代数初步知识整理和复习
小学数学数与代数整理与复习1
小学数学数与代数整理与复习(一)小不变。
小数点位置的移动引起小数大小变化小数点向右移动一位、两位、三位……该数就扩大到原来的10倍、100倍、1000倍……;小数点向左移动一位、两位、三位……该数就缩小到原来的思路分析:1)题意分析:本题主要考查同学们对于数的改写的掌握情况。
2)解题思路:先写出这个数是980304800米,将它改写成用“万”作单位的数,就是在万位数的右下角打上小数点,把末尾的零去掉,再加写“万”字;四舍五入到“亿”位,则看千万位上的数,千万位上的数如果小于或等于“4”则舍去尾数;如果大于或等于“5”则进一,再在后面加写“亿”字。
解答过程:九亿八千零三十万四千八百米写作(980304800米),改写成用“万”作单位的数是(98030.48万米),四舍五入到“亿”位的近似数是(10亿米)解题后的思考:同学们一定要掌握把多位数改写成以“万”或“亿”作单位的数的方法。
(1)直接改写:把多位数改写成以“万”或“亿”作单位的数,先把原数的小数点向左移动4位或8位,再在数后面写上“万”或“亿”字,中间要用“=”号连接。
(2)省略尾数改写成近似数:先用“四舍五入”法省略万位或亿位后面的尾数,再在这个数的后面加写“万”或“亿”字,得出的是近似数,中间要用“≈”号连接。
思路分析:1)题意分析:本题主要考查同学们对于小数的近似值及“四舍五入”法等知识的掌握情况。
2)解题思路:原小数为两位小数,根据“四舍五入”法的取值规则,近似值8.0可能是由原数“四舍”得到的,即原小数的百分位前是8.0,其百分位上最大是4,则原小数最大为8.04。
近似值8.0也可能是由原数“五入”得到的,即原小数的百分位前是7.9,其百分位上最小是5,则原小数最小为7.95。
解答过程:一个两位小数保留一位小数是8.0,这个两位小数最大是( 8.04 ),最小是(7.95 )。
解题后的思考:一个两位小数保留一位小数是8.0,则7.95≤这个两位小数≤8.04。
七年级上册数学复习资料:代数初步知识
七年级上册数学复习资料:代数初步知识1.代数式:用运算符号"+-'连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用"'乘,或省略不写;(2)数与数相乘,仍应使用"'乘,不用"'乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a0a是正数;a0a是负数;a0a是正数或0a是非负数;a0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3)(4)|a|是重要的非负数,即|a|0;注意:|a||b|=|ab|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a0,那么的倒数是;倒数是本身的数是1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a20;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
代数初步知识、第一部分、数与式
一、代数初步知识1.自然数2.正数3.负数4.有理数有理数的分类:5.数轴6.相反数7.绝对值8.比较两个负数的大小9.有理数加法法则10.有理数减法法则11.有理数的乘法法则12.倒数13.有理数除法法则14.乘方二、字母表示数1.字母表示数和运算率加法运算率可以表示成:乘法运算率可以表示成:2.代数式3.用字母表示公式如:长方形的周长长方形的面积4.列代数式5.列代数式步骤6.代数式的值7.同类项8.合并同类项9.合并同类项法则10.合并同类项的步骤11.去括号法则三、一元一次方程1.等式等式分类:2.等式的基本性质3.方程4.方程的解5.解方程6.一元一次方程7.移项8.解一元一次方程的步骤9.解一元一次方程应用题的一般步骤四、整式1.单项式2.单项式的系数3.单项式的次数4.多项式5.多项式的次数6.整式7.整式的加法8.皮克公式9.同底数幂的乘法法则10.幂的乘方法则11.积的乘方法则12.同底数幂的除法13.单项式与单项式相乘法则14.单项式与多项式相乘法则15.多项式与多项式相乘法则16.平方差公式17.完全平方公式18.单项式除以单项式法则19.多项式除以单项式法则五、实数1.算术平方根2.平方根3.平方根的性质4.开平方5.立方根6.开立方7.无理数8.实数9.实数的性质10.实数运算两个规律11.无理数的估算12.实数与数轴13.实数比较大小方法14.非负数15.非负数的三种常见形式16.非负数的性质1.二元一次方程2.二元一次方程的一个解3.二元一次方程组4.二元一次方程组的解5.代入消元法6.用代入消元法解二元一次方程组的步骤7.加减消元法8.用加减消元法解二元一次方程组的步骤10.三元一次方程组的解法步骤11.二元一次方程与一次函数12.二元一次方程组的图像解法步骤七、一元一次不等式和不等式组1不等式2.不等式的性质3.不等式的解4.不等式的解集5.解不等式6.在数轴上表示不等式的解集7.一元一次不等式8.一元一次不等式的解法步骤9.一元一次不等式组10.一元一次不等式组的解集11.解不等式组12.解一元一次不等式组的步骤八、分解因式1.分解因式2.分因式3.提分因式法4.完全平方式5.运用公式法6.因式分解的基本步骤九、分式1.分式2.分式的基本性质3.约分4.最简分式5.分式的乘除法法则6.通分7.最简公分母8.最简公分母的确定方法9.同分母分式加减法法则10.异分母分式加减法法则11.分式的混合运算12.分式方程13.解分式方程的一般步骤14.增根15.列分式方程解应用题的一般步骤十、一元二次方程1.整式方程2.一元二次方程3.一元二次方程的一般形式4.一元二次方程的解法5.配方法6.公式法7.一元二次方程根与系数的关系8.分解因式法9.列一元二次方程解应用题的一般步骤十一、函数及其图像1.变量之间的关系变量与常量自变量与因变量表示自变量与变量之间关系的方法2.位置的确定平面直角坐标系点的坐标象限特殊点的坐标特征图形的变化与坐标的变化3.一次函数函数函数的表示方法函数自变量的限值范围图像由函数关系式作函数图像的步骤一次函数正比例函数一次函数的图像一次函数的性质正比例函数的性质直线的平移待定系数法用待定系数求函数解析式的一般步骤确定一次函数表达式一次函数图像的识别4.反比例函数反比例函数反比例函数的图像反比例函数性质反比例函数关系中的定值问题5.二次函数二次函数二次函数的性质抛物线函数y=ax²+bx+c(a≠0)的系数与其图像之间的关系二次函数的表示方法及特点二次函数y=ax²+bx+c(a≠0)与一元二次方程ax²+bx+c(a≠0)之间的关系(以a>0为例)用二次函数的图像求一元二次方程的方法步骤用二函数解决实际问题的基本思路。
小学六年级《代数初步知识》整理与复习建议
涉及知识: 涉及知识:
1、用字母表示数 2、方程的相关概念:方程、方程的解、解方程。 方程的相关概念:方程、方程的解、解方程。 3、等式的性质。 等式的性质。 4、方程的的解法。 方程的的解法。
课前预习: 课前预习:
一、复习数学教材以下内容: 复习数学教材以下内容:
五年级( 五年级(下)第四单元“方程”。 第四单元“方程”
复习过程: 复习过程:
一、揭示课题,出示复习目标。 揭示课题,出示复习目标。 二、复习用字母表示数。 复习用字母表示数。 1、学生自学教材96页例 、学生自学教材 页例 页例1. 2、小组交流:用字母表示数可以表达哪些内容?并举例。 、小组交流:用字母表示数可以表达哪些内容?并举例。 3、小组交流:用字母表示数时应注意什么? 、小组交流:用字母表示数时应注意什么? 4、全班交流,引导学生进一步体会到:用字母可以表示数、运算定律和计 、全班交流,引导学生进一步体会到:用字母可以表示数、 算公式,简洁明了。在数字与字母,字母与字母相乘时注意简写。 算公式,简洁明了。在数字与字母,字母与字母相乘时注意简写。 三、复习简易方程。 复习简易方程。 1、学生讨论:教材96页“议一议”。 、学生讨论:教材 页 议一议” 2、学生汇报:含有未知数的等式叫做方程。等式与方程的关系:方程 等式 、学生汇报:含有未知数的等式叫做方程。等式与方程的关系: 3、学生读一读:等式的性质(加、减、乘、除各部分的关系)。 、学生读一读:等式的性质( 除各部分的关系)。 4、学生完成96页例 。并说出解方程的过程和依据。 、学生完成 页例 页例2 并说出解方程的过程和依据。
二、思考以下问题: 思考以下问题: 1、比和比例有什么联系和区别? 比和比例有什么联系和区别? 2、比的基本性质和比例的基本性质有什么不同? 比的基本性质和比例的基本性质有什么不同? 3、求比值和化简比有什么不同? 求比值和化简比有什么不同? 4、怎样解比例? 怎样解比例?
数学初中一年级代数基础概念讲解
数学初中一年级代数基础概念讲解代数是数学的一个重要分支,它研究数的运算、数的性质以及运算关系。
初中阶段的代数学习是建立基础知识的时候,其中包括了一些重要的代数概念。
本文将针对数学初中一年级代数基础概念进行详细讲解,帮助同学们更好地理解和掌握这些概念。
一、代数概念的引入在初中一年级,我们开始接触代数学习,其中最基础的概念就是代数式。
代数式由数和字母组成,其中的字母可以表示未知数或变量。
通过代数式,我们可以用符号表示数学关系,便于进行推理和计算。
例如,x + 3就是一个代数式,其中的x表示未知数,3表示已知的数。
二、代数表达式与算式的关系代数表达式和算式都是运用一些数进行计算,但它们之间有一些差别。
代数表达式中含有未知数或变量,而算式中只有已知的数。
代数表达式是一般性的,而算式是具体的。
例如,2x + 1是一个代数表达式,而2 × 3 + 1 = 7就是一个算式。
三、代数方程的初步认识代数方程是一个数学等式,它包含一个或多个未知数。
解方程就是找出使方程成立的数的取值。
初中一年级主要涉及一元一次方程的求解。
一元一次方程的一般形式为ax + b=0,其中a和b是已知的数,x是未知数。
通过运用一些基本的代数运算规则,我们可以求解出方程中的未知数。
四、代数等式及其运算性质代数等式是带有等号的代数表达式。
在代数等式中,两边的表达式是相等的。
例如,3x + 2 = 8就是一个代数等式。
代数等式有一些运算性质,如可逆性、传递性、对称性等。
这些性质在代数运算中起到重要的作用,帮助我们进行方便的计算和推理。
五、代数式化简的基本方法化简代数式是指将复杂的代数表达式简化成简单的形式,以便更好地理解和运算。
化简代数式可以通过合并同类项、消去括号、运用运算性质等方法实现。
初中一年级数学中,我们经常要进行代数式的化简,通过这样的练习,可以提高我们的代数运算能力。
六、代数式的加减运算在初中一年级的代数学习中,我们掌握了代数式的加法和减法运算规则。
代数部分
代数部分第一章代数初步知识本章对小学中的代数知识,包括字母表示数、列代数式、求代数式的值、公式与简易方程等内容进行比较系统的归纳和复习.学习时要注意:1.字母表示数的范围,代数式中的字母可以取什么值,要根据具体问题来确定.2.字母与代数式都表示数,那么数的有关运算规律也适用于代数式. 3.养成验算的好习惯.1.1 代数式【双基同步训练】1.填空(1)用代数式表示比a的5倍小3的数是 .(2)用代数式表示:m与n的平方和加上m、n的积的2倍是 .(3)某校学生总数是m,其中男生占52%,男生人数是 .(4)甲同学每天晨练跑a千米,乙同学每天跑b千米,两同学x天共跑千米.(5)每件上衣a元,6件上衣值元.(6)买单价m元的笔记本n本,付出30元,应找回元.(7)某厂去年生产x台机器,今年比去年增加15%,今年生产机器台.(8)甲数是x,乙数比甲数的2倍少3,用代数式表示乙数 .(9)用字母表示:①加法交换律 .②乘法结合律 .③乘法分配律 .(10)一本练习本0.50元,一支圆珠笔1.20元,买5本练习本、2支圆珠笔共需元。
(11)某班有男生a人,男生比女生少3人,则这班共有人。
(12)木工厂一天能做课桌a套,做300套要做天。
(13)原来温度是15℃,升高t℃后的温度是℃。
(14)一种小麦磨成面粉后重量要减少15%,m千克小麦磨成面粉后,面粉的重量是千克。
(15)一个长方形,宽是20厘米,宽比长少8厘米,这个长方形周长是厘米,面积是平方厘米。
(16)某船在静水中的速度是18千米/小时,水速为2千米/小时,该船逆水行了4小时,共行千米,这段路程顺水行需小时。
(17)梯形的上底长2厘米,下底是上底的2倍多1厘米,上底比高少1厘米,则梯形面积为平方厘米。
(18)如右图,在一个底为a、高为h的的三角形铁皮上剪去一个半径为r的半圆,则剩下铁皮(阴影部分)的面积为 。
若三角形的另两边分别为b+2和a+b ,则剩下的铁皮的周长为 。
小学数学代数初步知识
不等式的传递性:如果 a>b,b>c,那么a>c
不等式的可逆性:如果 a>b,那么b<a
不等式的对称性:如果 a>b,那么b<a
不等式的单调性:如果 a>b,那么a+c>b+c,
a-c>b-c
04
函数初步知识
函数的定义与性质
函数的定义:函数是一种 特殊的数学关系,表示两 个变量之间的对应关系。
解一元一次不等式组的特殊技 巧:利用数轴、数形结合,找 出公共解集
二元一次不等式组的解法
解二元一次不等式组:通过解每个不等 式,得到解集,然后找出公共解集
解集表示:用集合的形式表示解集,如 {x|x>0, y>0}
解集画图:在坐标轴上画出解集,表示 不等式组的解集范围
解集性质:解集表示不等式组的解集, 包括所有满足不等式组的解
子
代数式的分类: 单项式、多项式、
整式、分式等
代数式的运算: 加减乘除、幂、
开方等
代数式的化简: 合并同类项、去 括号、去分母等
代数式的应用: 解方程、解不等 式、求函数值等
02
方程与方程组
一元一次方程的解法
解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1 解一元一次方程的常用方法:代入法、加减法、交叉相乘法 解一元一次方程的注意事项:注意符号的变化,避免漏解或多解 解一元一次方程的应用:解决实际问题,如行程问题、工程问题等
二元一次方程组的解法
代入法:将方程组中的一个方程的未知 数用另一个方程的未知数表示,然后代 入另一个方程求解
加减法:将方程组中的两个方程相加或 相减,消去一个未知数,然后求解
五年级数学代数的入门知识
五年级数学代数的入门知识代数是数学中的一个重要分支,对于五年级学生来说,了解一些代数的基础知识,对于进一步学习和理解数学将起到积极的作用。
本文将介绍五年级数学代数的入门知识,涵盖了基本概念、符号运算和方程的应用。
一、基本概念在学习代数之前,首先需要了解一些基本的概念。
1. 数学符号代数中使用了许多特殊的符号,比如“+”表示加法,“-”表示减法,“×”表示乘法,“÷”表示除法。
这些符号在数学计算中起到了重要的作用。
2. 变量和常量在代数中,变量表示可变的数,常常用字母表示,比如$x$或$y$。
常量则表示固定的数,如$2$或$3$。
通过使用变量和常量,我们可以用字母的形式表达数学关系,从而更好地进行计算和推导。
3. 代数式代数式是由变量、常量和运算符组成的数学表达式。
例如,$2x + 3y$就是一个代数式,其中$x$和$y$是变量,$2$和$3$是常量,$+$表示加法运算。
二、符号运算在代数中,需要进行各种符号运算,包括加法、减法、乘法和除法。
1. 加法和减法加法是将两个数合并为一个数的运算。
例如,$2 + 3 = 5$表示将$2$和$3$相加得到$5$。
减法是从一个数中减去另一个数的运算。
例如,$5 - 2 = 3$表示从$5$中减去$2$得到$3$。
2. 乘法和除法乘法是将两个数相乘得到一个新的数的运算。
例如,$2 \times 3 =6$表示将$2$和$3$相乘得到$6$。
除法是将一个数分成若干等份的运算。
例如,$6 \div 2 = 3$表示将$6$分成$2$份,每份为$3$。
3. 简化和展开在代数中,我们可以对代数式进行简化和展开。
简化是将一个代数式中的项合并或化简的过程,而展开是将一个代数式拆分成多个项的过程。
三、方程的应用方程是代数中的重要概念,表示含有未知数的等式。
1. 解方程解方程是指求出方程中的未知数取值,使得等式成立。
例如,解方程$2x + 5 = 9$,我们可以通过推导和计算得出$x$的值为$2$。
小学三年级数学代数的初步认识知识点
小学三年级数学代数的初步认识知识点
代数是数学中的一个重要分支,也是小学三年级数学中的一个
重要内容。
学生能够初步认识代数的知识点对于未来研究数学和其
他科学技术都有很大帮助。
以下是小学三年级数学代数的初步认识
知识点:
表达式
表达式是由数字、运算符和括号组成的式子。
例如:1 + 2,3a - 4b。
在这个年级,学生需要能够辨认常用数学符号和运算符号,
如加号(+)、减号(-)、乘号(×)、除号(÷)和等号(=)。
变量
变量是表示数值未知的符号,用字母表示,如a、b、x、y等。
在小学三年级中,学生需要了解变量的含义,并能够简单地运用变
量来表示数字,如3a、4b等。
简单的代数式
简单的代数式是仅含有一个变量的代数式,如3a、4b - 2等。
在研究简单的代数式时,学生需要了解系数的概念,即变量前的数字。
方程
方程是用等号连接的两个代数式,如3a + 4 = 10、2x - 1 = 7等。
在这个年级,学生需要理解方程式子的含义,并能够通过简单的步
骤解方程。
实际问题
代数也可以用来解决实际问题,如小明有5个苹果,小红有a
个苹果,她们手中的苹果个数相等,求a的值。
这种问题需要学生
将语言描述转化为数学表达式,并解决方程。
以上是小学三年级数学代数的初步认识知识点,通过学习这些
内容,学生可以初步掌握代数的基础知识,为将来的学习打下坚实
的基础。
代数初步知识知识要点
代数初步知识知识要点一、用字母表示数1.用字母表示数的意义和作用用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2.用字母可以表示常见的数量关系、运算定律和性质、几何形体的计算公式(1)常见的数量关系路程用s表示,速度v用表示,时间用t表示,三者之间的关系:s=vtv=s/tt=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bcb=a/cc=a/b(2)运算定律和性质(3)用字母表示几何形体的公式3.用字母表示数的写法●数和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,但数必须写在字母的前面。
●当“1”与任何字母相乘时,“1”省略不写。
●在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。
●用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。
4.将数值代入式子求值●把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。
字母表示的是数,后面不写单位名称。
●同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。
二、简易方程(一)方程和方程的解1方程:含有未知数的等式叫做方程。
●注意方程是等式,又含有未知数,两者缺一不可。
●方程和算术式不同。
算术式是一个式子,它由运算符号和已知数组成,它表示未知数。
方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。
2 方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
三、解方程解方程,求方程的解的过程叫做解方程。
六年级数学教案:代数初步知识
六年级数学教案:代数初步知识一、教学目标:1. 知识与技能:(1)理解代数式的概念,能够正确书写代数式;(2)掌握字母表示数的方法,能够用字母表示未知数和已知数;(3)了解方程的概念,能够简单解方程。
2. 过程与方法:(1)通过实例引导学生认识代数式,培养学生的抽象思维能力;(2)运用同桌交流、小组讨论等方式,培养学生的合作学习能力;(3)利用数形结合的思想,让学生在实际问题中体验代数的应用。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,提高学生学习数学的积极性;(2)培养学生勇于探究、积极思考的科学精神;(3)培养学生合作交流的良好品质,提高学生解决问题的能力。
二、教学重点与难点:重点:1. 代数式的概念及书写方法;2. 字母表示数的方法;3. 方程的解法。
难点:1. 代数式的抽象理解;2. 方程的解法。
三、教学方法:1. 情境导入法:通过生活中的实际问题,引发学生对代数知识的兴趣;2. 讲授法:讲解代数式的概念、字母表示数的方法及方程的解法;3. 实践操作法:让学生动手操作,加深对代数知识的理解;4. 合作交流法:引导学生进行小组讨论,培养学生的合作学习能力。
四、教学准备:1. 课件:代数式的概念、字母表示数的方法、方程的解法等;2. 练习题:针对本节课内容,设计适量的练习题;3. 黑板:用于板书重点内容。
五、教学过程:1. 导入:(1)利用生活中的实际问题,引发学生对代数知识的兴趣;(2)引导学生思考:如何用数学语言来表示这些问题中的未知数和已知数?2. 讲解:(1)讲解代数式的概念,让学生明白代数式是由数字、字母和运算符号组成的表达式;(2)教授字母表示数的方法,让学生学会用字母表示未知数和已知数;(3)讲解方程的概念,让学生理解方程是含有未知数的等式;(4)教授方程的解法,让学生掌握解一元一次方程的方法。
3. 练习:(1)让学生独立完成练习题,巩固所学知识;(2)教师挑选部分学生的作业进行讲评,指出优点和不足。
代数的初步知识点总结
代数的初步知识点总结代数运算是代数的基础,它包括加法、减法、乘法、除法等运算。
在代数中,加法和乘法满足交换律、结合律、分配律等性质,而减法和除法则不满足交换律和结合律。
代数运算的性质对于解题和计算非常重要,因此需要认真掌握。
方程是代数中一个重要的概念,它表示一个等式,其中含有一个或多个未知数,我们需要通过求解方程来确定未知数的值。
代数中的方程可以分为一元方程、二元方程、多元方程等,不同类型的方程有不同的求解方法。
不等式是代数中另一个重要的概念,它表示两个数之间的大小关系。
代数中的不等式可以分为一元不等式、二元不等式、多元不等式等,我们可以通过图像、代数法、逻辑推理等方式来解决不等式。
函数是代数中一个非常重要的概念,它表示自变量和因变量之间的对应关系。
函数可以用数学式子、图像、表格等方式表示,其中包括线性函数、二次函数、指数函数、对数函数、三角函数等各种类型的函数。
函数的概念对于理解代数中的很多问题有着重要的作用,因此我们需要系统地学习函数的性质、图像、解析式、定义域、值域等内容。
集合是代数中另一个重要的概念,它表示具有某种共同特征的对象的总体。
代数中的集合可以分为有限集合和无限集合,空集合和全集合等,集合之间可以进行并集、交集、补集、差集等运算。
集合的概念对于描述代数中的问题和解题方法有着重要的作用,因此我们需要对集合的性质和运算进行系统地学习。
除了上述基本概念之外,代数中还包括因式分解、多项式、方程组、不等式组、根式、复数等内容,这些知识点都是代数学习中不可或缺的部分。
因式分解是将一个多项式分解为几个一次因式的乘积,它在代数中有很多应用,如化简、求解方程等。
多项式是代数中一个重要的概念,它是由数和变量经过加法、减法、乘法组合而成的代数式,多项式的性质和运算对于解题非常重要。
方程组是包含多个方程的组合,我们需要通过方程组的解来确定未知数的值,这在实际问题中有着很多应用。
不等式组是包含多个不等式的组合,我们需要通过不等式组的解来确定不等式的解集,这也在实际问题中有着很多应用。
代数式的初步知识
专题二 代数式第一节 代数式的初步知识一【知识梳理】1. 代数式的概念: 用 (加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式。
单独的一个数或者一个字母也是代数式.代数式即代表数的式子。
2. 代数式的分类:3.代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。
求代数式的值可以直接代入、计算。
如果给出的代数式可以化简,要先化简再求值。
二【课前练习】1. a ,b两数的平方和用代数式表示为( )A.22a b +B.2()a b +C.2a b +D.2a b +2. 当x=-2时,代数式-2x +2x-1的值等于( )A.-9B.6C.1D.-13. 当代数式a+b 的值为3时,代数式2a+2b+1的值是( )A.5B.6C.7D.84. 一种商品进价为每件a 元,按进价增加25%出售, 后因库存积压降价,按售价的九折出售,每件还盈利( )A.0.125a 元B.0.15a 元C.0.25a 元D.1.25a 元5. 一个正方形的边长增加了cm 3,面积增加了239cm ,则这个正方形的边长为( )(A )6cm ; (B )5cm ; (C )8cm ; (D )7cm 6. 判别下列各式哪些是代数式,哪些不是代数式。
(1)a 2-ab+b 2; (2)c=2πR ; (3)2a+3b ≥0; (4)y ; (5)07. 两个数的和是25,其中一个数用字母x 表示,那么x 与另一个数之积用代数式表示为( )A .x (x +25)B .x (x —25)C .25xD .x (25-x ) 8. 小卫搭积木块,开始时用2块积木搭拼(第1步),然后用更多的积木块完全包围原来的积木块(第2步),如图反映的是前3步的图案,当第10步结束后,组成图案的积木块数为 ( )A .306B .361C .380D .4209. 科学发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列——著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55,……仔细观察以上数列,则它的第11个数应该是 .10. 一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分如图所示,则这串珠子被盒子遮住的部分有_____颗. 代数式 有理式 无理式 第1步 第2步 第3步11. 用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:⑴ 第4个图案中有白色地面砖 块; ⑵ 第n 个图案中有白色地面砖 块.12.一根绳子弯曲成如图⑴所示的形状,当用剪刀像图⑵那样沿虚线把绳子剪断时,绳子被剪成5段;当用剪刀像图⑶那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪成9段,若用剪刀在虚线ab 之间把绳子再剪(n-2)次(剪刀的方向与a 平行)这样一共剪n次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+513. 有这样一道题,“当a=0.35,b=-0.28时,求代数式 7a 3-6a 3b+3a 3+6a 3b -3a 2b -10a 3+3 a 2b -2的值”.小明同学说题目中给出的条件a=0.35,b=-0.28是多余的,你觉得他的说法对吗?试说明理由.14.先化简后求值:)252(23--+÷--x x x x 其中x =22 15. 下面是一个有规律排列的数表:上面数表中第9行,第7列的数是_________.16. 观察下面的点阵图和相应的等式,探究其中的规律:⑴在④和⑤后面的横线上分别写出相应的等式;⑵通过猜想写出与第n 个点阵相对应的等式. 三【课后反思】第二节 整式及因式分解一【知识梳理】1.整式有关概念(1)单项式:只含有 的积的代数式叫做单项式。
代数初步知识复习教案及教学重点
代数初步知识复习教案及教学重点。
一、教学目标通过本节课的学习,希望能够帮助学生掌握代数基本概念及基本运算法则,包括四则运算、方程的解法和方程组的解法。
进一步提高学生的数学掌握能力,为进一步学习和应用代数知识打下基础。
二、教学重点1.代数字母的意义及代数式的含义2.基本运算法则,加、减、乘、除、方根运算3.方程的解法,包括一次方程、二次方程、高次方程4.方程组的解法三、教学方法1.板书法在本课程中板书法是非常重要的一种教学方法。
通过清晰地呈现代数式的运算、方程式的解法等,以便学生理解和掌握代数基本知识。
2.举例解题法在讲解基本运算法则及方程的解法时,可以通过具体的例子来让学生更好地理解和掌握。
3.合作学习法在本节课中,可以采用合作学习法,通过小组讨论的方式让学生相互交流,加快学生对代数知识的理解和掌握。
四、教学内容1.代数基本概念代数是一种数学分支,它研究的是数、符号和运算的关系。
在代数中,数值用字母代替,这个字母叫做代数字母。
代数式的含义为由至少一个代数字母或者数加、减、乘、除、方根等基本运算符号按照一定顺序连接起来的式子。
2.基本运算法则在代数中,最常见的运算法则就是加、减、乘、除和方根运算。
掌握这些运算法则对于学习代数知识非常必要。
例如:a.加减法:a+b=b+a,a-b≠b-a。
b.乘除法:a×b=b×a,a÷b≠b÷a。
3.方程的解法方程是代数学习中非常重要的概念,它是由等式字符“=”连接起来的两个代数式构成的。
解方程的步骤包括:移项、合并同类项、去括号、消元、化简等。
例如:a.一次方程:ax+b=c, 其中a≠0。
b.二次方程:ax²+bx+c=0, 其中a≠0。
c.高次方程:在高次方程的解中,需要用到一些特殊定理和公式,例如求根公式、二项式定理、因式分解等。
4.方程组的解法方程组由多个方程构成,求解方程组需要用到多项式除法、消元等方法。
最新北京小学数学六年级下册《3.1 代数初步知识
代数初步知识复习目的:1.通过系统的整理,帮助学生形成代数初步知识结构,提高学生对代数初步知识的掌握水平。
2.使学生加深理解用字母表示数的意义和作用,以及方程、方程的解、解方程的意义;使学生熟练掌握简易方程的解法。
3.使学生感受数学与实际生活的联系,让学生运用知识解决实际问题,从而培养学生的创新精神和实践能力。
4.进一步教会学生抓住联系整理知识的方法和针对重难点进行复习的方法,提高学生的学习能力。
复习重点:代数初步知识的整理和复习。
教学过程:一、谈话引入1.师生谈话。
师:(对一个学生)你今年多大了?你们知道老师比他大多少岁吗?你们能用一个式字表示出老师比他大的岁数?生:x表示老师的岁数,(x-12)就表示出老师比他大的岁数。
2. 揭示课题。
师:像这样,用字母表示数的方法实际上是一种重要的代数方法。
这节课,老师就和大家一块儿来整理复习代数初步知识。
二、整理知识1. 回忆整理。
提问:请同学们回想一下,在小学阶段我们学习过哪些代数初步知识?请大家打开课本98页边看边回忆。
教师根据学生的回忆在屏幕上逐一出示知识点:用字母表示数、数量关系、运算定律、计算公式、简易方程、方程、方程的解、解方程、比和比例。
师:这些都是过去学过的代数初步知识,它们之间有联系吗?要看出它们之间的联系,就需要对这些知识进行整理。
下面,请同学们小组合作,根据这些知识要点和知识间的联系进行整理,并记录出整理的结果。
我们来比一比,看哪个小组将知识间的联系整理得简洁、清晰,又有特色!学生分组整理,教师巡视指导。
2.汇报交流。
各小组选一名代表展示、交流整理的结果和过程。
结合交流过程,师生共同评价各组的整理情况。
3.归纳概括。
提问:请大家比较一下刚才这些方案,你更喜欢哪一种?小结:其实这些方案都很出色,虽然形式不同,但它们都是根据什么来进行整理的?它们都抓住了整理的关键,也就是根据知识要点和知识间的联系进行整理。
这是一种很好的整理方法,咱们还可以用这种方法去整理其它知识。
代数的初步知识
代数的初步知识(一)代数初步知识1、用字母表示数可以简明地表达数量关系。
运算定律和计算公式,为研究和解决问题带来很多方便。
例如:a乘4.5可以写做a×4.5还可以写作4.5a。
2、含有未知数的等式叫做方程。
3、使方程左右两边相等的未知数的值叫做方程的解。
4、求出方程的解的过程叫做解方程,在小学里,我们主要是应用加、减、乘、除法中各部分间的关系来解方程。
(二)比和比例1、比:两个数相除,又叫做两个数的比。
2、比值:把比的前项除以后项所得的商叫做比值。
3、比例的意义:表示两个比相等的式子叫做比例。
4、比例的基本性质:组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
在比例里,两个外项的积等到于两个内项的积。
5、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
求比例中的末知项,叫做解比例。
6、比例尺:图上距离和实际距离的比,叫做这幅图的比例尺。
(为了计算简便,通常把比例尺写成前项为1的比。
图上距离:实际距离=比例尺或图上距离/实际距离=比例尺7、成正比例的量(1)两种相关的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
(2)如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),正比例关系可以用下面的式子表示:y/x=K(一定)。
例如:路程/时间=速度(一定)总价/数量=单价(一定)8、成反比例的量(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
(2)如果用字母X和Y表示两种相关联的量,用R表示它们的积(一定),反比例关系可以用下面的式子表示X×Y=K(一定)例如:工效×时间=工作总量(一定)1。
第三章《代数知识初步》(四大考察点)2024年小升初数学总复习知识点汇总大全
2024年小升初数学总复习知识点汇总大全 (式与方程+比和比例+解决问题+探索规律)第一节 式与方程知识点一:用字母表示数、数量关系、计算公式和运算定律 1.用字母表示数(1)一班有男生a 人,有女生b 人,一共有(a+b )人; (2)每袋面粉重25千克,x 袋面粉一共重25x 干克 2.用字母表示数量关系(1)路程=速度×时间,用字母表示为s=vt ; (2)正比例关系:y x=k (一定),反比例关系:x ×y=k (一定)等。
3.用字母表示计算公式(1)长方形的周长:C=2(a+b ); (2)长方形的面积:S=ab ;(3)长方体的体积:V=abh 或V=Sh 等。
4.用字母表示运算定律加法交换律:a+b=b+a 加法结合律:(a+b )+c=a+(b+c ) 乘法交换律:ab=ba 乘法结合律:(ab )c=a (bc ) 乘法分配律:(a+b )c-ac+bo 重点提示:○1数与字母、字母与字母相乘时,乘号可以记作简写为一个点或省略不写,但要注意,省略乘号后,数字要写在字母的前面。
○2两个相同的字母相乘时,可以写成这个字母的平方,如a ×a 可以写作a 2知识点二:等式与方程 1.等式与方程的意义及关系2.等式的性质(1)性质1:等式两边同时加上或减去同一个数,所得结果仍然是等式。
(2)性质2:等式的两边同时乘或除以同一个不为0的数,所得结果仍然是等式。
3.解方程(1)方程的解的概念:使方程左右两边相等的未知数的值,叫作方程的解。
(2)解方程的概念:求方程的解的过程叫作解方程。
(3)解方程的依据:可以根据等式的性质和四则运算中各部分之间的关系解方程。
(4)检验方程的解是否正确,步骤如下:(01)把求出的未知数的值代入原方程中;(02)计算,看等式是否成立;(03)等式成立,说明这个未知数的值是方程的解,等式不成立,说明解方程错误,需要重新求解。
知识点三:列方程解应用题(1)列方程解应用题的优点。
代数初步的知识点总结
代数初步的知识点总结一、代数中的基本概念1. 代数式:代数式是用字母和数字结合的一种式子,它是由字母、数字及加减乘除等基本运算符号组成的。
2. 代数式的分类:代数式根据字母的指数情况,可分为单项式和多项式。
3. 单项式:只含有一个字母和它的正整数幂的代数式叫单项式。
如:3x、4x²、5xy、7ab²。
4. 多项式:由单项式通过加法和减法运算而得到的代数式叫多项式。
如:3x+4x²-5xy+7ab²。
5. 代数式的值:代数式的值是指确定字母的值后,求出代数式的具体数值。
6. 代数式的运算:代数式的运算包括:单项式和多项式的加、减、乘、除的运算等。
7. 代数方程:一个代数式中含有一个或几个未知数,并用等号与另一个代数式相等,这样的式子叫代数方程。
8. 代数方程的解:一个代数方程中未知数所能取的值叫方程的解。
9. 代数方程的判别:代数方程有可能无解,有可能有一组解,甚至有无穷解。
所以解代数方程也要对方程的解的情况做出有关的判别。
10. 代数不等式:代数式中有未知数,并以不等号(包含大于号、小于号、大于等于号、小于等于号)连接的式子就叫不等式。
11. 代数不等式的解:解代数不等式即求出使代数不等式成立的未知数的取值范围。
二、代数中的基本运算1. 加法:单项式或多项式之间相加。
2. 减法:单项式或多项式之间相减。
3. 乘法:两个代数式相乘。
4. 除法:用介数法、分子、分母降次或分解式,最后求简分式。
5. 开平方根:求一个数的平方根。
6. 方程的解法:方程就是两个代数式之间用等号连接的关系式,一般通过降次合并同类项的方式来求解。
7. 不等式的解法:不等式是不等关系的等式,求解只需把问题看作解方程,然后把等号变成不等号。
8. 二次根式的加减法:把二次根式化成最简的二次根式,然后进行加减法运算。
9. 二次根式的乘法:化简后进行二次根式的乘法运算。
10. 二次根式的除法:化简后进行二次根式的除法运算,然后将得到的结果化成最简形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数初步知识的复习
教学内容:第十二册代数初步知识
教学目标:
1、整理有关代数的初步知识,使学生形成知识网络,并能解决有关的实际问题,使认知水平有所提高。
2、通过对知识的梳理,培养学生整理、概括知识的能力。
3、通过情境的创设,使学生自主的对所学的知识进行整理,进行一定的学习方法的渗透。
4、在整理知识、解决问题的实践活动中,初步意识到整理知识的重要性,并逐渐养成边学习边整理知识的习惯。
教学重点:梳理知识,形成网络。
教学难点:综合动用知识解决实际问题。
教学过程:
一、借助一个有趣的知识导入对代数知识的整理。
(1)师:在某地,蟋蟀的叫的次数除以7再加上3就等于当地的气温。
(2)提问:①你能用一个算式表示出它们的关系吗?
②这涉及到了我们学过的哪些知识?
(3)出示课题。
二、小组合作,自主梳理有关代数的知识。
1、回忆知识点:提问:自已看书,看代数的初步知识,可以分为几部分?
2、全班交流:教师课件演示。
(用字母表示数、简易方程、运算定律、比和比例、方程的解、解方程、数量关系、计算公式、列方程解应用题、求积公式)
3、整理知识点:
提出要求:以小组为单位对这些知识进行整理,看哪个小组整理得简洁、清晰、与众不同。
4、学生汇报整理的情况:
数量关系
用字母表示数运算定律
计算公式(或使用树状结构的方式等)
方程
简易方程方程的解
解方程
5、组织评价:提问:①你更喜欢哪种方式?②他们都是根据什么进行整理的?
6、师:这节课我们重点复习用字母表示数和简易方程。
三、在实践活动中巩固提高
1、出示:用含有字母的式子表示下面的数量关系。
(1)学校去年种桔树a棵,今年比去年的2倍多6棵。
今年种()棵
(2)商店原有洗衣机a台,现在又运进30台,现在共有洗衣机()台
(3)甲乙两人共同制造一批零件。
甲制造a个,乙每小时制造b个,乙工作了4. 5小时,两人就完成了任务。
这批零件共()个。
(4)李红a天看了60页书,照这样计算,看完这本书需要b天,这本书共()页。
想一想,书写含有字母的式子要注意什么?
2、复习简易方程,小组同学互相说说:方程、方程的解和解方程这三个概念有什么不同?
3、判断下面各式是不是方程
(1)X-42=78÷3(2)4X﹤9(3)5X-2X=150
(4)2X-16
监控:
(1)(2)、(4)为什么不是方程?
(2)动手解(1)、(3)两个方程
(3)解方程时要注意点什么呢?
4、解决实际问题(选择其中之一)
①再多一些梯形,周长可以用什么表示?
②用字母表示梯形的数量和周长之间的关系?
③周长是299个,这个图形是由多少个梯形组成的?
(2)课件演示:由重庆到淄博,乘火车要花400元,用餐2天;到了淄博后,住5天,用餐5天。
①用含有字母的式子表示淄博一行的人武部开支。
(每天用餐a元,住宿b元)
整理后:800+9a+5b
②你觉得每天用餐、住宿开支多少元合适?请你设计一下?
③评价设计方案。