,显然正好等于经典粒子(可区分粒子)体系的可能态总数.如可能的单粒子态为k个,则三种两粒子体系的可能态数目如下:经典粒子N=k2本题k=3,Fermi子、Bose子、经典粒子体系的可能态数目分别为3、6、9.体系态的构造方式如下:Bose子体系态(共6种,均为交换对称态)有Fermi子体系态(反对称态)只有3种:当全同粒子体系的粒子数超过两个时,一般来说,对于粒子间的交换完全对称的状态(适用于Bose子)数目与完全反对称的状态(适用于Fermi子)数目之和,总是小于没有对称性限制的体系状态(适用于经典粒子)总数.亦即,后者除了完全对称态和完全反对称态,还有一些没有对称性或只有混杂对称性的状态.例如,由三个全同粒子组成的体系,如可能的单粒子态有3种,则在Boltzmann统计、Bose统计、Fermi统计下,体系的可能态数目分别为27、10和1.4.3 设体系由3个粒子组成,每个粒子可能处于3个单粒子态(φ1,φ2和φ3)中任何一个态,分析体系的可能态的数目,分三种情况:(a)不计及波函数的交换对称性;(b)要求波函数对于交换是反对称;(c)要求波函数对于交换是对称.试问:对称态和反对称态的总数为多少?与(a)的结果是否相同?对此做出说明.解:(a)不计及波函数的交换对称性,其可能态的数目为33=27;(b)要求波函数对于交换是反对称的,其可能态的数目为1;(c)要求波函数对于交换是对称的,其可能态的数目为1+6+3=10(参见《量子力学教程》4.5.4节,94页的例题).对称态和反对称态的总数=10+1=11,而不计及交换对称性的量子态的数目(即(a)的结果)为27,两者并不相同.原因在于全同粒子的交换对称性对量子态的限制所造成.4.4 设力学量A不显含t,H为体系的Hamilton量,证明证明:对于不显含t的力学量A,有上式两边再对t求导,则有即4.5 设力学量A不显含t,证明在束缚定态下证明:定态是能量本征态,满足对于束缚态,是可以归一化的,即取有限值.而对于不显含t的力学量A,因此4.6 表示沿z方向平移距离口的算符.证明下列形式波函数(Bloch波函数):是D x(a)的本征态,相应本征值为证明:利用可得而对于形式为的波函数所以,即是D x(a)的本征态,相应本征值为e-ika.4.7 设体系的束缚能级和归一化能量本征态分别为En和,n为标记包含Hamilton 量H在内的力学量完全集的本征态的一组好量子数.设H含有一个参数A,证明此即Feynman-Hellmann定理.【证明见《量子力学习题精选与剖析》[下],5.1题.】5.1 设量子体系的束缚态能级和归一化能量本征态分别为E n和(n为量子数或编号数),设λ为Hamilton算符H含有的任何一个参数.证明(1)这称为Feynman-Hellmann定理.以后简称F-H定理.证明:满足能量本征方程(2)其共轭方程为(2')视λ为参变量,式(2)对λ求导,得到(3)以左乘式(3),利用式(2')和归一化条件,即得式(1).4.8 设包含Hamilton量H在内的一组守恒量完全集的共同本征态和本征值分别为丨n>和E n,n为一组完备好量子数.证明,力学量(算符)F随时间的变化,在此能量表象中表示为【证明见《量子力学习题精选与剖析》[下],2.1题.】2.1 给定总能量算符H(,,p),以表示其本征值和本征函数.态矢量简记为按照Heisenber9运动方程,力学量算符A(r,p)的时间变化率为(1)定义能量表象中矩阵元(2)证明(3)其中。
量子力学_第三章3.8力学量期望值随时间的变化__守恒定律
dinger 方程 o 接地描写各力学量的变化。当然,我们也可以由 Schr
推出一个力学量随时间变化的一般方程,即量子力学运动方程或 海森堡运动方程,由它可以更直接的描述力学量的变化,并可得 出一些重要结论。
ˆ 的本征值 C 1 。 所以 P
ˆ (x, t) (x, t) ; P ˆ (x, t) (x, t) 即: P 1 1 2 2
ˆ 的本征函数中本征值为 1 的 为有偶宇称态,本征值为 1 称P 1
的 2 为有奇宇称态。
ˆ 在空间反演不变时的宇称守恒: c. H
ˆ F 1 ˆH ˆ H ˆF ˆ ) dx dx ( F t i
ˆ 1 d F F ˆ,H ˆ] 即: [F dt t i
(1)
ˆ 显含时间而引 此即为海森伯运动方程。 其中右边第一项是由于 F
起的,即使 不随 t 变化这一项也存在;第二项是由于 随 t 变 化而引起的,即使 F 不随 t 变化这一项也存在。
2 2 ˆ L 2 ˆ 2 , H] ˆ [L ˆ2 , ˆ2 , ˆ 2 , U(r)] 0 [L (r )] [L ] [L 2r 2 r r 2r 2 ˆ ,H ˆ ] 0; ˆ2 ,L ˆ ] 0 , [L ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0, ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0 [L [ L [L z x z
y
x
y
ˆ ˆ2 L L 0, x t t dL d L2 所以: 0; x dt dt
ˆ L y
ˆ L z =0 t t dL y dL z 0; 0 0; dt dt
量子力学中的力学量 Ⅴ. 力学量平均值随时间的变化,运动常数, 埃伦费斯脱定理(继)
n
dAˆ 0
dt
我们称与体系 Hˆ 对易的不显含时间的力 学量算符为体系的运动常数。
运动常数并不都能同时取确定值。因 它们之间可能不对易。 B. 位力定理 ( virial Theorem )
已经证明,在定态上有位力定理
2Tˆ r V(r)
若 V(x, y,z) 是 x,y,z 的 n 次齐次函
l(l 1)2 2mr2
Rkl (r)
2k 2 2m
Rkl (r)
当 l 0 ,则有
2 2m
1 r
d2 dr 2
r Rk0
2k 2 2m
Rk0
从而得
1
d2 d 2
R k 0
Rk0
其中 kr 。显然,它有两个解
Rk0 sin( )
Rk0 cos()
但要求 Rk0 r0 0 ,所以取解
m)! m)!
1 sinm
(
d dcos
)lm
sin2l
称为连带勒让德函数(Associated Legendre
function)。
当 l,m 给定,也就是 Lˆ2, Lz的本征值
给定,那就唯一地确定了本征函数 Ylm(, ) 其性质:
a. 正交归一
Yl*m (, )Ylm (, )d llmm
Pˆr2
(l
1)l2 r2
Rkl1
所以
R kl1
l1Rkl Rkl1
事实上
R kl
()l ( 1
d )l d
Sin()
正是球贝塞尔函数
jl ()
()l ( 1
d )l d
Sin()
由
l Rkl Rkl1
曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-力学量随时间的演化与对称性(圣才出
第4章 力学量随时间的演化与对称性4.1 复习笔记一、力学量随时间的演化1.守恒量对于力学量A ,其平均值随时间变化关系式如下A tH A i dt A d ˆ]ˆ,ˆ[1∂∂+=η 故对于Hamilton 量H 不含时的量子体系,如果力学量A 与H 对易,力学量A 对应算符不显含时间t ,则无论体系处于什么状态(定态或非定态),A 的平均值及其测值的概率分布均不随时间改变.则把A 称为量子体系的一个守恒量.2.能级简并与守恒量的关系(1)守恒量与简并关系的定理定理 设体系有两个彼此不对易的守恒量F 和G ,即[F ,H]=0,[G ,H]=0,但[F ,G ]≠0,则体系能级一般是简并的.推论 如果体系有一个守恒量F ,而体系的某条能级部简并(即对应于某能量本征值E 只有一个本征态E ψ),则E ψ必为F 的本征态.(2)位力(virial )定理当体系处于定态下,关于平均值随时间的变化,有一个有用的定理,即位力virial )定理.设粒子处于势场V (r )中,Hamilton 量为)(2p 2r V mH += 则位力定理表述如下位力定理推论:若势场函数V(r)为r 的n 次齐次式,则有推论V T 2n =二、波包的运动,Ehrenfest 定理设质量为m 的粒子在势场V (r )中运动,用波包ψ(r ,t )描述.设粒子的Hamilton 量为)(2p 2r V mH += 作如下定义:则Ehrenfest 定理表述如下:三、Schr ödinger 图像与Heisenberg 图像(1)(1)式这种描述方式称为Schrödinger 图像(picture ).亦称Schrödinger 表象. 在Schtodlnger 图像中,态矢随时间演化,遵守Schrödinger 方程,而算符则不随时间的变化;与此相反,在Heisenberg 图像中,则让体系的态矢本身不随时间的变化而算符切随时间的变化,遵守Heisenberg方程.四、守恒量与对称性的关系1.对称性变换[Q,H]=0 (2)凡满足式(2)的变换,称为体系的对称性变换.物理学中的体系的对称性变换,总是构成一个群,称为体系的对称性群(symmetrygroup).2.对称性对应守恒量体系在Q变换下的不变性[Q,H]=0,应用到无穷小变换,就导致F就是体系的一个守恒量.这充分说明对称性变换Q必定对应一个守恒量F.典型的两个例子是:平移不变性对应动量守恒,空间旋转不变性对应角动量守恒.五、全同粒子体系与波函数的交换对称性1.全同粒子体系的交换对称性(1)全同性原理全同性原理:任何可观测到,特别是Hamilton量,对于任何两个粒子交换是不变的,即交换对称性.凡满足P ijψ=ψ的.称为对称(symmetric)波函数;满足P ijψ=-ψ的称为反对称(anti—symmetrle)波函数.(2)玻色子与费米子凡自旋为 整数倍(s=0,1,2,…)的粒子,波函数对于两个粒子交换总是对称的,如π介子(s=0).光子(s=1).在统计方法上,它们遵守Bose统计,故称为Bose 子.凡自旋为h的半奇数倍(s=1/2,3/2,…)的粒子,波函数对于两粒子交换总是反对称的,如电子,质子,中子等.它们遵守Fermi统计,故称为Fermi子.2.两个全同粒子组成的体系Pauli不相容原理:不允许有两个全同的Fermi子处于同一个单粒子态.Pauli原理是一个极为重要的自然规律,后来从量子力学波函数的反对称性来说明Pauli原理的是Heisenberg,Fermi和Dirac的贡献.3.N个全同Fermi子组成的体系设N个Fermi子分别处于k2<k z<…<k N态下,则反对称波函数可如下构成(3)P代表N个粒子的一个置换(permutation).式(3)常称为slater行列式,是归一化因子.4.N个全同Bose子组成的体系Bose子不受Pauli原理限制,可以有任意数目的Bose子处于相同的单粒子态.设有n i个Bose子处于k,态上(i=1,2,…,N),则该体系的归一化的对称波函数可表为4.2 课后习题详解4.1 判断下列提法的正误:(正确○,错误×)(a)在非定态下,力学量的平均值随时间变化;(×)(b)设体系处于定态,则不含时力学量的测值的概率分布不随时间变化;(○)(c)设Hamilton量为守恒量,则体系处于定态;(×)(d)中心力场中的粒子,处于定态,则角动量取确定值;(×)(e)自由粒子处于定态,则动量取确定值;(×)(f)一维粒子的能量本征态无简并;(×)(g)中心力场中的粒子能级的简并度至少为(2ι/+1),ι=0,1,2,….(○)4.2 设体系有两个粒子,每个粒子可处于三个单粒子态φ 1、φ 2、φ 3中的任何一个态.试求体系可能态的数目,分三种情况讨论:(a)两个全同Bose子;(b)两个全同Fermi 子;(c)两个不同粒子.【解答与分析见《量子力学习题精选与剖析》[下],7.1题.】7.1 考虑由两个全同粒子组成的体系.设可能的单粒子态为φ1、φ2、φ3,试求体系的可能态数目.分三种情况讨论:(a)粒子为Bose子(Bose统计);(b)粒子为Fermi子(Fermi统计);(c)粒子为经典粒子(Boltzmann统计).解:以符号△、○、口分别表示φ1、φ2、φ3态.Bose子体系的量子态对于两个粒子的交换必须是对称的,Fermi子体系则必须是反对称的,经典粒子被认为是可区分的,体系状态没有对称性的限制.当两个粒子处于相同的单粒子态时,体系的状态必然是交换对称的,这种状态只能出现于Bose子体系和经典粒子体系,体系波函数的构造方式为当两个粒子处于不同的单粒子态(φi和φj,i≠j)时,如果是经典粒子,有两种体系态,即由单粒子态φi和φj可以构成对称和反对称的体系态各一种,即对称态适用于Bose子体系,反对称态适用于Fermi子体系.对于两粒子体系来说,Bose子体系的可能态总数与Fermi子体系的可能态总数之和,显然正好等于经典粒子(可区分粒子)体系的可能态总数.如可能的单粒子态为k个,则三种两粒子体系的可能态数目如下:经典粒子N=k2本题k=3,Fermi子、Bose子、经典粒子体系的可能态数目分别为3、6、9.体系态。
力学量的平均值随时间的变化
t
dx
1 Hˆ
t i
* 1 (Hˆ )*
t i
*
Fˆ
t
dx
1 i
(Hˆ
)*Fˆ
dx
1 i
*FˆHˆ
dx
Fˆ t
1 i
*HˆFˆ dx
1 i
*FˆHˆ dx
Fˆ t
1 i
*[Fˆ , Hˆ ] dx
2
[ x,
pˆ x2 ]
1
2
{pˆ x[x,
pˆ x ] [x,
pˆ x ] pˆ x}
1
2
2i
pˆ x
i
pˆ x
dx 1 [x, Hˆ ] px (对应于经典的速度)
dt i
(2)取 Fˆ pˆx ,有
[ pˆ x , Hˆ ]
[
pˆ x
,
pˆ x2
2
U ]
所以
d L2 0
dt
dLx 0 dt
即量子力学的角动量守恒定律。
dLy 0 dt
dLz 0 dt
3.哈密顿不显含时间的体系能量
若哈密顿不显含时间,即Hˆ / t 0 ,而 [Hˆ , Hˆ ] 0限深势阱、线性谐振子、氢原子等的能量均为守恒量。
又
Pˆ 2 (x,t) Pˆ (x,t) (x,t)
所以
c2 1 c 1
c 1 时,Pˆ (x,t) (x,t) (x,t) (x,t) 为偶宇称态;
c 1 时,Pˆ (x,t) (x,t) (x,t) (x,t) 为奇宇称态;
第五章 力学量随时间的演化与守恒量详解
第五章 力学量随时间的演化与守恒量§1 力学量随时间的变化在经典力学中,处于一定状态下的体系的每一个力学量作为时间的函数,每一个时刻都有一个确定值;但是, 在量子力学中,只有力学量的平均值才可与实验相比较,力学量随时间的演化实质是平均值和测量值的几率分布随时间的演化。
一、守衡量力学量ˆA在任意态()t ψ上的平均值随时间演化的规律为 ˆˆ1ˆˆ,dA A A H dt t i ∂⎡⎤=+⎣⎦∂, 其中ˆH为体系的哈密顿量。
[证明] 力学量ˆA的平均值表示为()ˆ()(),()A t t A t ψψ=,()A t 对时间t 求导得 ()()ˆ()()()ˆˆ,()(),(),()ˆ11ˆˆˆˆ (),()(),()ˆ11ˆˆˆˆ (),()(),()1 d A t t t A A t t A t t dt t t t A H t A t t AH t i i t A t HA t t AH t i i tψψψψψψψψψψψψψ⎛⎫⎛⎫⎛⎫∂∂∂=++ ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫⎛⎫=++⎪ ⎪∂⎝⎭⎝⎭∂=-+ψ+∂=ˆˆˆ,AA H i t∂⎡⎤+⎣⎦∂1ˆˆ,A H i ⎡⎤+⎣⎦1、 守恒量的定义若ˆA不显含t , 即ˆ0A t ∂∂=, 当ˆˆ,0A H ⎡⎤=⎣⎦,那么力学量ˆA 称为守恒量。
2、守恒量的性质(1)、在任意态()t ψ上,守恒量的平均值都不随时间变化0dA dt =。
(2)、在任意态()t ψ上,守恒量的取值几率分布都不随时间变化。
[证明] 由于ˆˆ[,]0A H =知,存在正交归一的共同本征函数组{}nψ(n 是一组完备的量子数),即 ˆˆn n nn n nH E A A ψψψψ⎧=⎪⎨=⎪⎩ 正交归一化条件(),n m mn ψψδ=对于体系的任意状态()t ψ可展开为: ()()n nnt a t ψψ=∑, 展开系数为()(),()n n a t t ψψ=在体系的任意态()t ψ上测量力学量ˆA 时,得到本征值nA 的几率为2|()|n a t , 而 ()()()()()()*2*()()()()()()(),,()(),,1()1() ,,()(),,11ˆ (),,()n n n n n n n n n n n n n n n da t da t d a t a t a t dt dt dtt t t t t t t t i t t i i t i t H t t i i ψψψψψψψψψψψψψψψψψψψψ=+∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭∂∂⎛⎫⎛⎫=-+ ⎪ ⎪∂∂⎝⎭⎝⎭=-+()()()()()()()()()()ˆ(),,()11ˆˆ (),,()(),,() (),,()(),,()0n n n n n n n n n n n n t H t t H t t H t i i E Et t t t i i ψψψψψψψψψψψψψψψψψψψψ=-+=-+= 这表明2|()|n a t 是与时间无关的量。
38力学量平均值随时间的变化
1
[F, H ]
dt t ih
如果算符不显含时间,
F t
0
则
dF
1
[F, H ]
dt ih
若
[F, H] 0
则
dF 0
dt
(3.8-4) (3.8-5)
(3.8-6) (3.8-7)
(3.8-8)
满足上式的力学量,称为体系的运动恒量。
守恒量的特点
守恒量具有如下特点,即体系在任何状态下:
(1)其平均值不随时间而变化;
§3.8力学量平均值随时间的变化 守恒定律
在波函数 描写的状态中,力学量的平均值为
F *(x,t) F (x,t)dx
因波函数是时间的函数,所以
(3.8-1)
d F d
*(x,t) F (x,t)dx
dt dt
* F dx
*
F
dx
*
F
dx
t
t
t
(3.8-2)
由 Schro&&dinger 方程
t
)
(rv,
t
)
(rv,
t
)
对应 P的本征值 1的态,称寄宇称
得出另一态,称其无确定宇称来自称守恒若体系哈密顿量具有空间反演不变性
H
(rv)
H
(rv)
则
PH
H
P
即
[P, H ]
0,亦即 P
是一个守恒量,或者说
H
描写的系统的宇称是不变的,称为宇称守恒定律。
(2)其概率分布不随时间而变化。
证明特点(2):
因为 [F, H ] 0
,故
F
,
H
具有共同本征函数系n
力学量平均值随时间的变化守恒定律
定义时间区间为$[t_1, t_2]$,其中$t_1$和$t_2$分别表示时间区间的起始时间和终止时间。
时间变化的数学表达
时间变化
在物理学中,时间的变化通常用时间导数来表示。时间导数可以表示为$frac{d}{dt}$,其中$d/dt$表示 对时间进行微分。
时间导数的物理意义
时间导数描述了物理量随时间变化的速率。如果一个物理量的时间导数为零,则表示该物理量不随时 间变化。
挑战
目录
Part
01
力学量平均值随时间变化的守 恒定律概述
定义与概念
定义
力学量平均值随时间的变化守恒定律 是指在一定条件下,一个力学量的平 均值不会随时间发生变化,即其时间 导数为零。
概念
该定律是物理学中的基本原理之一, 它表明某些物理量在特定条件下具有 恒定的性质,不受时间的影响。
守恒定律的重要性
希望借助现代科技手段,推动实验观测和数据分析的技术 革新,提高对自然现象的认知和理解。
期望在未来的发展中,能够更好地将基础理论研究与应用 实践相结合,发挥力学量平均值随时间变化的守恒定律在 解决实际问题中的价值和作用。
THANKS
感谢您的观看
结合现代科技手段,如人工智能和大数据分析, 对实验数据进行更深入的挖掘和处理,以揭示 隐藏在数据背后的规律和模式。
拓展力学量平均值随时间变化的守恒定律在复 杂系统和非线性动力学领域的应用,如气候变 化、生态系统和脑科学等。
面临的挑战与问题
如何克服实验观测的局限性,获取更精确和全面的数据,以验证和修正理 论模型。
如何理解和解释力学量平均值随时间变化的守恒定律在不同物理体系中的 共性和差异性。
如何将力学量平均值随时间变化的守恒定律与其他物理定律和原理进行有 机整合,构建更为完整和系统的理论框架。
力学量的平均值随时间的变化
力学量的平均值随时间的变化
•23 一个质量为m的粒子在中心力场V(r)中运动,试证明
•其中E代表能级,ψ是相应的束缚定态波函数,λ是H中的参量 •(2)对于确定节点(即nr相同)的状态,若轨道角动量越大 •(即l越大),则其能量越高。
•证明: (1)由于
•则
PPT文档演模板
力学量的平均值随时间的变化
•20 在p表象中计算一维谐振子的定态能量和定态波函数 •解:薛定谔方程为
•在动量表象中有
•即 •其中
PPT文档演模板
力学量的平均值随时间的变化
PPT文档演模板
力学量的平均值随时间的变化
•代入薛定谔方程得
•以后的求解见陈<量子力学习题与解答>p97
PPT文档演模板
力学量的平均值随时间的变化
•21. t=0时刻自由粒子的波函数是 •求此时粒子动量的可能取值、概率和平均值
•解: (1) F是守恒量,即
•(2) |ψ(t)> 是定态
•18. 对于
•α是常数,下列哪些量是守恒量
•答: 守恒量是
PPT文档演模板
力学量的平均值随时间的变化
•18. 电荷为q,质量为m的无自旋粒子在磁场B中运动,其哈密顿 •算符可近似写成
•(1)指出(不必证明)下列各物理量中的守恒量
•(2)任选一个非守恒量,写出其海森堡运动方程 •(3)写出ω的构造式(用m,q…表示)及B的方向。 •解:(1) 守恒量是
•(2) N个全同Femi子组成的体系
•三个全同Femi子:设三个无相互作用的全同Femi子,处于三个 •不同的单粒子态φk1, φk2, φk3 上,则反对称波函数为
PPT文档演模板
•Slater •行列式
曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解(4-6章)【圣才出品】
(2)位力(virial)定理 当体系处于定态下,关于平均值随时间的变化,有一个有用的定理,即位力 virial)定 理.设粒子处于势场 V(r)中,Hamilton 量为
1 / 61
圣才电子书
十万种考研考证电子书、题库视频学习平台
Bose 子不受 Pauli 原理限制,可以有任意数目的 Bose 子处于相同的单粒子态.设有 ni 个 Bose 子处于 k,态上(i=1,2,…,N),
则该体系的归一化的对称波函数可表为
4.2 课后习题详解
4.1 判断下列提法的正误:(正确○,错误×) (a)在非定态下,力学量的平均值随时间变化;(×) (b)设体系处于定态,则不含时力学量的测值的概率分布不随时间变化;(○) (c)设 Hamilton 量为守恒量,则体系处于定态;(×) (d)中心力场中的粒子,处于定态,则角动量取确定值;(×) (e)自由粒子处于定态,则动量取确定值;(×) (f)一维粒子的能量本征态无简并;(×) (g)中心力场中的粒子能级的简并度至少为(2ι/+1),ι=0,1,2,….(○)
3.N 个全同 Fermi 子组成的体系 设 N 个 Fermi 子分别处于 k2<kz<…<kN 态下,则反对称波函数可如下构成
(3)
P 代表 N 个粒子的一个置换(permutation).式(3)常称为 slater 行列式,
是归一化因子.
4.N 个全同 Bose 子组成的体系
4 / 61
圣才电子书 十万种考研考证电子书、题库视频学习平台
4.2 设体系有两个粒子,每个粒子可处于三个单粒子态φ 1、φ 2、φ 3 中的任何一个 态.试求体系可能态的数目,分三种情况讨论:(a)两个全同 Bose 子;(b)两个全同 Fermi 子;(c)两个不同粒子.
量子力学 第4章
ˆ U(t ) = e
ˆt H /ih
ˆt 1 H ν ) ≡∑ ( ! ih ν =0 ν
∞
称为演化算符
演化算符的性质
是么正变换: 是么正变换:
ˆ ˆ + (t ) = e−Ht/ih U
ˆ + (t )U(t ) = U(t )U+ (t ) = 1 ˆ ˆ ˆ U
Û 与 Ĥ 对易,Û 的时间变化率为 对易,
r 证明 : 引入任意波函数 ψ (r ) r r ˆ [ H ( r )ψ ( r )] = H ( − r )ψ ( − r ) ˆ r ˆ r P r r r ˆ ( r )ψ ( − r ) = H ( r ) Pψ ( r ) ˆ r ˆ =H ˆ ˆ [ P, H ] = 0 所以 ˆ ˆ P又不显含时间 , 所以 P是守恒力学量 。 ˆ ˆ 宇称守恒时 , P与 H可以有共同的本征函数 。 也就是讲 , ˆ 我们可以让 H的本征函数具有确定的 宇称 , 而且它的宇称态不随时 间而改变 。 这就是宇称守恒的意义 。
(3)能量守恒 能量守恒
ˆ ˆ 当哈密顿算符 H 不含时间 , H是守恒力学量 。
5. 宇称
r r ˆ ψ (r , t ) = ψ (− r , t ) (1)定义宇称算符 : P ˆ Pψ ( x , y , z ) = ψ ( − x , − y , − z ) 或者 ˆ 思考题 : Pψ ( r, θ, ϕ ) = ? (2) 宇称算符的本征值与本 征函数 r r ˆ ψ ( r ) = λψ ( r ) P 本征值方程
r d pϕ ( p)
r ∂ r ∂ r ∂ ∂ r r ˆ r r → r = ih∇ p = i h r = i h(i ) + j +k ∂p x ∂p ∂p y ∂pz
量子力学考试知识点
《量子力学》考试知识点第一章:绪论―经典物理学的困难考核知识点:(一)、经典物理学困难的实例(二)、微观粒子波-粒二象性考核要求:(一)、经典物理困难的实例1.识记:紫外灾难、能量子、光电效应、康普顿效应。
2.领会:微观粒子的波-粒二象性、德布罗意波。
第二章:波函数和薛定谔方程考核知识点:(一)、波函数及波函数的统计解释(二)、含时薛定谔方程(三)、不含时薛定谔方程考核要求:(一)、波函数及波函数的统计解释1.识记:波函数、波函数的自然条件、自由粒子平面波2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理2.简明应用:量子力学的初值问题(三)、不含时薛定谔方程1. 领会:定态、定态性质2.简明应用:定态薛定谔方程3.fdfgfdgdfg第三章:一维定态问题一、考核知识点:(一)、一维定态的一般性质(二)、实例二、考核要求:1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振2.简明应用:定态薛定谔方程的求解、无限深方势阱、线性谐振子第四章量子力学中的力学量一、考核知识点:(一)、表示力学量算符的性质(二)、厄密算符的本征值和本征函数(三)、连续谱本征函数“归一化”(四)、算符的共同本征函数(五)、力学量的平均值随时间的变化二、考核要求:(一)、表示力学量算符的性质1.识记:算符、力学量算符、对易关系2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系(二)、厄密算符的本征值和本征函数1.识记:本征方程、本征值、本征函数、正交归一完备性2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。
(三)、连续谱本征函数“归一化”1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系(四)、力学量的平均值随时间的变化1.识记:好量子数、能量-时间测不准关系2.简明应用:力学量平均值随时间变化第五章态和力学量的表象一、考核知识点:(一)、表象变换,幺正变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式(三)、量子态的不同描述二、考核要求:(一)、表象变换,幺正变换1.领会:幺正变换及其性质2.简明应用:表象变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式1.简明应用:平均值、本征方程和Schrodinger equation的矩阵形式2.综合应用:利用算符矩阵表示求本征值和本征函数(三)、量子态的不同描述第六章:微扰理论一、考核知识点:(一)、定态微扰论(二)、变分法(三)、量子跃迁二、考核要求:(一)、定态微扰论1.识记:微扰2.领会:微扰论的思想3.简明应用:简并态能级的一级,二级修正及零级近似波函数4.综合应用:非简并定态能级的一级,二级修正、波函数的一级修正。
第五章 力学量随时间的演化与对称性
不能同时取确定值。 (2) Vivial Theorem 维里定理 ) 不显含 t 的力学量,在定态上的平均是与t 无关。
ˆ ˆ ˆ dr ⋅ p [ r ⋅ p, H ] , =0= dt ih
2 ˆ] 1 ˆ ˆ [ r ⋅ p, H p 1 ˆ ˆ ] + [ r ⋅ p, V( r )] = [ r ⋅ p, ih ih 2 m ih
ˆ 不随t变,而取 As 的几率 ∑ cns 2 也不随t变。 A
n
我们称与体系 H 对易的不显含时间的力学量算符 与体系 ˆ
ˆ A
为体系的运动常数。 为体系的运动常数。
各运动常数并不都能同时取确定值。因尽管它们
ˆ 都与 H对易,但它们之间可能不对易。如
p ˆ + V( r ) H= 2m
与
2
ˆ 2 , L x , L y , Lz对易,但 L , L , L 不对易, ˆx ˆy ˆz L ˆ ˆ ˆ
ˆ x, p x
的平均值。 的平均值。
ˆ A=x ˆ ˆ ˆ d < px > [px , H ] ∂V ˆ = =< − >=< Fx > dt ih ∂x
m
d <x> dt
2
2
ˆ d < px > ∂V ˆ = =< − >=< Fx > dt ∂x
称为的恩费斯脱定理。 称为的恩费斯脱定理。 我们可以看到,上面三个式子与经典力学看起来 非常相似
第四章
力学量随时间的演化与对称性
1. 力学量随时间的演化,运动常数(守恒 力学量随时间的演化,运动常数( 恩费斯脱定理( 量),恩费斯脱定理(Ehrenfest Theorem)。 恩费斯脱定理 ) (1)力学量的平均值随时间变化,运动常数 )力学量的平均值随时间变化, 力学量的平均值为: 力学量的平均值为: 它随时间变化为
算符对易关系_第三章
们最多相差一个常数因子n ,即
可见,
n
Gˆn nn
也是 Gˆ 的本征方程的解。因此,n
是
Gˆ 的本征函数完全系
8
3.7 算符对易关系 两力学量同时可测的条件 测不准关系(续8)
注
★ 为简单起见,以上定理和逆定理的证明是在非简 并情况下证明的;在简并的情况下,结论仍成立 (这里就不再证明了)
★ 两个算符有共同本征函数系的充要条件是这两个 算符彼此对易;在两个力学量算符的共同本征函数 所描写的状态中,这两个算符所表示的力学量同时 有确定值。或者说两个力学量算符所表示的力学量 同时有确定值的条件是这两个力学量算符相互对易。
2
* (Fˆ
2
)
d
i
*[FˆGˆ GˆFˆ ]d
*(Gˆ )2 d
2 (Fˆ )2 k (Gˆ )2 0
由代数中二次定理知,这个不等式成立的条件 是系数必须满足下列关系:
(Fˆ )2 (Gˆ )2 k 2 (称为测不准关系)
4
如果 k 不等于零,则 Fˆ 和 Gˆ 的均方偏差不会同时为 零,它们的乘积要大于一正数,这意味着 F 和 G 不能 同时测定。
★ 若两个力学量算符彼此不对易,则一般说来这两 个算符表示的两个力学量不能同时具有确定性,或 者说不能同时测定。
9
3.7 算符对易关系 两力学量同时可测的条件 测不准关系(续9)
Ex.1 动量算符 pˆx, pˆ y , pˆz彼此对易,它们有共同的
本征函数完备系
p(r)
(2)
3
2
e
i
pr
在 pv (rv) 描述的状态中,px , py , pz 同时有确定值。
4.测不准关系
1力学量的平均值随时间的变化
En
n
1 2
ω
由位力定理知: T V
则
En
H
T
V
n
1 ω
2
所以 T V 1 n 1 ω
2 2
例题4 判断下列说法的正误
(1)在非定态下,力学量的平均值随时间变化(错) (2) 设体系处在定态,则不含时力学量测值的概率不随时间变化(对) (3)设哈密顿量为守恒量,则体系处在定态(错) (4) 中心力场中的粒子处于定态,则角动量取确定的数值(错) (5) 自由粒子处于定态,则动量取确定值(错) (能级是二重简并的) (6)一维粒子的能量本征态无简并(错) (一维束缚态粒子的能量本征态无简并)
A k1k 2 k3
(q1,
q2
,
q3
)
1 3!
k1 k2 k3
(q1 ) (q1 ) (q1 )
k1 (q2 ) k2 (q2 ) k3 (q2 )
k1 (q3 ) k2 (q3 ) k3 (q3 )
A k1k N
(q1,,
qN
)
k1 (q1) 1 k2 (q1)
N!
kN (q1)
k1 (q2 ) k1 (qN )
力学量平均值随时间的变化
d dt
A(t)
1 i
[
A,
H
]
( 3)
波函数随时间演化可写成
ψ (t) U (t,0)ψ (0), (4)
U (0,0) 1
( 5)
U(t,0) 称为时间演化算符。
(4) 代入(2)得到
i U (t,0)ψ (0) HU(t,0)ψ (0)
t
则
i U(t,0) HU(t,0) (6)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k2 (q2 ) k2 (qN )
kN (q2 ) kN (qN )
Slater 行列式
N个全同Bose子组成的体系
ψS n1nN
(q1,,
qN
)
ni !
i
N!
P[φk1 (q1)φk N (qN )]
P
其中P是指那些只对处于不同单粒子态上的粒子进行对换而构成 的置换,这样的置换数为
N!
ni!
1 i
[rˆ (t ),
Hˆ
]
1 i
eiHˆt
/ [rˆ ,
pˆ 2
/
2m]eiHˆt
/
eiHˆt / pˆ eiHˆt / pˆ
m
m
则 rˆ(t) rˆ(0) pˆ t
简并,即对应某个能量本征值E只有一个本征态ΨE, 则ΨE必为F 的本征态。
7. 位力定理: 设粒子处于势场V(r),其哈密顿为
H
p2
/
2m
V (r )
r·p的平均值随时间的变化为
i
d
r
p
[r
p, H ]
1
[r
p,
p2 ]
[r
p,V
(r )]
dt
2m
对定态有
i
p2 m
r V
第4 章 力学量随时间的演化与对称性
1. 力学量的平均值随时间的变化
d dt
A(t)
1 i
[ A,
H
]
A t
2.守恒量 若 [A, H ] 0
则
d A(t) 0
dt
A称为守恒量
3. 守恒量的性质
如果力学量A不含时间,若[A, H]=0(即为守恒量),则 无论体系处于什么状态,A的平均值和测值概率均不随时间变化。
V (cx, cy, cz) cnV (x, y, z) 证明 2T nV
8. Feynman-Hellmann定理
设体系的束缚态能级和归一化的能量本征态为 En , n
若H中含有参数λ,则有
En
n
H
n
9. 全同粒子体系与波函数的交换对称性
Pij , 对称波函数
Pij
,
反对称波函数
(1) 两个全同粒子组成的体系
t
积分得
U (t,0) eiHt/
( 7)
可以证明: U (t,0)U (t,0) U (t,0)U (t,0) 1 (8)
U(t,0) 是幺正算符。
(ψ (t),ψ (t)) (ψ (0),ψ (0)) (9)
2. Heishenberg 图像 波函数不变,算符随时间变化
A(t) (U (t,0)ψ (0), AU (t,0)ψ (0))
S k1k2
(q1,
q2
)
1 2
[
k1
(
q1
)Байду номын сангаас
k2
(q2
)
k1
(q2
)
k2
(
q1
)]
A k1k2
(q1,
q2
)
1 2
[
k1
(q1
)
k
2
(q2
)
k1
(
q2
)
k
2
(q1
)]
(2) N个全同Femi子组成的体系
三个全同Femi子:设三个无相互作用的全同Femi子,处于三个 不同的单粒子态φk1, φk2, φk3 上,则反对称波函数为
A(t )
1 i
(U
HUU
U
AHUUHU )
1 i
( HA(t )
A(t ) H
)
则
d dt
A(t )
1 i
[A(t),H ]
(12)
上式称为Heisenberg方程。
例题1 自由粒子 H p2 / 2m [ p, H ] 0
p为守恒量,则 p(t)=p(0)=p
d dt
rˆ (t )
力学量平均值随时间的变化
d dt
A(t)
1 i
[
A,
H
]
( 3)
波函数随时间演化可写成
ψ (t) U (t,0)ψ (0), (4)
U (0,0) 1
( 5)
U(t,0) 称为时间演化算符。
(4) 代入(2)得到
i U (t,0)ψ (0) HU(t,0)ψ (0)
t
则
i U(t,0) HU(t,0) (6)
d A(t) 0 dt
d dt
ak (t) 2
0
4. 经典与量子力学中的守恒量间的关系
(1) 与经典力学中的守恒量不同,量子力学中的守恒量不一定取 确定的数值. 守恒量对应的量子数称为好量子数 (2) 量子体系的各守恒量并不一定都可以同时取确定值。
5. 守恒量与定态 (1) 定态是体系的一种特殊状态,即能量本征态,而守恒量则 是一种特殊的力学量,与体系的Hamilton量对易。
(ψ (0),U (t,0)AU (t,0)ψ (0))
(ψ (0), A(t)ψ (0))
(10 )
A(t) U (t,0) AU (t,0)
(11)
算符的演化方程----Heisenberg 方程
d A(t) d U (t,0) AU (t,0) U (t,0) A d U (t,0)
A k1k 2 k3
(q1,
q2
,
q3
)
1 3!
k1 k2 k3
(q1 ) (q1 ) (q1 )
k1 (q2 ) k2 (q2 ) k3 (q2 )
k1 (q3 ) k2 (q3 ) k3 (q3 )
A k1k N
(q1,,
qN
)
k1 (q1) 1 k2 (q1)
N!
kN (q1)
k1 (q2 ) k1 (qN )
i
§4.3 Schrödinger图像和Heisenberg图像
1. Schrödinger 图像
力学量不随时间变化,而波函数随时间变化。
力学量的平均值
A(t) (ψ (t), Aψ (t)) (1)
波函数随时间演化方程---Schrödinger 方程
i ψ (t) Hψ (t) (2)
t
d
r
p
0
dt
(定态下力学量的平均值不随时间 变化)
则
1
p2
r V
m
2T r V
思考题: r·p并不是厄米算符,应进行厄米化
r
p
1
(r
p
pr)
2
这是否会影响位力定理得证明。
答:从位力定理的证明可以看出,将r·p厄米化后并不能影响到 定理的证明。
例题1 设V(x,y,z)是x,y,z的n次齐次函数,即
dt
dt
dt
1 i
(
U
HAU
U AHU )
利用U的幺正性,及U+HU=H
d dt
A(t )
1 i
(U
HUU
U
AHUUHU )
1 i
( HA(t )
A(t ) H
)
则
d dt
A(t )
1 i
[A(t),H ]
(12)
上式称为Heisenberg方程。
利用U的幺正性,及U+HU=H
d dt
(2)在定态下一切力学量的平均值和测值概率都不随时间改变; 而守恒量则在一切状态下的平均值和测值概率都不随时间改变
6. 能级简并与守恒量的关系
定理 设体系有两个彼此不对易的守恒量F和G,即 [F,H]=0,[G,H]=0,[F,G]≠0, 则体系能级一般是简并的。
推论: 如果体系有一守恒量F,而体系的某条能级并不