深圳平冈中学必修第一册第一单元《集合与常用逻辑用语》测试卷(答案解析)

合集下载

深圳市必修第一册第一单元《集合与常用逻辑用语》测试卷(包含答案解析)

深圳市必修第一册第一单元《集合与常用逻辑用语》测试卷(包含答案解析)

一、选择题1.已知直线,m n 和平面α,n ⊂α,则“//m n ”是“//m α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知a ,b R ∈,则“0a b +<”是“0a a b b +<”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件3.下列命题中,不正确...的是( ) A .0x R ∃∈,200220x x -+≥B .设1a >,则“b a <”是“log 1a b <”的充要条件C .若0a b <<,则11a b> D .命题“[]1,3x ∀∈,2430x x -+≤”的否定为“[]01,3x ∃∈,200430x x -+>”4.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a b b a ->+-”的( )( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题; ③“2019a >”是“2020a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中真命题的序号为( ) A .③④B .①②C .①③D .②④6.已知命题2:230p x x +->;命题:q x a >,且q ⌝的一个充分不必要条件是p ⌝,则a 的取值范围是( )A .(],1-∞B .[)1,+∞C .[)1,-+∞D .(],3-∞7.已知p :02x ≤≤,q :2230x x --≥,则p 是q ⌝的( ) A .既不充分也不必要条件 B .必要不充分条件 C .充分不必要条件 D .充分必要条件8.以下有关命题的说法错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B .“1x =”是“2320x x -+=”的充分不必要条件C .命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为假命题D .对于命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥9.设等比数列{}n a 中,10a >,公比为q ,则“1q >”是“{}n a 是递增数列”的( ). A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既非充分又非必要条件10.设点A ,B ,C 不共线,则“()AB AC BC +⊥”是“AB AC =”() A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件11.以下四个命题中错误..的是( ) A .若样本1x 、2x 、、5x 的平均数是2,方差是2,则数据12x 、22x 、、52x 的平均数是4,方差是4B .ln 0x <是1x <的充分不必要条件C .样本频率分布直方图中的小矩形的面积就是对应组的频率D .抛掷一颗质地均匀的骰子,事件“向上点数不大于3”和事件“向上点数不小于4”是对立事件12.已知a ,b R ∈,“1a b +<”是“11a b a b ⎧+<⎪⎨-<⎪⎩”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.已知命题:44,:(2)(3)0p x a q x x -<-<-->,若p ⌝是q ⌝的充分不必要条件,求a 的取值范围________.14.设全集U Z =,{}1,3,5,7,9A =,{}1,2,3,4,5B =,则下图中阴影部分表示的集合是_____.15.定义全集U 的子集M 的特征函数()10M U x Mf x x C M ∈⎧=⎨∈⎩,对于两个集合,M N ,定义集合()(){}*1M N M N x f x f x =+=,已知集合{}{}2,4,6,8,10,1,2,4,8,16A B ==,并用S 表示有限集S 的元素个数,则对于任意有限集,**M M A M B +的最小值为________.16.已知集合{}{}10|133xA aB x =-=,,,<<,若A B ⋂=∅,则实数a 的取值范围是______.17.已知数集{}{},,,1,2,3,4a b c d =,且有下列说法:①1a =;②2>c ;③4d ≠,则满足(),,,a b c d 的数值有________组.18.设集合{1,2,3,4}I =,选择I 的两个非空子集A 和B ,使得A 中最大的数不大于B 中最小的数,则可组成不同的子集对(,)A B __________个. 19.若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为_____________. 20.已知命题:①将一组数据中的每个数都变为原来的2倍,则方差也变为原来的2倍; ②命题“2,10x R x x ∃∈++<”的否定是“2,10x R x x ∀∈++<”; ③在ABC ∆中,若sin sin A B A B ><,则; ④在正三棱锥S ABC -内任取一点P ,使得12P ABC S ABC V V --<的概率是78; ⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则实数a 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭. 以上命题中正确的是__________(填写所有正确命题的序号).三、解答题21.已知全集U =R ,集合{}2|450A x x x =--≤,{}|24B x x =≤≤.(1)求()U A C B ⋂;(2)若集合{}|4,0C x a x a a =≤≤>,满足C A A =,C B B =,求实数a 的取值范围.22.已知函数()f x =A ,函数2()41,[0,3]g x x x x =-+-∈的值域为B .(Ⅰ)设集合()M A B Z =⋂⋂,其中Z 是整数集,写出集合M 的所有非空子集; (Ⅱ)设集合{|121}C x a x a =-<<+,且BC =∅,求实数a 的取值范围.23.设集合{}22240A x x x =+-≥,集合1,11B y y x x x ⎧⎫==+>-⎨⎬+⎩⎭,集合1C x ax a ⎧⎛⎫=-⎨ ⎪⎝⎭⎩()}60x +≤.(1)求AB ;(2)若C A ⊆,求实数a 的取值范围.24.已知集合{}121A x a x a =-<<+,{}01B x x =<<.(1)若12a =,求A B ; (2)若A B =∅,求实数a 的取值范围.25.已知命题}{:210p x x -<<,命题{:1q x x a ≤-或}1x a ≥+,若p ⌝是q 的充分不必要条件,求实数a 的取值范围. 26.已知集合121284x A x⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭. (1)若{}122C x m x m =+<≤-,()C A B ⊆⋂,求实数m 的取值范围;(2)若{}61D x x m =>+,且()AB D =∅,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】从充分性和必要性两方面分别分析判断得解. 【详解】直线,m n 和平面α,n ⊂α,若//m n ,当m α⊂时,//m α显然不成立,故充分性不成立;当//m α时,如图所示,显然//m n 不成立,故必要性也不成立.所以“//m n ”是“//m α”的既不充分又不必要条件. 故选:D 【点睛】方法点睛:判定充要条件常用的方法有三种:(1)定义法:直接利用充分必要条件的定义分析判断得解; (2)集合法:利用集合的包含关系分析判断得解; (3)转化法:转化成逆否命题分析判断得解.2.C【分析】从充分性和必要性两个方面,分0,0a b <<和0,0a b <≥讨论,分别求解证明即可. 【详解】解:当 0,0a b <<,0a b +<时,此时220a a b b a b +=--<成立,当0,0a b <≥,0a b +<时,此时()()220a a b b a b a b b a +=-+=+-<成立,即0a b +<可以推出0a a b b +<,反之,若0a a b b +<,则,a b 中至少有一个负数, 若,a b 均为负数,必然有0a b +<,若0,0a b <≥,则()()220a a b b b a a b b a +=-=+-<,因为0b a ->,则必有0a b +<, 所以0a a b b +<可以推出0a b +<, 故“0a b +<”是“0a a b b +<”的充分必要条件. 故选:C. 【点睛】本题考查充分性和必要性的判断,考查学生分类讨论的思想,是中档题.3.B解析:B 【分析】由()2200022110x x x -+=-+≥,可判断A ;由对数函数的定义域和对数函数的单调性得充分性不一定成立,必要性成立,可判断B ;运用作差法,判断其差的符号可判断C ;根据全称命题的否定是特称命题可判断D. 【详解】由()2200022110x x x -+=-+≥,得A 为真命题;由“b a <”不能推出“log 1a b <”,所以充分性不一定成立,由“log 1a b <”得“b a <”,所以必要性成立,故B 不正确;由0a b <<,则110b aa b ab --=>,∴11a b>,故C 正确; 根据全称命题的否定是特称命题知D 正确. 故选:B. 【点睛】本题考查判断命题的真假,对数函数的定义域,单调性,全称命题与特称命题的关系,属于中档题.4.C解析:C构造函数()ln f x x x =+,据a ,b 的范围结合函数的单调性确定充分条件,还是必要条件即可. 【详解】设()ln f x x x =+,显然()f x 在(0,)+∞上单调递增,a b >,所以()()f a f b >ln ln a a b b ∴+>+,即ln ln a b b a ->+-,故充分性成立, 因为ln ln a b b a ->+-ln ln a a b b ∴+>+,所以()()f a f b >,a b ∴>,故必要性成立,故“a b >”是“ln ln a b b a ->+-”的充要条件, 故选:C . 【点睛】本题考查了函数的单调性,必要条件、充分条件与充要条件的判断,考查了构造函数法的应用,是基础题.5.B解析:B 【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断. 【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确; “2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误. 故选:B . 【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.6.B解析:B 【分析】解一元二次不等式化简命题p ,再利用集合间的基本关系,求得参数a 的取值范围. 【详解】由2:230p x x +->,知3x <-或1x >, 则p ⌝为31x -≤≤,q ⌝为x a ≤, p ⌝是q ⌝的充分不必要条件,∴1{|}3x x ≤≤-{|}x x a ≤∴1a ≥.故选:B. 【点睛】本题考查利用命题的充分不必要条件求参数的取值范围,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将充分不必要条件转化为真子集的关系.7.C解析:C 【分析】设[0,2]M =,2{|230}N x x x =--<,根据集合之间的包含关系,即可求解.【详解】因为q :2230x x --≥, 所以q ⌝:2230x x --<,设[0,2]M =,2{|230}N x x x =--<,则(1,3)N =-, 所以M N ,所以p 是q ⌝的充分不必要条件, 故选:C 【点睛】本题主要考查了充分条件、必要条件,集合的真子集,考查了推理能力,属于中档题.8.C解析:C 【分析】根据逆否命题的概念,可判定A 是正确的;由方程2320x x -+=,解得1x =或2x =,可判定B 是正确的;根据正弦定理,可判定C 不正确;根据存在性命题与全称命题的关系,可判定D 是正确的. 【详解】A 中,根据逆否命题的概念,可得命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”,所以A 是正确的;B 中,由方程2320x x -+=,解得1x =或2x =,所以“1x =”是“2320x x -+=”的充分不必要条件,所以B 是正确的;C 中,在ABC 中,由sin sin A B >,根据正弦定理可得a b >,所以A B >,所以命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为真命题,所以C 不正确;D 中,根据存在性命题与全称命题的关系,可得命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥,所以D 是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定,四种命题的关系,充分条件与必要条件的判定,以及全称命题与存在性命题的关系等知识点的应用,属于基础题.9.C解析:C 【分析】根据等比数列的通项公式和单调性的判定方法,结合充分条件、必要条件的判定,即可求解. 【详解】在等比数列{}n a 中,可得11n n a a q -=,若10,1a q >>,可得11111()(1)0n n n n n a a a q q a q q --+-=-=->,即1n n a a +>,所以数列{}n a 为递增数列,故充分性是成立的; 反之:若等比数列{}n a 为递增数列,即111(1)0n n n a a a qq -+-=->,若10a >,则1(1)0n q q -->,可得1q >,故必要性是成立的,所以“1q >”是“{}n a 是递增数列”的充分必要条件. 故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,以及数列的单调性的判定方法及应用,其中解答中熟记数列的单调性的判定方法是解答的关键,着重考查推理与论证能力.10.C解析:C 【分析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可. 【详解】由于点A ,B ,C 不共线,则()()0AB AC BC AB AC BC +⊥⇔+⋅=()()22AB AC AC AB AC AB ⇔+⋅-=-=22AC AB ⇔=⇔“AB AC =”;故“()AB AC BC +⊥”是“AB AC =”的充分必要条件. 故选:C . 【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.11.A解析:A 【分析】利用平均数和方差公式可判断A 选项的正误;解不等式ln 0x <,利用集合的包含关系可判断B 选项的正误;根据频率直方图的概念可判断C 选项的正误;根据对立事件的概念可判断D 选项的正误.综合可得出结论. 【详解】对于A 选项,样本1x 、2x 、、5x 的平均数为1234525x x x x x x ++++==,方差为()()()()()222221234522222225x x x x x s ⎡⎤-+-+-+-+-⎣⎦==, 数据12x 、22x 、、52x 的平均数是1234522222245x x x x x x x ++++'===,方差为()()()()()2222212345224242424245x x x x x s ⎡⎤-+-+-+-+-⎣⎦'=()()()()()2222212345242222244285x x x x x s ⎡⎤-+-+-+-+-⎣⎦===⨯=,A 选项错误;对于B 选项,解不等式ln 0x <,得01x <<,{}01x x << {}1x x <,所以,ln 0x <是1x <的充分不必要条件,B 选项正确;对于C 选项,由频率分布直方图的概念可知,样本频率分布直方图中的小矩形的面积就是对应组的频率,C 选项正确;对于D 选项,抛掷一颗质地均匀的骰子,事件“向上点数不大于3”即为:向上的点数为1或2或3,事件“向上点数不小于4”即为:向上的点数为4或5或6, 这两个事件互为对立事件,D 选项正确. 故选:A. 【点睛】本题考查命题正误的判断,涉及平均数、方差的计算、充分不必要条件的判断、频率直方图和对立事件概念的理解,考查推理能力,属于中等题.12.C解析:C 【分析】由绝对值不等式的基本性质,集合充分必要条件的判定方法,即可求解. 【详解】由题意,a ,b R ∈,1a b +<,可得1a b a b +≤+<且1a b a b -≤+<,所以充分性是成立的;反之11a b a b ⎧+<⎪⎨-<⎪⎩,可得1111a b a b -<+<⎧⎨-<-<⎩,即1a b +<,所以必要性是成立的,综上可得:a ,b R ∈,1a b +<是11a b a b ⎧+<⎪⎨-<⎪⎩成立的充要条件.故选:C . 【点睛】本题主要考查了绝对值不等式的基本性质,以及充分条件、必要条件的判定方法,其中解答中熟练应用绝对值不等式的性质是解答的关键,着重考查了推理与运算能力.二、填空题13.【分析】是的充分不必要条件可转化为是的充分不必要条件再化简两命题对应的取值范围进一步判断即可【详解】是的充分不必要条件是的充分不必要条件命题中:命题中:由是的充分不必要条件可知应满足解得故答案为:【 解析:[1,6]-【分析】p ⌝是q ⌝的充分不必要条件可转化为q 是p 的充分不必要条件,再化简两命题对应x 的取值范围,进一步判断即可 【详解】“p ⌝是q ⌝的充分不必要条件”⇔q 是p 的充分不必要条件,命题p 中:44a x a -<<+,命题q 中:23x <<,由q 是p 的充分不必要条件可知,应满足4243a a -≤⎧⎨+≥⎩,解得[1,6]a ∈- 故答案为:[1,6]- 【点睛】本题考查由命题的充分不必要条件求解参数范围,属于中档题14.【分析】先判断阴影部分表示的集合为再计算得到答案【详解】集阴影部分表示的集合为:故答案为【点睛】本题考查了韦恩图的识别将图像转化为集合的运算是解题的关键 解析:{}2,4【分析】先判断阴影部分表示的集合为U B C A ⋂,再计算得到答案. 【详解】集U Z =,{}1,3,5,7,9A =,{}1,2,3,4,5B = 阴影部分表示的集合为:{}2,4U B C A ⋂=故答案为{}2,4 【点睛】本题考查了韦恩图的识别,将图像转化为集合的运算是解题的关键.15.4【分析】通过新定义及集合的并集与补集的运算求解计算即得结论【详解】由M*N 的定义可知fM (x )+fN (x )=1则M*N ∈{x|x ∈M ∪N 且x ∉M∩N}即M*A ={x|x ∈M ∪A 且x ∉M∩A}M*B解析:4 【分析】通过新定义及集合的并集与补集的运算求解计算即得结论. 【详解】由M *N 的定义可知,f M (x )+f N (x )=1 ,则M *N ∈{x |x ∈M ∪N ,且x ∉ M ∩N } 即M *A ={x |x ∈M ∪A ,且x ∉M ∩A },M *B ={x |x ∈M ∪B ,且x ∉M ∩B } 要使Card (M *A )+Card (M *B )的值最小,则2,4,8一定属于集合M ,且M 不能含有A ∪B 以外的元素, 所以集合M 为{6,10,1,16}的子集与集合{2,4,8}的并集, 要使**M A M B +的值最小,M ={2,4,8}, 此时,**M A M B +的最小值为4, 故答案为:4 【点睛】本题考查对集合运算的理解以及新定义的应用,考查计算能力.注意解题方法的积累,属于中档题.16.或或【解析】【分析】由指数不等式的解法得由集合的运算及集合元素的互异性可得实数的取值范围是或或【详解】解:解不等式可得即又且则或或故答案为:或或【点睛】本题考查了指数不等式的解法及集合的运算重点考查解析:1a <-或 10a -<<或1a ≥ 【解析】 【分析】由指数不等式的解法得{}|01B x x =<<,由集合的运算及集合元素的互异性可得实数a 的取值范围是1a <-或10a -<<或1a ≥. 【详解】解:解不等式133x <<可得01x <<,即{}|01B x x =<<, 又{}1,0,A a =-,且A B φ⋂=,则1a <-或10a -<<或1a ≥, 故答案为:1a <-或 10a -<<或1a ≥. 【点睛】本题考查了指数不等式的解法及集合的运算,重点考查了集合元素的互异性,属基础题.17.【分析】列举出符合条件的数组即可【详解】则的取值可以是或①时即数组为;②时则或即数组为和因此符合题中条件的数组有组故答案为:【点睛】本题主要考查集合相等的应用根据条件进行分类讨论是解本题的关键考查分 解析:3【分析】列举出符合条件的数组(),,,a b c d 即可. 【详解】1a =,2>c ,4d ≠,则c 的取值可以是3或4.①3c =时,4b =,2d =,即数组为()1,4,3,2;②4c =时,则2b =,3d =或3b =,2d =,即数组为()1,2,4,3和()1,3,4,2. 因此,符合题中条件的数组(),,,a b c d 有3组,故答案为:3. 【点睛】本题主要考查集合相等的应用,根据条件进行分类讨论是解本题的关键,考查分类讨论数学思想,属于中等题.18.49【解析】分析:根据题意进行列举即可得出结果详解:①若则可以表示为共种若则可以表示为共种若则可以表示为共种若则可以表示为共种计种②若则可以表示为共种若则可以表示为共种则可以表示为共种则有种则有种则解析:49 【解析】分析:根据题意进行列举,即可得出结果详解:①若{}1A =,则B 可以表示为{}1,{}12,,{}13,,{}14,,{}123,,,{}124,,,{}134,,,{}1234,,,,{}2,{}23,,{}24,,{}234,,, {}3,{}34,,{}4,共15种 若{}2A =,则B 可以表示为{}2,{}23,,{}24,,{}234,,,{}3,{}34,,{}4,共7种 若{}3A =,则B 可以表示为{}3,{}34,,{}4,共3种 若{}4A =,则B 可以表示为{}4,共1种计1573126+++=种②若{}12A =,,则B 可以表示为{}2,{}23,,{}24,,{}234,,,{}3,{}34,,{}4,共7种若{}13A =,,则B 可以表示为{}3,{}34,,{}4,共3种 {}14A =,,则B 可以表示为{}4,共1种 {}23A =,,则B 有3种 {}24A =,,则B 有1种{}34A =,,则B 有1种计73131116+++++=种③{}123A =,,,则B 有3种 {}124A =,,,则B 有1种 {}134A =,,,则B 有1种 {}234A =,,,则B 有1种计31116+++=种④若{}1234A =,,,,则B 有1种 综上所述,共有26166149+++=种 故答案为49种点睛:本题主要考查的知识点是排列组合的实际应用,本题解题的关键是理解题意,能够看懂A 中最大的数不大于B 中最小的数的意义,本题是一个难题也是一个易错题,需要认真解答19.1【解析】若是真命题则大于或等于函数在的最大值因为函数在上为增函数所以函数在上的最大值为1所以即实数的最小值为1所以答案应填:1考点:1命题;2正切函数的性质解析:1 【解析】 若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦ ”是真命题,则m 大于或等于函数tan y x =在0,4π⎡⎤⎢⎥⎣⎦的最大值 因为函数tan y x =在0,4π⎡⎤⎢⎥⎣⎦上为增函数,所以,函数tan y x =在0,4π⎡⎤⎢⎥⎣⎦上的最大值为1,所以,1m ≥ ,即实数m 的最小值为1. 所以答案应填:1.考点:1、命题;2、正切函数的性质.20.③④⑤【解析】所以将一组数据中的每个数都变为原来的2倍则方差也变为原来的4倍;故①错误;命题的否定是故②错误;在中若则由正弦定理得故③正确;在正三棱锥内任取一点P 使得则在与底面平行的中截面上则中截面解析:③④⑤ 【解析】,所以将一组数据中的每个数都变为原来的2倍,则方差也变为原来的4倍;故①错误;命题“2,10x R x x ∃∈++<”的否定是“”,故②错误;在ABC ∆中,若,则,由正弦定理,得,故③正确;在正三棱锥S ABC -内任取一点P ,使得12P ABC S ABC V V --<,则,在与底面平行的中截面上,则中截面将正三棱锥的体积分成的两部分,所以所求概率是78,即④正确;⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则,即,令,显然在上为减函数,且,即,即实数a 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭,故⑤正确;所以选③④⑤. 考点:命题的判定.三、解答题21.(1){|12x x -≤<或}45x <≤.;(2)5|14a a ⎧⎫≤≤⎨⎬⎩⎭. 【分析】 (1)求出A 以及UB 后可得()U AC B ⋂.(2)根据集合等式关系可得B C A ⊆⊆,故可得各集合中范围的端点的大小关系,从而可求实数a 的取值范围. 【详解】(1)由题{}|15A x x =-≤≤,{|2U C B x x =<或}4x >, (){|12U A C B x x ⋂=-≤<或}45x <≤. (2)由CA A =得C A ⊆,则1450a a a ≥-⎧⎪≤⎨⎪>⎩,解得504a <≤,由CB B =得BC ⊆,则2440a a a ≤⎧⎪≥⎨⎪>⎩,解得12a ≤≤,∴实数a 的取值范围为5|14a a ⎧⎫≤≤⎨⎬⎩⎭. 【点睛】本题考查集合的交和补以及在包含的条件下参数的取值范围的求法,注意根据集合的等式关系判断出集合之间的包含关系,本题属于中档题.22.(Ⅰ){}1,0,1-,{}1,0-,{}1,1-,{}0,1,{}1-,{}0,{}1;(Ⅱ)(][),14,-∞-+∞【分析】(Ⅰ)计算得到(]3,log 8A =-∞,[]1,3B =-,再计算交集得到{}1,0,1M =-,得到答案.(Ⅱ)考虑C =∅和C ≠∅两种情况,得到121211a a a -<+⎧⎨+≤-⎩或12113a a a -<+⎧⎨-≥⎩,解得答案.【详解】(Ⅰ)函数()f x =830x -≥,即3log 8x ≤,即(]3,log 8A =-∞,()22()4123,[0,3]g x x x x x =-+-=--+∈,[]1,3y ∈-,即[]1,3B =-,[]{}31,log (1,0,8)1M A B Z Z =⋂⋂=--⋂=.故集合M 的所有非空子集为{}1,0,1-,{}1,0-,{}1,1-,{}0,1,{}1-,{}0,{}1. (Ⅱ){|121}C x a x a =-<<+,BC =∅,当C =∅时,121a a -≥+,解得2a ≤-;当C ≠∅时,121211a a a -<+⎧⎨+≤-⎩或12113a a a -<+⎧⎨-≥⎩,解得(][)2,14,a ∈--+∞.综上所述:(][),14,a ∈-∞-+∞.【点睛】本题考查了函数的定义域,值域,子集,根据交集运算结果求参数,意在考查学生的计算能力和转化能力,忽略空集是容易发生的错误. 23.(1)[)4,+∞;(2)1,02⎡⎫-⎪⎢⎣⎭. 【分析】(1)解二次不等式求出集合A ,利用基本不等式求出集合B ,进而可得A B ;(2)由()2160a x x a ⎛⎫-+≤ ⎪⎝⎭,知0a ≠,分0a >和0a <两类讨论,利用C A ⊆,即可求得a 的取值范围. 【详解】解:(1)集合{}22240A x x x =+-≥, 即满足()()640x x +-≥,解一元二次不等式可得{6A x x =≤-或}4x ≥,而集合1,11B y y x x x ⎧⎫==+>-⎨⎬+⎩⎭,则111111y x x x x =+=++-++11≥=,当且仅当111x x +=+时,即0x =时取等号 所以{}1B y y =≥;由集合交集运算可得{6A B x x ⋂=≤-或}4x ≥{}1y y ⋂≥{}4x x =≥ 即[)4,AB =+∞;(2)集合()160C x ax x a ⎧⎫⎛⎫=-+≤⎨⎬ ⎪⎝⎭⎩⎭. 则0a ≠.化简可得()2160a x x a ⎛⎫-+≤ ⎪⎝⎭当0a >时,可得216C x x a ⎧⎫=-≤≤⎨⎬⎩⎭,{6A x x =≤-或}4x ≥ 则C A ⊆不成立.当0a <时,可得{6C x x =≤-或21x a ⎫≥⎬⎭若C A ⊆,则214a≤,解得102a -≤<或102a <≤. 又由于0a <,所以102a -≤<. 综上可知,当C A ⊆时实数a 的取值范围为1,02a ⎡⎫∈-⎪⎢⎣⎭. 【点睛】本题主要考查交集及其运算,考查集合的包含关系,考查学生计算能力和分类讨论的思想,是中档题.24.(1){}01A B x x ⋂=<<;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【分析】(1)求出集合A ,利用交集的定义可求得集合A B ;(2)分A =∅和A ≠∅两种情况讨论,结合条件A B =∅可得出关于a 的不等式组,即可解得实数a 的取值范围. 【详解】 (1)当12a =时,122A x x ⎧⎫=-<<⎨⎬⎩⎭,{}01B x x =<<,因此,{}01A B x x ⋂=<<;(2)A B =∅.①当A =∅时,即121a a -≥+,2∴≤-a ; ②当A ≠∅时,则12111a a a -<+⎧⎨-≥⎩或121210a a a -<+⎧⎨+≤⎩,解得122a -<≤-或2a ≥.综上所述,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查交集的运算,同时也考查了利用交集运算结果求参数,考查运算求解能力,属于中等题.25.03a <≤【分析】根据题意,求出p ⌝表示的集合,利用p ⌝是q 的充分不必要条件得到集合间的包含关系,进而得到关于a 的不等式组,解不等式即可. 【详解】由题意知,:2p x ⌝≤-或10x ≥, 因为p ⌝是q 的充分不必要条件,所以{2x x ≤-或}10x ≥ {1x x a ≤-或}1x a ≥+,所以121100311a a a a a -≥-⎧⎪+≤⇒<≤⎨⎪+>-⎩,所以实数a 的取值范围为03a <≤. 【点睛】本题考查利用充分不必要条件和集合间的包含关系求参数的取值范围;考查逻辑推理能力和运算求解能力;根据题意,正确得出集合间的包含关系是求解本题的关键;属于中档题. 26.(1)7,2⎛⎤-∞ ⎥⎝⎦;(2)[)1,+∞【分析】结合指数函数和对数函数性质可分别求得集合A 和集合B ; (1)由交集定义得到A B ,分别在C =∅和C ≠∅两种情况下构造不等式求得结果; (2)由并集定义得到A B ,根据交集结果可构造不等式求得结果.【详解】{}[]12128272,74x A x x x ⎧⎫=≤≤=-≤≤=-⎨⎬⎩⎭{}[]21log ,,32353,58B y y x x y y ⎧⎫⎡⎤==∈=-≤≤=-⎨⎬⎢⎥⎣⎦⎩⎭(1)[]2,5AB =-当C =∅时,122+≥-m m ,解得:3m ≤,满足()C A B ⊆⋂当C ≠∅时,12212225m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得:732<≤m综上所述:实数m 的取值范围为7,2⎛⎤-∞ ⎥⎝⎦(2)[]3,7AB =-()A B D =∅ 617m ∴+≥,解得:m 1≥∴实数m 的取值范围为[)1,+∞【点睛】本题考查根据集合包含关系、交集结果求解参数范围的问题,涉及到指数函数和对数函数性质的应用;易错点是在根据包含关系求参数范围时,忽略子集可能为空集的情况,造成范围求解错误.。

深圳松岗中英文实验学校必修第一册第一单元《集合与常用逻辑用语》检测题(有答案解析)

深圳松岗中英文实验学校必修第一册第一单元《集合与常用逻辑用语》检测题(有答案解析)

一、选择题1.已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,则“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.已知命题p :x R ∀∈,2230ax x ++>是真命题,那么实数a 的取值范围是( ) A .13a < B .103a <≤ C .13a >D .13a ≤3.设,a b 为非零向量,则“a b a b +=+”是“a 与b 共线”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.设向量(sin2,cos )a θθ=,(cos ,1)b θ=,则“//a b ”是“1tan 2θ=”成立的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.设等比数列{}n a 中,10a >,公比为q ,则“1q >”是“{}n a 是递增数列”的( ). A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既非充分又非必要条件6.设{}n a 是等差数列,则“123a a a <<”是“数列{}n a 是递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.已知在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则“113a =”是“数列{}n a 唯一”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.若集合1|,6 A x x m m Z ⎧⎫==+∈⎨⎬⎩⎭, 1|,23n B x x n Z ⎧⎫==-∈⎨⎬⎩⎭,1|,26p C x x p Z ⎧⎫==+∈⎨⎬⎩⎭,则A ,B ,C 之间的关系是( )A .ABC ==B .AB C = C .ABC D .B CA9.下列命题错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠ ,则2320x x -+≠”B .若p q ∧为假命题,则,p q 均为假命题C .对于命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥D .“2x >”是“2320x x -+>”的充分不必要条件 10.命题“∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为( )A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立11.已知函数32()(,,)f x x ax bx c a b c R =+++∈,则“230a b -≤”是“()f x 在R 上只有一个零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件12.已知平面向量a 和b ,则“||||b a b =-”是“1()02b a a -⋅=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.设U =R ,集合2{|320}A x x x =++=, ()2{|10}B x x m x m =+++=,若UA B,则m =__________.14.不等式220mx mx --<对任意x ∈R 恒成立的充要条件是m ∈__________. 15.对于任意非空集合A 、B ,定义{|,}A B a b a A b B +=+∈∈,若{}2,0,1S T ==-,则S T +=________(用列举法表示)16.设p :|x ﹣1|≤1,q :x 2﹣(2m +1)x +(m ﹣1)(m +2)≤0.若p 是q 的充分不必要条件,则实数m 的取值范围是_____.17.已知集合{}12A x x =-<<,{}1,0,1,2B =-,则A B =__________.18.写出命题“,20x x R ∀∈>”的否定:______.19.已知{|12},[0,4]M x m x m N =-≤≤=,且M N M ⋂=,则实数m 的取值范围_____________;20.若命题“[]01,1x ∃∈-,033x a ≤”为真命题,则实数a 的取值范围为______.三、解答题21.已知全集U =R ,集合{}2|450A x x x =--≤,{}|24B x x =≤≤.(1)求()U A C B ⋂;(2)若集合{}|4,0C x a x a a =≤≤>,满足C A A =,C B B =,求实数a 的取值范围.22.设集合U 为全体实数集,{ 2 5}M x x x =|≤-≥或,121{|}N x a x a =+≤≤-. (1)若3a =,求U MC N ;(2)若N M ⊆,求实数a 的取值范围.23.设全集为R ,集合A ={x |3≤x <6},B ={x |2<x <9}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值构成的集合. 24.已知集合{}220A x x x =--<,()(){}30,B x x a x a a R =--<∈.(1)当1a =时,求集合A 和A B ;(2)若()R B C A ⊆,求实数a 的取值范围.25.已知集合{}2|5140A x x x =--≤,{}|14B x x =-≤.(1)若{}|121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围; (2)若{}|61D x x m =>+,且()A B D =∅,求实数m 的取值范围.26.已知命题p :∀x ∈R ,ax 2+ax +1>0及命题q :∃x 0∈R ,x 02﹣x 0+a =0,若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】充分性:若0,3B π⎛⎤∈ ⎥⎝⎦,则2221cos 122a c b B ac+-≤=<,即2222ac a c b ac ≤+-<,即222222a c ac b a c ac +-<≤+-,并不能得出2b ac =一定成立,故充分性不成立;必要性:若2b ac =,由余弦定理得:2221cos 222a c ac ac ac B ac ac +--=≥=,因为()0,B π∈,所以0,3B π⎛⎤∈ ⎥⎝⎦,故必要性成立, 综上,“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的必要不充分条件, 故选:C . 【点睛】方法点睛:判断充要条件的四种常用方法:定义法、传递性法、集合法、等价命题法.2.C解析:C 【分析】由题意可得2230ax x ++>对于x ∈R 恒成立,讨论0a =和0a ≠即可求解. 【详解】若命题p :x R ∀∈,2230ax x ++>是真命题, 则2230ax x ++>对于x ∈R 恒成立, 当0a =时,230x +>可得:32x >-不满足对于x ∈R 恒成立,所以0a =不符合题意;当0a ≠时,需满足04430a a >⎧⎨∆=-⨯<⎩解得13a >,所以实数a 的取值范围是13a >, 故选:C 【点睛】关键点点睛:对于2230ax x ++>对于x ∈R 恒成立,需讨论0a =和0a ≠,当0a ≠时,结合二次函数图象即可得等价条件.3.A解析:A 【分析】根据向量共线的性质依次判断充分性和必要性得到答案. 【详解】若a b a b +=+,则a 与b 共线,且方向相同,充分性; 当a 与b 共线,方向相反时,a b a b ≠++,故不必要. 故选:A . 【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.4.B解析:B 【分析】先将//a b 等价化简为cos 0θ=或1tan 2θ=,再判断解题即可. 【详解】//a b ⇔(sin 2,cos )//(cos ,1)θθθ⇔2sin 2cos θθ=⇔cos 0θ=或1tan 2θ=,所以“//a b ”是“1tan 2θ=”成立的必要不充分条件. 故选:B. 【点睛】本题考查向量平行的坐标表示、判断p 是q 的什么条件、三角恒等变换化简,是中档题.5.C解析:C 【分析】根据等比数列的通项公式和单调性的判定方法,结合充分条件、必要条件的判定,即可求解. 【详解】在等比数列{}n a 中,可得11n n a a q -=,若10,1a q >>,可得11111()(1)0n n n n n a a a q q a q q --+-=-=->,即1n n a a +>,所以数列{}n a 为递增数列,故充分性是成立的; 反之:若等比数列{}n a 为递增数列,即111(1)0n n n a a a qq -+-=->,若10a >,则1(1)0n q q -->,可得1q >,故必要性是成立的,所以“1q >”是“{}n a 是递增数列”的充分必要条件. 故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,以及数列的单调性的判定方法及应用,其中解答中熟记数列的单调性的判定方法是解答的关键,着重考查推理与论证能力.6.C解析:C 【分析】结合等差数列的单调性,根据充分条件、必要条件的判定方法,即可求解. 【详解】在{}n a 是等差数列,若123a a a <<,可得21320d a a a a =-=->, 所以数列{}n a 是递增数列,即充分性成立;若数列{}n a 是递增数列,则必有123a a a <<,即必要性成立,所以“123a a a <<”是“数列{}n a 是递增数列”的充分必要条件. 故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,以及等差数列的单调性判定及应用,其中解答中熟记等差数列的性质是解答的关键,着重考查推理与论证能力.7.C解析:C 【分析】根据条件“在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项”求解数列{}n a ,然后由充分必要条件的定义判断.【详解】在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则2213(2)(1)(3)a a a +=++,22213134433a a a a a a ++=+++, 设{}n a 的公比为q ,则22222111114433a q a q a q a a q ++=+++,211430q q a -+-=(*),10a >,因为1114164(3)40a a ∆=--=+>,所以此方程一定有两不等实解,当等比数列{}n a 只有一解时,方程(*)的两解中一解为0q =需舍去,此时113a =; 若113a =,方程(*)有一个解是0q =,另一解4q =.数列{}n a 只有一解, 由上分析知113a =是数列{}n a 唯一的充要条件. 故选:C . 【点睛】本题考查充分必要条件的判断,掌握充分必要条件的定义是解题关键.8.B解析:B 【分析】分别将集合中的元素表示为61,6m x x m Z ⎧⎫+=∈⎨⎬⎩⎭,31|,6t x x t Z +⎧⎫=∈⎨⎬⎩⎭和31|,6p x x p Z +⎧⎫=∈⎨⎬⎩⎭即可得结果. 【详解】 ∵161|,,66m A x x m m Z x x m Z ⎧⎫+⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,13231|,|,|,2366n n t B x x n Z x x n Z x x t Z -+⎧⎫⎧⎫⎧⎫==-∈==∈==∈⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,131|,|,266p p C x x p Z x x p Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭显然A B C =,故选:B. 【点睛】本题主要考查集合间的包含关系的判断,考查集合的包含关系等基础知识,属于基础题.9.B解析:B 【分析】由原命题与逆否命题的关系即可判断A ;由复合命题的真值表即可判断B ; 由特称命题的否定是全称命题即可判断C ;根据充分必要条件的定义即可判断D ;. 【详解】A .命题:“若p 则q ”的逆否命题为:“若¬q 则¬p ”,故A 正确;B .若p ∧q 为假命题,则p ,q 中至少有一个为假命题,故B 错.C .由含有一个量词的命题的否定形式得,命题p :∃x ∈R ,使得x 2+x +1<0,则¬p 为:∀x ∈R ,均有x 2+x +1≥0,故C 正确;D .由x 2﹣3x +2>0解得,x >2或x <1,故x >2可推出x 2﹣3x +2>0,但x 2﹣3x +2>0推不出x >2,故“x >2”是“x 2﹣3x +2>0”的充分不必要条件,即D 正确 故选B . 【点睛】本题考查简易逻辑的基础知识:四种命题及关系,充分必要条件的定义,复合命题的真假和含有一个量词的命题的否定,这里要区别否命题的形式,本题是一道基础题.10.D解析:D 【分析】将“全称量词”改“存在量词”,“至少有一个成立”改为“都不成立”即可得到. 【详解】 “∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0,a +1b≥2和b +1a ≥2都不成立.故选:D 【点睛】本题考查了全称命题的否定,属于基础题.11.A解析:A【分析】求出()f x ',由230a b -≤知()0f x '≥恒成立,即函数()f x 在R 上单调递增,只有一个零点,然后可举例说明在230a b ->,即()f x 有两个极值点时,()f x 也可能只有一个零点,由此可得结论. 【详解】因为32()f x x ax bx c =+++,2()32f x x ax b '=++,若230a b -≤, 则24120a b ∆=-≤,则()0f x '≥恒成立,所以()f x 在R 上单调递增. 当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞, 所以()f x 在R 上只有一个零点,即充分性成立. 令32a =,0b =,1c =-,则323()12f x x x =+-,2()333(1)f x x x x x '=+=+, 则()f x 在(,1)-∞-,(0,)+∞上单调递增,在(1,0)-上单调递减,又1(1)02f -=-<, 3(1)02f =>,则()f x 在R 上只有一个零点,但不满足“230a b -≤”,即必要性不成立, 所以“230a b -≤”是“()f x 在R 上只有一个零点”的充分不必要条件, 故选:A . 【点睛】本题考查充分条件、必要条件的判断、函数的零点的概念.注意区别A 是B 的充分不必要条件(A B ⇒且B A ⇒/)与A 的充分不必要条件是B (B A ⇒且A B ⇒/)两者的不同.12.C解析:C 【分析】||||b a b =-两边平方得出22()b a b =-,展开等价变形得出102b a a ⎛⎫-⋅= ⎪⎝⎭,根据充分条件和必要条件的定义进行判断即可. 【详解】22||||()b a b b a b =-⇔=-22221122020022b a a b b a a b a b a b a a ⎛⎫⎛⎫⇔=-⋅+⇔-⋅=⇔⋅-=⇔-⋅= ⎪ ⎪⎝⎭⎝⎭则“||||b a b =-”是“1()02b a a -⋅=”的充分必要条件 故选:C 【点睛】本题主要考查了充要条件的证明,涉及了向量运算律的应用,属于中档题.二、填空题13.1或2【详解】解方程可得因为所以当m=1时满足题意;当即m=2时满足题意故m=1或2解析:1或2 【详解】{|21}A x x x ==-=-或,解方程()210x m x m +++=可得1x x m =-=-或因为UA B ,所以B A ⊆,当1m -=-即m =1时,满足题意;当2m -=-,即m =2时,满足题意,故m =1或2.14.【分析】先根据一元二次不等式恒成立得再根据充要条件概念即可得答案【详解】解:当时显然满足条件当时由一元二次不等式恒成立得:解得:综上所以不等式对任意恒成立的充要条件是故答案为:【点睛】本题考查充要条 解析:(]8,0-【分析】先根据一元二次不等式恒成立得(]8,0m ∈-,再根据充要条件概念即可得答案. 【详解】解:当0m =时,显然满足条件,当0m ≠时,由一元二次不等式恒成立得:2800m m m ⎧+<⎨<⎩,解得:80m -<<综上,(]8,0m ∈-,所以不等式220mx mx --<对任意x ∈R 恒成立的充要条件是(]8,0m ∈-, 故答案为:(]8,0- 【点睛】本题考查充要条件的求解,一元二次不等式恒成立问题,是基础题.15.【分析】根据集合的新定义分别求出两个集合中各取一个元素求和的所有可能情况【详解】由题:对于任意非空集合定义若各取一个元素形成有序数对所有可能情况为所有情况两个数之和构成的集合为:故答案为:【点睛】此 解析:{}4,2,1,0,1,2---【分析】根据集合的新定义,分别求出两个集合中各取一个元素求和的所有可能情况. 【详解】由题:对于任意非空集合A 、B ,定义{|,}A B a b a A b B +=+∈∈, 若{}2,0,1S T ==-,各取一个元素,a A b B ∈∈形成有序数对(),a b ,所有可能情况为()()()()()()()()()2,2,2,0,2,1,0,2,0,0,0,1,1,2,1,0,1,1------,所有情况两个数之和构成的集合为:{}4,2,1,0,1,2--- 故答案为:{}4,2,1,0,1,2--- 【点睛】此题考查集合的新定义问题,关键在于读懂定义,根据定义找出新集合中的元素即可得解.16.01【分析】分别求出的范围再根据是的充分不必要条件列出不等式组解不等式组【详解】由得得由得得若p 是q 的充分不必要条件则得得即实数的取值范围是故答案为:【点睛】本题主要考查绝对值不等式和二次不等式的解解析:[0,1] 【分析】分别求出,p q 的范围,再根据p 是q 的充分不必要条件,列出不等式组,解不等式组 【详解】由11x -≤得111x -≤-≤,得02x ≤≤.由2(21)(1)(2)0x m x m m -++-+≤,得[(1)][(2)]0x m x m ---+≤, 得12m x m -≤≤+, 若p 是q 的充分不必要条件,则1022m m -≤⎧⎨+≥⎩,得10m m ≤⎧⎨≥⎩,得01m ≤≤,即实数m 的取值范围是[0,1].故答案为:[0,1] 【点睛】本题主要考查绝对值不等式和二次不等式的解法,同时考查了充分不必要条件,属于中档题.17.【解析】分析:利用交集的运算直接求解即可详解:由题所以即答案为点睛:本题考查交集的运算属基础题 解析:{}0,1【解析】分析:利用交集的运算直接求解即可详解:由题{}12A x x =-<<,{}1,0,1,2B =-,所以{}0,1A B ⋂=. 即答案为{}0,1点睛:本题考查交集的运算,属基础题.18.【解析】因为命题的否定为所以命题的否定为 解析:,20x x R ∃∈≤【解析】因为命题“p x ∀,”的否定为“p x ∃⌝,”,所以命题“,20x x R ∀∈>”的否定为,20x x R ∃∈≤19.【分析】先根据条件确定集合包含关系再分类讨论得结果【详解】当时满足条件此时当时综上实数m 的取值范围为【点睛】本题考查集合包含关系考查基本分析求解能力属基础题解析:()[],11,2-∞-⋃【分析】先根据条件确定集合包含关系,再分类讨论得结果.【详解】M N M M N ⋂=∴⊂当M φ=时,满足条件,此时12,1m m m -><-当M φ≠时, 10,2412m m m -≥≤∴≤≤综上,实数m 的取值范围为(,1)[1,2]-∞-⋃【点睛】本题考查集合包含关系,考查基本分析求解能力,属基础题.20.【分析】由题意结合指数函数的单调性可得的最大值可得的范围【详解】命题为真命题可得的最大值由可得故答案为:【点睛】本题考查不等式能成立问题考查转化与化归思想属于中等题型解析:(],1-∞【分析】由题意结合指数函数的单调性,可得0a x ≤的最大值,可得a 的范围.【详解】命题“[]01,1x ∃∈-,033x a ≤”为真命题,可得0a x ≤的最大值,由[]01,1x ∈-,可得1a ≤,故答案为:(],1-∞【点睛】本题考查不等式能成立问题,考查转化与化归思想,属于中等题型 三、解答题21.(1){|12x x -≤<或}45x <≤.;(2)5|14a a ⎧⎫≤≤⎨⎬⎩⎭. 【分析】(1)求出A 以及U B 后可得()U A C B ⋂.(2)根据集合等式关系可得B C A ⊆⊆,故可得各集合中范围的端点的大小关系,从而可求实数a 的取值范围.【详解】 (1)由题{}|15A x x =-≤≤,{|2U C B x x =<或}4x >,(){|12U A C B x x ⋂=-≤<或}45x <≤.(2)由C A A =得C A ⊆,则1450a a a ≥-⎧⎪≤⎨⎪>⎩,解得504a <≤, 由C B B =得B C ⊆,则2440a a a ≤⎧⎪≥⎨⎪>⎩,解得12a ≤≤,∴实数a 的取值范围为5|14a a ⎧⎫≤≤⎨⎬⎩⎭. 【点睛】本题考查集合的交和补以及在包含的条件下参数的取值范围的求法,注意根据集合的等式关系判断出集合之间的包含关系,本题属于中档题.22.(1){|2x x ≤-或5}x >.; (2)(,2)[4,)-∞+∞. 【分析】(1)当3a =,求得集合2{|M x x =≤-或5}x,45{|}N x x =≤≤,根据集合的运算,即可求解;(2)根据N M ⊆,分类讨论,列出不等式(组),即可求解.【详解】(1)当3a =,集合2{|M x x =≤-或5}x,45{|}N x x =≤≤, 可得{|4U C N x x =<或5}x >,所以{2U x x M C N =|≤-或5}x >.(2)因为N M ⊆,当N φ=时,可得121a a +>-,解得2a <,此时满足N M ⊆;当N φ≠时,要使得N M ⊆,则满足121212a a a +≤-⎧⎨-≤-⎩或12115a a a +≤-⎧⎨+≥⎩, 解得φ或4a ≥,即4a ≥,综上可得,实数a 的取值范围(,2)[4,)-∞+∞.【点睛】根据集合的运算结果求参数的取值范围的分法:将集合中的运算关系转化为两个集合之间的关系,若集合中的运算能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到;将集合之间的关系转化为解方程(组)或不等式(组)问题求解;根据求解结果来确定参数的值或取值范围.23.(1)A ∩B ={x |3≤x <6},(∁R B )∪A ={x |x ≤2,或3≤x <6,或x ≥9};(2) {a |2≤a ≤8}【分析】(1)根据集合A ={x |3≤x <6},B ={x |2<x <9},利用交集的运算求解.;根据全集为R ,B ={x |2<x <9},利用补集运算得到U B ,再利用并集的运算求解. (2)由C ={x |a <x <a +1},且C ⊆B ,利用子集的定义,分C =∅和C ≠∅两种情况求解. 【详解】(1)因为集合A ={x |3≤x <6},B ={x |2<x <9},所以A ∩B ={x |3≤x <6};因为全集为R ,集合A ={x |3≤x <6},B ={x |2<x <9}.所以{|2U B x x =≤或 }9x ≥ , 所以U B ∪A {|2x x =≤或36x <≤ 或}9x ≥;(2)由C ={x |a <x <a +1},且C ⊆B , 当C =∅时,则1a a ≥+,无解;当C ≠∅时,则1219a a a a <+⎧⎪≥⎨⎪+≤⎩,解得28a ≤≤,综上:实数a 取值构成的集合是[2,8]【点睛】本题主要考查集合的基本运算及基本关系应用,关键点是熟悉集合的性质,掌握集合的交并补基本运算,还考查了运算求解的能力,属于中档题.24.(1){}12A x x =-<<,{}13A B x x ⋃=-<<;(2)0a =或1a ≤-或2a ≥.【分析】(1)先求出集合A ,B ,再根据并集的定义即可求出;(2)先求出A R ,再根据题意讨论a 的范围即可求出. 【详解】(1)由不等式220x x --<解得12x -<<, {}12A x x ∴=-<<,当1a =时,()(){}{}13013B x x x x x =--<=<<, {}13A B x x ∴⋃=-<<;(2){}12A x x =-<<,{1R A x x ∴=≤-或}2x ≥,当0a =时,{}20B x x =<=∅,满足题意;当0a >时,{}3B x a x a =<<,要使()R B A ⊆,则2a ≥;当0a <时,{}3B x a x a =<<,要使()RB A ⊆,则1a ≤-; 综上,0a =或1a ≤-或2a ≥.【点睛】本题考查集合的并集、补集运算,考查根据集合的包含关系求参数,其中涉及一元二次不等式的求解,属于基础题.25.(1)3m ≤;(2)m 1≥.【分析】(1)先求出A B ,再根据包含关系可得关于m 的不等式组,从而求实数m 的取值范围,注意对C 是否为空集分类讨论; (2)先求出A B ,再根据()A B D =∅得到关于m 的不等式,从而求实数m 的取值范围.【详解】(1){}|27A x x =-≤≤,{}|35B x x =-≤≤,{}|25AB x x =-≤≤,①若C =∅,则121m m +>-,∴2m <; ②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,∴23m ≤≤,综上3m ≤.(2){}|37A B x x ⋃=-≤≤,∴617m +≥,∴m 1≥.【点睛】本题考查集合的包含关系以及一元二次不等式的解的求法,注意根据集合关系得到不同集合中的范围的端点满足的不等式(或不等式组),要验证等号是否可取,还要注意含参数的集合是否为空集或全集.26.0a <或144a << 【分析】题:p x R ∀∈,210ax ax ++>,对a 分类讨论:当0a =时,直接验证;当0a ≠时,可得2040a a a >⎧⎨∆=-<⎩.命题0:q x R ∃∈,2000x x a -+=,可得10∆.由p q ∨为真命题,p q ∧为假命题,可得命题p 与q 必然一真一假.解出即可.【详解】解:命题:p x R ∀∈,210ax ax ++>,当0a =时,10>成立,因此0a =满足题意;当0a ≠时,可得2040a a a >⎧⎨∆=-<⎩,解得04a <<. 综上可得:04a <.命题0:q x R ∃∈,2000x x a -+=,∴1140a =-∆,解得14a . p q ∨为真命题,p q ∧为假命题,∴命题p 与q 必然一真一假.∴0414a a <⎧⎪⎨>⎪⎩或0414a a a <⎧⎪⎨⎪⎩或, 解得0a <或144a <<. ∴实数a 的取值范围是0a <或144a <<. 【点睛】本题考查了一元二次不等式与一元二次方程的解集与判别式的关系、简易逻辑的判定,考查了推理能力与计算能力,属于基础题.。

深圳中学必修第一册第一单元《集合与常用逻辑用语》检测卷(包含答案解析)

深圳中学必修第一册第一单元《集合与常用逻辑用语》检测卷(包含答案解析)

一、选择题1.“21x >”是“2x >”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知{}n a 是等比数列,n S 为其前n 项和,那么“10a >”是“数列{}n S 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( ) A .(),4-∞-B .(),4-∞C .[)4,-+∞D .[)4,+∞ 4.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.全集U =R ,集合04x A x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞6.已知点P 在椭圆C :2214x y +=上,直线l :0x y m -+=,则“35m =是“点P 到直线l 10”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件7.“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件8.已知条件:3p k =q :直线2y kx =+与圆221x y +=相切,则q 是p 的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 9.“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.“8m =”是“椭圆2214x y m +=的离心率为22”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.已知a ,b R ∈,“1a b +<”是“11a b a b ⎧+<⎪⎨-<⎪⎩”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知全集{1,2,3,4,5}U =,集合{1,2,4}A =,{1,3,5}B ,则()U C A B ( )A .{1}B .{3,5}C .{1,3,5}D .{2,3,4,5}二、填空题13.设U =R ,集合2{|320}A x x x =++=, ()2{|10}B x x m x m =+++=,若UA B,则m =__________.14.已知条件:21p x ⌝-<<,条件:q x a ⌝>,且q 是p 的充分不必要条件,则a 的取值范围是_________.15.已知集合{}12A =,,{}12B =-,,则A B =______.16.已知集合{}1,2,3,4A =,集合{}3,4,5B =,则AB =_______.17.在正项等比数列{}n a 中,已知120151a a <=,若集合1212111|0,t t A t a a a t N a a a *⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-++-≤∈⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎩⎭,则A 中元素个数为______.18.己知全集U =R ,集合,,则___________19.下列命题中,正确的是___________.(写出所有正确命题的编号) ①在中,是的充要条件;②函数的最大值是;③若命题“,使得”是假命题,则;④若函数,则函数在区间内必有零点.20.设{}1,2,3,M n =,则M 的所有子集的最小元素之和为__________三、解答题21.已知集合4{|0}3x A x x -=>+,集合{|221}B x a x a =-≤≤+. (1)当3a =时,求A 和()R A B ;(2)若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围. 22.已知全集U =R ,非空集合2{|0}3x A x x -=<-,2{|()(2)0}B x x a x a =---<. (1)当12a =时,求()U A B ;(2)命题p :x A ∈,命题q :x B ∈,若q 是p 的必要条件,求实数a 的取值范围.23.已知集合2102x a A xx a ⎧⎫--⎪⎪=<⎨⎬-⎪⎪⎩⎭,集合{}|32B x x =-<. (Ⅰ)当2a =时,求A B ;(Ⅱ)设p :x A ∈,q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围. 24.已知{}220A x x x =--<,212168x B x -⎧⎫=≤≤⎨⎬⎩⎭. (1)求AB ;(2)若不等式20x ax b ++<的解集是AB ,求20ax x b +-<的解集.25.关于x 的不等式1x a -<的解集为A ,关于x 的不等式2320x x -+≤的解集为B ,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围. 26.已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围;(2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设{}21A x x =>,{}2B x x =>,然后根据集合包含关系分析充分性和必要性. 【详解】设{}{211A x x x x =>=>或}1x <-,设{}2B x x =>,可得B A ,所以“21x >”是“2x >”的必要不充分条件. 故选:B . 【点睛】方法点睛:充分性和必要性的判断方法:1、定义法,2、命题法,3、传递法,4、集合法.2.B解析:B 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】设等比数列{}n a 的公比为q ,充分性:当10a >,0q <时,111n n nn S a S a q ++-==,无法判断其正负,显然数列{}n S 为不一定是递增数列,充分性不成立;必要性:当数列{}n S 为递增数列时,10n n n S S a --=>,可得10a >,必要性成立. 故“10a >”是“数列{}n S 为递增数列”的必要而不充分条件. 故选:B . 【点睛】方法点睛:证明或判断充分性和必要性的常用方法:①定义法,②等价法,③集合包含关系法.3.C解析:C 【分析】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题,分0x =和0x ≠两种情况讨论,结合参变量分离法可求得实数a 的取值范围. 【详解】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题. 当0x =时,则有10-≥,不合乎题意;当0x ≠时,由2410ax x +-≥,可得214ax x ≥-,则有221414x a x x x-≥=-, 22141244x x x ⎛⎫-=--≥- ⎪⎝⎭,当且仅当12x =时,等号成立, 所以,4a ≥-.综上所述,实数a 的取值范围是[)4,-+∞. 故选:C. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.4.A解析:A 【详解】因为:1213p x x x +>⇔><-或,p ⌝:31x -≤≤;22:5656023q x x x x x ->⇔-+<⇔<<,q ⌝:23x x ≤≥或, 因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A. 5.C解析:C 【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C . 【点睛】本题考查集合的运算,属于基础题.6.B解析:B 【分析】“点P 到直线l ”解得:m =±. 【详解】点P 在椭圆C :2214x y +=上,直线l :0x y m -+=,考虑“点P 到直线l ”设()[)2cos ,sin ,0,2P θθθπ∈,点P 到直线l 的距离d ϕϕ===点P 到直线l ()m θϕ++的最小值()m θϕ++符号恒正或恒负, ()m m m θϕ⎡++∈⎣当0m <时,m =-,当0m >时,m =综上所述:m =±所以“m =是“点P 到直线l ”的充分不必要条件. 故选:B 【点睛】此题考查充分条件与必要条件的辨析,关键在于根据题意准确求出参数的取值范围.7.A解析:A 【分析】根据充分条件、必要条件的定义,结合双曲线的方程即可判定. 【详解】因为当3k >时,30k ->,30k +>,方程22133x y k k -=-+表示双曲线;当方程22133x y k k -=-+表示双曲线时,(3)(3)0k k -+>,即3k >或3k <-,不能推出3k >,所以“3k >”是“方程22133x y k k -=-+表示双曲线”的充分不必要条件,故选:A 【点睛】本题主要考查了充分条件、必要条件,双曲线的标准方程,属于中档题.8.B解析:B 【分析】结合直线和圆相切的等价条件,利用充分条件和必要条件的定义进行判断即可. 【详解】若直线2y kx =+与圆221x y +=相切,则圆心(0,0)到直线20kx y -+=的距离1d ==,即214k +=,23k ∴=,即k =∴q 推不出p ,而p 而以推出q ,q ∴是p 的必要不充分条件.故选:B . 【点睛】本题主要考查充分条件和必要条件的判断,利用直线与圆相切的等价条件是解决本题的关键,属于基础题.9.B解析:B 【分析】根据异面直线的定义及直线与平面平行的定义即可判定. 【详解】因为满足“一条直线l 与平面α内无数条直线异面”这样条件的直线可以和平面相交, 所以推不出“这条直线与平面α平行”,当直线满足与平面α平行时,可以推出这条直线与平面α内无数条直线异面, 所以“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的必要不充分条件, 故选:B 【点睛】本题主要考查了充分条件、必要条件,直线与平面的位置关系,属于中档题.10.A解析:A 【分析】椭圆2214x y m +=离心率为2,可得:4m >=04m <<时,2=,解得m 即可判断出结论. 【详解】椭圆2214x y m +=,可得:4m >=8m ∴=;04m <<2=,2m ∴=总之8m =或2.∴“8m =”是“椭圆2214x y m +=离心率为2”的充分不必要条件. 故选:A .【点睛】本题考查了椭圆的标准方程及其性质、充分不必要条件的判定方法,考查了推理能力与计算能力,属于基础题.11.C解析:C 【分析】由绝对值不等式的基本性质,集合充分必要条件的判定方法,即可求解. 【详解】由题意,a ,b R ∈,1a b +<,可得1a b a b +≤+<且1a b a b -≤+<,所以充分性是成立的; 反之11a b a b ⎧+<⎪⎨-<⎪⎩,可得1111a b a b -<+<⎧⎨-<-<⎩,即1a b +<,所以必要性是成立的,综上可得:a ,b R ∈,1a b +<是11a b a b ⎧+<⎪⎨-<⎪⎩成立的充要条件.故选:C . 【点睛】本题主要考查了绝对值不等式的基本性质,以及充分条件、必要条件的判定方法,其中解答中熟练应用绝对值不等式的性质是解答的关键,着重考查了推理与运算能力.12.B解析:B 【分析】根据补集的运算,求得{3,5}U C A =,再根据集合交集的运算,即可求得()U C A B ⋂. 【详解】由题意,全集{1,2,3,4,5}U =,集合{1,2,4}A =,可得{3,5}U C A =, 所以()U C A B {3,5}.故选:B . 【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合运算的概念和计算方法是解答的关键,着重考查了计算能力,属于基础题.二、填空题13.1或2【详解】解方程可得因为所以当m=1时满足题意;当即m=2时满足题意故m=1或2解析:1或2 【详解】{|21}A x x x ==-=-或,解方程()210x m x m +++=可得1x x m =-=-或因为UA B ,所以B A ⊆,当1m -=-即m =1时,满足题意;当2m -=-,即m =2时,满足题意,故m =1或2.14.【分析】根据得出由是的充分不必要条件得出根据包含关系得出的范围【详解】由题设得或设或由得设因为是的充分不必要条件所以因此故答案为:【点睛】本题主要考查了由充分不必要条件求参数范围属于中档题解析:(],2-∞-【分析】根据p ⌝,q ⌝得出,p q ,由q 是p 的充分不必要条件,得出Q P ,根据包含关系得出a 的范围. 【详解】由题设:21p x ⌝-<<,得:1p x ≥或2x -≤,设{|1P x x =≥或}2x ≤- 由:q x a ⌝>,得:q xa ,设{}|Q x x a =≤因为q 是p 的充分不必要条件,所以Q P ,因此2a ≤-. 故答案为:(],2-∞- 【点睛】本题主要考查了由充分不必要条件求参数范围,属于中档题.15.{-112};【解析】=={-112}解析:{-1,1,2}; 【解析】A B ⋃={}{}1212,,⋃-={-1,1,2} 16.{34}【分析】利用交集的概念及运算可得结果【详解】【点睛】本题考查集合的运算考查交集的概念与运算属于基础题解析:{3,4}. 【分析】利用交集的概念及运算可得结果. 【详解】{}1234A =,,,,{}345B =,, {}34A B ∴⋂=,.【点睛】本题考查集合的运算,考查交集的概念与运算,属于基础题.17.4029【解析】试题分析:设等比数列公比为的公比为因为所以即所以解得考点:等比数列求和公式解析:4029 【解析】试题分析:设等比数列公比为{}n a 的公比为,因为,所以,,即,所以,解得.考点:等比数列求和公式.18.【解析】试题分析:本题首先求出集合AB 再求它们的运算这两个集合都是不等式的解集故解得因此考点:集合的运算 解析:【解析】试题分析:本题首先求出集合A ,B ,再求它们的运算,这两个集合都是不等式的解集,故解得{|31}A x x x =-或,{|02}B x x =<≤,因此()(0,1]UA B ⋂=.考点:集合的运算.19.①③④【分析】根据正弦定理及三角形的性质可判断(1);利用均值不等式可判断(2);利用假命题求参数的范围可判断(3);利用零点存在性定理可判断(4)【详解】解:对于(1)sinA >sinB ⇔2Rsi 解析:①③④ 【分析】根据正弦定理,及三角形的性质,可判断(1);利用均值不等式,可判断(2);利用假命题求参数的范围,可判断(3);利用零点存在性定理,可判断(4). 【详解】解:对于(1),sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B (其中R 为△ABC 外接圆半径),故(1)正确; 对于(2),x 21x +=--(1﹣x 21x+-)+1≤﹣()211x x-⋅-1=﹣2+1,当且仅当x =122)错误;对于(3),若命题“x R ∃∈,使得()2310ax a x +-+≤”是假命题⇔命题:“∀x ∈R ,使得ax 2+(a ﹣3)x +1>0”恒成立. ∵a =0时,不符合题意,∴20(3)40a a a ⎧⎨=--<⎩>∴1a 9<<,故(3)正确;对于(4),∵()12a f a b c =++=-,∴3a +2b +2c =0,∴32c a b =--. 又f (0)=c ,f (2)=4a +2b +c ,∴f (2)=a ﹣c . (i )当c >0时,有f (0)>0,又∵a >0,∴()102a f =-<,故函数f (x )在区间(0,1)内有一个零点,故在区间(0,2)内至少有一个零点.(ii )当c ≤0时,f (1)<0,f (0)=c ≤0,f (2)=a ﹣c >0,∴函数f (x )在区间(1,2)内有一零点,故(4)正确.故正确答案为:①③④【点睛】本题考查的知识点是命题的真假判断与应用,熟练掌握正弦定理,均值不等式,二次函数的,图象和性质,函数零点存在定理,是解答的关键. 20.【分析】先确定元素再确定该元素为最小时对应子集个数最后利用错位相减法求和【详解】若1为最小元素则对应子集个数为个;若2为最小元素则对应子集个数为个;…若n 为最小元素则对应子集个数为个;所以的所有子集 解析:122n n +--【分析】先确定元素,再确定该元素为最小时对应子集个数,最后利用错位相减法求和.【详解】若1为最小元素,则对应子集个数为12n -个;若2为最小元素,则对应子集个数为22n -个;…...若n 为最小元素,则对应子集个数为02个;所以M 的所有子集的最小元素之和为2301223222n n n n ---+⨯+⨯++⨯ 设1230222322n n n n S ---+⨯+=⨯++⨯1212232222n n n n S --+⨯+⨯++⨯= 相减得231112(12)222222212n n n n n n n n n S ---+-++++-==-=--+- 故答案为:122n n +--【点睛】本题考查错位相减法求和以及子集个数,考查综合分析求解能力,属中档题.三、解答题21.(1){|3A x x =<-或}4x >,(){}|37R A B x x ⋃=-≤≤;(2)2a <-或6a >.【分析】(1)当3a =时,得出集合B ,解分式不等式即可得集合A ,再根据补集和并集的运算,从而可求出()R A B ; (2)由题意知B A ,当B =∅时,221a a ->+;当B ≠∅时,221213a a a -≤+⎧⎨+<-⎩或22124a a a -≤+⎧⎨->⎩,从而可求出实数a 的取值范围. 【详解】解:(1)由题可知,当3a =时,则{}|17B x x =≤≤,{40|33x A x x x x ⎧⎫-=>=<-⎨⎬+⎩⎭或}4x >, 则{}|34R A x x =-≤≤,所以(){}{}{}|34|17|37R A B x x x x x x ⋃=-≤≤⋃≤≤=-≤≤.(2)由题可知,x A ∈是x B ∈的必要不充分条件,则B A , 当B =∅时,221a a ->+,解得:3a <-;当B ≠∅时,221213a a a -≤+⎧⎨+<-⎩或22124a a a -≤+⎧⎨->⎩, 解得:32a -≤<-或6a >;综上所得:2a <-或6a >.【点睛】结论点睛:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,q 对的集合与p 对应集合互不包含.22.(1)934xx ⎧⎫≤<⎨⎬⎩⎭;(2)(,1][1,2]-∞-⋃. 【分析】(1)先解分式不等式和二次不等式得集合,A B ,再求补集和交集即可;(2)先判断22a a +>得2{|2}B x a x a =<<+,再根据必要条件得到集合的包含关系,列不等式求解即可.【详解】(1)∵12a =时,2{|0}{|23}3x A x x x x -=<=<<-, 1119{|()(2)0}{|}2424B x x x x x =---<=<<,全集U =R ,∴1{|2U C B x x =≤或9}4x ≥.∴9(){|3}4U C B A x x ⋂=≤<. (2)∵命题p :x A ∈,命题q :x B ∈,q 是p 的必要条件,∴A B ⊆. ∵221772()0244a a a +-=-+≥>,∴22a a +>, ∵23{|}A x x =<<,2{|2}B x a x a =<<+,∴2223a a ≤⎧⎨+≥⎩,解得1a ≤-或12a ≤≤,故实数a 的取值范围(,1][1,2]-∞-⋃. 【点睛】本题主要考查了集合的运算及求参问题,涉及必要条件的转化,属于基础题. 23.(Ⅰ){|45}A B x x ⋂=<<;(Ⅱ)1,22⎡⎤⎢⎥⎣⎦【分析】(Ⅰ)当2a =时,求出集合A ,集合B ,由此能求出A B . (Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,从而A B ⊆,由此能求出实数a 的取值范围.【详解】解:(Ⅰ)当2a =时,集合215|0{|0}{|45}24x a x A x x x x x a x ⎧⎫---=<=<=<<⎨⎬--⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.{|45}A B x x ∴=<<.(Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,A B ∴⊆,当221a a <+时,1a ≠,集合221|0{|21}2x a A x x a x a x a ⎧⎫--=<=<<+⎨⎬-⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.∴22115a a ⎧⎨+⎩,且1a ≠,解得122a .且1a ≠, 当1a =时,A =∅,成立.综上,实数a 的取值范围是1,22⎡⎤⎢⎥⎣⎦. 【点睛】本题考查交集、实数的取值范围的求法,考查充分条件、交集、子集等基础知识,考查运算求解能力,属于中档题.24.(1)()1,2-;(2)()(),12,-∞-+∞.【分析】(1)先解出集合A 、B ,然后利用交集的定义可求出集合A B ;(2)由题意可知,1-、2是方程20x ax b ++=的两根,利用韦达定理可求出a 、b 的值,进而可求出二次不等式20ax x b +-<的解集.【详解】(1)由题意知{}{}22012A x x x x x =--<=-<<, 由212168x -≤≤,得324222x --≤≤,得324x -≤-≤,解得16x -≤≤,[]1,6B ∴=-. 因此,()1,2A B ⋂=-;(2)由题意可知,1-、2是方程20x ax b ++=的两根,由韦达定理得1212a b -+=-⎧⎨-⨯=⎩,解得12a b =-⎧⎨=-⎩, 不等式20ax x b +-<即为220x x -++<,即220x x -->,解得1x <-或2x >. 因此,不等式20ax x b +-<的解集为()(),12,-∞-⋃+∞.【点睛】本题考查交集的运算,同时也考查了二次不等式与指数不等式的求解,涉及一元二次不等式的解集与二次方程之间的关系,考查运算求解能力,属于中等题.25.12a <<【分析】根据题意得出集合B 是集合A 的真子集,解绝对值不等式以及一元二次不等式得出集合,A B ,根据包含关系得出实数a 的取值范围.【详解】解:因为x A ∈是x B ∈的必要不充分条件,所以集合B 是集合A 的真子集 解不等式1x a -<,得11a x a -+<<+,所以{}11A x a x a =-+<<+解不等式2320x x -+≤,得12x ≤≤ 所以{}12B x x =≤≤ 因为集合B 是集合A 的真子集,所以1112a a -+<⎧⎨+>⎩即12a <<【点睛】本题主要考查了根据必要不充分条件求参数的值,属于中档题.26.(1)[]1,0-(2)(),0-∞【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围;(2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++, 2x a ∴-< ,22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩, 解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+, 当且仅当()()10a x x -+≥时,等号成立,所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <. 所以实数a 的取值范围是(),0-∞.【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题.。

(人教版)深圳市必修第一册第一单元《集合与常用逻辑用语》测试(有答案解析)

(人教版)深圳市必修第一册第一单元《集合与常用逻辑用语》测试(有答案解析)

一、选择题1.已知命题p :x R ∀∈,2230ax x ++>是真命题,那么实数a 的取值范围是( ) A .13a < B .103a <≤ C .13a >D .13a ≤2.设a R ∈,则“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.下列命题中,不正确...的是( ) A .0x R ∃∈,200220x x -+≥B .设1a >,则“b a <”是“log 1a b <”的充要条件C .若0a b <<,则11a b> D .命题“[]1,3x ∀∈,2430x x -+≤”的否定为“[]01,3x ∃∈,200430x x -+>”5.已知实数0x >,0y >,则“1xy ≤”是“224x y +≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 6.设a ,b 都是不等于1的正数,则“log 3log 31a b >>”是“33a b <”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 7.已知a ∈R ,则“2a ≤”是“方程2210ax x ++=至少有一个负根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.设等比数列{}n a 中,10a >,公比为q ,则“1q >”是“{}n a 是递增数列”的( ). A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既非充分又非必要条件9.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( ) A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈10.下列有关命题的说法正确的是( )A .若命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥B .“sin 2x =”的一个必要不充分条件是“3x π=”C .若+=-a b a b ,则a b ⊥D .α,β是两个平面,m ,n 是两条直线,如果m n ⊥,m α⊥,βn//,那么αβ⊥ 11.下列命题中,不正确的是( )A .0x R ∃∈,20010x x -+≥B .若0a b <<则11a b> C .设0a >,1a ≠,则“log 1a b >”是“b a >”的必要不充分条件D .命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”12.已知,a b →→为非零不共线向量,设条件:()M b a b →→→⊥-,条件:N 对一切x ∈R ,不等式||||a x b a b →→→→-≥-恒成立,则M 是N 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题13.设集合{}260,M xx mx x R =-+=∈∣,且{2,3}M M =,则实数m 的取值范围是____.14.给出下列三种说法:①命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(q ⌝)”是假命题.②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3. ③命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x≠1,则x 2-3x +2≠0”. 其中所有正确说法的序号为________________.15.命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题,则m 的取值范围是________. 16.已知命题:44,:(2)(3)0p x a q x x -<-<-->,若p ⌝是q ⌝的充分不必要条件,求a 的取值范围________.17.已知1a ≤,集合{}2x a x a ≤≤-中有且仅有三个整数,则实数a 的取值范围为________.18.已知集合{}{}22160,430,A x x B x x x =-<=-+>则AUB =____________. 19.已知{|12},[0,4]M x m x m N =-≤≤=,且M N M ⋂=,则实数m 的取值范围_____________;20.已知()2:9p x a -<,()3:log 21q x +<.若p ⌝是q ⌝的充分不必要条件,则a 的取值范围是________.三、解答题21.已知集合{}{}|321,|53A x a x a B x x =-≤≤+=-≤≤,全集U =R . (1)当1a =时,求()UA B ;(2)若A B ⊆,求实数a 的取值范围.22.已知全集U =R ,集合{}2|2150A x x x =--<,集合()(){}2|210B x x a x a =-+-<. (1)若1a =,求UA 和B ;(2)若A B A ⋃=,求实数a 的取值范围. 23.解关于x 的不等式ax 2-2(a +1)x +4>0.24.已知22:|27|3,:430p x q x mx m -<-+<,其中m >0. (1)若m =4且p ∧q 为真,求x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围.25.设命题p :12≤x ≤1,命题q :x 2-(2a +1)x +a (a +1)≤0.若q 是p 的必要而不充分条件,求实数a 的取值范围.26.已知命题p :2320x x -+≤,命题q :()222100x x m m -+-≤>(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若4m =,p q ∨为真命题,p q ∧为假命题,求实数x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可得2230ax x ++>对于x ∈R 恒成立,讨论0a =和0a ≠即可求解. 【详解】若命题p :x R ∀∈,2230ax x ++>是真命题, 则2230ax x ++>对于x ∈R 恒成立, 当0a =时,230x +>可得:32x >-不满足对于x ∈R 恒成立,所以0a =不符合题意;当0a ≠时,需满足04430a a >⎧⎨∆=-⨯<⎩解得13a >,所以实数a 的取值范围是13a >, 故选:C 【点睛】关键点点睛:对于2230ax x ++>对于x ∈R 恒成立,需讨论0a =和0a ≠,当0a ≠时,结合二次函数图象即可得等价条件.2.A解析:A 【分析】计算直线平行等价于1a =或2a =-,根据范围大小关系得到答案. 【详解】直线1:20l ax y +=与直线()2140+++=:l x a y 平行,则()12a a +=,1a =或2a =-,验证均不重合,满足.故“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的充分不必要条件. 故选:A. 【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.3.A解析:A 【分析】求出函数()()xf x x a e =-的极值点,利用该极值点在()0,∞+内求得实数a 取值范围,利用集合的包含关系可得出结论. 【详解】()()x f x x a e =-,则()()1x f x x a e '=-+,令()0f x '=,可得1x a =-.当1x a <-时,()0f x '<;当1x a >-时,()0f x '>. 所以,函数()y f x =在1x a =-处取得极小值.若函数()y f x =在()0,∞+上有极值,则10a ->,1a ∴>.因此,“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的充分不必要条件.故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用导数求函数的极值点,考查计算能力与推理能力,属于中等题.4.B解析:B 【分析】由()2200022110x x x -+=-+≥,可判断A ;由对数函数的定义域和对数函数的单调性得充分性不一定成立,必要性成立,可判断B ;运用作差法,判断其差的符号可判断C ;根据全称命题的否定是特称命题可判断D. 【详解】由()2200022110x x x -+=-+≥,得A 为真命题;由“b a <”不能推出“log 1a b <”,所以充分性不一定成立,由“log 1a b <”得“b a <”,所以必要性成立,故B 不正确;由0a b <<,则110b aa b ab --=>,∴11a b>,故C 正确; 根据全称命题的否定是特称命题知D 正确. 故选:B. 【点睛】本题考查判断命题的真假,对数函数的定义域,单调性,全称命题与特称命题的关系,属于中档题.5.B解析:B 【分析】通过举反例得到“1xy ≤”推不出“224x y +≤”;再由“224x y +≤”⇒“1xy ≤”.能求出结果. 【详解】 解:实数0x >,0y >,∴当3x =,14y =时,13422224x y +=+>, ∴“1xy ≤”推不出“224x y +≤”;反之,实数0x >,0y >,由基本不等式可得22x y +≥由不等式的基本性质得224x y ≤+≤,整理得24x y +≤,2x y ∴+≤,由基本不等式得212x y xy +⎛⎫≤≤ ⎪⎝⎭,即“224x y+≤”⇒“1xy ≤”.∴实数0x >,0y >,则“1xy ≤”是“224x y +≤”的必要不充分条件.故选:B . 【点睛】本题考查充分条件、必要条件、充要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是中等题.6.B解析:B 【分析】由已知结合对数不等式的性质可得13a b <<<,得到33a b <;反之,由33a b <,不一定有log 3log 31a b >>成立,再由充分必要条件的判定得答案. 【详解】解:a ,b 都是不等于1的正数,由log 3log 31a b >>,得13a b <<<,33a b ∴<;反之,由33a b <,得a b <,若01a <<,1b >,则log 30a <,故log 3log 31a b >>不成立.∴ “log 3log 31a b >>”是“33a b <”的充分不必要条件.故选:B . 【点睛】本题考查指数不等式与对数不等式的性质,考查充分必要条件的判定方法,是基础题.7.B解析:B 【分析】分类讨论a 的正负,利用两根与系数的关系、判别式,进而求解判断即可. 【详解】(1)当0a =时,方程变为210x +=,有一负根12x =-,满足题意;(2)当0a <时,440∆=->a ,方程的两根满足1210x x a=<,此时有且仅有一个负根,满足题意;(3)当0a >时,由方程的根与系数关系可得2010aa⎧-<⎪⎪⎨⎪>⎪⎩,∴方程若有根,则两根都为负根,而方程有根的条件440a ∆=-≥,01a ∴<≤.综上可得,1a ≤.因此,“2a ≤”是“方程2210ax x ++=至少有一个负根”的必要不充分条件. 故选:B. 【点睛】本题考查必要不充分条件的判断,考查二次方程根的分布问题,考查分类讨论思想的应用,属于中等题.8.C解析:C 【分析】根据等比数列的通项公式和单调性的判定方法,结合充分条件、必要条件的判定,即可求解. 【详解】在等比数列{}n a 中,可得11n n a a q -=,若10,1a q >>,可得11111()(1)0n n n n n a a a q q a q q --+-=-=->,即1n n a a +>,所以数列{}n a 为递增数列,故充分性是成立的; 反之:若等比数列{}n a 为递增数列,即111(1)0n n n a a a qq -+-=->,若10a >,则1(1)0n q q -->,可得1q >,故必要性是成立的, 所以“1q >”是“{}n a 是递增数列”的充分必要条件. 故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,以及数列的单调性的判定方法及应用,其中解答中熟记数列的单调性的判定方法是解答的关键,着重考查推理与论证能力.9.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.10.A解析:A 【分析】对选项逐个分析,对于A 项,根据特称命题的否定是全称命题,得到其正确;对于B 项,根据充分必要条件的定义判断正误;对于C 项根据向量垂直的条件得到其错误,对于D 项,从空间直线平面的关系可判断正误. 【详解】对于A ,命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥,A 正确;对于B ,当3x π=时, sin x =成立,所以“3x π=”是“sin x =”的充分条件,所以B 错误;对于C ,a b >且两向量反向时 +=-a b a b 成立, a b ⊥不成立C 错误; 对于D ,若m n ⊥,m α⊥,βn//,则α,β的位置关系无法确定,故D 错误. 故选:A. 【点睛】该题考查的是有关选择正确命题的问题,涉及到的知识点有含有一个量词的命题的否定,充分必要条件的判断,空间直线和平面的关系,属于简单问题.11.C解析:C 【分析】根据存在性命题的判定方法,可判定A 正确;根据不等式的性质,可判定B 正确;根据对数的运算性,可判定C 不正确;根据含有一个量词的否定,可判定D 正确. 【详解】对于A 中,由2000131()024x x x -+=-+≥,所以A 为真命题; 对于B 中,由0a b <<,则110b aa b ab --=>,所以11a b>,所以B 是正确的; 对于C 中,设0a >,1a ≠,例如11,24a b ==,则121log log 24a b ==,所以充分性不成立,又如1,22a b ==,此时12log log 21a b ==-,所以必要性不成立,所以“log 1a b >”是“b a >”的既不充分也不必要条件,所以C 是错误的;对于D 中,根据全称命题和存在性命题的关系,可得命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”,所以是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到含有一个量词的真假判定及否定,对数的运算性质,不等式的性质等知识的综合应用,属于中档试题.12.C解析:C 【分析】条件M :()b a b →→→⊥-20a b b ⇔⋅-=,条件N :对一切x R ∈,不等式a xb a b -≥-成立,化为:222220.x b a bx a b b -⋅+⋅-≥进而判断出结论. 【详解】条件M :0b a a b ⊥⇔⋅=.条件N :对一切x R ∈,不等式a xb a b -≥-成立,化为:222220x b a bx a b b -⋅+⋅-≥.因为20b ≠,()2224()420a b b a b b ∴=⋅-⋅-≤, 22()0a b b →→→∴⋅-≤,即20a b b →→→⋅-=,可知:由M 推出N ,反之也成立. 故选:C . 【点睛】本题考查了向量数量积运算性质、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.二、填空题13.【分析】由题意可得是集合的子集按集合中元素的个数结合根与系数之间的关系分类讨论即可求解【详解】由题意可得是集合的子集又当是空集时即方程无解则满足解得即此时显然符合题意;当中只有一个元素时即方程只有一解析:({}5m ∈-【分析】 由题意{}2,3MM =,可得M 是集合{}2,3的子集,按集合M 中元素的个数,结合根与系数之间的关系,分类讨论即可求解. 【详解】 由题意{}2,3MM =,可得M 是集合{}2,3的子集,又{}260,M x x mx x R =-+=∈,当M 是空集时,即方程260x mx -+=无解,则满足()2460m ∆=--⨯<,解得m -<<(m ∈-,此时显然符合题意;当M 中只有一个元素时,即方程260x mx -+=只有一个实数根,此时()2460m ∆=--⨯=,解得m =±x =x ={}2,3的子集中的元素,不符合题意,舍去;当M 中有两个元素时,则2,3M,此时方程260x mx -+=的解为12x =,23x =,由根与系数之间的关系,可得两根之和为5,故235m =+=;当5m =时,可解得2,3M ,符合题意.综上m 的取值范围为({}5m ∈-.故答案为:({}5m ∈-【点睛】方法点睛:根据集合的运算求参数问题的方法:要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;若集合表示的不等式的解集,常依据数轴转化为不等式(组)求解,此时需要注意端点值是否取到.14.①③【解析】试题分析:①若命题p :存在x ∈R 使得tanx=1;命题q :对任意x ∈Rx2-x+1>0则命题p 且¬q 为假命题此结论正确对两个命题进行研究发现两个命题都是真命题故可得p 且¬q 为假命题②已知解析:①③ 【解析】试题分析:①若命题p :存在x ∈R ,使得tanx=1;命题q :对任意x ∈R ,x 2-x+1>0,则命题“p 且¬q”为假命题,此结论正确,对两个命题进行研究发现两个命题都是真命题,故可得“p 且¬q”为假命题.②已知直线l 1:ax+3y-1=0,l 2:x+by+1=0.则l 1⊥l 2的充要条件为ab =−3,若两直线垂直时,两直线斜率存在时,斜率乘积为a b =−3,当a=0,b=0时,此时两直线垂直,但不满足ab=−3,故本命题不对.③命题“若x 2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x 2-3x+2≠0”,由四种命题的书写规则知,此命题正确;考点:复合命题的真假;四种命题15.【分析】对分类讨论计算可得【详解】解:因为命题使得不等式是真命题当时恒成立满足条件;当时则解得综上可得即故答案为:【点睛】本题考查全称命题为真求参数的取值范围属于中档题 解析:[]0,4【分析】对m 分类讨论,计算可得. 【详解】解:因为命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题 当0m =时,10≥恒成立,满足条件;当0m ≠时,则2040m m m >⎧⎨-≤⎩解得04m <≤综上可得04m ≤≤即[]0,4m ∈ 故答案为:[]0,4 【点睛】本题考查全称命题为真求参数的取值范围,属于中档题.16.【分析】是的充分不必要条件可转化为是的充分不必要条件再化简两命题对应的取值范围进一步判断即可【详解】是的充分不必要条件是的充分不必要条件命题中:命题中:由是的充分不必要条件可知应满足解得故答案为:【 解析:[1,6]-【分析】p ⌝是q ⌝的充分不必要条件可转化为q 是p 的充分不必要条件,再化简两命题对应x 的取值范围,进一步判断即可【详解】“p ⌝是q ⌝的充分不必要条件”⇔q 是p 的充分不必要条件,命题p 中:44a x a -<<+,命题q 中:23x <<,由q 是p 的充分不必要条件可知,应满足4243a a -≤⎧⎨+≥⎩,解得[1,6]a ∈- 故答案为:[1,6]-【点睛】本题考查由命题的充分不必要条件求解参数范围,属于中档题17.【分析】首先分析出集合里面必有元素1再讨论集合为三种情况讨论求的取值范围【详解】所以集合里的元素一定有1集合有3个元素当集合是时有集合是空集;当集合是时有解得:;当集合是时有集合是空集;综上:的取值 解析:(]1,0-【分析】首先分析出集合里面必有元素1,再讨论集合为{}1,2,3,{}0,1,2,{}1,0,1- 三种情况讨论,求a 的取值范围.【详解】1a ≤ ,21a ∴-≥ ,所以集合里的元素一定有1,集合有3个元素,当集合是{}1,2,3时,有01324a a <≤⎧⎨≤-<⎩,集合是空集; 当集合是{}0,1,2时,有10223a a -<≤⎧⎨≤-<⎩,解得:10a -<≤ ; 当集合是{}1,0,1-时,有21122a a -<≤-⎧⎨≤-<⎩,集合是空集; 综上:a 的取值范围是(]1,0-故答案为(]1,0-【点睛】本题考查根据集合的元素个数求参数的取值范围,意在考查分类,转化,和计算求解能力,属于中档题型.18.R 【解析】分析:根据一元二次不等式的解法先将化简再由并集的运算求详解:因为或故答案为点睛:本题考查并集及其运算一元二次不等式的解法正确化简集合是关键研究集合问题一定要抓住元素看元素应满足的属性研究两 解析:R【解析】分析:根据一元二次不等式的解法先将,A B 化简,再由并集的运算求A B . 详解: 因为{}{}2|160|44A x x x x =-<=-<<, {}{2430|1B x x x x x =-+=<或}3x >, A B R ∴⋃=,故答案为R .点睛:本题考查并集及其运算,一元二次不等式的解法,正确化简集合,A B 是关键. 研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或属于集合B 的元素的集合. 19.【分析】先根据条件确定集合包含关系再分类讨论得结果【详解】当时满足条件此时当时综上实数m 的取值范围为【点睛】本题考查集合包含关系考查基本分析求解能力属基础题解析:()[],11,2-∞-⋃【分析】先根据条件确定集合包含关系,再分类讨论得结果.【详解】M N M M N ⋂=∴⊂当M φ=时,满足条件,此时12,1m m m -><-当M φ≠时, 10,2412m m m -≥≤∴≤≤综上,实数m 的取值范围为(,1)[1,2]-∞-⋃【点睛】本题考查集合包含关系,考查基本分析求解能力,属基础题.20.【分析】解不等式和由题意可得是的必要不充分条件转化为两集合的包含关系由此可求得实数的取值范围【详解】因为是的充分不必要条件所以是的必要不充分条件解不等式得解不等式解得所以即因此实数的取值范围是故答解析:[]2,1-【分析】解不等式()29x a -<和()3log 21x +<,由题意可得p 是q 的必要不充分条件,转化为两集合的包含关系,由此可求得实数a 的取值范围.【详解】因为p ⌝是q ⌝的充分不必要条件,所以p 是q 的必要不充分条件,解不等式()29x a -<,得33a x a -<<+,解不等式()3log 21x +<,解得21x -<<. :33p a x a -<<+,:21q x -<<,{}33x a x a ∴-<<+ {}21x x -<<,所以3231a a -≤-⎧⎨+≥⎩,即21a -≤≤. 因此,实数a 的取值范围是[]2,1-.故答案为:[]2,1-.【点睛】本题考查利用充分不必要条件求参数,解答的关键就是转化为集合的包含关系来处理,考查分析问题和解决问题的能力,属于中等题. 三、解答题21.(1){}|52x x -≤<-;(2)4a或21a -≤≤. 【分析】(1)求出集合A 从而求U A ,再与集合B 取交集即可;(2)分A φ=和A φ≠两种情况讨论根据A B ⊆列出不等式(组)求a 的取值范围. 【详解】(1)依题意,当1a =时,{}|23A x x =-≤≤,则|2U A x x =<-{或3}x >, 又{}|53B x x =-≤≤,则()|2U A B x x =<-{或{}{}|53|3}52x x x x x -≤≤->=≤<-.(2)若A B ⊆,则有{}{}|321|53x a x a x x -≤≤+⊆-≤≤,于是有: 当A φ=时,A B ⊆显然成立,此时只需321a a ->+,即4a; 当A φ≠时,若A B ⊆,则35221313214a a a a a a a -≥-≥-⎧⎧⎪⎪+≤⇒≤⎨⎨⎪⎪-≤+≥-⎩⎩,所以:21a -≤≤综上所述,a 的取值范围为:4a或21a -≤≤. 【点睛】易错点点睛:在利用集合的包含关系求参数时注意以下两点:(1)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;(2)在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论.22.(1)U A ={x ∣x ≤−3或x ≥5};B =∅;(2)−1≤a【分析】(1)利用一元二次不等式的解法化简集合A 、B ,利用集合的基本运算即可算出结果; (2)因为A B A ⋃=,所以B A ⊆,对集合B 分等于空集和不等于空集两种情况讨论,求出a 的取值范围.【详解】(1)若1a =,则集合2{|2150}{|35}A x x x x x =--<=-<<,{|3U A x x ∴=-或5}x ,若1a =,则集合22{|(21)()0}{|(1)0}B x x a x a x x =-+-<=-<=∅,(2)因为A B A ⋃=,所以B A ⊆,①当B =∅时,221a a =-,解1a =,②当B ≠∅时,即1a ≠时,2{|21}B x a x a =-<<,又由(1)可知集合{|35}A x x =-<<,∴22135a a --⎧⎨⎩,解得15a -,且1a ≠, 综上所求,实数a 的取值范围为:15a-. 【点睛】 本题主要考查了集合的基本运算,考查了一元二次不等式的解法,是基础题.23.答案见解析.【分析】二次项含参,先对a 分0,0,0a a a =><三类讨论,当0a =时,直接代入化简得到解集;当0a >时,不等式可化为(ax -2)(x -2)>0,其对方程两个根为2,2a,需比较两根大小,再分01a <<,1a =,1a >三类求出解集;当0a <时,原不等式可化为(-ax +2)(x -2)<0,直接判断两根大小,得到解集,最后综合,求得答案.【详解】解:(1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}.(2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a ,x 2=2. ①当0<a <1时,2a >2,所以原不等式的解集为2{|x x a >或2}x <; ②当a =1时,2a =2,所以原不等式的解集为{x |x ≠2}; ③当a >1时,2a <2,所以原不等式的解集为2{|x x a<或2}x >. (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2, 则2a <2,所以原不等式的解集为2{|2}x x a<<.综上,a <0时,原不等式的解集为2{|2}x x a <<; a =0时,原不等式的解集为{x |x <2};0<a ≤1时,原不等式的解集为2{|x x a >或2}x <; 当a >1时,原不等式的解集为2{|x x a<或2}x >. 【点睛】 本题考查了含参一元二次不等式的解法,对二次项系数分类讨论,在需要时对两根大小分类讨论,属于中档题.24.(1)45x <<(2)523m ≤≤ 【分析】(1)分别求解绝对值不等式和一元二次不等式,化简p 与q ,结合p q ∧为真,解不等式组,即可得出x 的取值范围;(2)由p 是q 的充分不必要条件,建立关于m 的不等式组,求解即可得出答案.【详解】(1)由|27|3x -<,解得25x <<由22430x mx m -+<以及0m >,解得3m x m <<当4m =时,q :412x << p q ∧为真,25412x x <<⎧∴⎨<<⎩,解得45x << (2):25,:3p x q m x m <<<<p 是q 的充分不必要条件2350m m m ≤⎧⎪∴≥⎨⎪>⎩,解得523m ≤≤ 当53m =时,5:53q x <<成立 当2m =时,:26q x <<成立 523m ∴≤≤ 【点睛】本题主要考查了根据复合命题的真假求参数的范围以及由充分不必要条件求参数的范围,属于中档题.25.[0,1]2【分析】求出q 的等价条件,结合充分条件和必要条件的定义转化为集合子集关系进行求解即可.【详解】由2(21)(1)0x a x a a -+++得1a x a +,若q 是p 的必要不充分条件, 则1[2,1][a ,1]a +, 即1211a a ⎧⎪⎨⎪+⎩,得120a a ⎧⎪⎨⎪⎩,得102a , 即实数a 的取值范围是[0,1]2, 【点睛】本题主要考查充分条件和必要条件的应用,求出命题的等价条件,转化为集合关系是解决本题的关键,属于容易题.26.(1)1m ≥;(2)[)(]3,12,5-⋃.【分析】(1)先解不等式,再根据充分条件得集合之间包含关系,最后解不等式得结果;(2)根据p q ∨为真命题,p q ∧为假命题,得,p q 一真一假,再分别求对应x 的取值范围.【详解】(1)p :232012x x x -+≤∴≤≤,q :()22210011x x m m m x m -+-≤>∴-≤≤+因为p 是q 的充分条件,所以11112m p q m m -≤⎧⊆∴∴≥⎨+≥⎩; (2)4m =时,q :35x -≤≤因为p q ∨为真命题,p q ∧为假命题,所以,p q 一真一假,1253x x x ≤≤⎧∴⎨><-⎩或或3521x x x -≤≤⎧⎨><⎩或 x ∴∈∅或31x -≤<或25x <≤实数x 的取值范围为[)(]3,12,5-⋃【点睛】本题考查根据充分条件求参数、根据复合命题真假求参数,考查基本分析求解能力,属中档题.。

深圳市黄埔学校必修第一册第一单元《集合与常用逻辑用语》测试卷(含答案解析)

深圳市黄埔学校必修第一册第一单元《集合与常用逻辑用语》测试卷(含答案解析)

一、选择题1.若命题P :1x ≠或2y ≠,命题Q :3x y +≠,则P 是Q 的( )条件A .充分不必要B .必要不充分C .充要D .既不充分又不必有 2.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( )A .(),4-∞-B .(),4-∞C .[)4,-+∞D .[)4,+∞3.设a R ∈,则“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假状况是( )A .原命题与逆命题均为真命题B .原命题真,逆命题假C .原命题假,逆命题真D .原命题与逆命题均为真命题5.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件6.设向量(sin2,cos )a θθ=,(cos ,1)b θ=,则“//a b ”是“1tan 2θ=”成立的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.已知ξ服从正态分布()21,N σ,a ∈R ,则“P (ξ>a )=0.5”是“关于x 的二项式321()ax x +的展开式的常数项为3”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件 D .充要条件8.已知1:12p x ≥-,:||2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( ) A .(,4]-∞B .[1,4]C .(1,4]D .(1,4)9.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( ) A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈10.下列命题中,不正确的是( )A .0x R ∃∈,20010x x -+≥B .若0a b <<则11a b> C .设0a >,1a ≠,则“log 1a b >”是“b a >”的必要不充分条件D .命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”11.已知命题P :∃0x R ∈,20010x x -+≥;命题Q :若a <b ,则1a >1b,则下列为真命题的是( ) A .P Q ∧B .P Q ⌝∧ C .P Q ⌝∧D .P Q ⌝⌝∧12.已知函数32()(,,)f x x ax bx c a b c R =+++∈,则“230a b -≤”是“()f x 在R 上只有一个零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.已知命题:44,:(2)(3)0p x a q x x -<-<-->,若p ⌝是q ⌝的充分不必要条件,求a 的取值范围________.14.已知集合{}3A x x =≤,{}2B x x =<,则RA B =__________.15.已知集合{}{}22,1,A B a==,若{}0,1,2AB =,则实数a =________.16.已知集合{}12A x x =-<<,{}1,0,1,2B =-,则AB =__________.17.已知:p x R ∃∈,10x me +≤,:q x R ∀∈,2210x mx -+>,若p q ∨为假命题,则实数m 的取值范围是__________.18.已知()2:9p x a -<,()3:log 21q x +<.若p ⌝是q ⌝的充分不必要条件,则a 的取值范围是________.19.记集合[],A a b =,当,64ππθ⎡⎤∈-⎢⎥⎣⎦时,函数()2cos 2cos f θθθθ=+的值域为B ,若“x A ∈”是“x B ∈”的必要条件,则b a -的最小值是______.20.设命题p :431x -≤,命题q :()()22110x a x a a -+++≤,若q 是p 的必要不充分条件,则实数a 的取值范围是______三、解答题21.已知命题:p x R ∀∈,()()221140a x a x -+-+>,:q x R ∃∈,()22110x a x -++<(1)若“2321t a t --≤≤-”是p 成立的充分条件,求实数t 的取值范围; (2)若p q ∧为假,p q ∨为真,求实数a .22.设集合{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-,若AB =∅,求m 的范围.参考答案23.设集合{|33},{|13}A x x B x a x a =-≤≤=-≤≤+. (1)若1a =,求,A B A B ;(2)若AB B =,求实数a 的取值范围.24.已知函数()f x =A ,()()()lg 12(1)g x x a a x a ⎡⎤=---<⎣⎦的定义域为B .(1)求A .(2)记2222222040/2/22300B A AB v v a m s m s S --===-⨯ :q x B ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.25.已知集合{}2650A x x x =+->,集合()(){}110B x x a x a =-+-->,其中0a >.(1)若2a =,求()RAB ;(2)设:p x A ∈,:q x B ∈.若p ⌝是q 的充分不必要条件,求a 的取值范围. 26.集合(){}21|,A x y y x mx ==-+-,(){},3,03|B x y y x x ==-≤≤.(Ⅰ)当4m =时,求A B ;(Ⅱ)若A B ⋂≠∅,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】通过举反例,判断出P 成立推不出Q 成立,通过判断逆否命题的真假,判断出原命题的真假得到后者成立能推出前者成立,由充分条件、必要条件的定义得到结论. 【详解】当0x =,3y =时,Q 不成立,即P Q ⇒不成立,即充分性不成立; 判断必要性时,写出原命题:3x y +≠时,则1x ≠或2y ≠, 由于原命题不好判断,故转化为逆否命题进行判断,即原命题变为:若1x =且2y =,则有3x y +=,对于该命题,明显成立,所以,原命题也成立;即必要性成立;所以P 是Q 的必要而不充分条件, 故选:B 【点睛】关键点睛:判断一个命题是另一个命题的什么条件,一般先判断前者成立是否能推出后者成立,再判断后者成立能否推出前者成立;本题难点在于:利用逆否命题的真假性判断原命题的真假性,属于中档题.2.C解析:C 【分析】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题,分0x =和0x ≠两种情况讨论,结合参变量分离法可求得实数a 的取值范围. 【详解】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题. 当0x =时,则有10-≥,不合乎题意;当0x ≠时,由2410ax x +-≥,可得214ax x ≥-,则有221414x a x x x-≥=-, 22141244x x x ⎛⎫-=--≥- ⎪⎝⎭,当且仅当12x =时,等号成立, 所以,4a ≥-.综上所述,实数a 的取值范围是[)4,-+∞. 故选:C. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3.A解析:A 【分析】计算直线平行等价于1a =或2a =-,根据范围大小关系得到答案. 【详解】直线1:20l ax y +=与直线()2140+++=:l x a y 平行,则()12a a +=,1a =或2a =-,验证均不重合,满足.故“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的充分不必要条件. 故选:A. 【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.4.B解析:B 【分析】写出原命题的逆否命题,判断其逆否命题为真,从而得到原命题也为真. 【详解】原命题的逆否命题为:若,a b 中没有一个大于等于1,则2a b +<,等价于“若1,1a b <<,则2a b +<”,显然这个命题是对的,所以原命题正确; 原命题的逆命题为:“若,a b 中至少有一个不小于1,则2a b +≥”,取5,5a b ==-则,a b 中至少有一个不小于1,但0a b +=,所以原命题的逆命题不正确. 【点睛】至少有一个的否定为“0个”,“不小于”等价于“大于等于”,同时注意若原命题的真假性不好判断,而等价于判断其逆否命题.5.B解析:B 【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.6.B解析:B 【分析】先将//a b 等价化简为cos 0θ=或1tan 2θ=,再判断解题即可. 【详解】//a b ⇔(sin 2,cos )//(cos ,1)θθθ⇔2sin 2cos θθ=⇔cos 0θ=或1tan 2θ=,所以“//a b ”是“1tan 2θ=”成立的必要不充分条件. 故选:B. 【点睛】本题考查向量平行的坐标表示、判断p 是q 的什么条件、三角恒等变换化简,是中档题.7.A解析:A 【解析】试题分析:由,知1a =.因为二项式321()ax x +展开式的通项公式为31321()()r r rr T C ax x-+==3333r r r a C x --,令330r -=,得1r =,所以其常数项为212333a C a ==,解得1a =±,所以“”是“关于x 的二项式321()ax x +的展开式的常数项为3”的充分不必要条件,故选A .考点:1、正态分布;2、二项式定理;3、充分条件与必要条件.8.C解析:C【分析】求出p ,q 的等价条件,根据充分条件和必要条件的定义即可得到结论. 【详解】由112x ≥-,即302x x -≤-,解得23x <≤, 由||2x a -<得22a x a -<<+,若p 是q 的充分不必要条件,则2223a a -≤⎧⎨+>⎩,解得14a <≤,实数a 的取值范围为(]1,4, 故选:C. 【点睛】本题主要考查充分条件和必要条件的应用,属于中档题.9.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.10.C解析:C 【分析】根据存在性命题的判定方法,可判定A 正确;根据不等式的性质,可判定B 正确;根据对数的运算性,可判定C 不正确;根据含有一个量词的否定,可判定D 正确. 【详解】对于A 中,由2000131()024x x x -+=-+≥,所以A 为真命题; 对于B 中,由0a b <<,则110b aa b ab --=>,所以11a b>,所以B 是正确的; 对于C 中,设0a >,1a ≠,例如11,24a b ==,则121log log 24a b ==,所以充分性不成立,又如1,22a b ==,此时12log log 21a b ==-,所以必要性不成立,所以“log 1a b >”是“b a >”的既不充分也不必要条件,所以C 是错误的;对于D 中,根据全称命题和存在性命题的关系,可得命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”,所以是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到含有一个量词的真假判定及否定,对数的运算性质,不等式的性质等知识的综合应用,属于中档试题.11.B解析:B 【分析】判断命题P 为真命题,命题Q 为假命题,再依次判断每个选项得到答案. 【详解】取00x =,则200110x x -+=≥,故命题P 为真命题;取2a =-,1b =,满足a b <,但是11a b<,故命题Q 为假命题. 故P Q ∧为假命题,P Q ⌝∧为真命题,P Q ⌝∧为假命题,P Q ⌝⌝∧为假命题.故选:B. 【点睛】本题考查了命题的真假判断,命题的否定,且命题,意在考查学生的计算能力和推断能力.12.A解析:A 【分析】求出()f x ',由230a b -≤知()0f x '≥恒成立,即函数()f x 在R 上单调递增,只有一个零点,然后可举例说明在230a b ->,即()f x 有两个极值点时,()f x 也可能只有一个零点,由此可得结论. 【详解】因为32()f x x ax bx c =+++,2()32f x x ax b '=++,若230a b -≤, 则24120a b ∆=-≤,则()0f x '≥恒成立,所以()f x 在R 上单调递增. 当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞, 所以()f x 在R 上只有一个零点,即充分性成立.令32a =,0b =,1c =-,则323()12f x x x =+-,2()333(1)f x x x x x '=+=+, 则()f x 在(,1)-∞-,(0,)+∞上单调递增,在(1,0)-上单调递减,又1(1)02f -=-<,3(1)02f =>,则()f x 在R 上只有一个零点,但不满足“230a b -≤”,即必要性不成立,所以“230a b -≤”是“()f x 在R 上只有一个零点”的充分不必要条件, 故选:A . 【点睛】本题考查充分条件、必要条件的判断、函数的零点的概念.注意区别A 是B 的充分不必要条件(A B ⇒且B A ⇒/)与A 的充分不必要条件是B (B A ⇒且A B ⇒/)两者的不同.二、填空题13.【分析】是的充分不必要条件可转化为是的充分不必要条件再化简两命题对应的取值范围进一步判断即可【详解】是的充分不必要条件是的充分不必要条件命题中:命题中:由是的充分不必要条件可知应满足解得故答案为:【 解析:[1,6]-【分析】p ⌝是q ⌝的充分不必要条件可转化为q 是p 的充分不必要条件,再化简两命题对应x 的取值范围,进一步判断即可 【详解】“p ⌝是q ⌝的充分不必要条件”⇔q 是p 的充分不必要条件,命题p 中:44a x a -<<+,命题q 中:23x <<,由q 是p 的充分不必要条件可知,应满足4243a a -≤⎧⎨+≥⎩,解得[1,6]a ∈- 故答案为:[1,6]- 【点睛】本题考查由命题的充分不必要条件求解参数范围,属于中档题14.【分析】根据集合的交集补集运算即可求解【详解】因为所以因此故答案为【点睛】本题主要考查了集合的补集交集运算属于中档题 解析:[]2,3【分析】根据集合的交集补集运算即可求解. 【详解】因为{}2B x x =<, 所以RB ={}2x x ≥因此RAB ={}{}32=[2,3]x x x x ≤⋂≥.故答案为[]2,3 【点睛】本题主要考查了集合的补集,交集运算,属于中档题.15.0【解析】分析:根据集合的并集的含义有集合A 或B 必然含有元素0又由集合AB 可得从而求得结果详解:根据题意若则A 或B 必然含有元素0又由则有即故答案是0点睛:该题考查的是有关集合的运算问题利用两个集合的解析:0. 【解析】分析:根据集合的并集的含义,有集合A 或B 必然含有元素0,又由集合A,B 可得20a =,从而求得结果.详解:根据题意,若{}=0,1,2A B ⋃,则A 或B 必然含有元素0, 又由{}{}22,1,A B a==,则有20a=,即0a =,故答案是0.点睛:该题考查的是有关集合的运算问题,利用两个集合的并集中的元素来确定有关参数的取值问题,属于基础题目.16.【解析】分析:利用交集的运算直接求解即可详解:由题所以即答案为点睛:本题考查交集的运算属基础题 解析:{}0,1【解析】分析:利用交集的运算直接求解即可详解:由题{}12A x x =-<<,{}1,0,1,2B =-,所以{}0,1A B ⋂=. 即答案为{}0,1点睛:本题考查交集的运算,属基础题.17.【解析】由题设可得都为假命题因则恒成立是真命题即;又故是真命题即入故应填答案点睛:本题的解答过程体现了等价转化与化归的数学思想及命题真假判定与复合命题的真假的判定规律以此为依据建立不等式组使得问题获解解析:[)1,+∞【解析】由题设可得,p q 都为假命题,因:p x R ∃∈,10x me +≤,则:p ⌝x R ∀∈,10x me +>恒成立是真命题,即100xm m e >-<⇒≥;又:q x R ∀∈,2210x mx -+>是假命题,故:q ⌝x R ∃∈,2210x mx -+≤是真命题,即,2440m -≥入11m m ≥≤-或,故0111m m m m ≥⎧⇒≥⎨≥≤-⎩或,应填答案[1,)+∞。

(人教版)深圳市必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)

(人教版)深圳市必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)

一、选择题1.已知集合{}*N 2,0A x x y x y y =∈=+-≥∣,若B A ⊆且集合B 中恰有2个元素,则满足条件的集合B 的个数为( ). A .1B .3C .6D .102.“不等式20mx x m ++>在R 上恒成立”的一个必要不充分条件是( ) A .12m >B .01m <<C .14m >D .1m3.已知x 、y 都是实数,那么“x y >”的充分必要条件是( ). A .lg lg x y >B .22xy >C .11x y>D .22x y >4.设a R ∈,则“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.已知a ,b R ∈,则“0a b +<”是“0a a b b +<”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 6.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a b b a ->+-”的( )( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知全集U =R ,集合{|01},{1,0,1}A x R x B =∈<=-,则()UA B =( )A .{}1-B .{1}C .{1,0}-D .{0,1}8.已知定义在R 上的偶函数()y f x =在[)0,+∞上单调递减,则对于实数a ,b ,“a b >”是“()()f a f b <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.全集U =R ,集合04xA x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞10.定义:若平面点集A 中的任一个点00(,)x y ,总存在正实数r ,使得集合2200{(,)|()()}x y x x y y r A -+-<⊆,则称A 为一个开集.给出下列集合:①22{(,)|1}x y x y +=;②{(,)|20}x y x y ++≥;③{(,)|6}x y x y +<; ④22{(,)|0(3)1}x y x y <+-<. 其中是开集的是( ) A .①④B .②③C .②④D .③④11.“0a =”是“函数2()sin cos f x x a x =+为奇函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知函数32()(,,)f x x ax bx c a b c R =+++∈,则“230a b -≤”是“()f x 在R 上只有一个零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.设集合{}260,M xx mx x R =-+=∈∣,且{2,3}M M =,则实数m 的取值范围是____.14.已知命题:“∃x ∈{ x |1≤x ≤2},使x 2+2x +a ≥0”为真命题,则实数a 的取值范围是______.15.若“条件α:24x ≤≤”是“条件β:31m x m -≤≤-”的充分条件,则m 的取值范围是________.16.已知条件:21p x ⌝-<<,条件:q x a ⌝>,且q 是p 的充分不必要条件,则a 的取值范围是_________.17.已知{}210A x x =-=,{}20B x mx =-=,且A B A ⋃=,求实数m 组成的集合为______.18.定义全集U 的子集M 的特征函数()10M U x Mf x x C M∈⎧=⎨∈⎩,对于两个集合,M N ,定义集合()(){}*1M N M N x f x f x =+=,已知集合{}{}2,4,6,8,10,1,2,4,8,16A B ==,并用S 表示有限集S 的元素个数,则对于任意有限集,**M M A M B +的最小值为________.19.己知全集U =R ,集合,,则___________20.已知“x m ≥”是“121x +>”的充分不必要条件,且m Z ∈,则m 的最小值是________.三、解答题21.已知集合12{|(,,,),{,1},1,2,,}(2)n n i S X X x x x x k i n n ==∈=≥.对于1212(,,,),(,,,)n n n A a a a B b b b S ==∈,定义:A 与B 的差为1122(||,||,||)n n A B a b a b a b -=---;A 与B 之间的距离为1(,)||niii d A B a b ==-∑.(1)当2,5k n ==时,设(1,2,1,1,2),(2,1,1,2,1)A B ==,求,(,)A B d A B -; (2)若对于任意的,,n A B C S ∈,有n A B S -∈,求k 的值并证明:(,)(,)d A C B C d A B --=.22.已知集合{}2540P xx x =-+≤∣,{}11S x m x m =-≤≤+∣. (1)用区间表示集合P ;(2)是否存在实数m ,使得x P ∈是x S ∈的______条件.若存在实数m ,求出m 的取值范围:若不存在,请说明理由.请从如下三个条件选择一个条件补充到上面的横线上: ①充分不必要;②必要不充分;③充要.23.已知命题:p 存在实数x ∈R ,使210x ax -+≤成立. (1)若命题P 为真命题,求实数a 的取值范围;(2)命题:q 任意实数[]1,2x ∈,使2210x ax -+≤恒成立.如果p ,q 都是假命题,求实数a 的取值范围.24.设U =R ,{}11A x x =+>,(){}2130B x x m x m =+++<.(1)求集合A ;(2)若B φ=,求实数m 的取值范围: (3)若A B =R ,求实数m 的取值范围.25.已知命题p :∀x ∈R ,ax 2+ax +1>0及命题q :∃x 0∈R ,x 02﹣x 0+a =0,若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.26.设集合{|1}S x a x a =≤≤+,{|(1)(2)0}T x x x =+-<,且命题:p x S ∈,:q x T ∈,若命题q ⌝是p 的必要且不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将方程平方整理得()2224820y xy x x -+-=,再根据判别式得04x ≤≤,故1,2,3,4x =,再依次检验得{}2,3,4A =,最后根据集合关系即可得答案.【详解】解:根据题意将x 22x x =+继续平方整理得:()2224820y xy x x -+-=,故该方程有解. 所以()222641620x x x ∆=--≥,即240x x -+≥,解得04x ≤≤, 因为*N x ∈,故1,2,3,4x =,当1x =时,易得方程无解,当2x =时,240y y -=,有解,满足条件; 当3x =时,242490y y -+=,方程有解,满足条件; 当4x =时,28160y y -+=,方程有解,满足条件; 故{}2,3,4A =,因为B A ⊆且集合B 中恰有2个元素, 所以B 集合可以是{}2,3,{}2,4,{}3,4. 故选:B. 【点睛】本题考查集合的元素,集合关系,解题的关键在于将方程平方转化为()2224820y xy x x -+-=,再结合判别式得1,2,3,4x =,进而求出集合{}2,3,4A =.考查运算求解能力,化归转化能力,是中档题.2.C解析:C 【分析】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可. 【详解】因为“不等式2+0mx x m +>在R 上恒成立”,所以当0m =时,原不等式为0x>在R 上不是恒成立的,所以0m ≠,所以“不等式2+0mx x m +>在R 上恒成立”,等价于2>0140m m ⎧⎨∆=-<⎩,解得12m >. A 选项是充要条件,不成立; B 选项中,12m >不可推导出01m <<,B 不成立; C 选项中,12m >可推导14m >,且14m >不可推导12m >,故14m >是12m >的必要不充分条件,正确;D 选项中,1m 可推导1>2m ,且1>2m 不可推导1m ,故>1m 是12m >的充分不必要条件,D 不正确. 故选:C.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.3.B解析:B 【分析】根据不等式的性质,结合充分条件与必要条件的概念,逐项判断,即可得出结果. 【详解】 对于A ,lg lg 0x y x y >⇔>>,故“lg lg x y >”是“x y >”的充分不必要条件,不符合题意; 对于B ,22⇔>>x y x y ,即“22x y >”是“x y >”的充要条件,符合题意;对于C ,由11x y>得,0x y <<或0x y >>,0x y <<,不能推出x y >,由x y >也不能推出11x y >,所以“11x y>”是“x y >”的既不充分也不必要条件,不符合题意; 对于D ,由22x y x y >⇔>,不能推出x y >,由x y >也不能推出22x y >,故“22x y >”是“x y >”的既不充分也不必要条件,不符合题意; 故选:B. 【点睛】方法点睛:本题主要考查判定命题的充要条件,及不等式的性质,充分条件、必要条件的三种判定方法:(1)定义法:根据p q ⇒,q p ⇒进行判断,适用于定义、定理判断性问题. (2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.4.A解析:A 【分析】计算直线平行等价于1a =或2a =-,根据范围大小关系得到答案. 【详解】直线1:20l ax y +=与直线()2140+++=:l x a y 平行,则()12a a +=,1a =或2a =-,验证均不重合,满足.故“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的充分不必要条件. 故选:A. 【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.5.C解析:C 【分析】从充分性和必要性两个方面,分0,0a b <<和0,0a b <≥讨论,分别求解证明即可. 【详解】解:当 0,0a b <<,0a b +<时,此时220a a b b a b +=--<成立,当0,0a b <≥,0a b +<时,此时()()220a a b b a b a b b a +=-+=+-<成立,即0a b +<可以推出0a a b b +<,反之,若0a a b b +<,则,a b 中至少有一个负数, 若,a b 均为负数,必然有0a b +<,若0,0a b <≥,则()()220a a b b b a a b b a +=-=+-<,因为0b a ->,则必有0a b +<, 所以0a a b b +<可以推出0a b +<, 故“0a b +<”是“0a a b b +<”的充分必要条件. 故选:C. 【点睛】本题考查充分性和必要性的判断,考查学生分类讨论的思想,是中档题.6.C解析:C 【分析】构造函数()ln f x x x =+,据a ,b 的范围结合函数的单调性确定充分条件,还是必要条件即可. 【详解】设()ln f x x x =+,显然()f x 在(0,)+∞上单调递增,a b >,所以()()f a f b >ln ln a a b b ∴+>+,即ln ln a b b a ->+-,故充分性成立, 因为ln ln a b b a ->+-ln ln a a b b ∴+>+,所以()()f a f b >,故必要性成立,故“a b >”是“ln ln a b b a ->+-”的充要条件, 故选:C . 【点睛】本题考查了函数的单调性,必要条件、充分条件与充要条件的判断,考查了构造函数法的应用,是基础题.7.C解析:C 【分析】根据补集的运算,求得{|0Ux A x =≤或1}x >,再结合交集的运算,即可求解.【详解】由题意,全集U =R ,集合{|01}A x R x =∈<≤, 可得{|0Ux A x =≤或1}x >,又由集合{1,0,1}B =-,所以(){1,0}UA B ⋂=-.故选:C. 【点睛】本题考查集合的补集与交集概念及运算,其中解答中熟记集合的交集、补集的概念和运算方法是解答的关键,着重考查了运算与求解能力.8.B解析:B 【分析】根据充分条件与必要条件的判断,看条件与结论之间能否互推,条件能推结论,充分性成立,结论能推条件,必要性成立,由此即可求解. 【详解】解:∵定义在R 上的偶函数()y f x =在[)0,+∞上单调递减,∴()y f x =在(),0-∞上单调递增,∴当(),0a ∈-∞,(),0b ∈-∞时,如1,2a b =-=-,满足a b > ,但()()>f a f b ,所以由“a b >”推不出“()()f a f b <”,反之,当a R ∈,b R ∈时,“()()f a f b <”⇒“a b >”⇒“a b >”, 故对于实数a ,b ,“a b >”是“()()f a f b <”的必要不充分条件, 故选:B . 【点睛】本题以函数的奇偶性为背景,考查充分条件与必要条件的判断,考查理解辨析能力,属于中档题.9.C【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C . 【点睛】本题考查集合的运算,属于基础题.10.D解析:D 【分析】根据开集的定义逐个验证选项,即可得到答案. 【详解】①:22{(,)|1}x y x y +=表示以原点为圆心,1为半径的圆, 则在该圆上任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆故①不是开集;②{(,)|20}x y x y ++≥,在曲线20x y ++=任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆,故该集合不是开集; ③{(,)|6}x y x y +<平面点集A 中的任一点00(,)x y ,则该点到直线的距离为d ,取r d =,则满足{(,)|}x y r A ⊆,故该集合是开集;④22{(,)|0(1}x y x y <+<表示以点()0,3为圆心,1为半径除去圆心和圆周的圆面,在该平面点集A 中的任一点00(,)x y ,则该点到圆周上的点的最短距离为d ,取r d =,则满足{(,)}x y r A <⊆,故该集合是开集. 故答案选D 项. 【点睛】本题属于集合的新定义型问题,考查对新定义的理解并解决问题,属于中档题.11.C解析:C 【分析】先将根据函数2()sin cos f x x a x =+为奇函数求参数0a =,判断前后两个条件相互等价,【详解】解:∵函数2()sin cos f x x a x =+为奇函数, ∴(0)0f =即2sin0cos 00a +=,解得:0a =, ∴ 0a =⇔函数2()sin cos f x x a x =+为奇函数,∴“0a =”是“函数2()sin cos f x x a x =+为奇函数”的充要条件. 故选:C. 【点睛】本题考查根据函数的奇偶性求参数、判断p 是q 的什么条件,是中档题.12.A解析:A 【分析】求出()f x ',由230a b -≤知()0f x '≥恒成立,即函数()f x 在R 上单调递增,只有一个零点,然后可举例说明在230a b ->,即()f x 有两个极值点时,()f x 也可能只有一个零点,由此可得结论. 【详解】因为32()f x x ax bx c =+++,2()32f x x ax b '=++,若230a b -≤, 则24120a b ∆=-≤,则()0f x '≥恒成立,所以()f x 在R 上单调递增. 当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞, 所以()f x 在R 上只有一个零点,即充分性成立. 令32a =,0b =,1c =-,则323()12f x x x =+-,2()333(1)f x x x x x '=+=+, 则()f x 在(,1)-∞-,(0,)+∞上单调递增,在(1,0)-上单调递减,又1(1)02f -=-<, 3(1)02f =>,则()f x 在R 上只有一个零点,但不满足“230a b -≤”,即必要性不成立, 所以“230a b -≤”是“()f x 在R 上只有一个零点”的充分不必要条件, 故选:A . 【点睛】本题考查充分条件、必要条件的判断、函数的零点的概念.注意区别A 是B 的充分不必要条件(A B ⇒且B A ⇒/)与A 的充分不必要条件是B (B A ⇒且A B ⇒/)两者的不同.二、填空题13.【分析】由题意可得是集合的子集按集合中元素的个数结合根与系数之间的关系分类讨论即可求解【详解】由题意可得是集合的子集又当是空集时即方程无解则满足解得即此时显然符合题意;当中只有一个元素时即方程只有一解析:({}5m ∈-【分析】 由题意{}2,3MM =,可得M 是集合{}2,3的子集,按集合M 中元素的个数,结合根与系数之间的关系,分类讨论即可求解. 【详解】 由题意{}2,3MM =,可得M 是集合{}2,3的子集,又{}260,M x x mx x R =-+=∈,当M 是空集时,即方程260x mx -+=无解,则满足()2460m ∆=--⨯<,解得m -<<(m ∈-,此时显然符合题意;当M 中只有一个元素时,即方程260x mx -+=只有一个实数根,此时()2460m ∆=--⨯=,解得m =±x =x ={}2,3的子集中的元素,不符合题意,舍去;当M 中有两个元素时,则2,3M,此时方程260x mx -+=的解为12x =,23x =,由根与系数之间的关系,可得两根之和为5,故235m =+=;当5m =时,可解得2,3M ,符合题意.综上m 的取值范围为({}5m ∈-.故答案为:({}5m ∈-【点睛】方法点睛:根据集合的运算求参数问题的方法:要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;若集合表示的不等式的解集,常依据数轴转化为不等式(组)求解,此时需要注意端点值是否取到.14.a≥-8【分析】等价于∃x ∈{x|1≤x≤2}求出函数在的最小值即得解【详解】由题得∃x ∈{x|1≤x≤2}x2+2x +a≥0所以∃x ∈{x|1≤x≤2}因为函数在的最小值为此时所以故答案为:【点睛解析:a ≥-8【分析】等价于∃x ∈{ x |1≤x ≤2},2(1)1a x ≥-++,求出函数2(1)1y x =-++在[1,2]的最小值即得解. 【详解】由题得∃x ∈{ x |1≤x ≤2},x 2+2x +a ≥0,所以∃x ∈{ x |1≤x ≤2},222(1)1a x x x ≥--=-++,因为函数2(1)1y x =-++在[1,2]的最小值为8-,此时2x =. 所以8a ≥-. 故答案为:8a ≥- 【点睛】本题主要考查特称命题,考查一元二次不等式的能成立问题的求解,意在考查学生对这些知识的理解掌握水平.15.【分析】利用充分必要条件的定义问题转化为集合的包含关系根据不等式之间的关系即可得到结论【详解】设p 对应的集合为q 对应的集合为若p 是q 的充分条件则解得:实数m 的取值范围为故答案为【点睛】本题主要考查充 解析:(],4-∞-【分析】利用充分、必要条件的定义,问题转化为集合的包含关系,根据不等式之间的关系即可得到结论. 【详解】设p 对应的集合为A=[2,4),q 对应的集合为B=[3m-1,-m], 若p 是q 的充分条件, 则A B ⊆,313124m m m m -≥-⎧⎪∴-≤⎨⎪-≥⎩, 1414m m m ⎧≤⎪⎪≤⎨⎪≤-⎪⎩, 解得:4m ≤-.实数m 的取值范围为(,4]-∞-,故答案为(,4]-∞-. 【点睛】本题主要考查充分条件和必要条件的应用,以及转化思想的应用,属于中档题.16.【分析】根据得出由是的充分不必要条件得出根据包含关系得出的范围【详解】由题设得或设或由得设因为是的充分不必要条件所以因此故答案为:【点睛】本题主要考查了由充分不必要条件求参数范围属于中档题解析:(],2-∞-【分析】根据p ⌝,q ⌝得出,p q ,由q 是p 的充分不必要条件,得出Q P ,根据包含关系得出a 的范围.【详解】由题设:21p x ⌝-<<,得:1p x ≥或2x -≤,设{|1P x x =≥或}2x ≤- 由:q x a ⌝>,得:q xa ,设{}|Q x x a =≤因为q 是p 的充分不必要条件,所以Q P ,因此2a ≤-. 故答案为:(],2-∞- 【点睛】本题主要考查了由充分不必要条件求参数范围,属于中档题.17.0【分析】根据题意解方程可得结合分析可得进而对分3种情况讨论::①②③分别求出的值综合可得答案【详解】根据题意若则有对分3种情况讨论:①即方程无解分析可得②即方程的解为即解可得③即方程的解为即解可得解析:{2-,0,2} 【分析】根据题意,解方程21x =可得结合A ,分析AB A =,可得B A ⊆,进而对B 分3种情况讨论::①、B =∅,②、{1}B =,③、{1}B =-,分别求出m 的值,综合可得答案. 【详解】根据题意,2{|1}{1A x x ===-,1},若AB A =,则有B A ⊆,对B 分3种情况讨论:①、B =∅,即方程2mx =无解,分析可得0m =, ②、{1}B =,即方程2mx =的解为1x =,即12m ⨯=,解可得2m =, ③、{1}B =-,即方程2mx =的解为1x =-,即(1)2m ⨯-=,解可得2m =-, 综合可得:实数m 的值组成的集合为{2-,0,2}; 故答案为:{2-,0,2}. 【点睛】本题考查集合间的包含关系的运用,注意集合B 可能为空集.18.4【分析】通过新定义及集合的并集与补集的运算求解计算即得结论【详解】由M*N 的定义可知fM (x )+fN (x )=1则M*N ∈{x|x ∈M ∪N 且x ∉M∩N}即M*A ={x|x ∈M ∪A 且x ∉M∩A}M*B解析:4 【分析】通过新定义及集合的并集与补集的运算求解计算即得结论. 【详解】由M *N 的定义可知,f M (x )+f N (x )=1 ,则M *N ∈{x |x ∈M ∪N ,且x ∉ M ∩N } 即M *A ={x |x ∈M ∪A ,且x ∉M ∩A },M *B ={x |x ∈M ∪B ,且x ∉M ∩B } 要使Card (M *A )+Card (M *B )的值最小,则2,4,8一定属于集合M ,且M 不能含有A ∪B 以外的元素, 所以集合M 为{6,10,1,16}的子集与集合{2,4,8}的并集, 要使**M A M B +的值最小,M ={2,4,8}, 此时,**M A M B +的最小值为4, 故答案为:4 【点睛】本题考查对集合运算的理解以及新定义的应用,考查计算能力.注意解题方法的积累,属于中档题.19.【解析】试题分析:本题首先求出集合AB 再求它们的运算这两个集合都是不等式的解集故解得因此考点:集合的运算 解析:【解析】试题分析:本题首先求出集合A ,B ,再求它们的运算,这两个集合都是不等式的解集,故解得{|31}A x x x =-或,{|02}B x x =<≤,因此()(0,1]UA B ⋂=.考点:集合的运算.20.0【分析】根据是的充分不必要条件且即可得出【详解】由是的充分不必要条件且则的最小值是故答案为:【点睛】本题考查了充分不必要条件的判定方法考查了推理能力与计算能力属于基础题解析:0. 【分析】1121221x x x +->⇔>⇔>-.根据x m ”是“+121x >”的充分不必要条件,且m Z ∈,即可得出. 【详解】由1211x x +>⇒>-,“x m ”是“+121x >”的充分不必要条件,且m Z ∈,0m ∴,则m 的最小值是0. 故答案为:0. 【点睛】本题考查了充分不必要条件的判定方法,考查了推理能力与计算能力,属于基础题.三、解答题21.(1)()1,1,0,1,1;4;(2)0k =;证明见解析. 【分析】(1)直接代入计算A B -和(,)d A B ;(2)根据{},,1(1,2,,)i i a b k i n ∈=,都有n n a b k -=或1,可计算得0k =;然后表示出()()1|()|,ni i i i i a d A C B C c b c =-----=∑,分别讨论0i c =与1i c =两种情况.【详解】(1)()()12,21,11,12,211,1,0,1,1A B -=-----=;1(,)||1+1+0+1+1=4ni i i d A B a b ==-=∑;(2)证明:因为12{|(,,,),{,1},1,2,,}(2)n n i S X X x x x x k i n n ==∈=≥, 1122(||,||,||)n n n A B a b a b a b S -=---∈,所以对于任意的,n A B S ∈,即对{},,1(1,2,,)i i a b k i n ∈=,都有n n a b k -=或1,所以得0k =.设12(,,,)n n C c c c S =∈则()()1|()|,niiiii a d A C B C c b c =-----=∑,当0ic=时,()()=i i i i i ia cbc a b ----;当1i c =时,()()()()=11i i i i i i i i a c b c a b a b ------=-. 所以()()()11||(,)||,nniiiiiii i d A a c b c a b d A B B C C ==--=--=-=-∑∑【点睛】解答该题的关键是需要注意理解并表示出()()1|()|,niiiii a d A C B C c b c =-----=∑,然后代入化简判断0i c =与1i c =两种情况. 22.(1)[]1,4;(2)答案见解析. 【分析】(1)解不等式后可得集合P .(2)根据条件关系可得对应集合的包含关系,从而可得参数的取值范围. 【详解】(1)因为254x x -+即()()140x x --≤,所以14x ≤≤,{}[]2|1,4045P x x x ≤==-+.(2)若选择①,即x P ∈是x S ∈的充分不必要条件, 则11m m -≤+且11,14m m -≤⎧⎨+≥⎩(两个等号不同时成立),解得3m ≥,故实数m 的取值范围是[3,)+∞. 若选择②,即x P ∈是x S ∈的必要不充分条件. 当S =∅时,11m m ->+,解得0m <.当S ≠∅时,11m m -≤+且11,14,m m -≥⎧⎨+≤⎩(两个等号不同时成立),解得0m =.综上,实数m 的取值范围是(],0-∞. 若选择③,即x P ∈是x S ∈的充要条件, 则P S =,即11,14,m m -=⎧⎨+=⎩此方程组无解,则不存在实数m ,使x P ∈是x S ∈的充要条件. 【点睛】方法点睛:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 23.(1)(][),22,-∞-+∞;(2)52,4⎛⎫- ⎪⎝⎭.【分析】(1)由存在实数x ∈R ,使210x ax -+成立得0∆,得实数a 的取值范围; (2)由对勾函数单调性得1522x x+,得54a ,由已知得p 假q 假,两范围的补集取交集即可. 【详解】解:(1):p 存在实数x ∈R ,使210x ax -+≤成立2402a a ≥⇔=-⇔≤∆-或2a ≥,∴实数a 的取值范围为(][),22,-∞-+∞;(2):q 任意实数[]1,2x ∈,使12a x x≥+恒成立,[]1,2x ∈,1522x x ∴≤+≤,55224a a ≥∴⇒≥, 由题p ,q 都是假命题,那它们的补集取交集()552,2,2,44⎛⎫⎛⎫--∞=- ⎪ ⎪⎝⎭⎝⎭,∴实数a 的取值范围52,4⎛⎫- ⎪⎝⎭. 【点睛】本题考查了简易逻辑的判定、对勾函数的单调性,以及二次函数的取值和判别式△的关系,考查了推理能力,属于基础题.24.(1){0A x x =>或}2x <-;(2)55m -≤≤+3)2m <-. 【分析】(1)解绝对值不等式,即可求得集合A ;(2)根据题意及二次函数的性质,可得0∆≤,计算整理,即可得结果;(3)设1x ,2x 为()2130x m x m +++=的两个根,且12x x <,根据题意可得12x <-,20x >,结合二次函数的图像与性质,即可得答案.【详解】(1)因为11x +>,得11x +>或11x +<-, 解得0x >或2x <-,所以{0A x x =>或}2x <-; (2)由题意得:()221121010m m m m ∆=+-=-+≤,解得55m -≤≤+(3)由题意得:()221121010m m m m ∆=+-=-+>,解得5m <-5m >+设1x ,2x 为()2130x m x m +++=的两个根,且12x x <,由题意得12x <-,20x >. 所以()4213030m m m ⎧-++<⎨<⎩,解得2m <-.【点睛】本题考查绝对值不等式的解法、二次函数图像与性质、集合的运算,考查学生对基础知识的掌握程度,属中档题. 25.0a <或144a << 【分析】题:p x R ∀∈,210ax ax ++>,对a 分类讨论:当0a =时,直接验证;当0a ≠时,可得2040a a a >⎧⎨∆=-<⎩.命题0:q x R ∃∈,200x x a -+=,可得10∆.由p q ∨为真命题,p q ∧为假命题,可得命题p 与q 必然一真一假.解出即可. 【详解】解:命题:p x R ∀∈,210ax ax ++>,当0a =时,10>成立,因此0a =满足题意;当0a ≠时,可得240a a a >⎧⎨∆=-<⎩,解得04a <<. 综上可得:04a <.命题0:q x R ∃∈,200x x a -+=,∴1140a =-∆,解得14a . p q ∨为真命题,p q ∧为假命题,∴命题p 与q 必然一真一假.∴0414a a <⎧⎪⎨>⎪⎩或0414a a a <⎧⎪⎨⎪⎩或, 解得0a <或144a <<. ∴实数a 的取值范围是0a <或144a <<. 【点睛】本题考查了一元二次不等式与一元二次方程的解集与判别式的关系、简易逻辑的判定,考查了推理能力与计算能力,属于基础题.26.[1,1]-【分析】 因为:{|(1)(2)0}{|1,2}q x T x x x x x x ∈=+->=<->或,:{|12}R q x T x x ⌝∈=-≤≤,命题q ⌝是p 的必要且不充分条件,即可求得答案. 【详解】:{|(1)(2)0}{|1,2}q x T x x x x x x ∈=+->=<->或, ∴:{|12}R q x T x x ⌝∈=-≤≤,命题q ⌝是p 的必要且不充分条件,∴S 是R T 的真子集,{|1}S x a x a =≤≤+∴112a a ≥-⎧⎨+≤⎩∴11a -≤≤,检验知1a =-和1时满足题意,∴实数a 的取值范围是[1,1]-.【点睛】本题主要考查了根据必要且不充分条件求参数范围,解题关键是掌握必要且不充分条件定义,考查了分析能力和计算能力,属于中档题.。

新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试卷(含答案解析)(1)

新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试卷(含答案解析)(1)

一、选择题1.已知命题2:11xp x <-,命题:()(3)0q x a x -->,若p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .(,1]-∞B .[1,3]C .[1,)+∞D .[3,)+∞2.已知{}n a 是等比数列,n S 为其前n 项和,那么“10a >”是“数列{}n S 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.已知集合{}1A x x =>-,{}2B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .1,2D .R4.“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”是“4a ≤-”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.以下有关命题的说法错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B .“1x =”是“2320x x -+=”的充分不必要条件C .命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为假命题D .对于命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥6.“3,a =b =”是双曲线22221(0,0)x y a b a b -=->>的离心率为2( )A .充要条件B .必要不充分条件C .即不充分也不必要条件D .充分不必要条件7.设点A ,B ,C 不共线,则“()AB AC BC +⊥”是“AB AC =”( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件8.下列命题错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠ ,则2320x x -+≠”B .若p q ∧为假命题,则,p q 均为假命题C .对于命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥D .“2x >”是“2320x x -+>”的充分不必要条件 9.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R AC B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}10.已知条件:3p k =;条件q :直线2y kx =+与圆221x y +=相切,则q 是p 的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件11.下列命题中,不正确的是( )A .0x R ∃∈,20010x x -+≥B .若0a b <<则11a b> C .设0a >,1a ≠,则“log 1a b >”是“b a >”的必要不充分条件D .命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”12.设,(0,1)a b ∈,:P “a b <”,:q “log log a b a b b a <”,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.若“存在x ∈[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___. 14.①一个命题的逆命题为真,它的否命题一定也为真:②在ABC 中,“60B ∠=︒”是“,,A B C ∠∠∠三个角成等差数列”的充要条件; ③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <”是“a b <”的充分必要条件; 以上说法中,判断错误的有_______________. 15.给出下列三种说法:①命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(q ⌝)”是假命题.②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3. ③命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x≠1,则x 2-3x +2≠0”. 其中所有正确说法的序号为________________.16.在正项等比数列{}n a 中,已知120151a a <=,若集合1212111|0,t t A t a a a t N a a a *⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-++-≤∈⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎩⎭,则A 中元素个数为______.17.已知{|12},[0,4]M x m x m N =-≤≤=,且M N M ⋂=,则实数m 的取值范围_____________; 18.函数,若恒成立的充分条件是,则实数的取值范围是 .19.非空集合*S N ⊆,且满足条件“x S ∈,则()10x S -∈”,则集合S 的所有元素之和的总和为______.20.对任意的x ∈R ,函数()327f x x ax ax =++不存在极值点的充要条件是__________.三、解答题21.已知集合{}2540P xx x =-+≤∣,{}11S x m x m =-≤≤+∣. (1)用区间表示集合P ;(2)是否存在实数m ,使得x P ∈是x S ∈的______条件.若存在实数m ,求出m 的取值范围:若不存在,请说明理由.请从如下三个条件选择一个条件补充到上面的横线上: ①充分不必要;②必要不充分;③充要.22.已知命题:[5,3]p x ∀∈--,22230x x k +-+<,:(0,)q x ∃∈+∞,242x x k x-+->.试判断“p 为真命题”与“q ⌝为真命题”的充分必要关系.23.已知全集U={x ∈N|1≤x≤6},集合A={x |x 2-6x +8=0},集合B={3,4,5,6}. (1)求A∩B ,A ∪B ;(2)写出集合(∁U A )∩B 的所有子集.24.已知函数()f x =A ,()()()lg 12(1)g x x a a x a ⎡⎤=---<⎣⎦的定义域为B .(1)求A .(2)记2222222040/2/22300B A AB v v a m s m s S --===-⨯ :q x B ∈,若p 是q 的必要不充分条件,求实数a 的取值范围. 25.已知集合121284x A x⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭.(1)若{}|121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围; (2)若{}|61D x x m =>+,且()A B D =∅,求实数m 的取值范围.26.已知全集U =R ,集合{}{}2|2150,|51A x x x B x x =-++≤=-<,求A B ,()U A B ⋂.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】化简命题q ,分类讨论a 解不等式()(3)0x a x -->,根据p 是q 的充分不必要条件列式可解得结果. 【详解】因为211xx <-,所以2101x x x -+<-,所以(1)(1)0x x -+<,所以11x -<<, 当3a <时,由()(3)0x a x -->得x a <或3x >,因为p 是q 的充分不必要条件,所以1a ≥,所以13a ≤<, 当3a =时,由()(3)0x a x -->得3x ≠,满足题意, 当3a >时,由()(3)0x a x -->得3x <或x a >,满足题意, 综上所述:1a ≥. 故选:C 【点睛】关键点点睛:本题考查由充分不必要条件求参数的取值范围,一般可根据如下规则求解: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.2.B解析:B 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】设等比数列{}n a 的公比为q ,充分性:当10a >,0q <时,111n n nn S a S a q ++-==,无法判断其正负,显然数列{}n S 为不一定是递增数列,充分性不成立;必要性:当数列{}n S 为递增数列时,10n n n S S a --=>,可得10a >,必要性成立. 故“10a >”是“数列{}n S 为递增数列”的必要而不充分条件. 故选:B . 【点睛】方法点睛:证明或判断充分性和必要性的常用方法:①定义法,②等价法,③集合包含关系法.3.C解析:C 【分析】由集合的交集运算即可得出结果. 【详解】{|12}=(1,2)=-<<-A B x x故选:C 【点睛】本题考查了集合的交集运算,考查了计算能力,属于一般题目.4.B解析:B 【分析】先分析“4a ≤-”能否推出“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”,这是必要性分析;然后分析“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”能否推出“4a ≤-”,这是充分性分析,然后得出结果. 【详解】若4a ≤-,则对称轴(1)32x a =-+≥>,所以()f x 在(,2]-∞上为单调递增, 取3a =-,则对称轴(1)2x a =-+=,()f x 在(,2]-∞上为单调递增,但4a >-,所以“()f x 在(,2]-∞上为单调递增”是“4a ≤- ”的必要不充分条件. 【点睛】充分、必要条件的判断,需要分两步:一方面要说明充分性是否满足,另一方面也要说明必要性是否满足.5.C解析:C 【分析】根据逆否命题的概念,可判定A 是正确的;由方程2320x x -+=,解得1x =或2x =,可判定B 是正确的;根据正弦定理,可判定C 不正确;根据存在性命题与全称命题的关系,可判定D 是正确的. 【详解】A 中,根据逆否命题的概念,可得命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”,所以A 是正确的;B 中,由方程2320x x -+=,解得1x =或2x =,所以“1x =”是“2320x x -+=”的充分不必要条件,所以B 是正确的;C 中,在ABC 中,由sin sin A B >,根据正弦定理可得a b >,所以A B >,所以命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为真命题,所以C 不正确;D 中,根据存在性命题与全称命题的关系,可得命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥,所以D 是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定,四种命题的关系,充分条件与必要条件的判定,以及全称命题与存在性命题的关系等知识点的应用,属于基础题.6.D解析:D 【分析】将双曲线22221(0,0)x y a b a b -=->>标准化为22221(0,0)y x a b b a -=>>,由于离心率为2可得2234a b =,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线22221(0,0)x y a b a b -=->>标准化22221(0,0)y x a b b a -=>>则根据离心率的定义可知本题中应有222a b c e b c +===,则可解得2234a b =,因为3,a =b =可以推出2234a b =;反之2234a b =成立不能得出3,a =b =. 故选:D . 【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.7.C解析:C 【分析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可. 【详解】由于点A ,B ,C 不共线,则()()0AB AC BC AB AC BC +⊥⇔+⋅=()()22AB AC AC AB AC AB ⇔+⋅-=-=22AC AB ⇔=⇔“AB AC =”;故“()AB AC BC +⊥”是“AB AC =”的充分必要条件. 故选:C . 【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.8.B解析:B 【分析】由原命题与逆否命题的关系即可判断A ;由复合命题的真值表即可判断B ; 由特称命题的否定是全称命题即可判断C ;根据充分必要条件的定义即可判断D ;.A .命题:“若p 则q ”的逆否命题为:“若¬q 则¬p ”,故A 正确;B .若p ∧q 为假命题,则p ,q 中至少有一个为假命题,故B 错.C .由含有一个量词的命题的否定形式得,命题p :∃x ∈R ,使得x 2+x +1<0,则¬p 为:∀x ∈R ,均有x 2+x +1≥0,故C 正确;D .由x 2﹣3x +2>0解得,x >2或x <1,故x >2可推出x 2﹣3x +2>0,但x 2﹣3x +2>0推不出x >2,故“x >2”是“x 2﹣3x +2>0”的充分不必要条件,即D 正确 故选B . 【点睛】本题考查简易逻辑的基础知识:四种命题及关系,充分必要条件的定义,复合命题的真假和含有一个量词的命题的否定,这里要区别否命题的形式,本题是一道基础题.9.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.10.B解析:B 【分析】结合直线和圆相切的等价条件,利用充分条件和必要条件的定义进行判断即可. 【详解】若直线2y kx =+与圆221x y +=相切,则圆心(0,0)到直线20kx y -+=的距离1d ==,即214k +=,23k ∴=,即k =∴q 推不出p ,而p 而以推出q ,q ∴是p 的必要不充分条件.故选:B . 【点睛】本题主要考查充分条件和必要条件的判断,利用直线与圆相切的等价条件是解决本题的关键,属于基础题.11.C【分析】根据存在性命题的判定方法,可判定A 正确;根据不等式的性质,可判定B 正确;根据对数的运算性,可判定C 不正确;根据含有一个量词的否定,可判定D 正确. 【详解】对于A 中,由2000131()024x x x -+=-+≥,所以A 为真命题; 对于B 中,由0a b <<,则110b aa b ab --=>,所以11a b>,所以B 是正确的; 对于C 中,设0a >,1a ≠,例如11,24a b ==,则121log log 24a b ==,所以充分性不成立,又如1,22a b ==,此时12log log 21a b ==-,所以必要性不成立,所以“log 1a b >”是“b a >”的既不充分也不必要条件,所以C 是错误的;对于D 中,根据全称命题和存在性命题的关系,可得命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”,所以是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到含有一个量词的真假判定及否定,对数的运算性质,不等式的性质等知识的综合应用,属于中档试题.12.C解析:C 【分析】利用不等式的性质和充分必要条件的定义进行判断即可得到答案. 【详解】充分性:01a b <<<⇒22lg lg 0(lg )(lg )a b a b <<⇒>. 所以22lg lg (lg )(lg )lg lg b aa b b a ab a b<⇒< 即:log log a b a b b a <,充分性满足.必要性:因为,(0,1)a b ∈,所以log 0a b >,log 0b a >. 又因为log log a b a b b a <,所以log log a b b ba a <,即2(log )ab b a<. 当a b =时,11<,不等式不成立. 当a b >时,01b a<<,log 1a b >,不等式2(log )a bb a <不成立当a b <时,1b a >,0log 1a b <<,不等式2(log )a bb a<成立.必要性满足.综上:p 是q 的充要条件. 故选:C 【点睛】本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.二、填空题13.【分析】转化为在上有解不等式右边构造函数利用单调性求出最大值即可得解【详解】存在x ∈﹣11成立即在上有解设易得y =f(x)在﹣11为减函数所以即即即所以故答案为:【点睛】关键点点睛:将问题转化为在上解析:9(,)2-+∞【分析】转化为213x xa +-<在[1,1]x ∈-上有解,不等式右边构造函数,利用单调性求出最大值即可得解. 【详解】存在x ∈[﹣1,1],3210xxa ⋅++>成立,即213x xa +-<在[1,1]x ∈-上有解, 设2121()333x xx xf x +⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,[1,1]x ∈-, 易得y =f (x )在[﹣1,1]为减函数,所以()[(1),(1)]f x f f ∈-,即213()3332f x +≤≤+,即91()2f x ≤≤, 即92a -<,所以92a >-, 故答案为:9(,)2-+∞. 【点睛】关键点点睛:将问题转化为213x xa +-<在[1,1]x ∈-上有解进行求解是解题关键. 14.③④【解析】对于①一个命题的逆命题与其否命题互为逆否命题则若其逆命题为真其否命题也一定为真①正确;对于②若则有则三个角成等差数列反之若三个角成等差数列有又由则故在中是三个角成等差数列的充要条件②正确解析:③④ 【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若60B ∠=,则120A C ∠+∠=,有2A C B ∠+∠=∠,则,,A B C ∠∠∠三个角成等差数列,反之若,,A B C ∠∠∠三个角成等差数列, 有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,则60B ∠=,故在ABC ∆中,“60B ∠=”是“,,A B C ∠∠∠三个角成等差数列”的充要条件,②正确;对于③, 当19,22x y ==,则满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,则12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,若a b <,当0m =时,有22am bm =,则“22am bm <”是“a b <”的不必要条件,④错误,故答案为③④.15.①③【解析】试题分析:①若命题p :存在x ∈R 使得tanx=1;命题q :对任意x ∈Rx2-x+1>0则命题p 且¬q 为假命题此结论正确对两个命题进行研究发现两个命题都是真命题故可得p 且¬q 为假命题②已知解析:①③ 【解析】试题分析:①若命题p :存在x ∈R ,使得tanx=1;命题q :对任意x ∈R ,x 2-x+1>0,则命题“p 且¬q”为假命题,此结论正确,对两个命题进行研究发现两个命题都是真命题,故可得“p 且¬q”为假命题.②已知直线l 1:ax+3y-1=0,l 2:x+by+1=0.则l 1⊥l 2的充要条件为ab =−3,若两直线垂直时,两直线斜率存在时,斜率乘积为ab=−3,当a=0,b=0时,此时两直线垂直,但不满足a b =−3,故本命题不对.③命题“若x 2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x 2-3x+2≠0”,由四种命题的书写规则知,此命题正确;考点:复合命题的真假;四种命题16.4029【解析】试题分析:设等比数列公比为的公比为因为所以即所以解得考点:等比数列求和公式解析:4029 【解析】试题分析:设等比数列公比为{}n a 的公比为,因为,所以,,即,所以,解得.考点:等比数列求和公式.17.【分析】先根据条件确定集合包含关系再分类讨论得结果【详解】当时满足条件此时当时综上实数m 的取值范围为【点睛】本题考查集合包含关系考查基本分析求解能力属基础题解析:()[],11,2-∞-⋃【分析】先根据条件确定集合包含关系,再分类讨论得结果.【详解】M N M M N ⋂=∴⊂当M φ=时,满足条件,此时12,1m m m -><-当M φ≠时, 10,2412m m m -≥≤∴≤≤综上,实数m 的取值范围为(,1)[1,2]-∞-⋃【点睛】本题考查集合包含关系,考查基本分析求解能力,属基础题.18.1<<4【详解】试题分析:根据充分条件的定义将条件转化为不等式恒成立即当时恒成立即恒成立;然后利用二次函数的性质易求其最值为要使得需要满足化简求解得1<<4考点:必要条件充分条件与充要条件的判断 解析:1<a <4【详解】 试题分析:根据充分条件的定义将条件转化为不等式恒成立,即当时,恒成立,即恒成立;然后利用二次函数的性质易求其最值为,要使得,需要满足,化简求解得1<a <4.考点:必要条件、充分条件与充要条件的判断. 19.720【分析】欲求中所有元素和的总和需要知道中的元素和分别是多少;中的元素都可以通过题中已知条件:则求出【详解】解:依题意得为正整数集且及均为正整数即可可取的任意正整数1和9要么必须同时出现要么都不 解析:720.【分析】欲求S 中所有元素和的总和,需要知道S 中的元素和分别是多少;S 中的元素都可以通过题中已知条件:x S ∈,则(10)x S -∈求出.【详解】解:依题意得S 为正整数集,x S ∈,且10x S -∈ x 及10x -均为正整数即可 x 可取19→的任意正整数,1和9要么必须同时出现,要么都不出现;同理:2和8、3和7、4和6依此类推5……单独考虑,共5组.那么:只选1组是45,即(19)(28)545++++⋯⋯+=依此类推:选2组是180,选3组是270,选4组是180,选5组是45,共计4518027018045720++++=.故答案为:720.【点睛】首先要明确*N 所代表的数集,然后根据已知条件将所有的可能考虑全面即可,属于中档题.20.【分析】求出导数可得出从而可求解出实数的取值范围【详解】由于函数在上不存在极值点则即解得因此函数不存在极值点的充要条件是故答案为:【点睛】本题考查利用函数极值点求参数解题时理解函数的极值点与导数零点 解析:021a ≤≤【分析】求出导数()2327f x x ax a '=++,可得出0∆≤,从而可求解出实数a 的取值范围. 【详解】()327f x x ax ax =++,()2327f x x ax a '∴=++,由于函数()y f x =在R 上不存在极值点,则24840a a ∆=-≤,即2210a a -≤, 解得021a ≤≤.因此,函数()327f x x ax ax =++不存在极值点的充要条件是021a ≤≤. 故答案为:021a ≤≤.【点睛】本题考查利用函数极值点求参数,解题时理解函数的极值点与导数零点之间的关系,考查运算求解能力,属于中等题.三、解答题21.(1)[]1,4;(2)答案见解析.【分析】(1)解不等式后可得集合P .(2)根据条件关系可得对应集合的包含关系,从而可得参数的取值范围.【详解】(1)因为254x x -+即()()140x x --≤,所以14x ≤≤,{}[]2|1,4045P x x x ≤==-+.(2)若选择①,即x P ∈是x S ∈的充分不必要条件,则11m m -≤+且11,14m m -≤⎧⎨+≥⎩(两个等号不同时成立), 解得3m ≥,故实数m 的取值范围是[3,)+∞.若选择②,即x P ∈是x S ∈的必要不充分条件.当S =∅时,11m m ->+,解得0m <.当S ≠∅时,11m m -≤+且11,14,m m -≥⎧⎨+≤⎩(两个等号不同时成立), 解得0m =.综上,实数m 的取值范围是(],0-∞.若选择③,即x P ∈是x S ∈的充要条件,则P S =,即11,14,m m -=⎧⎨+=⎩此方程组无解, 则不存在实数m ,使x P ∈是x S ∈的充要条件.【点睛】方法点睛:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.“p 为真命题”是“q ⌝为真命题”的充分不必要条件.【分析】由恒成立问题求得“p 为真命题”与“q ⌝为真命题”对应的参数范围,结合集合之间的关系,判断充分性和必要性.【详解】若p 为真命题,则()2max 232x x k ++<,[5,3]x ∈--令22()23(1)2f x x x x =++=++,()f x 在[5,3]x ∈--单调递减,所以max ()(5)18f x f =-=,∴218k >,9k >.:(0,)q x ⌝∀∈+∞,242x x k x-+-≤, 若q ⌝为真命题,则max 24m x x⎡⎤⎛⎫≥-++ ⎪⎢⎥⎝⎭⎣⎦由2x x +≥.x =max 244x x ⎡⎤⎛⎫-++=- ⎪⎢⎥⎝⎭⎣⎦,所以4k ≥-因为{|9}{|4k k k k ≠>⊂≥-, 所以“p 为真命题”是“q ⌝为真命题”的充分不必要条件.【点睛】本题考查命题充分性和必要性的判断,涉及由恒成立问题求参数的范围,属综合中档题. 23.(1){}2,3,4,5,6;(2)见解析.【分析】化简集合U 和A ,(1)根据交集和并集的概念得到A∩B 与A ∪B ;(2)根据集合的交集补集的概念求出(∁U A )∩B ,再写出它的所有子集.【详解】全集U={x ∈N|1≤x≤6}={1,2,3,4,5,6},集合A={x|x 2-6x+8=0}={x|x=2或x=4}={2,4},集合B={3,4,5,6};(1)A∩B={4},A ∪B={2,3,4,5,6};(2)∁U A={1,3,5,6},∴(∁U A )∩B={3,5,6},它的所有子集是∅,{3},{5},{6},{3,5},{3,6},{5,6},{3,5,6}共8个.【点睛】本题考查了集合的化简与运算问题,是基础题目.24.(1) {|11}A x x x =≥≤-或 (2)][1,2,12⎛⎫-∞-⋃ ⎪⎝⎭【分析】(1)根据二次根式有意义条件,可解不等式得定义域A.(2)根据对数函数真数大于0,解不等式得集合B.根据p 是q 的的必要不充分条件,即可得关于a 的不等式,进而求得a 的取值范围.【详解】(1)要使()f x 有意义,则()()3x 22x 0-+-≥化简整理得()()x 1x 10+-≥解得x 1x 1≥≤-或 ∴ A {x |x 1x 1}=≥≤-或(2)要使()g x 有意义,则()()x a 12a x ]0--->即()()x a 1x 2a ]0---<又a 1<a 12a ∴+> B {x |2a x a 1}∴=<<+p 是q 的必要不充分条件B ∴是A 的真子集2a 1a 11∴≥+≤-或 解得1a 1a 22≤<≤-或 a ∴的取值范围为][1,2,12⎛⎫-∞-⋃ ⎪⎝⎭. 【点睛】本题考查了函数定义域的求法,充分必要条件的应用,根据集合的关系求参数的取值范围,属于基础题.25.(1)3m ≤;(2)m 1≥.【分析】(1)化简集合A ,B ,求出A B ,分类讨论C =∅和C ≠∅情况,求解,再取并集即可得出结果.(2)求出A B ,结合数轴列不等式,即可得出结果. 【详解】(1){}|27A x x =-≤≤,{}|35B y y =-≤≤,{}|25AB x x =-≤≤,①若C =∅,则121m m +>-,∴2m <; ②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,∴23m ≤≤;综上3m ≤.(2){}|37A B x x ⋃=-≤≤,∴617m +≥,∴1m ≥.【点睛】本题考查了指数不等式和对数不等式,集合的运算等基本数学知识,考查了运算求解能力和逻辑推理能力,属于基础题目.26.{|3A B x x ⋃=≤-或}4x >,(){}|45U A B x x ⋂=<<【分析】可以求出集合,A B ,然后进行交集、并集和补集的运算即可.【详解】22150x x -++≤,即()()2215530x x x x --=-+≥,解得3x ≤-或5x ≥. 所以{|3A x x =≤-或}5x ≥,{}|35U A x x =-<<.5115146x x x -<⇔-<-<⇔<<,所以{}|46B x x =<<.所以{|3A B x x ⋃=≤-或}4x >,(){}|45U A B x x ⋂=<<.【点睛】本小题主要考查集合交集、并集和补集的运算,考查一元二次不等式和绝对值不等式的解法,属于中档题.。

新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试卷(包含答案解析)(1)

新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试卷(包含答案解析)(1)

一、选择题1.已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,则“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.已知命题2:2,:2320p x q x x <--<,则p 是q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件3.“21x >”是“2x >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.24x >成立的一个充分非必要条件是( )A .23x >B .2xC .2x ≥D .3x >5.m n 是两条不同的直线,α是平面,n α⊥,则//m α是m n ⊥的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知集合{}2|40A x R x x =∈-<,{}|28xB x R =∈<,则A B =( )A .()0,3B .()3,4C .()0,4D .(),3-∞7.已知,αβR ∈,则“αβ=”是“tan tan αβ=”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.已知a ∈R ,则“2a ≤”是“方程2210ax x ++=至少有一个负根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.“3,a =b =”是双曲线22221(0,0)x y a b a b -=->>( )A .充要条件B .必要不充分条件C .即不充分也不必要条件D .充分不必要条件10.设a 、b 是实数,则“0a >,0b >”是“2b aa b+≥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件11.已知平面向量a 和b ,则“||||b a b =-”是“1()02b a a -⋅=”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件12.以下四个命题中错误..的是( ) A .若样本1x 、2x 、、5x 的平均数是2,方差是2,则数据12x 、22x 、、52x 的平均数是4,方差是4B .ln 0x <是1x <的充分不必要条件C .样本频率分布直方图中的小矩形的面积就是对应组的频率D .抛掷一颗质地均匀的骰子,事件“向上点数不大于3”和事件“向上点数不小于4”是对立事件二、填空题13.若“存在x ∈[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___. 14.已知集合U =R ,集合[]5,2A =-,()1,4B =,则下图中阴影部分所表示的集合为__________.15.已知“21[2]102x ,,x mx ∃∈-+≤”是假命题,则实数m 的取值范围为________. 16.已知集合{}3A x x =≤,{}2B x x =<,则RAB =__________.17.设全集U Z =,{}1,3,5,7,9A =,{}1,2,3,4,5B =,则下图中阴影部分表示的集合是_____.18.已知集合{}{}21,,A m B m ==,若B A ⊆,则实数m 的值是__________.19.对于各数互不相等的正数数组()12,,,n i i i ⋅⋅⋅(n 是不小于2的正整数),如果在p q <时有p q i i >,则称p i 与q i 是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为此数组的“逆序数”.若各数互不相等的正数数组()1234567,,,,,,a a a a a a a 的“逆序数”是4,则()7654321,,,,,,a a a a a a a 的“逆序数”是______.20.非空集合*S N ⊆,且满足条件“x S ∈,则()10x S -∈”,则集合S 的所有元素之和的总和为______.三、解答题21.已知非空集合S 的元素都是整数,且满足:对于任意给定的x ,y ∈S (x 、y 可以相同),有x +y ∈S 且x -y ∈S .(1)集合S 能否为有限集,若能,求出所有有限集,若不能,请说明理由; (2)证明:若3∈S 且5∈S ,则S =Z .22.已知命题p :01x ≤≤;q :()120a x a a -≤≤>. (1)若1a =,写出命题“若p 则q ”的逆否命题,并判断真假; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.23.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈-. (1)若2A ∈,则A 中至少还有几个元素? (2)集合A 是否为双元素集合?请说明理由. (3)若A 中元素个数不超过8,所有元素的和为143,且A 中有一个元素的平方等于所有元素的积,求集合A .24.设命题:p 实数x 满足22430x ax a -+<,其中0a >,命题:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩. (1)若2a =且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q 的必要不充分条件,求实数a 的取值范围.25.已知集合{}22520A x x x =-+≤,函数()()22log 22f x ax x =-+的定义域为B .(1)若13a =,求()R A B ; (2)若A B ⋂≠∅,求实数a 的取值范围.26.已知全集U =R ,集合{}{}2|2150,|51A x x x B x x =-++≤=-<,求A B ,()U A B ⋂.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】充分性:若0,3B π⎛⎤∈ ⎥⎝⎦,则2221cos 122a c b B ac+-≤=<,即2222ac a c b ac ≤+-<,即222222a c ac b a c ac +-<≤+-,并不能得出2b ac =一定成立,故充分性不成立;必要性:若2b ac =,由余弦定理得:2221cos 222a c ac ac ac B ac ac +--=≥=,因为()0,B π∈,所以0,3B π⎛⎤∈ ⎥⎝⎦,故必要性成立, 综上,“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的必要不充分条件, 故选:C . 【点睛】方法点睛:判断充要条件的四种常用方法:定义法、传递性法、集合法、等价命题法.2.C解析:C 【分析】求出q 成立的x 的范围,然后根据集合包含关系判断. 【详解】2:2320q x x --<,(21)(2)0x x +-<,122x -<<,由于1,22⎛⎫- ⎪⎝⎭是(,2)-∞的真子集,因此应是必要不充分条件. 故选:C .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.3.B解析:B 【分析】设{}21A x x =>,{}2B x x =>,然后根据集合包含关系分析充分性和必要性. 【详解】设{}{211A x x x x =>=>或}1x <-,设{}2B x x =>,可得B A ,所以“21x >”是“2x >”的必要不充分条件. 故选:B . 【点睛】方法点睛:充分性和必要性的判断方法:1、定义法,2、命题法,3、传递法,4、集合法.4.D解析:D 【分析】根据题意,找到24x >解集的一个真子集即可求解. 【详解】由24x >解得2x >或2x <-,所以24x >成立的一个充分非必要条件是(2)(2,)-∞-+∞的真子集,因为3+∞(,) (2)(2,)-∞-+∞,所以24x >成立的一个充分非必要条件是3x >, 故选:D 【点睛】本题主要考查了充分条件、必要条件,真子集的概念,属于中档题.5.A解析:A 【分析】根据线面平行的性质定理、线面垂直的定义结合充分条件、必要条件的定义判断即可. 【详解】当//m α时,过直线m 作平面β,使得l αβ=,则//m l ,n α⊥,l α⊂,n l ∴⊥,m n ∴⊥,即//m m n α⇒⊥;当m n ⊥时,由于n α⊥,则m α⊂或//m α,所以,//m n m α⊥⇒/.综上所述,//m α是m n ⊥的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了空间点、线、面位置关系的判断,考查推理能力,属于中等题.6.A解析:A 【分析】解不等式确定集合,A B 后再由交集定义计算. 【详解】由题意{|04}A x x =<<,{|3}B x x =<,∴{|03}(0,3)A B x x =<<=.故选:A . 【点睛】本题考查求集合的交集运算,考查解一元二次不等式和指数不等式,属于基本题.7.D解析:D 【详解】若2παβ==则tan ,tan αβ不存在,若tan tan αβ=,可得k απβ=+,故选D8.B解析:B 【分析】分类讨论a 的正负,利用两根与系数的关系、判别式,进而求解判断即可. 【详解】(1)当0a =时,方程变为210x +=,有一负根12x =-,满足题意;(2)当0a <时,440∆=->a ,方程的两根满足1210x x a=<,此时有且仅有一个负根,满足题意;(3)当0a >时,由方程的根与系数关系可得2010aa⎧-<⎪⎪⎨⎪>⎪⎩,∴方程若有根,则两根都为负根,而方程有根的条件440a ∆=-≥,01a ∴<≤.综上可得,1a ≤.因此,“2a ≤”是“方程2210ax x ++=至少有一个负根”的必要不充分条件. 故选:B. 【点睛】本题考查必要不充分条件的判断,考查二次方程根的分布问题,考查分类讨论思想的应用,属于中等题.9.D解析:D 【分析】将双曲线22221(0,0)x y a b a b -=->>标准化为22221(0,0)y x a b b a -=>>,可得2234a b =,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线22221(0,0)x y a b a b -=->>标准化22221(0,0)y x a b b a -=>>则根据离心率的定义可知本题中应有222a b c e b c +===,则可解得2234a b =,因为3,a=b =可以推出2234a b =;反之2234a b =成立不能得出3,a=b =.故选:D . 【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.10.A解析:A 【分析】由2b aa b +≥可推导出0ab >,再利用充分条件、必要条件的定义判断可得出结论. 【详解】由2b a a b +≥可得()22222022a b b a a b ab a b ab ab-+-+-==≥,()20a b -≥,则0ab >,则“0a >,0b >”⇒“0ab >”,但“0ab >”⇒“0a >,0b >”. 所以,“0a >,0b >”是“2b aa b+≥”的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,考查推理能力,属于中等题.11.C解析:C 【分析】||||b a b =-两边平方得出22()b a b =-,展开等价变形得出102b a a ⎛⎫-⋅= ⎪⎝⎭,根据充分条件和必要条件的定义进行判断即可. 【详解】22||||()b a b b a b =-⇔=-22221122020022b a a b b a a b a b a b a a ⎛⎫⎛⎫⇔=-⋅+⇔-⋅=⇔⋅-=⇔-⋅= ⎪ ⎪⎝⎭⎝⎭则“||||b a b =-”是“1()02b a a -⋅=”的充分必要条件 故选:C 【点睛】本题主要考查了充要条件的证明,涉及了向量运算律的应用,属于中档题.12.A解析:A 【分析】利用平均数和方差公式可判断A 选项的正误;解不等式ln 0x <,利用集合的包含关系可判断B 选项的正误;根据频率直方图的概念可判断C 选项的正误;根据对立事件的概念可判断D 选项的正误.综合可得出结论. 【详解】对于A 选项,样本1x 、2x 、、5x 的平均数为1234525x x x x x x ++++==,方差为()()()()()222221234522222225x x x x x s ⎡⎤-+-+-+-+-⎣⎦==, 数据12x 、22x 、、52x 的平均数是1234522222245x x x x x x x ++++'===,方差为()()()()()2222212345224242424245x x x x x s ⎡⎤-+-+-+-+-⎣⎦'=()()()()()2222212345242222244285x x x x x s ⎡⎤-+-+-+-+-⎣⎦===⨯=,A 选项错误;对于B 选项,解不等式ln 0x <,得01x <<,{}01x x << {}1x x <,所以,ln 0x <是1x <的充分不必要条件,B 选项正确;对于C 选项,由频率分布直方图的概念可知,样本频率分布直方图中的小矩形的面积就是对应组的频率,C 选项正确;对于D 选项,抛掷一颗质地均匀的骰子,事件“向上点数不大于3”即为:向上的点数为1或2或3,事件“向上点数不小于4”即为:向上的点数为4或5或6, 这两个事件互为对立事件,D 选项正确. 故选:A. 【点睛】本题考查命题正误的判断,涉及平均数、方差的计算、充分不必要条件的判断、频率直方图和对立事件概念的理解,考查推理能力,属于中等题.二、填空题13.【分析】转化为在上有解不等式右边构造函数利用单调性求出最大值即可得解【详解】存在x ∈﹣11成立即在上有解设易得y =f(x)在﹣11为减函数所以即即即所以故答案为:【点睛】关键点点睛:将问题转化为在上解析:9(,)2-+∞【分析】转化为213x xa +-<在[1,1]x ∈-上有解,不等式右边构造函数,利用单调性求出最大值即可得解. 【详解】存在x ∈[﹣1,1],3210xxa ⋅++>成立,即213x xa +-<在[1,1]x ∈-上有解, 设2121()333x xx xf x +⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,[1,1]x ∈-, 易得y =f (x )在[﹣1,1]为减函数,所以()[(1),(1)]f x f f ∈-,即213()3332f x +≤≤+,即91()2f x ≤≤, 即92a -<,所以92a >-, 故答案为:9(,)2-+∞. 【点睛】关键点点睛:将问题转化为213x xa +-<在[1,1]x ∈-上有解进行求解是解题关键. 14.【解析】因为所以或则图中阴影部分所表示的集合为应填答案 解析:[]5,1-【解析】因为[]5,2A =-,()1,4B =,所以{|1U C B x x =≤或4}x ≥,则图中阴影部分所表示的集合为(){|51}U C B A x x ⋂=-≤≤,应填答案[]5,1-.15.【分析】求出命题的否定由原命题为假命题得命题的否定为真命题参变分离得到构造函数求在所给区间上的最小值【详解】解:由题意可知是真命题对恒成立令令则;令则;即在上单调递减上单调递增;故答案为:【点睛】本 解析:(,2)-∞【分析】求出命题的否定,由原命题为假命题,得命题的否定为真命题,参变分离得到1m x x <+,构造函数()1g x x x=+求()g x 在所给区间上的最小值.【详解】解:由题意可知,21[2]102x ,,x mx ∀∈-+>是真命题 1m x x ∴<+对1[2]2x ,∀∈恒成立, 令()1g x x x=+()211g x x '∴=-令()0g x '>则12x <≤;令()0g x '<则112x ≤<; 即()1g x x x =+在1,12⎛⎫⎪⎝⎭上单调递减,()1,2上单调递增; ()()min 11121g x g ∴==+=2m <∴故答案为:(,2)-∞ 【点睛】本题考查根据命题的真假求参数的取值范围,关键是将问题进行转化,属于中档题.16.【分析】根据集合的交集补集运算即可求解【详解】因为所以因此故答案为【点睛】本题主要考查了集合的补集交集运算属于中档题 解析:[]2,3【分析】根据集合的交集补集运算即可求解. 【详解】因为{}2B x x =<, 所以RB ={}2x x ≥因此RAB ={}{}32=[2,3]x x x x ≤⋂≥.故答案为[]2,3 【点睛】本题主要考查了集合的补集,交集运算,属于中档题.17.【分析】先判断阴影部分表示的集合为再计算得到答案【详解】集阴影部分表示的集合为:故答案为【点睛】本题考查了韦恩图的识别将图像转化为集合的运算是解题的关键 解析:{}2,4【分析】先判断阴影部分表示的集合为U B C A ⋂,再计算得到答案. 【详解】集U Z =,{}1,3,5,7,9A =,{}1,2,3,4,5B = 阴影部分表示的集合为:{}2,4U B C A ⋂= 故答案为{}2,4【点睛】本题考查了韦恩图的识别,将图像转化为集合的运算是解题的关键.18.【解析】分析:根据集合包含关系得元素与集合属于关系再结合元素互异性得结果详解:因为所以点睛:注意元素的互异性在解决含参数的集合问题时要注意检验集合中元素的互异性否则很可能会因为不满足互异性而导致解题 解析:0【解析】分析:根据集合包含关系得元素与集合属于关系,再结合元素互异性得结果.详解:因为B A ⊆,所以22110.m m m m m m m=≠⎧⎧∴=⎨⎨≠=⎩⎩或 点睛:注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.19.17【分析】用减去4即得【详解】由题意知正数数组的逆序数与的逆序数和为所以的逆序数为故答案为:17【点睛】本题考查新定义问题考查排列组合的应用解题关键是理解认识到数组与中逆序数的和为解析:17 【分析】 用27C 减去4即得. 【详解】由题意知正数数组()1234567,,,,,,a a a a a a a 的“逆序数”与()7654321,,,,,,a a a a a a a 的“逆序数”和为27C ,所以()7654321,,,,,,a a a a a a a 的“逆序数”为27417C -=.故答案为:17. 【点睛】本题考查新定义问题,考查排列组合的应用.解题关键是理解认识到数组()12,,,n i i i ⋅⋅⋅与()11,,,n n i i i -⋅⋅⋅中逆序数的和为2n C .20.720【分析】欲求中所有元素和的总和需要知道中的元素和分别是多少;中的元素都可以通过题中已知条件:则求出【详解】解:依题意得为正整数集且及均为正整数即可可取的任意正整数1和9要么必须同时出现要么都不解析:720. 【分析】欲求S 中所有元素和的总和,需要知道S 中的元素和分别是多少;S 中的元素都可以通过题中已知条件:x S ∈,则(10)x S -∈求出. 【详解】解:依题意得S 为正整数集, x S ∈,且10x S -∈x 及10x -均为正整数即可x 可取19→的任意正整数,1和9要么必须同时出现,要么都不出现;同理:2和8、3和7、4和6依此类推5……单独考虑,共5组. 那么:只选1组是45,即(19)(28)545++++⋯⋯+= 依此类推: 选2组是180, 选3组是270, 选4组是180, 选5组是45,共计4518027018045720++++=. 故答案为:720. 【点睛】首先要明确*N 所代表的数集,然后根据已知条件将所有的可能考虑全面即可,属于中档题.三、解答题21.(1){}0;(2)证明见解析. 【分析】(1)若a S ∈,分析0a ≠和0a =可得答案;(2)集合S 的元素都是整数,利用已知得到非空集合S 是所有整数构成的集合.然后再由5S ∈,3S ∈, 532S -=∈得到{}|2,x x k k Z =∈ S ,且{}|21,x x k k Z =+∈ S可得答案. 【详解】(1)能,理由如下:若a S ∈,且0a ≠,由题意知a 的所有整数倍的数都是S 中的元素,所以S 是无限集;若a S ∈,且0a =,则{}0S =,,x y S x y S +∈-∈符合题意,且{}0S =是有限集,所以集合S 能为有限集,即{}0S =. (2)证明:因为非空集合S 的元素都是整数,且()(),x y Z x y Z +∈-∈, 由5S ∈,3S ∈,所以532S -=∈,所以321S -=∈, 所以112S +=∈,123S +=∈,134S +=∈,,110S -=∈,011S -=-∈,112S --=-∈,213S--=-∈,所以非空集合S 是所有整数构成的集合.由5S ∈,3S ∈,所以532S -=∈,因为,x y S x y S +∈-∈, 所以224,220S S +=∈-=∈,246,242S S +=∈-=-∈,268,264S S +=∈-=-∈,,所以2的所有整数倍的数都是S 中的元素, 即{}|2,x x k k Z =∈ S ,且321S -=∈,所以21,x k k Z =+∈也是集合S 中的元素, 即{}|21,x x k k Z =+∈ S ,{}|2,x x k k Z =∈{}|21,x x k k Z Z =+∈=,综上所述,S Z =. 【点睛】本题考查对集合性质的理解,关键点是理解,x y S x y S +∈-∈,考查了学生分析问题、解决问题的能力,以及推理能力.22.(1)逆否命题为“若0x <或2x >,则0x <或1x >”,真命题;(2)112a ≤≤. 【分析】(1)直接写出命题“若p 则q ”逆否命题并判断真假即可; (2)由题意得{}|01x x ≤≤(){}|120x a x a a -≤≤>,即1021a a -≤⎧⎨≥⎩解不等式组可得答案. 【详解】(1)若1a =,则q :02x ≤≤,命题“若p 则q ”为“若01x ≤≤,则02x ≤≤”, 命题“若p 则q ”的逆否命题为“若0x <或2x >,则0x <或1x >”,是真命题; (2)若p 是q 的充分不必要条件,{}|01x x ≤≤(){}|120x a x a a -≤≤>则1021a a -≤⎧⎨≥⎩,解得112a ≤≤,实数a 的取值范围为112a ≤≤. 【点睛】结论点睛:充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等; (4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 23.(1)A 中至少还有两个元素;(2)不是双元素集合,答案见解析;(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.【分析】(1)由x A ∈(1x ≠且0x ≠),则11A x∈-,结合2A ∈可计算得出集合A 中的元素;(2)由x A ∈,逐项可推导出11A x ∈-,1x A x-∈,结合集合元素满足互异性可得出结论;(3)由(2)A 中有三个元素为x 、11x -、1x x-(1x ≠且0x ≠),设A 中还有一个元素m ,可得出11A m ∈-,1m A m-∈,由已知条件列方程求出x 、m 的值,即可求得集合A 中的所有元素. 【详解】(1)2A ∈,1112A ∴=-∈-. 1A -∈,()11112A ∴=∈--.12A ∈,12112A ∴=∈-.A ∴中至少还有两个元素为1-,12; (2)不是双元素集合.理由如下:x A ∈,11A x∴∈-,11111x A x x-=∈--, 由于1x ≠且0x ≠,22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,则210x x -+≠, 则()11x x -≠,可得11x x≠-,由221x x x -+≠-,即()21x x -≠-,可得111x x x-≠-, 故集合A 中至少有3个元素,所以,集合A 不是双元素集合. (3)由(2)知A 中有三个元素为x 、11x -、1x x-(1x ≠且0x ≠), 且1111x x x x-⋅⋅=--, 设A 中有一个元素为m ,则11A m ∈-,1m A m -∈,且1111m m m m-⋅⋅=--, 所以,1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,且集合A 中所有元素之积为1. 由于A 中有一个元素的平方等于所有元素的积,设2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭,解得0x =(舍去)或2x =或12x =. 此时,2A ∈,1A -∈,12A ∈, 由题意得1111421213m m m m -+-+++=-,整理得3261960m m m -++=, 即()()()621320m m m -+-=,解得12m =-或3或23, 所以,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 【点睛】关键点点睛:本题考查集合中元素相关的问题,解题时要结合题中集合A 满足的定义推导出其它的元素,以及结合已知条件列方程求解,同时注意集合中元素满足互异性. 24.(1)(]2,3;(2)[)20,3,3⎛⎤⋃+∞ ⎥⎝⎦.【分析】(1)解一元二次不等式和不等式组分别求得,p q ,由p q ∧为真可知,p q 均为真,由此可得取值范围;(2)解一元二次不等式可求得p ,进而得到p ⌝,根据推出关系可构造不等式组求得结果. 【详解】(1)当2a =时,由28120x x -+<得:26x <<,{}:26p x x ∴<<;由2260280x x x x ⎧--≤⎨+->⎩得:23x <≤,{}:23q x x ∴<≤.p q ∧为真,,p q ∴均为真,∴实数x 的取值范围为(]2,3.(2)由22430x ax a -+<得:3a x a <<,{:p x x a ∴⌝≤或}3x a ≥, 由(1)知:{}:23q x x <≤p ⌝是q 的必要不充分条件,pq ∴⌝且q p ⇒⌝032a a >⎧∴⎨≤⎩或03a a >⎧⎨≥⎩,解得:203a <≤或3a ≥,∴实数a 的取值范围为[)20,3,3⎛⎤⋃+∞ ⎥⎝⎦.【点睛】本题考查根据含逻辑联结词的命题的真假性、根据必要不充分条件求解参数范围的问题;关键是能够根据含逻辑联结词得到原命题的真假性、根据必要不充分条件的定义得到推出关系.25.(1)()R32A B ⎡⎤⋂=-⎣⎦;(2)()4,-+∞.【分析】(1)利用一元二次不等式的解法化简集合A , 再由13a =,利用一元二次不等式的解法求得对数函数的定义域B ,然后利用集合的基本运算求解.(2)根据A B ⋂≠∅,则在1,22⎡⎤⎢⎥⎣⎦上至少存在一个x ,使不等式2220ax x -+>成立,即关于x 的不等式222a x x >-在1,22⎡⎤⎢⎥⎣⎦上有解,然后令222u x x =-,求得其最小值即可. 【详解】(1){}212520,22A x x x ⎡⎤=-+≤=⎢⎥⎣⎦.当13a =时,212203x x -+>,解得3x >3x <所以((),33B =-∞⋃+∞,所以R3B ⎡=⎣.所以()R32A B ⎡⎤⋂=⎣⎦.(2)若A B ⋂≠∅,则说明在1,22⎡⎤⎢⎥⎣⎦上至少存在一个x 值,使不等式2220ax x -+>成立,即关于x 的不等式222a x x >-在1,22⎡⎤⎢⎥⎣⎦上有解. 又222u x x=-,则只需min a u >即可. 又2222111222y x x x ⎛⎫=-=--+ ⎪⎝⎭. 当1,22x ⎡∈⎤⎢⎥⎣⎦时,11,22x ⎡⎤∈⎢⎥⎣⎦,14,2u ⎡⎤∈-⎢⎥⎣⎦,所以min 4u =-,所以4a >-,即a 的取值范围为()4,-+∞. 【点睛】本题主要考查集合的基本运算及其应用以及一元二次不等式的解法和对数函数的定义域的求法,还考查了运算求解的能力,属于中档题. 26.{|3A B x x ⋃=≤-或}4x >,(){}|45UA B x x ⋂=<<【分析】可以求出集合,A B ,然后进行交集、并集和补集的运算即可.【详解】22150x x -++≤,即()()2215530x x x x --=-+≥,解得3x ≤-或5x ≥.所以{|3A x x =≤-或}5x ≥,{}|35UA x x =-<<.5115146x x x -<⇔-<-<⇔<<,所以{}|46B x x =<<.所以{|3A B x x ⋃=≤-或}4x >,(){}|45UA B x x ⋂=<<.【点睛】本小题主要考查集合交集、并集和补集的运算,考查一元二次不等式和绝对值不等式的解法,属于中档题.。

新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》检测题(含答案解析)

新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》检测题(含答案解析)

一、选择题1.已知命题p :x R ∀∈,2230ax x ++>是真命题,那么实数a 的取值范围是( ) A .13a < B .103a <≤ C .13a > D .13a ≤ 2.已知命题2:11x p x <-,命题:()(3)0q x a x -->,若p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .(,1]-∞B .[1,3]C .[1,)+∞D .[3,)+∞ 3.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知非空集合A ,B 满足以下两个条件:(i ){}1,2,3,4,5A B =,A B =∅; (ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素,则有序集合对(),A B 的个数为( )A .7B .8C .9D .105.函数3()1f x ax x =++有极值的充分但不必要条件是( )A .1a <-B .1a <C .0a <D .0a > 6.设,a b 为非零向量,则“a b a b +=+”是“a 与b 共线”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 7.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题;③“2019a >”是“2020a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题.其中真命题的序号为( )A .③④B .①②C .①③D .②④ 8.全集U =R ,集合04x A x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞9.已知集合{} 1A x x =>-,{}2B x x =<,则A B =( ) A .()1,-+∞ B .(),2-∞ C .1,2D .R 10.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.设{}n a 是等差数列,则“123a a a <<”是“数列{}n a 是递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 12.命题“对任意x ∈R ,都有20x ≥”的否定为A .对任意x ∈R ,都有20x <B .不存在x ∈R ,都有20x <C .存在0x ∉R ,使得200x <D .存在0x ∈R ,使得200x < 二、填空题13.①一个命题的逆命题为真,它的否命题一定也为真:②在ABC 中,“60B ∠=︒”是“,,A B C ∠∠∠三个角成等差数列”的充要条件; ③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <”是“a b <”的充分必要条件;以上说法中,判断错误的有_______________.14.已知集合U =R ,集合[]5,2A =-,()1,4B =,则下图中阴影部分所表示的集合为__________.15.若“0,63x ππ⎡⎤∃∈⎢⎥⎣⎦使得0tan x m ≥”是假命题,则实数m 的取值范围为________. 16.已知命题:44,:(2)(3)0p x a q x x -<-<-->,若p ⌝是q ⌝的充分不必要条件,求a 的取值范围________.17.已知集合{}2,M y y x x R ==∈,221,4y N y x x R ⎧⎫⎪⎪=+=∈⎨⎬⎪⎪⎩⎭,则M N =__________.18.已知命题“0x ∃∈[1,2], 200210x ax -+>”是真命题,则实数a 的取值范围为______.19.已知集合{}ln(21)A x y x ==-,{}2230B x x x =--≤,则A B __________. 20.已知“x m ≥”是“121x +>”的充分不必要条件,且m Z ∈,则m 的最小值是________.三、解答题21.已知函数()f x =A ,函数2()41,[0,3]g x x x x =-+-∈的值域为B .(Ⅰ)设集合()M A B Z =⋂⋂,其中Z 是整数集,写出集合M 的所有非空子集; (Ⅱ)设集合{|121}C x a x a =-<<+,且B C =∅,求实数a 的取值范围. 22.已知集合A 是函数2lg 20()8y x x =+-的定义域,集合B 是不等式22210(0)x x a a -+-≥>的解集,:,:p x A q x B ∈∈.(1)若A B =∅,求a 的取值范围;(2)若p ⌝是q 的充分不必要条件,求a 的取值范围.23.已知命题:P 实数x 满足2280x x --≤,命题:q 实数x 满足2(0)x m m -≤> (1)当m=3时,若“p 且q”为真,求实数x 的取值范围;(2)若“非p”是“非q”的必要不充分条件,求实数m 的取值范围.24.已知集合{}30A x x a =->,{}260B x x x =-->.(Ⅰ)当3a =时,求A B ,A B ; (Ⅱ)若()R A B ⋂≠∅,求实数a 的取值范围.25.设命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得不等式210x x m --+≤成立.(1)若p 为真命题,求实数m 的取值范围;(2)若命题p 、q 有且只有一个是真命题,求实数m 的取值范围.26.已知集合13279x A x⎧⎫=≤≤⎨⎬⎩⎭,函数()lg 1x f x -=B . (1)求A B ,()R B A ;(2)已知集合{}433C x m x m =-≤≤+,若A C ⋂=∅,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由题意可得2230ax x ++>对于x ∈R 恒成立,讨论0a =和0a ≠即可求解.【详解】若命题p :x R ∀∈,2230ax x ++>是真命题,则2230ax x ++>对于x ∈R 恒成立,当0a =时,230x +>可得:32x >-不满足对于x ∈R 恒成立,所以0a =不符合题意; 当0a ≠时,需满足04430a a >⎧⎨∆=-⨯<⎩解得13a >, 所以实数a 的取值范围是13a >, 故选:C【点睛】关键点点睛:对于2230ax x ++>对于x ∈R 恒成立,需讨论0a =和0a ≠,当0a ≠时,结合二次函数图象即可得等价条件. 2.C解析:C【分析】化简命题q ,分类讨论a 解不等式()(3)0x a x -->,根据p 是q 的充分不必要条件列式可解得结果.【详解】 因为211x x <-,所以2101x x x -+<-,所以(1)(1)0x x -+<,所以11x -<<, 当3a <时,由()(3)0x a x -->得x a <或3x >, 因为p 是q 的充分不必要条件,所以1a ≥,所以13a ≤<,当3a =时,由()(3)0x a x -->得3x ≠,满足题意,当3a >时,由()(3)0x a x -->得3x <或x a >,满足题意,综上所述:1a ≥.故选:C【点睛】关键点点睛:本题考查由充分不必要条件求参数的取值范围,一般可根据如下规则求解: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.3.A解析:A【详解】 因为:1213p x x x +>⇔><-或,p ⌝:31x -≤≤;22:5656023q x x x x x ->⇔-+<⇔<<,q ⌝:23x x ≤≥或,因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A.4.B解析:B【分析】结合题意,按照集合中的元素个数分类,即可得解.【详解】由题意,符合要求的情况分为以下几类:(1)当集合A 只有一个元素时,集合B 中有四个元素,1A ∉且4B ∉,故{4}A =,{1,2,3,5}B =,共计1种;(2)当集合A 有两个元素时,集合B 中有三个元素,2A ∉且3B ∉,故可能结果为:①{1,3}A =,{2,4,5}B =;②{3,4}A =,{}1,2,5B =;③{}3,5A =,{1,2,4}B =,共计3种;(3)当集合A 有三个元素时,集合B 中有两个元素,3A ∉且2∉B ,故可能结果为:①{2,4,5}A =,3{}1,B ;②{}1,2,5A =,{3,4}B =;③{1,2,4}A =,{}3,5B =,共计3种;(4)当集合A 中有4个元素时,集合B 中有1个元素,4A ∉且1B ∉,故{1,2,3,5}A =,{4}B =,共计1种.所以有序集合对(),A B 的个数为13318+++=.故选:B.【点睛】本题考查了根据集合的运算结果及集合中元素的性质确定集合,考查了运算求解能力,属于中档题.5.A解析:A【分析】求导2()31f x ax '=+,所以要使函数3()1f x ax x =++有极值,则需3012>0a a ≠∆=-,,可求得a 的范围,再由充分必要条件可得选项.【详解】因为2()31f x ax '=+,所以要使函数3()1f x ax x =++有极值,则需3012>0a a ≠∆=-,,解得0a <,又由1a <-可推得0a <,而由0a <不能推得1a <-,所以函数3()1f x ax x =++有极值的充分但不必要条件是1a <-,故选:A .【点睛】本题考查函数有极值的条件,以及命题的充分必要条件的判断,属于中档题.6.A解析:A【分析】根据向量共线的性质依次判断充分性和必要性得到答案.【详解】 若a b a b +=+,则a 与b 共线,且方向相同,充分性; 当a 与b 共线,方向相反时,a b a b ≠++,故不必要.故选:A .【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.7.B解析:B【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确;“2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误.故选:B .【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.8.C解析:C【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃.【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >, ()()[],04,5U C A B ∴=-∞⋃.故选:C .【点睛】本题考查集合的运算,属于基础题.9.C解析:C【分析】由集合的交集运算即可得出结果.【详解】{|12}=(1,2)=-<<-A B x x故选:C【点睛】本题考查了集合的交集运算,考查了计算能力,属于一般题目.10.B解析:B【解析】当α⊥β时,平面α内的直线m 不一定和平面β垂直,但当直线m 垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m ⊥β”的必要不充分条件. 11.C解析:C【分析】结合等差数列的单调性,根据充分条件、必要条件的判定方法,即可求解.【详解】在{}n a 是等差数列,若123a a a <<,可得21320d a a a a =-=->,所以数列{}n a 是递增数列,即充分性成立;若数列{}n a 是递增数列,则必有123a a a <<,即必要性成立,所以“123a a a <<”是“数列{}n a 是递增数列”的充分必要条件.故选:C.【点睛】本题主要考查了充分条件、必要条件的判定,以及等差数列的单调性判定及应用,其中解答中熟记等差数列的性质是解答的关键,着重考查推理与论证能力.12.D解析:D【解析】命题“对任意x R ∈,都有20x ≥”的否定为:存在0x R ∈,使得200x <,选D.二、填空题13.③④【解析】对于①一个命题的逆命题与其否命题互为逆否命题则若其逆命题为真其否命题也一定为真①正确;对于②若则有则三个角成等差数列反之若三个角成等差数列有又由则故在中是三个角成等差数列的充要条件②正确解析:③④【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若60B ∠=,则120A C ∠+∠=,有2A C B ∠+∠=∠,则,,A B C ∠∠∠三个角成等差数列,反之若,,A B C ∠∠∠三个角成等差数列,有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,则60B ∠=,故在ABC ∆中,“60B ∠=”是“,,A B C ∠∠∠三个角成等差数列”的充要条件,②正确;对于③, 当19,22x y ==,则满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,则12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,若a b <,当0m =时,有22am bm =,则“22am bm <”是“a b <”的不必要条件,④错误,故答案为③④.14.【解析】因为所以或则图中阴影部分所表示的集合为应填答案解析:[]5,1-【解析】因为[]5,2A =-,()1,4B =,所以{|1U C B x x =≤或4}x ≥,则图中阴影部分所表示的集合为(){|51}U C B A x x ⋂=-≤≤,应填答案[]5,1-. 15.【分析】根据题意写出原命题的否定则其是一个真命题再据此求范围即可【详解】因为使得是假命题所以其否定:是真命题又时所以故答案为:【点睛】本题考查命题的真假关系考查三角函数求最值属于简单题在解决命题真假解析:【分析】根据题意,写出原命题的否定,则其是一个真命题,再据此求范围即可.【详解】因为“0,63x ππ⎡⎤∃∈⎢⎥⎣⎦使得0tan x m ≥”是假命题,所以其否定:“,63x ππ⎡⎤∀∈⎢⎥⎣⎦,tan x m <”是真命题,又,63x ππ⎡⎤∈⎢⎥⎣⎦时,tan x ∈,所以m >故答案为:)+∞. 【点睛】本题考查命题的真假关系,考查三角函数求最值,属于简单题.在解决命题真假性相关问题时,若原命题不好求解,可以考虑与之相关的其他命题,比如命题的否定,逆否命题等. 16.【分析】是的充分不必要条件可转化为是的充分不必要条件再化简两命题对应的取值范围进一步判断即可【详解】是的充分不必要条件是的充分不必要条件命题中:命题中:由是的充分不必要条件可知应满足解得故答案为:【 解析:[1,6]-【分析】p ⌝是q ⌝的充分不必要条件可转化为q 是p 的充分不必要条件,再化简两命题对应x 的取值范围,进一步判断即可【详解】“p ⌝是q ⌝的充分不必要条件”⇔q 是p 的充分不必要条件,命题p 中:44a x a -<<+,命题q 中:23x <<,由q 是p 的充分不必要条件可知,应满足4243a a -≤⎧⎨+≥⎩,解得[1,6]a ∈- 故答案为:[1,6]-【点睛】本题考查由命题的充分不必要条件求解参数范围,属于中档题17.【分析】根据函数的值域以及椭圆的性质求得集合再根据集合的运算即可求解【详解】由题意集合所以【点睛】本题主要考查了集合的运算其中解答中根据函数的值域以及椭圆的性质求得集合是解答的关键着重考查了推理与运 解析:[]0,2【分析】根据函数的值域,以及椭圆的性质求得集合,M N ,再根据集合的运算,即可求解.【详解】 由题意,集合{}2,{|0}M y y x x R y y ==∈=≥,221,{|22}4y N y x x R y y ⎧⎫⎪⎪=+=∈=-≤≤⎨⎬⎪⎪⎩⎭, 所以{|02}[0,2]M N y y =≤≤=.【点睛】本题主要考查了集合的运算,其中解答中根据函数的值域,以及椭圆的性质求得集合,M N 是解答的关键,着重考查了推理与运算能力,属于基础题.18.【分析】由题意可得2a <x0在12的最大值运用对勾函数的单调性可得最大值即可得到所求a 的范围【详解】命题∃x0∈12x02﹣2ax0+1>0是真命题即有2a <x0在12的最大值由x0在12递增可得x 解析:5,4⎛⎫-∞ ⎪⎝⎭ 【分析】由题意可得2a <x 001x +在[1,2]的最大值,运用对勾函数的单调性可得最大值,即可得到所求a 的范围.【详解】命题“∃x 0∈[1,2],x 02﹣2ax 0+1>0”是真命题,即有2a <x 001x +在[1,2]的最大值, 由x 001x +在[1,2]递增,可得x 0=2取得最大值52, 则2a 52<,可得a 54<,则实数a 的取值范围为(﹣∞,54). 故答案为(﹣∞,54). 【点睛】本题考查存在性命题的真假问题解法,注意运用分离参数法,运用对勾函数的单调性,考查运算能力,属于中档题. 19.(或用区间表示为【解析】分析:先根据真数大于零得集合A 再解一元二次不等式得集合B 最后根据交集定义求结果详解:因为所以因为所以因此点睛:求集合的交并补时一般先化简集合再由交并补的定义求解在进行集合的运 解析:13|22x x ⎧⎫<≤⎨⎬⎩⎭(或用区间表示为13(,]22. 【解析】分析:先根据真数大于零得集合A,再解一元二次不等式得集合B ,最后根据交集定义求结果.详解:因为210x ->,所以12x >因为2230x x --≤,所以312x -≤≤因此13(,]22A B ⋂=. 点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 20.0【分析】根据是的充分不必要条件且即可得出【详解】由是的充分不必要条件且则的最小值是故答案为:【点睛】本题考查了充分不必要条件的判定方法考查了推理能力与计算能力属于基础题解析:0.【分析】1121221x x x +->⇔>⇔>-.根据x m ”是“+121x >”的充分不必要条件,且m Z ∈,即可得出.【详解】由1211x x +>⇒>-,“x m ”是“+121x >”的充分不必要条件,且m Z ∈,0m ∴,则m 的最小值是0.故答案为:0.【点睛】本题考查了充分不必要条件的判定方法,考查了推理能力与计算能力,属于基础题.三、解答题21.(Ⅰ){}1,0,1-,{}1,0-,{}1,1-,{}0,1,{}1-,{}0,{}1;(Ⅱ)(][),14,-∞-+∞【分析】(Ⅰ)计算得到(]3,log 8A =-∞,[]1,3B =-,再计算交集得到{}1,0,1M =-,得到答案.(Ⅱ)考虑C =∅和C ≠∅两种情况,得到121211a a a -<+⎧⎨+≤-⎩或12113a a a -<+⎧⎨-≥⎩,解得答案. 【详解】(Ⅰ)函数()f x =830x -≥,即3log 8x ≤,即(]3,log 8A =-∞,()22()4123,[0,3]g x x x x x =-+-=--+∈,[]1,3y ∈-,即[]1,3B =-,[]{}31,log (1,0,8)1M A B Z Z =⋂⋂=--⋂=.故集合M 的所有非空子集为{}1,0,1-,{}1,0-,{}1,1-,{}0,1,{}1-,{}0,{}1. (Ⅱ){|121}C x a x a =-<<+,B C =∅,当C =∅时,121a a -≥+,解得2a ≤-;当C ≠∅时,121211a a a -<+⎧⎨+≤-⎩或12113a a a -<+⎧⎨-≥⎩,解得(][)2,14,a ∈--+∞. 综上所述:(][),14,a ∈-∞-+∞.【点睛】 本题考查了函数的定义域,值域,子集,根据交集运算结果求参数,意在考查学生的计算能力和转化能力,忽略空集是容易发生的错误.22.(1)9a ≥(2)03a <≤【解析】分析:(1)分别求函数2lg 20()8y x x =+-的定义域和不等式22210(0)x x a a -+-≥>的解集,从而确定集合A,B ,由A B φ⋂=,得到区间端点值之间的关系,解不等式组得到a 的取值范围;(2)求出p ⌝对应的x 的取值范围,由p ⌝是q 的充分不必要条件得到对应的集合之间的关系,由区间端点值的关系列不等式组求解a 的取值范围.详解:(1)由题意得{}{}|210,|11A x x B x x a x a =-<<=≥+≤-或. 若A B ⋂=∅,则必须满足110120a a a +≥⎧⎪-≤-⎨⎪>⎩,解得9a ≥.∴a 的取值范围为9a ≥.(2)易得:102p x x ⌝≥≤-或.∵p ⌝是q 的充分不必要条件,∴{}|102x x x ≥≤-或是{}|11B x x a x a =≥+≤-或的真子集,则101210a a a ≥+⎧⎪-≤-⎨⎪>⎩,解得03a <≤,∴a 的取值范围是03a <≤.点睛:该题所涉及的考点有交集及其运算,充分不必要条件,复合命题的真假,解题的关键是先确定集合中的元素,再者就是两集合交集为空集时对应参数的取值范围,可以借助于数轴来完成.23.(1)[1,4]-(2)4m ≥【详解】试题分析:(1)先转化,q ,由且q 为真,得真q 真,解出x (2)由p ⌝是q⌝的必要不充分条件 得是q 的充分不必要条件,根据数轴列出不等式解出m 试题解:(1)若真:24x -≤≤;当3m =时,若q 真:15x -≤≤ ∵且q 为真 ∴24{15x x -≤≤-≤≤ ∴实数x 的取值范围为:[1,4]-(2)∵p ⌝是q ⌝的必要不充分条件 ∴是q 的充分不必要条件 ∵若q 真:22m x m -≤≤+∴22{42m m-≤-≤+且等号不同时取得 (不写“且等号不同时取得”,写检验也可) ∴4m ≥.考点:复合命题,充要条件,解不等式24.(Ⅰ){}3A B x x ⋂=>,{|2A B x x ⋃=<-或1}x >;(Ⅱ)(),9-∞.【分析】(Ⅰ)解不等式求得集合,A B ,再由交并集的定义求解;(Ⅱ)求出A 与B R ,然后分析两集合有公共元素时的不等关系,可得a 的范围. 【详解】由30x a ->得3a x >,所以3a A x x ⎧⎫=>⎨⎬⎩⎭ 由260x x -->,得()()230x x +->,解得2x <-或3x >,所以{}2B x x =<-或3}x >.(Ⅰ)当3a =时,{}1A x x =>, 所以{}3A B x x ⋂=>,{|2A B x x ⋃=<-或1}x >(Ⅱ)因为{|2B x x =<-或3}x >, 所以{}23B x x =-≤≤R .又因为()R A B ⋂≠∅,所以33a <,解得9a <. 所以实数a 的取值范围是(),9-∞.【点睛】本题考查集合的表示、运算,考查集合间的关系,考查一元二次不等式的解法.属于基础题.25.(1)12m ≤≤(2)1m <或524m <≤ 【分析】(1)命题p 为真,只需[]()2min 21,20,3x m m x -≥-∈,根据一次函数的单调性,转化为求关于m 的一元二次不等式;(2)命题q 为真,只需[]()2min 1,1,10x x m x -+-∈-≤,根据二次函数的性质,求出m 的范围,依题意求出p 真q 假,和p 假q 真时,实数m 的取值范围.【详解】(1)对于命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立,而[]0,1x ∈,有()min 222x -=-,223m m ∴-≥-,12m ∴≤≤,所以p 为真时,实数m 的取值范围是12m ≤≤;(2)命题q :存在[]1,1x ∈-,使得不等式210x x m -+-≤成立,只需()2min 10x x m -+-≤,而22151()24x x m x m -+-=-+-,2min 5(1)4x x m m ∴-+-=-+,504m ∴-+≤,54m ≤, 即命题q 为真时,实数m 的取值范围是54m ≤, 依题意命题,p q 一真一假, 若p 为假命题, q 为真命题,则1254m m m ⎧⎪⎨≤⎪⎩或,得1m <; 若q 为假命题, p 为真命题,则1254m m ≤≤⎧⎪⎨>⎪⎩,得524m <≤, 综上,1m <或524m <≤. 【点睛】本题考查不等式恒(或存在)成立与函数最值关系,以及命题真假关系求参数范围,考查等价转化思想,计算求解能力,属于中档题. 26.(1)[)2,4A B =-,()[]2,1R B A =-;(2)()5,7,3⎛⎫-∞-+∞ ⎪⎝⎭. 【分析】(1)求出集合A 、B ,利用补集的定义可得出集合A B ,利用补集和交集的定义可得出集合()R B A ;(2)分C =∅和C ≠∅两种情况讨论,根据题意得出关于实数m 的不等式(组),解出即可.【详解】(1)解不等式13279x ≤≤,即23333x -≤≤,解得23x -≤≤,得[]2,3A =-. 对于函数()lg 1x f x -=1040x x ->⎧⎨->⎩,解得14x <<,则()1,4B =.[)2,4A B ∴=-,(][),14,R B =-∞+∞,则()[]2,1R B A =-;(2)当C =∅时,433m m ->+,得到72m <-,符合题意; 当C ≠∅时,433332m m m -≤+⎧⎨+<-⎩或43343m m m -≤+⎧⎨->⎩,解得7523m -≤<-或7m >. 综上所述,实数m 的取值范围是()5,7,3⎛⎫-∞-+∞ ⎪⎝⎭. 【点睛】本题考查交集、补集与并集的计算,同时也考查了利用交集的结果求参数,解题的关键就是对集合C 是否为空集进行分类讨论,考查运算求解能力,属于中等题.。

深圳平冈中学必修一第一单元《集合》测试卷(答案解析)

深圳平冈中学必修一第一单元《集合》测试卷(答案解析)

一、选择题1.由实数x ,﹣x ,|x |,2x ,33x -组成的集合中,元素最多有( ) A .2个B .3个C .4个D .5个2.下图中的阴影部分,可用集合符号表示为( )A .()()U U A B ⋂ B .()()U UA BC .()UA BD .()UA B ⋂3.已知集合P 的元素个数为()*3n n N∈个且元素为正整数,将集合P 分成元素个数相同且两两没有公共元素的三个集合,,A B C ,即P A B C =⋃⋃,AB =∅,A C ⋂=∅,BC =∅,其中{}12,,,n A a a a =,{}12,,,n B b b b =,{}12,,,n C c c c =,若集合,,A B C 中的元素满足12n c c c <<<,k k k a b c +=,1,2,,k n =,则称集合P 为“完美集合”例如:“完美集合”{}11,2,3P =,此时{}{}{}1,2,3A B C ===.若集合{}21,,3,4,5,6P x =,为“完美集合”,则x 的所有可能取值之和为( ) A .9 B .16 C .18 D .27 4.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( )A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉5.已知{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈.定义集合{}12121122(,)(,),(,),A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕的元素个数n 满足( ) A .77n =B .49n ≤C .64n =D .81n ≥6.在整数Z 集中,规定被5除所得余数为k 的所有整数组成“一类”,记为[]k ,即[]{}|5,k x x n n Z k ==+∈,0,1,2,3,4k =,给出如下四个结论:①[]20183∈;②[]20183-∈;③[][][][][]01234Z =;④“整数a ,b 属于同‘一类’”的充要条件是“[]0a b -∈”;其中正确结论的个数是( )A .1B .2C .3D .47.定义一个集合A 的所有子集组成的集合叫做A 的幂集,记为()P a ,用()n A 表示有限集A 的元素个数,给出下列命题:(1)对于任意集合A ,都有()A P A ∈;(2)存在集合A ,使得()3nP A =;(3)若AB =Φ,则()()P A P B ⋂=Φ;(4)若A B ⊆,则()()P A P B ⊆;(5)若()()1n A n B -=,则[][]()2()n P A n P B =.其中正确命题的序号为( )A .(1)(2)(5)B .(1)(3)(5)C .(1)(4)(5)D .(2)(3)(4)8.设全集为R ,集合{}2log 1A x x =<,{}21B x y x ==-,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<9.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭10.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( ) A .5m >B .3m <-C .5m >或3m <-D .35m -<<11.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,112.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若AB B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.已知集合2|230A x x x ,{}|0B x x a =-=,若B A ≠⊂,则实数a 的值为______.14.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________.15.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.16.已知集合{}10,A x ax x R =+=∈,集合{}2280B x x x =--=,若A B ⊆,则a 所有可能取值构成的集合为______________ 17.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________18.若集合{}2|20N x x x a =-+=,{}1M =,且N M ⊆,则实数a 的取值范围是_________19.已知集合{}{}2|21,|20xA y yB x x x ==+=--<,则()R C A B =__________.20.若集合2{320}A x ax x =++=中至多有一个元素,则a 的取值范围是__________.三、解答题21.设集合A ={x ∣2x −3x +2=0},B ={x ∣2x +2(a +1)x +2a −5=0} (1)若A ∩B ={2},求实数a 的值; (2)若U =R ,A ∩(UB )=A .求实数a 的取值范围.22.已知集合{|37},{|210},{|}A x x B x x C x x a =≤≤=<<=<,全集为实数集R . (1)求AB ,()R A B ⋂;(2)若A C ⋂≠∅,求a 的取值范围.23.设集合{}240A x x =-=,(){}222150B x x a x a =+++-=.(1)若{}2AB =-,求实数a 的值;(2)若A B A ⋃=,求实数a 的取值范围. 24.已知函数()()2log 4f x x =-的定义域为集合A ,集合{}211B x m x m =-≤<+.(1)当0m =时,求A B ;(2)若B A ⊆,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.25.已知不等式()210x a x a -++≤的解集为A . (1)若2a =,求集合A ;(2)若集合A 是集合{}4|2x x -≤≤的真子集,求实数a 的取值范围. 26.已知集合{}|2,12xA y y x ==≤≤,()(){}|20B x x a x a =---≤.(1)若3a =,求A B ;(2)若()R B C A ⊆.求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.2.C解析:C 【分析】图中阴影部分是集合A 与集合B 的补集的交集. 【详解】图中阴影部分是集合A 与集合B 的补集的交集,所以图中阴影部分,可以用()UA B 表示. 【点睛】本题考查了用韦恩图表示集合间的关系,考查了学生概念理解,数形结合的能力,属于基础题.3.D解析:D 【分析】讨论集合A 与集合B ,根据完美集合的概念知集合C ,根据k k k a b c +=建立等式求x 的值. 【详解】首先当2x =时,{}21,2,3,4,5,6P =不可能是完美集合, 证明:假设{}21,2,3,4,5,6P =是完美集合, 若C 中元素最小为3,则11123a b +=+=,222456a b c +=+==不可能成立; 若C 中元素最小为4,则11134a b +=+=,222256a b c +=+==不可能成立; 若C 中元素最小为5,则11145a b +=+=,222236a b c +=+==不可能成立;故假设{}21,2,3,4,5,6P =是完美集合不成立,则{}21,2,3,4,5,6P =不可能是完美集合. 所以2x ≠;若集合{1,5},{3,6}A B ==,根据完美集合的概念知集合{}4,,5611C x x =∴=+=; 若集合{1,3},{4,6}A B ==,根据完美集合的概念知集合{}5,,369C x x =∴=+=; 若集合{1,4},{3,5}A B ==,根据完美集合的概念知集合{}6,,347C x x =∴=+=; 则x 的所有可能取值之和为791127++=, 故选:D . 【点睛】本题是新概念题,考查学生分析问题,理解问题的能力,是中档题.4.C解析:C 【分析】用列举法表示集合Q ,这样就可以选出正确答案. 【详解】{}M P M a ⊆⇒=或{}b 或{},a b 或∅.因此{}{}{}{}{|},,,,Q M M P a b a b =⊆=∅,所以P Q ∈.故选:C 【点睛】本题考查了集合与集合之间的关系,理解本题中集合Q 元素的属性特征是解题的关键.5.A解析:A 【分析】先理解题意,然后分①当11x =±,10y =时,②当10x =,11y =±时, ③当10x =,10y =时,三种情况讨论即可. 【详解】解:由{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈, ①当11x =±,10y =时, 124,3,2,1,0,1,2,3,4x x +=----,123,2,1,0,1,2,3y y +=---,此时A B ⊕的元素个数为9763⨯=个,②当10x =,11y =±时, 123,2,1,0,1,2,3x x +=---,124,3,2,1,0,1,2,3,4y y +=----,这种情况和第①种情况除124,4y y +=-外均相同,故新增7214⨯=个, ③当10x =,10y =时, 123,2,1,0,1,2,3x x +=---,123,2,1,0,1,2,3y y +=---,这种情况与前面重复,新增0个,综合①②③可得:A B ⊕的元素个数为6314077++=个, 故选:A. 【点睛】本题考查了元素与集合关系的判断,重点考查了计数原理的应用,属中档题.6.C解析:C 【分析】根据“一类”的定义分别进行判断即可. 【详解】①201854033÷=⋯,2018[3]∴∈,故①正确; ②20185(404)2-=⨯-+,2018[3]-∉,故②错误;③因为整数集中的数被5除的数可以且只可以分成五类,故[0][1][2][3][4]Z =⋃⋃⋃⋃,故③正确;④整数a ,b 属于同 “一类”, ∴整数a ,b 被5除的余数相同,从而-a b 被5除的余数为0,反之也成立,故“整数a ,b 属于同一“类”的充要条件是“[0]a b -∈”.故④正确. 正确的结论为①③④3个. 故选:C . 【点睛】本题主要考查新定义的应用,利用定义正确理解“一类”的定义是解决本题的关键,是中档题.7.C解析:C 【分析】直接利用新定义判断五个命题的真假即可. 【详解】由P (A )的定义可知①正确,④正确, 设n (A )=n ,则n (P (A ))=2n ,∴②错误, 若A ∩B =∅,则P (A )∩P (B )={∅},③不正确; n (A )﹣n (B )=1,即A 中元素比B 中元素多1个,则n [P (A )]=2×n [P (B )].⑤正确, 故选:C . 【点睛】本题考查集合的子集关系,集合的基本运算,新定义的理解与应用.8.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.9.D解析:D 【分析】解绝对值不等式求得集合A ,解分式不等式求得集合B ,求得集合A 的补集,然后求此补集和集合B 的并集,由此得出正确选项. 【详解】由|31|2x -≥得312x -≤-或312x -≥,解得13x ≤-或1x ≥,故1,13R C A ⎛⎫=- ⎪⎝⎭.由201x x -≤-得()()12010x x x ⎧--≤⎨-≠⎩,解得12x <≤,所以()R C A B =1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭.故选:D. 【点睛】本小题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合补集、并集的计算,属于基础题.10.C解析:C 【分析】首先根据题意,求得{|2R C B x x m =>+或}2x m <-,由R AC B A =可以得到R A C B ⊆,根据子集的定义求得参数所满足的条件,得到结果.【详解】{}{}2230=|13A x x x x x =--≤-≤≤,∵{}22B x m x m =-≤≤+. ∴{2R C B x x m =>+或2}x m <-, ∵R AC B A =即R A C B ⊆,∴23m ->或21m +<-.即5m >或3m <-,即实数m 的取值范围是5m >或3m <-. 故选:C. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的补集,根据子集求参数的取值范围,属于简单题目.11.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.-1或3【分析】解方程用列举法表示集合AB 由即得解【详解】集合若故a=-1或3故答案为:-1或3【点睛】本题考查了集合的包含关系考查了学生概念理解数学运算能力属于基础题解析:-1或3 【分析】解方程,用列举法表示集合A ,B ,由B A ≠⊂,即得解. 【详解】 集合2|230{1,3}Ax x x ,{}|0{}B x x a a =-==若B A ≠⊂,故a =-1或3 故答案为:-1或3 【点睛】本题考查了集合的包含关系,考查了学生概念理解,数学运算能力,属于基础题.14.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=. 故答案为:2. 【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力.15.或【分析】根据讨论方程解的情况即得结果【详解】时满足题意;时要满足题意需综上的取值范围是或故答案为:或【点睛】本题考查根据集合元素个数求参数考查基本分析求解能力属中档题解析:{0a a =或}1a ≥ 【分析】根据a 讨论2210ax x ++=方程解的情况,即得结果【详解】0a =时,21212102ax x x x ++=+=∴=-,12A ⎧⎫=-⎨⎬⎩⎭满足题意;0a ≠时,要满足题意,需4401a a ∆=-≤∴≥综上a 的取值范围是{0a a =或}1a ≥ 故答案为:{0a a =或}1a ≥ 【点睛】本题考查根据集合元素个数求参数,考查基本分析求解能力,属中档题.16.【分析】先化简集合利用分类讨论和即可求出构成的集合【详解】由可得:即:解得或故:由可得:当时方程无实数解此时满足当时方程的实数解为故:由可得:或解得或的所有取值构成的集合为:故答案为:【点睛】本题主解析:11{0,,}24-【分析】先化简集合B ,利用A B ⊆,分类讨论=0a 和0a ≠,即可求出构成a 的集合. 【详解】由{}2280B x x x =--=可得:2280x x --= 即:()()240x x +-= 解得2x =-或4x = 故:{}2,4B =- {}10,A x ax x R =+=∈由10ax += 可得:1ax =-当0a =时,方程1ax =-无实数解,此时A =∅,满足A B ⊆ 当0a ≠时,方程1ax =-的实数解为1x a =-,故:1{}A a=- 由A B ⊆可得:12a -=-或14a -= 解得12a =或14a =-a 的所有取值构成的集合为:11{0,,}24-.故答案为:11{0,,}24-. 【点睛】本题主要考查了集合间的基本关系以及一元二次方程的解法,要注意集合A 是集合B 的子集时,集合A 有可能是空集.17.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】根据条件()()[3,5]A B =R R 可得()(),35,A B =-∞+∞,结合[1,2]B A =R 的意义,可得集合A .【详解】因为集合A 、B 是实数集R 的子集,若A B =∅,则[2,0]A B A =-=R ,[1,2]BA B ==R ,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]B A =R 表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]B A =R 中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】 本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.18.【分析】根据条件得到或分别计算得到答案【详解】则或当时解得;当时满足综上所述:故答案为:【点睛】本题考查了根据集合的包含关系求参数忽略掉空集的情况是容易发生的错误解析:[1,)+∝【分析】根据条件得到{}1N =或N =∅,分别计算得到答案.【详解】N M ⊆,则{}1N =或N =∅当{}1N =时,{}{}2|201N x x x a =-+==,解得1a =; 当N =∅时,{}2|20N x xx a =-+=,满足4401a a ∆=-<∴>.综上所述:1a ≥故答案为:[1,)+∝【点睛】 本题考查了根据集合的包含关系求参数,忽略掉空集的情况是容易发生的错误. 19.【分析】求函数的值域求得集合解一元二次不等式求得集合由此求得【详解】根据指数函数的性质可知所以有解得即所以故答案为【点睛】本小题主要考查集合交集补集的运算考查指数型函数值域的求法考查一元二次不等式的 解析:(]1,1-【分析】求函数的值域求得集合A ,解一元二次不等式求得集合B ,由此求得()R C A B ⋂.【详解】根据指数函数的性质可知,211x y =+>,所以()1,A =+∞,有()()22210x x x x --=-+<解得12x -<<,即()1,2B =-,所以()R C A B =(]1,1-. 故答案为(]1,1-.【点睛】本小题主要考查集合交集、补集的运算,考查指数型函数值域的求法,考查一元二次不等式的解法,属于基础题.20.或【分析】分情况讨论:当时和当时两种情况;当时由即可求出答案分类讨论最后把的范围合并即可【详解】若则集合符合题意;若则解得故答案为:或【点睛】本题考查集合中元素个数问题;分类讨论和两种情况是求解本题 解析:98a ≥或0a = 【分析】分情况讨论:当0a =时和当0a ≠时两种情况;当0a ≠时由0∆≤即可求出答案.分类讨论最后把a 的范围合并即可.【详解】若0a =,则集合2{|320}3A x x ⎧⎫=+==-⎨⎬⎩⎭,符合题意;若0a ≠,则980a ∆=-≤,解得98a ≥. 故答案为:98a ≥或0a =. 【点睛】本题考查集合中元素个数问题;分类讨论0a =和0a ≠两种情况是求解本题关键; 0a =时易忽略;属于中档题,易错题. 三、解答题21.(1)1-或3-;(2)1a ≠-且3a ≠-且1≠-±a 【分析】(1)由条件可知集合B 中包含元素2,所以代入求a ,并验证是否满足条件;(2)由条件得A B =∅,分∆<0和0,0∆>∆=三种情况讨论,得到a 的取值范围.【详解】(1){}1,2A =,由{}2A B ⋂=可知,()2224150a a +++-=, 即2430a a ++=,解得:1a =-或3a =-,当1a =-时,2402x x -=⇒=±,此时2,2B ,满足{}2A B ⋂=,当3a =-时,24402x x x -+=⇒=,此时{}2B =,满足{}2A B ⋂=.所以实数a 的值是1-或3-;(2)U =R ,A ∩(U B )=A ,U A B ∴⊆,则A B =∅ ①当()()2241458240a a a ∆=+--=+<,即3a <-时,此时B =∅,满足条件; ②当0∆=时,3a =-,即{}2B =,{}2A B ⋂=,不满足条件;③当0∆>时,即3a >-时,此时只需1B ∉,2∉B ,将2代入方程得1a =-或3a =-,将1代入方程得2220a a +-=,得13=-±a , 综上可知,a 的取值范围是1a ≠-且3a ≠-且13≠-±a【点睛】易错点睛:1.当集合的元素是方程的实数根时,根据集合的运算结果求参数时,注意回代检验,否则会造成增根情况,当集合是区间形式表示时,注意端点值的开闭; 2.当集合的运算结果转化为集合的包含关系时,注意讨论空集情况,容易忽略这一点. 22.(1){}210A B x x ⋃=<<,()R A B ={}23710x x x <<<<或;(2)3a >.【分析】(1)利用集合交并补的定义进行计算即可;(2)利用A C ⋂≠∅结合数轴,可求得a 的取值范围.【详解】(1)∵{}37A x x =≤≤,{}210B x x =<<, ∴{}210A B x x ⋃=<<.∵{}37A x x =≤≤,∴{|3R C A x x =<或}7x >,∴()RA B ={|3x x <或}7x >{}210x x ⋂<<{}23710x x x =<<<<或. (2)如图所示,当3a >时,A C ⋂≠∅(或用补集思想)3a ∴>.【点睛】本题考查集合的交并补运算,考查利用集合间的关系求参数范围,属于基础题.23.(1)5;(2){3a a ≤-或}1a =-.【分析】(1)求得集合A ,由题意可得2B ∈,可求得a 的值,再验证{}2AB =-是否满足,由此可求得实数a 的值;(2)由题意可得B A ⊆,分B =∅、{}2B =-、{}2B =、2,2B四种情况讨论,求得实数a 的值,并检验A B ⊆是否成立,由此可求得实数a 的取值范围. 【详解】(1){}{}2402,2A x x =-==-,因为{}2A B =-,所以2B -∈,所以()244150a a -++-=,整理得2450a a --=,解得1a =-或5a =.当1a =-时,{}{}2402,2B x x =-==-,不满足{}2A B =-; 当5a =时,{}{}2122002,10B x xx =++==--,满足{}2A B =-; 故5a =; (2)由题意,知{}2,2A =-,由A B A ⋃=,得B A ⊆.①当集合B =∅时,关于x 的方程()222150x a x a +++-=没有实数根, 所以()()2241458240a a a ∆=+--=+<,即30a +<,解得3a <-; ②当集合{}2B =-时,()242145a a ⎧-=-+⎨=-⎩,无解; ③当集合{}2B =时,()242145a a ⎧=-+⎨=-⎩,解得3a =-, ④当2,2B 时,21054a a +=⎧⎨-=-⎩,解得1a =- 综上,可知实数a 的取值范围为{3a a ≤-或}1a =-.【点睛】本题考查交集的计算,同时也考查了利用集合的包含关系求参数,考查分类讨论思想的应用与运算求解能力,属于中等题. 24.(1)[)1,4A B =-(2)3,4⎛⎫+∞ ⎪⎝⎭(3)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦ 【分析】(1)计算得到142A x x ⎧⎫=<<⎨⎬⎩⎭,[)1,1B =-,求并集得到答案. (2)讨论B =∅和B ≠∅两种情况,分别计算到答案.(3)讨论B =∅和B ≠∅两种情况,分别计算到答案.【详解】(1)由40210x x ->⎧⎨->⎩,解得142A x x ⎧⎫=<<⎨⎬⎩⎭,当0m =时,[)1,1B =-, 所以[)1,4A B =-.(2)当B =∅时,211m m -≥+,2m ≥,符合B A ⊆.当B ≠∅时,根据B A ⊆得211121214m m m m -<+⎧⎪⎪->⎨⎪+≤⎪⎩,解得324m <<. 综上所述,m 的取值范围是3,4⎛⎫+∞ ⎪⎝⎭. (3)当B =∅时,211m m -≥+,2m ≥,符合A B =∅.当B ≠∅时,211112m m m -<+⎧⎪⎨+≤⎪⎩或211214m m m -<+⎧⎨->⎩,解得12m ≤-. 综上所述,m 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查了集合的并集,根据集合包含关系求参数,根据交集结果求参数,意在考查学生对于集合运算的综合应用.25.(1){}|12x x ≤≤;(2)[]4,2.【分析】(1)当2a =时,不等式化为2320x x -+≤,结合一元二次不等式的解法,即可求解; (2)把不等式化为()()10x x a --≤,分类讨论,结合集合的包含关系,即可求解.【详解】(1)由题意,当2a =时,不等式()210x a x a -++≤,即2320x x -+≤, 即()()120x x --≤,解得12x ≤≤,所以集合{}|12A x x =≤≤.(2)由()210x a x a -++≤,可得()()10x x a --≤, 当1a <时,不等式()()10x x a --≤的解集为{}|1x a x ≤≤.由集合A 是集合{}4|2x x -≤≤的真子集可得4a ≥-,所以41a -≤<,当1a =时,不等式()()10x x a --≤的解集为{}|1x x =满足题意;当1a >时,不等式()()10x x a --≤的解集为{}|1x x a ≤≤,由集合A 是集合{}4|2x x -≤≤的真子集,可得2a ≤,所以11a <≤,综上可得:42x -≤≤,即实数a 的取值范围为[]4,2-.【点睛】本题主要考查了一元二次不等式的求解及其应用,其中解答中熟记一元二次不等式的解法,结合集合的关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题. 26.(1)=[3,4]A B ; (2)4a >或0a < 【分析】(1)写出集合A ,B 的区间形式,代入数值计算即可;(2)写出集合R C A ,根据边界判断a 的取值范围即可.【详解】集合{}|2,12=[2,4]x A y y x ==≤≤,()(){}|20[,2]B x x a x a a a =---≤=+ (1)若3a =,[3,5]B =,则=[3,4]A B ; (2)(,2)(4,)R C A =-∞+∞,()R B C A ⊆, 因此:4a >或22a +<故:4a >或0a <【点睛】 本题考查了集合的交并补运算,考查了学生的数学运算能力,属于基础题.。

深圳市岗厦中学必修第一册第一单元《集合与常用逻辑用语》检测卷(有答案解析)

深圳市岗厦中学必修第一册第一单元《集合与常用逻辑用语》检测卷(有答案解析)

一、选择题1.若命题P :1x ≠或2y ≠,命题Q :3x y +≠,则P 是Q 的( )条件A .充分不必要B .必要不充分C .充要D .既不充分又不必有 2.“2a >”是“函数()()x f x x a e =-在()0,∞+上有极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.下列命题中,不正确...的是( )A .0x R ∃∈,200220x x -+≥B .设1a >,则“b a <”是“log 1a b <”的充要条件C .若0a b <<,则11a b >D .命题“[]1,3x ∀∈,2430x x -+≤”的否定为“[]01,3x ∃∈,200430x x -+>”4.已知全集U =R ,集合{|01},{1,0,1}A x R x B =∈<=-,则()U A B =( ) A .{}1- B .{1} C .{1,0}- D .{0,1} 5.已知集合A ={x |x 2-4|x |≤0},B ={x |x >0},则A ∩B =( )A .(]0,4B .[]0,4C .[]0,2D .(]0,2 6.若命题“∃x 0∈R ,x +(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( ) A .(-1,3) B .[-1,3]C .(-∞,-1)∪(3,+∞)D .(-∞,-1]∪[3,+∞)7.“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”是“4a ≤-”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.已知集合{}1,2,3,4,5A =,且A B A =,则集合B 可以是( )A .{}|21x x >B .{}21x xC .{}2log 1x xD .{}1,2,3 9.非零向量,a b 满足4,2b a ==且a 与b 夹角为θ,则“23b a -=”是“3πθ=”的() A .必要而不充分条件 B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件10.下列命题错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠ ,则2320x x -+≠”B .若p q ∧为假命题,则,p q 均为假命题C .对于命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,均有210x x ++≥D .“2x >”是“2320x x -+>”的充分不必要条件11.“8m =”是“椭圆2214x y m +=的离心率为2”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 12.已知函数()31f x x ax =--,则()f x 在()1,1-上不单调的一个充分不必要条件是( )A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,3a ∈二、填空题13.已知集合(){},320,A a b a b a N =+-=∈,()(){}2,10,B a b k a a b a N =-+-=∈,若存在非零整数k ,满足A B ⋂≠∅,则k =______. 14.已知集合{|(1,2)(0,1),}P a a m m R ==-+∈,{|(2,1)(1,1),}Q b b n n R ==+-∈,则P Q =_________.15.下列说法正确的是______①“若0xy =,则0x =或0y =”的否命题是真命题②命题“2,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”③x R ∃∈,使得1x e x <-④“0a <”是“221x ay +=表示双曲线”的充要条件.16.已知集合{}{}22,1,A B a ==,若{}0,1,2A B =,则实数a =________. 17.写出命题“,20x x R ∀∈>”的否定:______.18.设{}1,2,3,M n =,则M 的所有子集的最小元素之和为__________19.设命题p :431x -≤,命题q :()()22110x a x a a -+++≤,若q 是p 的必要不充分条件,则实数a 的取值范围是______20.下列有关命题的说法正确的是__________________.①命题“若x 2-3x +2=0,则x =1”的逆否命题为:若x ≠1,则x 2-3x +2≠0②x =1是x 2-3x +2=0的充分不必要条件③若p ∧q 为假命题,则p ,q 均为假命题④对于命题p :∃x ∈R ,使得x 2+x +1<0,则非p :∀x ∈R , 均有x 2+x +1≥0三、解答题21.设命题:p 实数x 满足22430x ax a -+<,(0)a >,命题:q 实数x 满足(3)(2)0x x --≥.(1)若1a =,p q ∧为真命题,求x 的取值范围;(用区间表示)(2)若q 是p 的充分不必要条件,求实数a 的取值范围.(用区间表示)22.已知集合4{|0}3x A x x -=>+,集合{|221}B x a x a =-≤≤+. (1)当3a =时,求A 和()R A B ; (2)若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.23.已知集合{}{}|25,|121.A x x B x m x m =-≤≤=+≤≤-(1)若AB =∅,求实数m 的取值范围;(2)若A B A ⋃=,求实数m 的取值范围. 24.已知集合A 是函数2lg 20()8y x x =+-的定义域,集合B 是不等式22210(0)x x a a -+-≥>的解集,:,:p x A q x B ∈∈.(1)若A B =∅,求a 的取值范围;(2)若p ⌝是q 的充分不必要条件,求a 的取值范围. 25.已知1:123x p --≤,()22:2100q x x m m -+-≤>,若p ⌝是q ⌝的充分而不必要条件,求实数m 的取值范围.26.已知命题}{:210p x x -<<,命题{:1q x x a ≤-或}1x a ≥+,若p ⌝是q 的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】通过举反例,判断出P 成立推不出Q 成立,通过判断逆否命题的真假,判断出原命题的真假得到后者成立能推出前者成立,由充分条件、必要条件的定义得到结论.【详解】当0x =,3y =时,Q 不成立,即P Q ⇒不成立,即充分性不成立;判断必要性时,写出原命题:3x y +≠时,则1x ≠或2y ≠,由于原命题不好判断,故转化为逆否命题进行判断,即原命题变为:若1x =且2y =,则有3x y +=,对于该命题,明显成立,所以,原命题也成立;即必要性成立;所以P 是Q 的必要而不充分条件,故选:B【点睛】关键点睛:判断一个命题是另一个命题的什么条件,一般先判断前者成立是否能推出后者成立,再判断后者成立能否推出前者成立;本题难点在于:利用逆否命题的真假性判断原命题的真假性,属于中档题.2.A解析:A【分析】求出函数()()xf x x a e =-的极值点,利用该极值点在()0,∞+内求得实数a 取值范围,利用集合的包含关系可得出结论.【详解】()()x f x x a e =-,则()()1x f x x a e '=-+,令()0f x '=,可得1x a =-.当1x a <-时,()0f x '<;当1x a >-时,()0f x '>.所以,函数()y f x =在1x a =-处取得极小值.若函数()y f x =在()0,∞+上有极值,则10a ->,1a ∴>.因此,“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的充分不必要条件. 故选:A.【点睛】本题考查充分不必要条件的判断,同时也考查了利用导数求函数的极值点,考查计算能力与推理能力,属于中等题.3.B解析:B【分析】由()2200022110x x x -+=-+≥,可判断A ;由对数函数的定义域和对数函数的单调性得充分性不一定成立,必要性成立,可判断B ;运用作差法,判断其差的符号可判断C ;根据全称命题的否定是特称命题可判断D.【详解】由()2200022110x x x -+=-+≥,得A 为真命题; 由“b a <”不能推出“log 1a b <”,所以充分性不一定成立,由“log 1a b <”得“b a <”,所以必要性成立,故B 不正确;由0a b <<,则110b a a b ab --=>,∴11a b>,故C 正确; 根据全称命题的否定是特称命题知D 正确.故选:B.【点睛】 本题考查判断命题的真假,对数函数的定义域,单调性,全称命题与特称命题的关系,属于中档题.4.C解析:C【分析】根据补集的运算,求得{|0U x A x =≤或1}x >,再结合交集的运算,即可求解. 【详解】由题意,全集U =R ,集合{|01}A x R x =∈<≤,可得{|0U x A x =≤或1}x >,又由集合{1,0,1}B =-,所以(){1,0}U A B ⋂=-.故选:C.【点睛】 本题考查集合的补集与交集概念及运算,其中解答中熟记集合的交集、补集的概念和运算方法是解答的关键,着重考查了运算与求解能力.5.A解析:A【分析】先求出集合A ,然后进行交集的运算即可.【详解】A={x|-4≤x≤4};∴A∩B=(0,4].故选A .【点睛】本题主要考查了集合描述法、区间的定义,一元二次不等式的解法,以及交集的运算,属于中档题.6.C解析:C【分析】根据二次函数的图象与性质,得到关于a 的不等式,即可求解.【详解】由题意,2000,(1)10x R x a x ∃∈+-+<,则2(1)40a ∆=-->,解得3a >或1a <-,所以实数a 的取值范围是(,1)(3,)-∞-+∞,故选C.【点睛】本题主要考查了存在性命题的真假判定及应用,其中熟记转化为二次函数,利用二次函数的图象与性质是解答的关键,着重考查了推理与计算能力. 7.B解析:B【分析】先分析“4a ≤-”能否推出“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”,这是必要性分析;然后分析“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”能否推出“4a ≤-”,这是充分性分析,然后得出结果.【详解】若4a ≤-,则对称轴(1)32x a =-+≥>,所以()f x 在(,2]-∞上为单调递增,取3a =-,则对称轴(1)2x a =-+=,()f x 在(,2]-∞上为单调递增,但4a >-,所以“()f x 在(,2]-∞上为单调递增”是“4a ≤- ”的必要不充分条件.【点睛】充分、必要条件的判断,需要分两步:一方面要说明充分性是否满足,另一方面也要说明必要性是否满足.8.A解析:A【分析】由AB A =可知,A B ⊆,据此逐一考查所给的集合是否满足题意即可. 【详解】由A B A =可知,A B ⊆, 对于A :0{|212}x x >=={|0}x x A ⊇>,符合题意.对于B :{}21x x ={|11}x x x <->或,没有元素1,所以不包含A ;对于C :22{|log 1log 2}x x >=={|2}x x >,不合题意;D 显然不合题意,本题选择A 选项.【点睛】本题主要考查集合的表示方法,集合之间的关系等知识,意在考查学生的转化能力和计算求解能力. 9.C解析:C【分析】 由题意,若23b a -=,根据向量的数量积和模的计算公式,可得1cos 2θ=,得到3πθ=,;反之也可求得23b a -=,即可得到答案.【详解】 由题意,非零向量,a b 满足4,2b a ==且a 与b 夹角为θ, 若23b a -=,即2222()2164242cos 12b a b a b a a b θ-=-=+-⋅=+-⨯⨯=, 解得1cos 2θ=,又因为[]0,θπ∈,可得3πθ=,即充分性是成立的;若3πθ=,由2222()2164242cos 123b a b a b a a b π-=-=+-⋅=+-⨯⨯=,可得23b a -=,即必要性是成立的,所以“23b a -=”是“3πθ=”的充分必要条件.故选:C.【点睛】 本题主要考查了充分条件、必要条件的判定,其中解答中熟记向量的数量积的运算,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力.10.B解析:B【分析】由原命题与逆否命题的关系即可判断A ;由复合命题的真值表即可判断B ; 由特称命题的否定是全称命题即可判断C ;根据充分必要条件的定义即可判断D ;.【详解】A .命题:“若p 则q ”的逆否命题为:“若¬q 则¬p ”,故A 正确;B .若p ∧q 为假命题,则p ,q 中至少有一个为假命题,故B 错.C .由含有一个量词的命题的否定形式得,命题p :∃x ∈R ,使得x 2+x +1<0,则¬p 为:∀x ∈R ,均有x 2+x +1≥0,故C 正确;D .由x 2﹣3x +2>0解得,x >2或x <1,故x >2可推出x 2﹣3x +2>0,但x 2﹣3x +2>0推不出x >2,故“x >2”是“x 2﹣3x +2>0”的充分不必要条件,即D 正确故选B .【点睛】本题考查简易逻辑的基础知识:四种命题及关系,充分必要条件的定义,复合命题的真假和含有一个量词的命题的否定,这里要区别否命题的形式,本题是一道基础题. 11.A 解析:A【分析】椭圆2214x y m +=离心率为2,可得:4m >2=04m <<时,2=,解得m 即可判断出结论. 【详解】椭圆2214x y m +=离心率为2,可得:4m >2=,8m ∴=;04m <<2=,2m ∴= 总之8m =或2.∴“8m =”是“椭圆2214x y m +=离心率为2”的充分不必要条件. 故选:A .【点睛】本题考查了椭圆的标准方程及其性质、充分不必要条件的判定方法,考查了推理能力与计算能力,属于基础题.12.D解析:D【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案.【详解】由已知,()23[,3)f x x a a a =-∈--‘,当0a ≤时,'()0f x ≥,当3a ≥时,'()0f x ≤,所以()f x 在()1,1-上单调,则0a ≤或3a ≥,故()f x 在()1,1-上不单调时,a 的范围为 (0,3),A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件.故选:D【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.二、填空题13.【分析】首先根据条件得到有实数解从而得到又根据为非零整数所以再分别验证的值即可得到答案【详解】因为存在非零整数满足所以有实数解且整理得:有实数解且所以解得因为为非零整数所以当时解得或符合题意当时解得 解析:1-【分析】首先根据条件得到()2231b a b k a a =-⎧⎪⎨=-+⎪⎩k ≤≤,又根据k 为非零整数,所以1,1,2k =-,再分别验证k 的值即可得到答案.【详解】因为存在非零整数,满足A B ⋂≠∅,所以()2231b ab k a a =-⎧⎪⎨=-+⎪⎩有实数解,且a N ∈.整理得:()2320ka k a k +-+-=有实数解,且0k ≠,a N ∈.所以()()23420k k k ∆=---≥k ≤≤, 因为k 为非零整数,所以1,1,2k =- 当1k =-时,2430a a -+=,解得1a =或3,符合题意.当1k =时,2210a a +-=,解得a N ∉,舍去.当2k =时,220a a +=,解得a N ∉,舍去.综上1k =-.故答案为:1-【点睛】本题主要考查集合的交集运算,同时一元二次不等式的解法,属于中档题.14.【分析】根据向量的坐标运算可求得集合P 与集合Q 再结合交集的运算即可求解【详解】集合则集合则由集合的交集定义可知解方程组可得所以故答案为:【点睛】本题考查了向量的坐标运算集合交集的定义属于基础题解析:(){}1,2【分析】根据向量的坐标运算,可求得集合P 与集合Q,再结合交集的运算即可求解.【详解】集合{|(1,2)(0,1),}P a a m m R ==-+∈则(){}1,2P m =-+集合{|(2,1)(1,1),}Q b bn n R ==+-∈ 则(){}2,1Q n n =-+由集合的交集定义可知1221n m n =-⎧⎨-+=+⎩解方程组可得14n m =⎧⎨=⎩所以(){}1,2P Q ⋂=故答案为: (){}1,2 【点睛】本题考查了向量的坐标运算,集合交集的定义,属于基础题.15.①②④【分析】分别判断每个选项的真假最后得到答案【详解】①若则或的否命题为:若则且正确②命题的否定是正确③使得设即恒成立错误④是表示双曲线的充要条件当是:表示双曲线当表示双曲线时:故是表示双曲线的充解析:①②④【分析】分别判断每个选项的真假,最后得到答案.【详解】①“若0xy =,则0x =或0y =”的否命题为:若0xy ≠,则0x ≠且0y ≠,正确 ②命题“2,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”,正确③x R ∃∈,使得1x e x <-.设min ()1'()1()(0)20x x f x e x f x e f x f =-+⇒=-⇒==>即1x e x >-恒成立,错误④“0a <”是“221x ay +=表示双曲线”的充要条件当0a <是:221x ay +=表示双曲线当221x ay +=表示双曲线时:0a <故“0a <”是“221x ay +=表示双曲线”的充要条件 故答案为①②④【点睛】本题考查了否命题,命题的否定,充要条件,综合性强,意在考查学生的综合应用能力. 16.0【解析】分析:根据集合的并集的含义有集合A 或B 必然含有元素0又由集合AB 可得从而求得结果详解:根据题意若则A 或B 必然含有元素0又由则有即故答案是0点睛:该题考查的是有关集合的运算问题利用两个集合的 解析:0.【解析】分析:根据集合的并集的含义,有集合A 或B 必然含有元素0,又由集合A,B 可得20a =,从而求得结果.详解:根据题意,若{}=0,1,2A B ⋃,则A 或B 必然含有元素0,又由{}{}22,1,A B a ==,则有20a =,即0a =,故答案是0.点睛:该题考查的是有关集合的运算问题,利用两个集合的并集中的元素来确定有关参数的取值问题,属于基础题目.17.【解析】因为命题的否定为所以命题的否定为解析:,20x x R ∃∈≤【解析】因为命题“p x ∀,”的否定为“p x ∃⌝,”,所以命题“,20x x R ∀∈>”的否定为,20x x R ∃∈≤18.【分析】先确定元素再确定该元素为最小时对应子集个数最后利用错位相减法求和【详解】若1为最小元素则对应子集个数为个;若2为最小元素则对应子集个数为个;…若n 为最小元素则对应子集个数为个;所以的所有子集解析:122n n +--【分析】先确定元素,再确定该元素为最小时对应子集个数,最后利用错位相减法求和.【详解】若1为最小元素,则对应子集个数为12n -个;若2为最小元素,则对应子集个数为22n -个;…...若n 为最小元素,则对应子集个数为02个;所以M 的所有子集的最小元素之和为2301223222n n n n ---+⨯+⨯++⨯ 设1230222322n n n n S ---+⨯+=⨯++⨯1212232222n n n n S --+⨯+⨯++⨯= 相减得231112(12)222222212n n n n n n n n n S ---+-++++-==-=--+- 故答案为:122n n +--【点睛】本题考查错位相减法求和以及子集个数,考查综合分析求解能力,属中档题.19.【分析】求出两个命题的等价命题即x 的取值范围得到两命题pq 分别对应的的集合AB 由q 是p 的必要不充分条件得进而可求实数a 的取值范围【详解】因为所以所以命题p 对应的集合为解不等式可得命题q 对应的集合为因 解析:10,2⎡⎤⎢⎥⎣⎦【分析】求出两个命题的等价命题,即x 的取值范围,得到两命题p ,q 分别对应的的集合A ,B ,由q 是p 的必要不充分条件,得A B ≠⊂,进而可求实数a 的取值范围。

深圳市联鹏学校必修第一册第一单元《集合与常用逻辑用语》测试卷(答案解析)

深圳市联鹏学校必修第一册第一单元《集合与常用逻辑用语》测试卷(答案解析)

一、选择题1.已知直线,m n 和平面α,n ⊂α,则“//m n ”是“//m α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知非空集合A ,B 满足以下两个条件: (i ){}1,2,3,4,5AB =,A B =∅;(ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素, 则有序集合对(),A B 的个数为( ) A .7B .8C .9D .103.函数3()1f x ax x =++有极值的充分但不必要条件是( ) A .1a <- B .1a < C .0a < D .0a > 4.24x >成立的一个充分非必要条件是( )A .23x >B .2xC .2x ≥D .3x >5.已知定义在R 上的偶函数()y f x =在[)0,+∞上单调递减,则对于实数a ,b ,“a b >”是“()()f a f b <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.设向量(sin2,cos )a θθ=,(cos ,1)b θ=,则“//a b ”是“1tan 2θ=”成立的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.设等比数列{}n a 中,10a >,公比为q ,则“1q >”是“{}n a 是递增数列”的( ). A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既非充分又非必要条件8.非零向量,a b 满足4,2b a ==且a 与b 夹角为θ,则“23b a -=”是“3πθ=”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件9.“8m =”是“椭圆2214x y m+=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则实数m 的取值范围是( )A .[]0,2B .(],2-∞C .()0,2D .(),2-∞11.设,(0,1)a b ∈,:P “a b <”,:q “log log a b a b b a <”,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件12.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.已知2:(1)0p x a x a -++≤,:13q x ≤≤,若p 是q 的必要不充分条件,则实数a 的取值范围是______. 14.给出下列三种说法:①命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(q ⌝)”是假命题.②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3. ③命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x≠1,则x 2-3x +2≠0”. 其中所有正确说法的序号为________________.15.对于任意非空集合A 、B ,定义{|,}A B a b a A b B +=+∈∈,若{}2,0,1S T ==-,则S T +=________(用列举法表示)16.已知集合{}{}22160,430,A x x B x x x =-<=-+>则AUB =____________. 17.已知集合{}{}22,1,A B a==,若{}0,1,2AB =,则实数a =________.18.已知集合{}{}21,,A m B m ==,若B A ⊆,则实数m 的值是__________.19.若命题:“2000,10x R ax ax ∃∈-->”为假命题,则实数a 的取值范围是__________.20.下列命题中,正确的是___________.(写出所有正确命题的编号) ①在中,是的充要条件;②函数的最大值是;③若命题“,使得”是假命题,则; ④若函数,则函数在区间内必有零点.三、解答题21.已知全集U =R ,非空集合2{|0}3x A x x -=<-,2{|()(2)0}B x x a x a =---<.(1)当12a =时,求()U A B ;(2)命题p :x A ∈,命题q :x B ∈,若q 是p 的必要条件,求实数a 的取值范围.22.已知集合103x A xx +⎧⎫=≤⎨⎬-⎩⎭∣,{}2(1)20B x x m x m =--+-≤∣.(1)若[,][1,4]A a b ⋃=-,求实数a ,b 满足的条件; (2)若A B A ⋃=,求实数m 的取值范围.23.已知全集U =R ,集合{}{}2|2150,|51A x x x B x x =-++≤=-<,求A B ,()U A B ⋂.24.已知集合{}2|320A x R ax x =∈-+=. (1)若A 是空集,求实数a 的取值范围; (2)若A 中只有一个元素,求实数a 的值.25.已知非空集合(){}2230A x x a a x a =-++<,集合211xB xx ⎧⎫=<⎨⎬-⎩⎭,命题:p x A ∈.命题:q x B ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围; (2)当实数a 为何值时,p 是q 的充要条件. 26.已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围;(2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】从充分性和必要性两方面分别分析判断得解. 【详解】直线,m n 和平面α,n ⊂α,若//m n ,当m α⊂时,//m α显然不成立,故充分性不成立;当//m α时,如图所示,显然//m n 不成立,故必要性也不成立.所以“//m n ”是“//m α”的既不充分又不必要条件. 故选:D 【点睛】方法点睛:判定充要条件常用的方法有三种:(1)定义法:直接利用充分必要条件的定义分析判断得解; (2)集合法:利用集合的包含关系分析判断得解; (3)转化法:转化成逆否命题分析判断得解.2.B解析:B 【分析】结合题意,按照集合中的元素个数分类,即可得解. 【详解】由题意,符合要求的情况分为以下几类:(1)当集合A 只有一个元素时,集合B 中有四个元素,1A ∉且4B ∉, 故{4}A =,{1,2,3,5}B =,共计1种;(2)当集合A 有两个元素时,集合B 中有三个元素,2A ∉且3B ∉, 故可能结果为:①{1,3}A =,{2,4,5}B =;②{3,4}A =,{}1,2,5B =; ③{}3,5A =,{1,2,4}B =,共计3种;(3)当集合A 有三个元素时,集合B 中有两个元素,3A ∉且2∉B , 故可能结果为:①{2,4,5}A =,3{}1,B;②{}1,2,5A =,{3,4}B =;③{1,2,4}A =,{}3,5B =,共计3种;(4)当集合A 中有4个元素时,集合B 中有1个元素,4A ∉且1B ∉, 故{1,2,3,5}A =,{4}B =,共计1种. 所以有序集合对(),A B 的个数为13318+++=. 故选:B. 【点睛】本题考查了根据集合的运算结果及集合中元素的性质确定集合,考查了运算求解能力,属于中档题.3.A解析:A 【分析】求导2()31f x ax '=+,所以要使函数3()1f x ax x =++有极值,则需3012>0a a ≠∆=-,,可求得a 的范围,再由充分必要条件可得选项. 【详解】因为2()31f x ax '=+,所以要使函数3()1f x ax x =++有极值,则需3012>0a a ≠∆=-,,解得0a <,又由1a <-可推得0a <,而由0a <不能推得1a <-,所以函数3()1f x ax x =++有极值的充分但不必要条件是1a <-, 故选:A . 【点睛】本题考查函数有极值的条件,以及命题的充分必要条件的判断,属于中档题.4.D解析:D 【分析】根据题意,找到24x >解集的一个真子集即可求解. 【详解】由24x >解得2x >或2x <-,所以24x >成立的一个充分非必要条件是(2)(2,)-∞-+∞的真子集,因为3+∞(,) (2)(2,)-∞-+∞,所以24x >成立的一个充分非必要条件是3x >, 故选:D 【点睛】本题主要考查了充分条件、必要条件,真子集的概念,属于中档题.5.B解析:B 【分析】根据充分条件与必要条件的判断,看条件与结论之间能否互推,条件能推结论,充分性成立,结论能推条件,必要性成立,由此即可求解. 【详解】解:∵定义在R 上的偶函数()y f x =在[)0,+∞上单调递减,∴()y f x =在(),0-∞上单调递增,∴当(),0a ∈-∞,(),0b ∈-∞时,如1,2a b =-=-,满足a b > ,但()()>f a f b ,所以由“a b >”推不出“()()f a f b <”,反之,当a R ∈,b R ∈时,“()()f a f b <”⇒“a b >”⇒“a b >”, 故对于实数a ,b ,“a b >”是“()()f a f b <”的必要不充分条件, 故选:B .【点睛】本题以函数的奇偶性为背景,考查充分条件与必要条件的判断,考查理解辨析能力,属于中档题.6.B解析:B 【分析】先将//a b 等价化简为cos 0θ=或1tan 2θ=,再判断解题即可. 【详解】//a b ⇔(sin 2,cos )//(cos ,1)θθθ⇔2sin 2cos θθ=⇔cos 0θ=或1tan 2θ=,所以“//a b ”是“1tan 2θ=”成立的必要不充分条件. 故选:B. 【点睛】本题考查向量平行的坐标表示、判断p 是q 的什么条件、三角恒等变换化简,是中档题.7.C解析:C 【分析】根据等比数列的通项公式和单调性的判定方法,结合充分条件、必要条件的判定,即可求解. 【详解】在等比数列{}n a 中,可得11n n a a q -=,若10,1a q >>,可得11111()(1)0n n n n n a a a q q a q q --+-=-=->,即1n n a a +>,所以数列{}n a 为递增数列,故充分性是成立的; 反之:若等比数列{}n a 为递增数列,即111(1)0n n n a a a qq -+-=->,若10a >,则1(1)0n q q -->,可得1q >,故必要性是成立的,所以“1q >”是“{}n a 是递增数列”的充分必要条件. 故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,以及数列的单调性的判定方法及应用,其中解答中熟记数列的单调性的判定方法是解答的关键,着重考查推理与论证能力.8.C解析:C 【分析】由题意,若23b a -=,根据向量的数量积和模的计算公式,可得1cos 2θ=,得到3πθ=,;反之也可求得23b a -=,即可得到答案.【详解】由题意,非零向量,a b 满足4,2b a ==且a 与b 夹角为θ, 若23b a -=,即2222()2164242cos 12b a b a b a a b θ-=-=+-⋅=+-⨯⨯=,解得1cos 2θ=,又因为[]0,θπ∈,可得3πθ=,即充分性是成立的;若3πθ=,由2222()2164242cos123b a b a b a a b π-=-=+-⋅=+-⨯⨯=,可得23b a -=,即必要性是成立的,所以“23b a -=”是“3πθ=”的充分必要条件.故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,其中解答中熟记向量的数量积的运算,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力.9.A解析:A 【分析】椭圆2214x y m +=离心率为2,可得:4m >=04m <<时,2=,解得m 即可判断出结论. 【详解】椭圆2214x y m +=,可得:4m >=8m ∴=;04m <<2=,2m ∴=总之8m =或2.∴“8m =”是“椭圆2214x y m +=离心率为2”的充分不必要条件. 故选:A . 【点睛】本题考查了椭圆的标准方程及其性质、充分不必要条件的判定方法,考查了推理能力与计算能力,属于基础题.10.D解析:D 【分析】设(1,2)x ∈时,2485()1x x f x x -+=-的值域A ,2()1mx m g x x -+=-的值域B ,只要A B ⊆即可满足题意.【详解】设2485()1x x f x x -+=-((1,2)x ∈),24(1)11()4(1)11x f x x x x -+==-+--, 设1t x =-,则1()4f x y t t ==+,则(0,1)x ∈,由勾形函数性质知当102t <<时,y 递减,当112t <<时,y 递增, min 1144122y =⨯+=,[4,)y ∈+∞,即()f x 值域为[4,)+∞, 2()1mx m g x x -+=-((1,2)x ∈),设1x t -=,(0,1)t ∈,则2()g x y m t==+,(0,1)t ∈时,2y m t=+是减函数,(2,)y m ∈++∞,即()(2,)g x m ∈++∞, 对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则24m +<,2m <.故选:D . 【点睛】本题考查含有存在题词与全称题词的命题恒成立问题,解题关键是把问题转化为集合之间的包含关系.11.C解析:C 【分析】利用不等式的性质和充分必要条件的定义进行判断即可得到答案. 【详解】充分性:01a b <<<⇒22lg lg 0(lg )(lg )a b a b <<⇒>. 所以22lg lg (lg )(lg )lg lg b aa b b a ab a b<⇒< 即:log log a b a b b a <,充分性满足.必要性:因为,(0,1)a b ∈,所以log 0a b >,log 0b a >.又因为log log a b a b b a <,所以log log a b b ba a <,即2(log )ab b a<. 当a b =时,11<,不等式不成立. 当a b >时,01b a<<,log 1a b >,不等式2(log )a bb a <不成立当a b <时,1b a >,0log 1a b <<,不等式2(log )a bb a<成立. 必要性满足.综上:p 是q 的充要条件. 故选:C 【点睛】本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.12.A解析:A 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.二、填空题13.【分析】根据充分条件和必要条件的定义转化为对应关系进行求解即可【详解】x2﹣(a+1)x+a≤0即(x ﹣1)(x ﹣a )≤0p 是q 的必要不充分条件当a =1时由(x ﹣1)(x ﹣1)≤0得x =1此时不满足 解析:(3,)+∞【分析】根据充分条件和必要条件的定义转化为对应关系进行求解即可. 【详解】x 2﹣(a +1)x +a ≤0即(x ﹣1)(x ﹣a )≤0, p 是q 的必要不充分条件,当a =1时,由(x ﹣1)(x ﹣1)≤0得x =1,此时不满足条件, 当a <1时,由(x ﹣1)(x ﹣a )≤0得a ≤x ≤1,此时不满足条件. 当a >1时,由(x ﹣1)(x ﹣a )≤0得1≤x ≤a , 若p 是q 的必要不充分条件,则a >3, 即实数a 的取值范围是(3,+∞), 故答案为(3,+∞) 【点睛】本题主要考查充分条件和必要条件的应用,根据定义转化为不等式的包含关系是解决本题的关键.14.①③【解析】试题分析:①若命题p :存在x ∈R 使得tanx=1;命题q :对任意x ∈Rx2-x+1>0则命题p 且¬q 为假命题此结论正确对两个命题进行研究发现两个命题都是真命题故可得p 且¬q 为假命题②已知解析:①③ 【解析】试题分析:①若命题p :存在x ∈R ,使得tanx=1;命题q :对任意x ∈R ,x 2-x+1>0,则命题“p 且¬q”为假命题,此结论正确,对两个命题进行研究发现两个命题都是真命题,故可得“p 且¬q”为假命题.②已知直线l 1:ax+3y-1=0,l 2:x+by+1=0.则l 1⊥l 2的充要条件为ab =−3,若两直线垂直时,两直线斜率存在时,斜率乘积为a b =−3,当a=0,b=0时,此时两直线垂直,但不满足a b=−3,故本命题不对.③命题“若x 2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x 2-3x+2≠0”,由四种命题的书写规则知,此命题正确;考点:复合命题的真假;四种命题15.【分析】根据集合的新定义分别求出两个集合中各取一个元素求和的所有可能情况【详解】由题:对于任意非空集合定义若各取一个元素形成有序数对所有可能情况为所有情况两个数之和构成的集合为:故答案为:【点睛】此 解析:{}4,2,1,0,1,2---【分析】根据集合的新定义,分别求出两个集合中各取一个元素求和的所有可能情况.【详解】由题:对于任意非空集合A 、B ,定义{|,}A B a b a A b B +=+∈∈,若{}2,0,1S T ==-,各取一个元素,a A b B ∈∈形成有序数对(),a b ,所有可能情况为()()()()()()()()()2,2,2,0,2,1,0,2,0,0,0,1,1,2,1,0,1,1------,所有情况两个数之和构成的集合为:{}4,2,1,0,1,2---故答案为:{}4,2,1,0,1,2---【点睛】此题考查集合的新定义问题,关键在于读懂定义,根据定义找出新集合中的元素即可得解. 16.R 【解析】分析:根据一元二次不等式的解法先将化简再由并集的运算求详解:因为或故答案为点睛:本题考查并集及其运算一元二次不等式的解法正确化简集合是关键研究集合问题一定要抓住元素看元素应满足的属性研究两 解析:R【解析】分析:根据一元二次不等式的解法先将,A B 化简,再由并集的运算求A B . 详解: 因为{}{}2|160|44A x x x x =-<=-<<, {}{2430|1B x x x x x =-+=<或}3x >, A B R ∴⋃=,故答案为R .点睛:本题考查并集及其运算,一元二次不等式的解法,正确化简集合,A B 是关键. 研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或属于集合B 的元素的集合. 17.0【解析】分析:根据集合的并集的含义有集合A 或B 必然含有元素0又由集合AB 可得从而求得结果详解:根据题意若则A 或B 必然含有元素0又由则有即故答案是0点睛:该题考查的是有关集合的运算问题利用两个集合的 解析:0.【解析】分析:根据集合的并集的含义,有集合A 或B 必然含有元素0,又由集合A,B 可得20a =,从而求得结果.详解:根据题意,若{}=0,1,2A B ⋃,则A 或B 必然含有元素0,又由{}{}22,1,A B a ==,则有20a =,即0a =,故答案是0.点睛:该题考查的是有关集合的运算问题,利用两个集合的并集中的元素来确定有关参数的取值问题,属于基础题目.18.【解析】分析:根据集合包含关系得元素与集合属于关系再结合元素互异性得结果详解:因为所以点睛:注意元素的互异性在解决含参数的集合问题时要注意检验集合中元素的互异性否则很可能会因为不满足互异性而导致解题 解析:0【解析】分析:根据集合包含关系得元素与集合属于关系,再结合元素互异性得结果.详解:因为B A ⊆,所以22110.m m m m m m m =≠⎧⎧∴=⎨⎨≠=⎩⎩或 点睛:注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.19.【解析】由题意得解析:[]4,0-【解析】由题意得2004040a a a a a <⎧=∴-≤≤⎨∆=+≤⎩或 20.①③④【分析】根据正弦定理及三角形的性质可判断(1);利用均值不等式可判断(2);利用假命题求参数的范围可判断(3);利用零点存在性定理可判断(4)【详解】解:对于(1)sinA >sinB ⇔2Rsi 解析:①③④【分析】根据正弦定理,及三角形的性质,可判断(1);利用均值不等式,可判断(2);利用假命题求参数的范围,可判断(3);利用零点存在性定理,可判断(4).【详解】解:对于(1),sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B (其中R 为△ABC 外接圆半径),故(1)正确;对于(2),x 21x +=--(1﹣x 21x+-)+1≤﹣1=﹣+1,当且仅当x =12)错误; 对于(3),若命题“x R ∃∈,使得()2310ax a x +-+≤”是假命题⇔命题:“∀x ∈R ,使得ax 2+(a ﹣3)x +1>0”恒成立.∵a =0时,不符合题意,∴20(3)40a a a ⎧⎨=--<⎩>∴1a 9<<,故(3)正确; 对于(4),∵()12a f abc =++=-,∴3a +2b +2c =0,∴32c a b =--. 又f (0)=c ,f (2)=4a +2b +c ,∴f (2)=a ﹣c .(i )当c >0时,有f (0)>0,又∵a >0,∴()102a f =-<,故函数f (x )在区间(0,1)内有一个零点,故在区间(0,2)内至少有一个零点.(ii )当c ≤0时,f (1)<0,f (0)=c ≤0,f (2)=a ﹣c >0,∴函数f (x )在区间(1,2)内有一零点,故(4)正确.故正确答案为:①③④【点睛】本题考查的知识点是命题的真假判断与应用,熟练掌握正弦定理,均值不等式,二次函数的,图象和性质,函数零点存在定理,是解答的关键. 三、解答题21.(1)934xx ⎧⎫≤<⎨⎬⎩⎭;(2)(,1][1,2]-∞-⋃. 【分析】(1)先解分式不等式和二次不等式得集合,A B ,再求补集和交集即可;(2)先判断22a a +>得2{|2}B x a x a =<<+,再根据必要条件得到集合的包含关系,列不等式求解即可.【详解】(1)∵12a =时,2{|0}{|23}3x A x x x x -=<=<<-, 1119{|()(2)0}{|}2424B x x x x x =---<=<<, 全集U =R ,∴1{|2UC B x x =≤或9}4x ≥.∴9(){|3}4U C B A x x ⋂=≤<. (2)∵命题p :x A ∈,命题q :x B ∈,q 是p 的必要条件,∴A B ⊆. ∵221772()0244a a a +-=-+≥>,∴22a a +>, ∵23{|}A x x =<<,2{|2}B x a x a =<<+,∴2223a a ≤⎧⎨+≥⎩,解得1a ≤-或12a ≤≤,故实数a 的取值范围(,1][1,2]-∞-⋃. 【点睛】本题主要考查了集合的运算及求参问题,涉及必要条件的转化,属于基础题.22.(1)4b =,13a -≤<;(2)15m ≤<.【分析】(1)直接利用并集结果可得4b =,13a -≤<;(2)根据A B A ⋃=可得B A ⊆,再对集合B 的解集情况进行分类讨论,即可得答案;【详解】解:(1)10{13}3x A x x x x +⎧⎫=≤=-≤<⎨⎬-⎩⎭∣∣;[,][1,4]A a b ⋃=-, ∴4b =,13a -≤<;(2){}2(1)20{|(1)((2))0}B x x m x m x x x m =--+-≤=---≤∣,A B A ⋃= B A ∴⊆∴分情况讨论①21m -<,即3m <时2121m m -≥-⎧⎨-<⎩得13m ≤<; ②若21m -=,即3m =,B 中只有一个元素1符合题意;③若21m ->,即3m >时2321m m -<⎧⎨->⎩得35m <<,∴35m << ∴综上15m ≤<.【点睛】由集合间的基本关系求参数时,注意对可变的集合,分空集和不为空集两种情况. 23.{|3A B x x ⋃=≤-或}4x >,(){}|45U A B x x ⋂=<<【分析】可以求出集合,A B ,然后进行交集、并集和补集的运算即可.【详解】22150x x -++≤,即()()2215530x x x x --=-+≥,解得3x ≤-或5x ≥. 所以{|3A x x =≤-或}5x ≥,{}|35U A x x =-<<.5115146x x x -<⇔-<-<⇔<<,所以{}|46B x x =<<.所以{|3A B x x ⋃=≤-或}4x >,(){}|45U A B x x ⋂=<<. 【点睛】本小题主要考查集合交集、并集和补集的运算,考查一元二次不等式和绝对值不等式的解法,属于中档题.24.(1)9,8⎛⎫+∞ ⎪⎝⎭(2)0a =或98a =【分析】(1)A 是空集,即2320ax x -+=无解,计算得到答案.(2)考虑0a =和0a ≠两种情况,计算得到答案.【详解】 (1)∵A 是空集,∴()20380a a ≠⎧⎪⎨--<⎪⎩,即98a >,∴实数a 的取值范围9,8⎛⎫+∞ ⎪⎝⎭.(2)∵A 中只有一个元素,∴0a =或()20380a a ≠⎧⎪⎨--=⎪⎩即:0a =或98a =. 【点睛】本题考查了根据空集和集合中元素个数求参数,意在考查学生的计算能力,漏解是容易发生的错误.25.(1)1001-⋃(,)(,);(2)1a =-. 【分析】(1)解出集合B ,由题意得出A B ,可得出关于实数a 的不等式组,即可求得实数a 的取值范围;(2)由题意可知A B =,进而可得出1-和1是方程()2230x a a x a -++=的两根,利用韦达定理可求得实数a 的值.【详解】(1)解不等式211x x <-,即101x x +<-,解得11x -<<,则{}11B x x =-<<. 由于p 是q 的充分不必要条件,则A B ,()(){}20A x x a x a=--<, ①当2a a =时,即当0a =或1a =时,A =∅,不合题意;②当2a a <时,即当0a <或1a >时,{}2A x a x a =<<, A B ,则211a a ≥-⎧⎨≤⎩,解得10a -≤<, 又当1a =-,{}11A x x B =-<<=,不合乎题意.所以10a -<<;③当2a a <时,即当01a <<时,A B ,则211a a ⎧≥-⎨≤⎩,此时01a <<. 综上所述,实数a 的取值范围是1001-⋃(,)(,); (2)由于p 是q 的充要条件,则()1,1A B ==-,所以,1-和1是方程()2230x a a x a -++=的两根, 由韦达定理得2301a a a ⎧+=⎨=-⎩,解得1a =-. 【点睛】本题考查利用充分不必要条件、充要条件求参数,考查运算求解能力,属于中等题. 26.(1)[]1,0-(2)(),0-∞【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围; (2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++, 2x a ∴-< ,22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩, 解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+, 当且仅当()()10a x x -+≥时,等号成立,所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <. 所以实数a 的取值范围是(),0-∞.【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题.。

深圳市必修第一册第一单元《集合与常用逻辑用语》检测卷(答案解析)

深圳市必修第一册第一单元《集合与常用逻辑用语》检测卷(答案解析)

一、选择题1.已知命题2:2,:2320p x q x x <--<,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知非空集合A ,B 满足以下两个条件: (i ){}1,2,3,4,5AB =,A B =∅;(ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素, 则有序集合对(),A B 的个数为( ) A .7B .8C .9D .104.m n 是两条不同的直线,α是平面,n α⊥,则//m α是m n ⊥的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤C .21a -<<D .2a <-或1a >6.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题; ③“2019a >”是“2020a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中真命题的序号为( ) A .③④ B .①②C .①③D .②④7.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.定义:若平面点集A 中的任一个点00(,)x y ,总存在正实数r ,使得集合2200{(,)()()}x y x x y y r A -+-<⊆,则称A 为一个开集.给出下列集合:①22{(,)|1}x y x y +=;②{(,)|20}x y x y ++≥;③{(,)|6}x y x y +<;④22{(,)|0(1}x y x y <+<. 其中是开集的是( ) A .①④B .②③C .②④D .③④ 9.设向量(sin2,cos )a θθ=,(cos ,1)b θ=,则“//a b ”是“1tan 2θ=”成立的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则AB =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,211.已知ξ服从正态分布()21,N σ,a ∈R ,则“P (ξ>a )=0.5”是“关于x 的二项式321()ax x +的展开式的常数项为3”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件D .充要条件12.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R A C B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}二、填空题13.给出下列命题:①函数()π4cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个对称中心为5π,012⎛⎫- ⎪⎝⎭;②若命题:p “2,10x R x x ∃∈-->”,则命题p 的否定为:“2,10x R x x ∀∈--<”;③设随机变量~(,)B n p ξ,且()2,()1E D ξξ==,则(1)p ξ==14;④函数sin 2y x =的图象向左平移π4个单位长度,得到πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是_____________(把你认为正确的序号都填上). 14.给出下列三种说法:①命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(q ⌝)”是假命题.②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3. ③命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x≠1,则x 2-3x +2≠0”. 其中所有正确说法的序号为________________.15.命题“数列的前n 项和()2*3n S n n n N=+∈”成立的充要条件是________.(填一组符合题意的充要条件即可,所填答案中不得含有字母n )16.已知m R ∈,则“02m <<”是“方程22212x y m m +=-表示焦点在x 轴上的椭圆”的______ 条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选择一个).17.已知函数1,()1,M x Mf x x M∈⎧=⎨-∉⎩(M 为非空数集),对于两个集合,A B ,定义{}()?()1A B A B x f x f x ∆==-,已知{0,1,2,3}A =,{2,3,4,5}B =,则A B ∆=__________.18.已知{|12},[0,4]M x m x m N =-≤≤=,且M N M ⋂=,则实数m 的取值范围_____________; 19.定义全集的子集的特征函数为,这里表示在全集中的补集,那么对于集合,下列所有正确说法的序号是 .(1)(2)()1()U A A f x f x =- (3)()()()A B A B f x f x f x ⋃=+ (4)()()()A B A B f x f x f x ⋂=⋅20.非空集合*S N ⊆,且满足条件“x S ∈,则()10x S -∈”,则集合S 的所有元素之和的总和为______.三、解答题21.已知命题:p x R ∀∈,()()221140a x a x -+-+>,:q x R ∃∈,()22110x a x -++<(1)若“2321t a t --≤≤-”是p 成立的充分条件,求实数t 的取值范围; (2)若p q ∧为假,p q ∨为真,求实数a . 22.已知2:430p x x -+≤,()():10q x x m +-<. (1)若2m =,q 为真命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围. 23.已知原命题是“若260x x --≤则2280x x --≤”.(1)试写出原命题的逆命题,否命题,逆否命题,并判断所写命题的真假;(2)若“()(2)0x a x -+≤”是“260x x --≤”的必要不充分条件,求实数a 的取值范围. 24.设集合U 为全体实数集,{ 2 5}M x x x =|≤-≥或,121{|}N x a x a =+≤≤-. (1)若3a =,求U MC N ;(2)若N M ⊆,求实数a 的取值范围.25.已知全集U={x ∈N|1≤x≤6},集合A={x |x 2-6x +8=0},集合B={3,4,5,6}. (1)求A∩B ,A ∪B ;(2)写出集合(∁U A )∩B 的所有子集.26.设全集是实数集R ,集合{}13A x x =-<<,{}22B x m x m =-<<+. (1)若AB =∅,求实数m 的取值范围;(2)若2B ∈,求A B .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出q 成立的x 的范围,然后根据集合包含关系判断. 【详解】2:2320q x x --<,(21)(2)0x x +-<,122x -<<,由于1,22⎛⎫- ⎪⎝⎭是(,2)-∞的真子集,因此应是必要不充分条件. 故选:C .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.2.A解析:A 【详解】因为:1213p x x x +>⇔><-或,p ⌝:31x -≤≤;22:5656023q x x x x x ->⇔-+<⇔<<,q ⌝:23x x ≤≥或, 因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A. 3.B解析:B 【分析】结合题意,按照集合中的元素个数分类,即可得解. 【详解】由题意,符合要求的情况分为以下几类:(1)当集合A 只有一个元素时,集合B 中有四个元素,1A ∉且4B ∉, 故{4}A =,{1,2,3,5}B =,共计1种;(2)当集合A 有两个元素时,集合B 中有三个元素,2A ∉且3B ∉,故可能结果为:①{1,3}A =,{2,4,5}B =;②{3,4}A =,{}1,2,5B =; ③{}3,5A =,{1,2,4}B =,共计3种;(3)当集合A 有三个元素时,集合B 中有两个元素,3A ∉且2∉B , 故可能结果为:①{2,4,5}A =,3{}1,B;②{}1,2,5A =,{3,4}B =;③{1,2,4}A =,{}3,5B =,共计3种;(4)当集合A 中有4个元素时,集合B 中有1个元素,4A ∉且1B ∉, 故{1,2,3,5}A =,{4}B =,共计1种. 所以有序集合对(),A B 的个数为13318+++=. 故选:B. 【点睛】本题考查了根据集合的运算结果及集合中元素的性质确定集合,考查了运算求解能力,属于中档题.4.A解析:A 【分析】根据线面平行的性质定理、线面垂直的定义结合充分条件、必要条件的定义判断即可. 【详解】当//m α时,过直线m 作平面β,使得l αβ=,则//m l ,n α⊥,l α⊂,n l ∴⊥,m n ∴⊥,即//m m n α⇒⊥; 当m n ⊥时,由于n α⊥,则m α⊂或//m α,所以,//m n m α⊥⇒/.综上所述,//m α是m n ⊥的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了空间点、线、面位置关系的判断,考查推理能力,属于中等题.5.B解析:B 【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩ ,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.6.B解析:B 【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断. 【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确; “2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误. 故选:B . 【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.7.B解析:B 【解析】当α⊥β时,平面α内的直线m 不一定和平面β垂直,但当直线m 垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m ⊥β”的必要不充分条件.8.D解析:D 【分析】根据开集的定义逐个验证选项,即可得到答案. 【详解】①:22{(,)|1}x y x y +=表示以原点为圆心,1为半径的圆, 则在该圆上任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆故①不是开集;②{(,)|20}x y x y ++≥,在曲线20x y ++=任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆,故该集合不是开集; ③{(,)|6}x y x y +<平面点集A 中的任一点00(,)x y ,则该点到直线的距离为d ,取r d =,则满足{(,)|}x y r A ⊆,故该集合是开集;④22{(,)|0(1}x y x y <+<表示以点()0,3为圆心,1为半径除去圆心和圆周的圆面,在该平面点集A 中的任一点00(,)x y ,则该点到圆周上的点的最短距离为d ,取r d =,则满足{(,)}x y r A <⊆,故该集合是开集.故答案选D 项. 【点睛】本题属于集合的新定义型问题,考查对新定义的理解并解决问题,属于中档题.9.B解析:B 【分析】先将//a b 等价化简为cos 0θ=或1tan 2θ=,再判断解题即可. 【详解】//a b ⇔(sin 2,cos )//(cos ,1)θθθ⇔2sin 2cos θθ=⇔cos 0θ=或1tan 2θ=,所以“//a b ”是“1tan 2θ=”成立的必要不充分条件. 故选:B. 【点睛】本题考查向量平行的坐标表示、判断p 是q 的什么条件、三角恒等变换化简,是中档题.10.A解析:A 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .11.A解析:A 【解析】 试题分析:由,知1a =.因为二项式321()ax x +展开式的通项公式为31321()()r r rr T C ax x-+==3333r r r a C x --,令330r -=,得1r =,所以其常数项为212333a C a ==,解得1a =±,所以“”是“关于x 的二项式321()ax x +的展开式的常数项为3”的充分不必要条件,故选A .考点:1、正态分布;2、二项式定理;3、充分条件与必要条件.12.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.二、填空题13.①③【分析】求出判断①利用存在量词命题否定形式判断②二项分布的期望与方差判断③;三角函数图象变换判断④【详解】解:①函数的一个对称中心为故①正确;②若命题:则命题的否定为:;所以②不正确;③设随机变解析:①③ 【分析】 求出5()012f π-=判断①,利用存在量词命题否定形式判断②,二项分布的期望与方差判断③;三角函数图象变换判断④. 【详解】 解:①5()4cos()0122f ππ-=-=, ∴函数()4cos(2)3f x x π=+的一个对称中心为5(,0)12π-,故①正确;②若命题p :“x R ∃∈,210x x -->”,则命题p 的否定为:“x R ∀∈,210x x --”;所以②不正确;③设随机变量~(,)B n p ξ,且()2E ξ=,()1D ξ=,可得2np =,(1)1np p -=,可得12p =,4n =则43111(1)12412p C ξ⎛⎫==-⋅= ⎪⎝⎭;所以③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()4y x π=+,不是sin(2)4y x π=+的图象,所以④不正确;故答案为:①③. 【点睛】本题考查命题的真假判断与应用,考查sin()y A x ωϕ=+型函数的图象和性质,命题的否定,期望与方差的求法,属于中档题.14.①③【解析】试题分析:①若命题p :存在x ∈R 使得tanx=1;命题q :对任意x ∈Rx2-x+1>0则命题p 且¬q 为假命题此结论正确对两个命题进行研究发现两个命题都是真命题故可得p 且¬q 为假命题②已知解析:①③ 【解析】试题分析:①若命题p :存在x ∈R ,使得tanx=1;命题q :对任意x ∈R ,x 2-x+1>0,则命题“p 且¬q”为假命题,此结论正确,对两个命题进行研究发现两个命题都是真命题,故可得“p 且¬q”为假命题.②已知直线l 1:ax+3y-1=0,l 2:x+by+1=0.则l 1⊥l 2的充要条件为ab =−3,若两直线垂直时,两直线斜率存在时,斜率乘积为a b =−3,当a=0,b=0时,此时两直线垂直,但不满足a b=−3,故本命题不对.③命题“若x 2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x 2-3x+2≠0”,由四种命题的书写规则知,此命题正确;考点:复合命题的真假;四种命题15.数列为等差数列且【分析】根据题意设该数列为由数列的前项和公式分析可得数列为等差数列且反之验证可得成立综合即可得答案【详解】根据题意设该数列为若数列的前项和则当时当时当时符合故有数列为等差数列且反之当解析:数列为等差数列且14a =,6d =. 【分析】根据题意,设该数列为{}n a ,由数列的前n 项和公式分析可得数列为等差数列且14a =,6d =,反之验证可得23n S n n =+成立,综合即可得答案.【详解】根据题意,设该数列为{}n a ,若数列的前n 项和23n S n n =+,则当1n =时,114a S ==,当2n 时,162n n n a S S n -=-=-, 当1n =时,14a =符合62n a n =-, 故有数列为等差数列且14a =,6d =,反之当数列为等差数列且14a =,6d =时,62n a n =-,21()232n n a a S n n +⨯==+; 故数列的前n 项和23(*)n S n n n N =+∈”成立的充要条件是数列为等差数列且14a =,6d =,故答案为:数列为等差数列且14a =,6d =. 【点睛】本题考查充分必要条件的判定,关键是掌握充分必要条件的定义,属于基础题.16.必要不充分【解析】因为方程表示焦点在轴上的椭圆所以因此是方程表示焦点在轴上的椭圆的必要不充分条件点睛:充分必要条件的三种判断方法定义法:直接判断若则若则的真假并注意和图示相结合例如⇒为真则是的充分条解析:必要不充分 【解析】因为方程22212x y m m +=-表示焦点在x 轴上的椭圆,所以2202m m m >-><<因此“02m <<”是“方程22212x y m m +=-表示焦点在x 轴上的椭圆”的必要不充分条件点睛:充分、必要条件的三种判断方法.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.17.【解析】∵函数(为非空数集)对于两个集合定义∴故答案为 解析:{0,1,4,5}【解析】∵函数()1,1,M x Mf x x M ∈⎧=⎨-∉⎩(M 为非空数集).对于两个集合,A B ,定义()(){}•1A B A B x f x f x ∆==-,{}0,1,2,3A =,{}2,3,4,5B =,∴{}0145A B ,,,=,故答案为{}0,1,4,5.18.【分析】先根据条件确定集合包含关系再分类讨论得结果【详解】当时满足条件此时当时综上实数m 的取值范围为【点睛】本题考查集合包含关系考查基本分析求解能力属基础题 解析:()[],11,2-∞-⋃【分析】先根据条件确定集合包含关系,再分类讨论得结果. 【详解】M N M M N ⋂=∴⊂当M φ=时,满足条件,此时12,1m m m -><-当M φ≠时, 10,2412m m m -≥≤∴≤≤ 综上,实数m 的取值范围为(,1)[1,2]-∞-⋃ 【点睛】本题考查集合包含关系,考查基本分析求解能力,属基础题.19.(1)(2)(4)【详解】试题分析:(1)∵A ⊆B 分类讨论:①当则此时②当且即此时③当且即时此时综合有故(1)正确;(2)故(2)正确;故(3)不正确;故(4)正确;考点:集合的交并补运算解析:(1)(2)(4)【详解】试题分析:(1)∵A ⊆B ,分类讨论: ①当,则,此时, ②当,且,即,此时, ③当,且,即时,,,此时, 综合有,故(1)正确; (2),故(2)正确; 1,()()()0,()A B A B U x A B f x f x f x x C A B ⋃∈⋃⎧=≠+⎨∈⋃⎩,故(3)不正确;,故(4)正确;考点:集合的交并补运算20.720【分析】欲求中所有元素和的总和需要知道中的元素和分别是多少;中的元素都可以通过题中已知条件:则求出【详解】解:依题意得为正整数集且及均为正整数即可可取的任意正整数1和9要么必须同时出现要么都不 解析:720.【分析】欲求S 中所有元素和的总和,需要知道S 中的元素和分别是多少;S 中的元素都可以通过题中已知条件:x S ∈,则(10)x S -∈求出.【详解】解:依题意得S 为正整数集,x S ∈,且10x S -∈ x 及10x -均为正整数即可 x 可取19→的任意正整数,1和9要么必须同时出现,要么都不出现;同理:2和8、3和7、4和6依此类推5……单独考虑,共5组.那么:只选1组是45,即(19)(28)545++++⋯⋯+=依此类推:选2组是180,选3组是270,选4组是180,选5组是45,共计4518027018045720++++=.故答案为:720.【点睛】首先要明确*N 所代表的数集,然后根据已知条件将所有的可能考虑全面即可,属于中档题.三、解答题21.(1)1,15⎛⎫-∞- ⎪⎝⎭;(2) 3171,,12152⎛⎫⎡⎫--⋃ ⎪⎪⎢⎝⎭⎣⎭ 【分析】(1)当命题,p q 为真时,求得a 的取值范围,“2321t a t --≤≤-”是p 成立的充分条件即[][)1723,21,1,15t t ⎛⎫---⊆-∞-⋃+∞ ⎪⎝⎭,计算求解即可; (2)p q ∧为假,p q ∨为真,即即,p q 一真一假,分情况讨论即可得出结果.【详解】(1)命题p 为真时,1a =或()()2221014140a a a ⎧->⎪⎨∆=--⨯-⨯<⎪⎩,解得:1a =或1a >或1715a <-,综上:p 为真,a 的取值范围为[)17,1,15⎛⎫-∞-⋃+∞ ⎪⎝⎭; 命题q 为真时,()2=2140a ∆+->,解得a 的取值范围为31,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭; 若“2321t a t --≤≤-”是p 成立的充分条件,则[][)1723,21,1,15t t ⎛⎫---⊆-∞-⋃+∞ ⎪⎝⎭, ①2321t t -->-时,15t <-,符合题意. ②2321172115t t t --≤-⎧⎪⎨-<-⎪⎩时,即15115t t ⎧≥-⎪⎪⎨⎪<-⎪⎩,11515t -≤<-. ③2321231t t t --≤-⎧⎨--≥⎩时,151t t ⎧≥-⎪⎨⎪<-⎩,无解. 综上:t 的取值范围为:1,15⎛⎫-∞- ⎪⎝⎭. (2)若p q ∧为假,p q ∨为真,即,p q 一真一假:①p 真q 假:171153122a a a ⎧<-≥⎪⎪⎨⎪-<<⎪⎩或,即317215a -<<- ②p 假q 真:171153122a a a ⎧-≤<⎪⎪⎨⎪≤-≥⎪⎩或,即112a ≤<. 综上:实数a 的取值范围:3171,,12152⎛⎫⎡⎫--⋃ ⎪⎪⎢⎝⎭⎣⎭. 【点睛】方法点睛:根据命题的真假求參数的取值范围的方法(1)求出当命题,p q 为真命题时所含參数的取值范围;(2)判断命题,p q 的真假性;(3)根据命题的真假情况,利用集合的交集和补集的运算,求解參数的取值范围. 22.(1)12x -<<;(2)()3,+∞.【分析】(1)由2m =时,解不等式()()120x x +-<即可;(2)用集合法判断,由p 是q 的充分不必要条件知,2430x x -+≤的解集是()()10x x m +-<解集的子集,列不等式,可得.【详解】(1)当2m =时,命题q 为()()120x x +-<,若该命题为真,解得12x -<<.所以实数x 的取值范围是12x -<<.(2)命题p 为真时x 的取值范围是[]1,3.若q 为真时,则①当1m <-时,x 的取值范围为(),1m -,不合题意;②当1m =-时,x 的取值范围为∅,不合题意;③当当1m >-时,x 的取值范围为()1,m -.∵p 是q 的充分不必要条件,∴[]1,3为(-1,m )真子集,那么3m >.∴m 的取值范围是()3,+∞.【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.23.(1)逆命题:“若2280x x --≤则260x x --≤”,假命题;否命题:“若260x x -->则2280x x -->”,假命题;逆否命题:“若2280x x -->则260x x -->”,真命题;(2)3a >【分析】(1)根据逆命题,否命题,逆否命题的定义,可得逆命题,否命题,逆否命题,求解对应不等式的范围,以及原命题,逆否命题同真假,逆命题否命题同真假,可得解; (2)若“()(2)0x a x -+≤”是“260x x --≤”的必要不充分条件,则不等260x x --≤的解23x -≤≤构成的集合为()(2)0x a x -+≤的解集的真子集.分2a =-,2a <-,2a >-三种情况讨论即得解.【详解】(1)根据逆命题,否命题,逆否命题的定义,逆命题:“若2280x x --≤则260x x --≤”;否命题:“若260x x -->则2280x x -->”;逆否命题:“若2280x x -->则260x x -->”.260x x --≤即:23x -≤≤;2280x x --≤即:24x -≤≤可得:原命题“若260x x --≤则2280x x --≤”是真命题,逆命题“若2280x x --≤则260x x --≤”是假命题,根据原命题,逆否命题同真假,逆命题否命题同真假,可得:逆否命题为真,否命题为假. (2)若“()(2)0x a x -+≤”是“260x x --≤”的必要不充分条件,则不等式260x x --≤的解23x -≤≤构成的集合为()(2)0x a x -+≤的解集的真子集.()(2)0x a x -+≤对应方程的根为12,2x a x ==-若2a =-,不等式的解为2x =-,不成立;若2a <-,不等式的解为2a x ≤≤-,不成立;若2a >-,不等式的解为2x a -≤≤,若23x -≤≤构成的集合是2x a -≤≤构成的集合的真子集,则3a >.综上:实数a 的取值范围是3a >.【点睛】本题考查了命题的四种形式以及充分必要条件,考查了学生综合分析,逻辑推理,转化划归,分类讨论的能力,属于中档题.24.(1){|2x x ≤-或5}x >.; (2)(,2)[4,)-∞+∞. 【分析】(1)当3a =,求得集合2{|M x x =≤-或5}x ,45{|}N x x =≤≤,根据集合的运算,即可求解;(2)根据N M ⊆,分类讨论,列出不等式(组),即可求解.【详解】(1)当3a =,集合2{|M x x =≤-或5}x,45{|}N x x =≤≤, 可得{|4U C N x x =<或5}x >,所以{2U x x M C N =|≤-或5}x >.(2)因为N M ⊆,当N φ=时,可得121a a +>-,解得2a <,此时满足N M ⊆;当N φ≠时,要使得N M ⊆,则满足121212a a a +≤-⎧⎨-≤-⎩或12115a a a +≤-⎧⎨+≥⎩, 解得φ或4a ≥,即4a ≥,综上可得,实数a 的取值范围(,2)[4,)-∞+∞. 【点睛】根据集合的运算结果求参数的取值范围的分法:将集合中的运算关系转化为两个集合之间的关系,若集合中的运算能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到;将集合之间的关系转化为解方程(组)或不等式(组)问题求解;根据求解结果来确定参数的值或取值范围.25.(1){}2,3,4,5,6;(2)见解析.【分析】化简集合U 和A ,(1)根据交集和并集的概念得到A ∩B 与A ∪B ;(2)根据集合的交集补集的概念求出(∁U A )∩B ,再写出它的所有子集.【详解】全集U={x ∈N|1≤x≤6}={1,2,3,4,5,6},集合A={x|x 2-6x+8=0}={x|x=2或x=4}={2,4},集合B={3,4,5,6};(1)A∩B={4},A ∪B={2,3,4,5,6};(2)∁U A={1,3,5,6},∴(∁U A )∩B={3,5,6},它的所有子集是∅,{3},{5},{6},{3,5},{3,6},{5,6},{3,5,6}共8个.【点睛】本题考查了集合的化简与运算问题,是基础题目.26.(1)5m ≥或3m ≤- (2)当01m <≤时,()1,2A B m =-+;当14m <<时,()2,3A B m =-【分析】(1)若A B =∅,则23m -≥或21m +≤-,解得实数m 的取值范围; (2)若2B ∈则()0,4m ∈,结合交集定义,分类讨论可得A B . 【详解】解:(1)若A B =∅,则23m -≥或21m +≤-,即5m ≥或3m ≤-.所以m 的取值范围为5m ≥或3m ≤-.(2)∵2B ∈,则22m -<且22m +>,∴04m <<.当01m <≤时,()1,2AB m =-+; 当14m <<时,()2,3AB m =-. 【点睛】本题考查集合的交集运算,元素与元素的关系,分类讨论思想,属于中档题.。

(人教版)深圳市必修第一册第一单元《集合与常用逻辑用语》测试题(含答案解析)

(人教版)深圳市必修第一册第一单元《集合与常用逻辑用语》测试题(含答案解析)

一、选择题1.已知{}n a 是等比数列,n S 为其前n 项和,那么“10a >”是“数列{}n S 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假状况是( )A .原命题与逆命题均为真命题B .原命题真,逆命题假C .原命题假,逆命题真D .原命题与逆命题均为真命题4.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列命题错误的是( )A .命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”B .命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+<”C .若“p 且q ”为真命题,则p ,q 均为真命题D .“1x >-”是“2430x x ++>”的充分不必要条件6.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( )A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈7.下列命题中,不正确的是( )A .0x R ∃∈,20010x x -+≥B .若0a b <<则11a b> C .设0a >,1a ≠,则“log 1a b >”是“b a >”的必要不充分条件D .命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”8.已知函数32()(,,)f x x ax bx c a b c R =+++∈,则“230a b -≤”是“()f x 在R 上只有一个零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件9.已知平面向量a 和b ,则“||||b a b =-”是“1()02b a a -⋅=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.已知a ,b R ∈,“1a b +<”是“11a b a b ⎧+<⎪⎨-<⎪⎩”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件12.已知全集{1,2,3,4,5}U =,集合{1,2,4}A =,{1,3,5}B ,则()U C A B ( )A .{1}B .{3,5}C .{1,3,5}D .{2,3,4,5}二、填空题13.已知条件:21p x ⌝-<<,条件:q x a ⌝>,且q 是p 的充分不必要条件,则a 的取值范围是_________.14.已知集合{}2,M y y x x R ==∈,221,4y N y x x R ⎧⎫⎪⎪=+=∈⎨⎬⎪⎪⎩⎭,则M N =__________. 15.给出下列命题: ①“1a >”是“11a<”的充分必要条件; ②命题“若21x <,则1x <”的否命题是“若21x ≥,则1x ≥”;③设x ,y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件; ④设a ,b R ∈,则“0a ≠”是“0ab ≠”的必要不充分条件. 其中正确命题的序号是_________. 16.下列说法正确的是______①“若0xy =,则0x =或0y =”的否命题是真命题②命题“2,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥” ③x R ∃∈,使得1x e x <-④“0a <”是“221x ay +=表示双曲线”的充要条件.17.已知集合{}{}22160,430,A x x B x x x =-<=-+>则AUB =____________. 18.集合{}*110,,S x x x N n N=≤≤∈∈共有120个三元子集()1,2,...,120iA i =,若将i A 的三个元素之和记为()1,2,...,120i a i =,则12120...a a a +++=______.19.已知()2:9p x a -<,()3:log 21q x +<.若p ⌝是q ⌝的充分不必要条件,则a 的取值范围是________. 20.设{}1,2,3,M n =,则M 的所有子集的最小元素之和为__________三、解答题21.已知集合{|22}A x a x a =-+,2{|540}B x x x =-+ (1)当3a =时,求A B ,()R A B ⋃;(2)若AB =∅,求实数a 的取值范围.22.设非空集合{}{}{}2|2,|23,,|,A x x a B y y x x A C y y x x A =-≤≤==+∈==∈,全集U =R . (1)若1a =,求()RC B ;(2)若B C B ⋃=,求a 的取值范围.23.已知集合{}220A x x x =--<,()(){}30,B x x a x a a R =--<∈. (1)当1a =时,求集合A 和AB ;(2)若()R B C A ⊆,求实数a 的取值范围.24.已知命题:P 实数x 满足2280x x --≤,命题:q 实数x 满足2(0)x m m -≤> (1)当m=3时,若“p 且q”为真,求实数x 的取值范围;(2)若“非p”是“非q”的必要不充分条件,求实数m 的取值范围.25.设命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得不等式210x x m --+≤成立. (1)若p 为真命题,求实数m 的取值范围;(2)若命题p 、q 有且只有一个是真命题,求实数m 的取值范围. 26.已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围;(2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】设等比数列{}n a 的公比为q ,充分性:当10a >,0q <时,111n n nn S a S a q ++-==,无法判断其正负,显然数列{}n S 为不一定是递增数列,充分性不成立;必要性:当数列{}n S 为递增数列时,10n n n S S a --=>,可得10a >,必要性成立. 故“10a >”是“数列{}n S 为递增数列”的必要而不充分条件. 故选:B . 【点睛】方法点睛:证明或判断充分性和必要性的常用方法:①定义法,②等价法,③集合包含关系法.2.A解析:A 【详解】因为:1213p x x x +>⇔><-或,p ⌝:31x -≤≤;22:5656023q x x x x x ->⇔-+<⇔<<,q ⌝:23x x ≤≥或, 因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A. 3.B解析:B 【分析】写出原命题的逆否命题,判断其逆否命题为真,从而得到原命题也为真. 【详解】原命题的逆否命题为:若,a b 中没有一个大于等于1,则2a b +<,等价于“若1,1a b <<,则2a b +<”,显然这个命题是对的,所以原命题正确; 原命题的逆命题为:“若,a b 中至少有一个不小于1,则2a b +≥”,取5,5a b ==-则,a b 中至少有一个不小于1,但0a b +=,所以原命题的逆命题不正确. 【点睛】至少有一个的否定为“0个”,“不小于”等价于“大于等于”,同时注意若原命题的真假性不好判断,而等价于判断其逆否命题.4.B解析:B 【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.5.B解析:B 【分析】根据逆否命题的概念,准确改写,可判定A 正确的;根据全称命题与存在性命题的关系,可判定B 不正确;根据复合命题的真假判定方法,可判定C 是正确的;根据充要条件的判定方法,可判定D 正确. 【详解】对于A 中,根据逆否命题的概念,可得命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”,所以A 正确的;对于B 中,根据全称命题与存在性命题的关系,可得命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+≤”,所以B 不正确;对于C 中,根据复合命题的真假判定方法,若“p 且q ”为真命题,则p ,q 均为真命题,所以C 是正确的;对于D 中,不等式2430x x ++>,解得3x <-或1x >-,所以“1x >-”是“2430x x ++>”的充分不必要条件,所以D 正确. 综上可得,命题错误为选项B. 故选:B. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到四种命题的改写,全称命题与存在性命题的关系,以及复合命题的真假判定和充分条件、必要条件的判定等知识的综合应用,属于基础题.6.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.7.C解析:C 【分析】根据存在性命题的判定方法,可判定A 正确;根据不等式的性质,可判定B 正确;根据对数的运算性,可判定C 不正确;根据含有一个量词的否定,可判定D 正确. 【详解】对于A 中,由2000131()024x x x -+=-+≥,所以A 为真命题; 对于B 中,由0a b <<,则110b aa b ab --=>,所以11a b>,所以B 是正确的; 对于C 中,设0a >,1a ≠,例如11,24a b ==,则121log log 24a b ==,所以充分性不成立,又如1,22a b ==,此时12log log 21a b ==-,所以必要性不成立,所以“log 1a b >”是“b a >”的既不充分也不必要条件,所以C 是错误的;对于D 中,根据全称命题和存在性命题的关系,可得命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”,所以是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到含有一个量词的真假判定及否定,对数的运算性质,不等式的性质等知识的综合应用,属于中档试题.8.A解析:A 【分析】求出()f x ',由230a b -≤知()0f x '≥恒成立,即函数()f x 在R 上单调递增,只有一个零点,然后可举例说明在230a b ->,即()f x 有两个极值点时,()f x 也可能只有一个零点,由此可得结论. 【详解】因为32()f x x ax bx c =+++,2()32f x x ax b '=++,若230a b -≤, 则24120a b ∆=-≤,则()0f x '≥恒成立,所以()f x 在R 上单调递增. 当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞, 所以()f x 在R 上只有一个零点,即充分性成立. 令32a =,0b =,1c =-,则323()12f x x x =+-,2()333(1)f x x x x x '=+=+, 则()f x 在(,1)-∞-,(0,)+∞上单调递增,在(1,0)-上单调递减,又1(1)02f -=-<,3(1)02f =>,则()f x 在R 上只有一个零点,但不满足“230a b -≤”,即必要性不成立, 所以“230a b -≤”是“()f x 在R 上只有一个零点”的充分不必要条件, 故选:A . 【点睛】本题考查充分条件、必要条件的判断、函数的零点的概念.注意区别A 是B 的充分不必要条件(A B ⇒且B A ⇒/)与A 的充分不必要条件是B (B A ⇒且A B ⇒/)两者的不同.9.C解析:C 【分析】||||b a b =-两边平方得出22()b a b =-,展开等价变形得出102b a a ⎛⎫-⋅= ⎪⎝⎭,根据充分条件和必要条件的定义进行判断即可. 【详解】22||||()b a b b a b =-⇔=-22221122020022b a a b b a a b a b a b a a ⎛⎫⎛⎫⇔=-⋅+⇔-⋅=⇔⋅-=⇔-⋅= ⎪ ⎪⎝⎭⎝⎭则“||||b a b =-”是“1()02b a a -⋅=”的充分必要条件 故选:C 【点睛】本题主要考查了充要条件的证明,涉及了向量运算律的应用,属于中档题.10.C解析:C 【分析】由绝对值不等式的基本性质,集合充分必要条件的判定方法,即可求解. 【详解】由题意,a ,b R ∈,1a b +<,可得1a b a b +≤+<且1a b a b -≤+<,所以充分性是成立的;反之11a b a b ⎧+<⎪⎨-<⎪⎩,可得1111a b a b -<+<⎧⎨-<-<⎩,即1a b +<,所以必要性是成立的,综上可得:a ,b R ∈,1a b +<是11a b a b ⎧+<⎪⎨-<⎪⎩成立的充要条件.故选:C . 【点睛】本题主要考查了绝对值不等式的基本性质,以及充分条件、必要条件的判定方法,其中解答中熟练应用绝对值不等式的性质是解答的关键,着重考查了推理与运算能力.11.A解析:A 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.12.B解析:B 【分析】根据补集的运算,求得{3,5}U C A =,再根据集合交集的运算,即可求得()U C A B ⋂. 【详解】由题意,全集{1,2,3,4,5}U =,集合{1,2,4}A =,可得{3,5}U C A =, 所以()U C A B {3,5}.故选:B . 【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合运算的概念和计算方法是解答的关键,着重考查了计算能力,属于基础题.二、填空题13.【分析】根据得出由是的充分不必要条件得出根据包含关系得出的范围【详解】由题设得或设或由得设因为是的充分不必要条件所以因此故答案为:【点睛】本题主要考查了由充分不必要条件求参数范围属于中档题解析:(],2-∞-【分析】根据p ⌝,q ⌝得出,p q ,由q 是p 的充分不必要条件,得出Q P ,根据包含关系得出a 的范围. 【详解】由题设:21p x ⌝-<<,得:1p x ≥或2x -≤,设{|1P x x =≥或}2x ≤- 由:q x a ⌝>,得:q xa ,设{}|Q x x a =≤因为q 是p 的充分不必要条件,所以Q P ,因此2a ≤-. 故答案为:(],2-∞- 【点睛】本题主要考查了由充分不必要条件求参数范围,属于中档题.14.【分析】根据函数的值域以及椭圆的性质求得集合再根据集合的运算即可求解【详解】由题意集合所以【点睛】本题主要考查了集合的运算其中解答中根据函数的值域以及椭圆的性质求得集合是解答的关键着重考查了推理与运 解析:[]0,2【分析】根据函数的值域,以及椭圆的性质求得集合,M N ,再根据集合的运算,即可求解. 【详解】由题意,集合{}2,{|0}M y y x x R y y ==∈=≥,221,{|22}4y N y x x R y y ⎧⎫⎪⎪=+=∈=-≤≤⎨⎬⎪⎪⎩⎭,所以{|02}[0,2]M N y y =≤≤=.【点睛】本题主要考查了集合的运算,其中解答中根据函数的值域,以及椭圆的性质求得集合,M N 是解答的关键,着重考查了推理与运算能力,属于基础题.15.②④【解析】【分析】逐项判断每个选项的正误得到答案【详解】①当时成立但不成立所以不具有必要性错误②根据否命题的规则得命题若则的否命题是若则;正确③因为且是的充分不必要条件所以错误④因为且所以是的必要解析:②④ 【解析】【分析】逐项判断每个选项的正误得到答案. 【详解】 ①当1a =-时,11a<成立,但1a >不成立,所以不具有必要性,错误 ②根据否命题的规则得命题“若21x <,则1x <”的否命题是“若21x ≥,则1x ≥”;,正确.③因为2x ≥且2y ≥”是“224x y +≥”的充分不必要条件,所以错误④因为00ab a ≠⇔≠且0b ≠,所以“0a ≠”是“0ab ≠”的必要不充分条件.正确. 故答案为②④ 【点睛】本题考查了充分必要条件,否命题,意在考查学生的综合知识运用.16.①②④【分析】分别判断每个选项的真假最后得到答案【详解】①若则或的否命题为:若则且正确②命题的否定是正确③使得设即恒成立错误④是表示双曲线的充要条件当是:表示双曲线当表示双曲线时:故是表示双曲线的充解析:①②④ 【分析】分别判断每个选项的真假,最后得到答案. 【详解】①“若0xy =,则0x =或0y =”的否命题为:若0xy ≠,则0x ≠且0y ≠,正确 ②命题“2,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”,正确 ③x R ∃∈,使得1x e x <-.设min ()1'()1()(0)20x xf x e x f x e f x f =-+⇒=-⇒==>即1x e x >-恒成立,错误④“0a <”是“221x ay +=表示双曲线”的充要条件 当0a <是:221x ay +=表示双曲线 当221x ay +=表示双曲线时:0a <故“0a <”是“221x ay +=表示双曲线”的充要条件故答案为①②④ 【点睛】本题考查了否命题,命题的否定,充要条件,综合性强,意在考查学生的综合应用能力.17.R 【解析】分析:根据一元二次不等式的解法先将化简再由并集的运算求详解:因为或故答案为点睛:本题考查并集及其运算一元二次不等式的解法正确化简集合是关键研究集合问题一定要抓住元素看元素应满足的属性研究两解析:R【解析】分析:根据一元二次不等式的解法先将,A B 化简,再由并集的运算求A B .详解: 因为{}{}2|160|44A x x x x =-<=-<<,{}{2430|1B x x x x x =-+=<或}3x >,A B R ∴⋃=,故答案为R .点睛:本题考查并集及其运算,一元二次不等式的解法,正确化简集合,A B 是关键. 研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或属于集合B 的元素的集合.18.1980【分析】根据题意将所有元素在子集中的个数算出然后再求和即可【详解】因为集合所以含元素1的子集有同理含2345678910的子集也各有所以故答案为:1980【点睛】本题主要考查集合的新定义以及解析:1980 【分析】根据题意,将所有元素在子集中的个数算出,然后再求和即可. 【详解】因为集合{}{}*110,,1,2,3,4,5,6,7,8,9,10S x x x N n N=≤≤∈∈=,所以含元素1的子集有29C ,同理含2,3,4,5,6,7,8,9,10的子集也各有29C ,所以2121209...(123...10)a a a C +++=++++⨯,()1011098198022+⨯=⨯=. 故答案为:1980 【点睛】 本题主要考查集合的新定义以及组合问题,还考查了分析推理的能力,属于中档题.19.【分析】解不等式和由题意可得是的必要不充分条件转化为两集合的包含关系由此可求得实数的取值范围【详解】因为是的充分不必要条件所以是的必要不充分条件解不等式得解不等式解得所以即因此实数的取值范围是故答解析:[]2,1-【分析】解不等式()29x a -<和()3log 21x +<,由题意可得p 是q 的必要不充分条件,转化为两集合的包含关系,由此可求得实数a 的取值范围. 【详解】因为p ⌝是q ⌝的充分不必要条件,所以p 是q 的必要不充分条件,解不等式()29x a -<,得33a x a -<<+,解不等式()3log 21x +<,解得21x -<<.:33p a x a -<<+,:21q x -<<,{}33x a x a ∴-<<+ {}21x x -<<,所以3231a a -≤-⎧⎨+≥⎩,即21a -≤≤.因此,实数a 的取值范围是[]2,1-. 故答案为:[]2,1-. 【点睛】本题考查利用充分不必要条件求参数,解答的关键就是转化为集合的包含关系来处理,考查分析问题和解决问题的能力,属于中等题.20.【分析】先确定元素再确定该元素为最小时对应子集个数最后利用错位相减法求和【详解】若1为最小元素则对应子集个数为个;若2为最小元素则对应子集个数为个;…若n 为最小元素则对应子集个数为个;所以的所有子集 解析:122n n +--【分析】先确定元素,再确定该元素为最小时对应子集个数,最后利用错位相减法求和. 【详解】若1为最小元素,则对应子集个数为12n -个; 若2为最小元素,则对应子集个数为22n -个; …...若n 为最小元素,则对应子集个数为02个;所以M 的所有子集的最小元素之和为2301223222n n n n ---+⨯+⨯++⨯设1230222322n n n n S ---+⨯+=⨯++⨯1212232222n n n n S --+⨯+⨯++⨯=相减得231112(12)222222212nn n n n n n n n S ---+-++++-==-=--+-故答案为:122n n +-- 【点睛】本题考查错位相减法求和以及子集个数,考查综合分析求解能力,属中档题.三、解答题21.(1){|11A B x x =-或45}x ;(){}|15RA B x x =-;(2) (,1)-∞.【分析】(1)3a =时求出集合A ,B ,再根据集合的运算性质计算A B 和()R A B ⋃;(2)根据A B =∅,讨论A =∅和A ≠∅时a 的取值范围,从而得出实数a 的取值范围. 【详解】解:(1)当3a =时,{|22}{|15}A x a x a x x =-+=-,2{|540}{|1B x x x x x =-+=或4}x ,{|11A B x x =-或45}x ;又{|14}R B x x =<<, (){}|15RAB x x =-;(2)A B =∅,当22a a ->+,即0a <时,A =∅,满足题意;当0a 时,应满足2124a a ->⎧⎨+<⎩,此时得01a <;综上,实数a 的取值范围是(,1)-∞.【点睛】本题考查了集合的基本运算以及不等式解法问题,注意等价变形的应用,属于中档题. 22.(1)[1,0)(4,5]-;(2)1[,3]2a ∈【分析】根据已知中集合A ,B ,C ,U ,结合集合的交集,交集,补集运算定义,可得答案. 【详解】解:(1)若1a =,则集合{}|21A x x =-≤≤,{|23,}[1,5]B y y x x A ==+∈=-, {}2|,[0,4]C y y x x A ==∈=,()[1,0)(4,5]R C B ∴=-;(2)当(2,0]a ∈-时,则2[1,23],[,4]B a C a =-+=,若B C B ⋃=,则234a +≥,此时不存在满足条件的a 值; 当(0,2]a ∈时,则[1,23],[0,4]B a C =-+=, 若B C B ⋃=,则234a +≥,解得:1[,2]2a ∈;当(2,)a ∈+∞时,则2[1,23],[0,]B a C a =-+=, 若B C B ⋃=,则223a a +≥,解得:(2,3]a ∈; 综上所述,1[,3]2a ∈. 【点睛】本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于中档题目.23.(1){}12A x x =-<<,{}13A B x x ⋃=-<<;(2)0a =或1a ≤-或2a ≥. 【分析】(1)先求出集合A ,B ,再根据并集的定义即可求出; (2)先求出A R,再根据题意讨论a 的范围即可求出.【详解】(1)由不等式220x x --<解得12x -<<, {}12A x x ∴=-<<,当1a =时,()(){}{}13013B x x x x x =--<=<<,{}13A B x x ∴⋃=-<<;(2){}12A x x =-<<,{1R A x x ∴=≤-或}2x ≥,当0a =时,{}20B x x =<=∅,满足题意;当0a >时,{}3B x a x a =<<,要使()R B A ⊆,则2a ≥;当0a <时,{}3B x a x a =<<,要使()RB A ⊆,则1a ≤-;综上,0a =或1a ≤-或2a ≥. 【点睛】本题考查集合的并集、补集运算,考查根据集合的包含关系求参数,其中涉及一元二次不等式的求解,属于基础题. 24.(1)[1,4]-(2)4m ≥ 【详解】试题分析:(1)先转化,q ,由且q 为真,得真q 真,解出x (2)由p ⌝是q⌝的必要不充分条件 得是q 的充分不必要条件,根据数轴列出不等式解出m试题 解:(1)若真:24x -≤≤;当3m =时,若q 真:15x -≤≤∵且q 为真 ∴24{15x x -≤≤-≤≤ ∴实数x 的取值范围为:[1,4]-(2)∵p ⌝是q ⌝的必要不充分条件 ∴是q 的充分不必要条件∵若q 真:22m x m -≤≤+ ∴22{42m m-≤-≤+且等号不同时取得 (不写“且等号不同时取得”,写检验也可)∴4m ≥.考点:复合命题,充要条件,解不等式 25.(1)12m ≤≤(2)1m <或524m <≤ 【分析】(1)命题p 为真,只需[]()2min 21,20,3x m m x -≥-∈,根据一次函数的单调性,转化为求关于m 的一元二次不等式;(2)命题q 为真,只需[]()2min 1,1,10x x m x -+-∈-≤,根据二次函数的性质,求出m 的范围,依题意求出p 真q 假,和p 假q 真时,实数m 的取值范围. 【详解】(1)对于命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立, 而[]0,1x ∈,有()min 222x -=-,223m m ∴-≥-,12m ∴≤≤, 所以p 为真时,实数m 的取值范围是12m ≤≤;(2)命题q :存在[]1,1x ∈-,使得不等式210x x m -+-≤成立, 只需()2min10x x m -+-≤,而22151()24x x m x m -+-=-+-,2min 5(1)4x x m m ∴-+-=-+,504m ∴-+≤,54m ≤,即命题q 为真时,实数m 的取值范围是54m ≤, 依题意命题,p q 一真一假,若p 为假命题, q 为真命题,则1254m m m ⎧⎪⎨≤⎪⎩或,得1m <; 若q 为假命题, p 为真命题,则1254m m ≤≤⎧⎪⎨>⎪⎩,得524m <≤,综上,1m <或524m <≤. 【点睛】本题考查不等式恒(或存在)成立与函数最值关系,以及命题真假关系求参数范围,考查等价转化思想,计算求解能力,属于中档题. 26.(1)[]1,0-(2)(),0-∞ 【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围; (2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++,2x a ∴-< , 22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩,解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+, 当且仅当()()10a x x -+≥时,等号成立, 所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <.所以实数a 的取值范围是(),0-∞. 【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题.。

深圳市外国语龙岗分校必修第一册第一单元《集合与常用逻辑用语》检测(包含答案解析)

深圳市外国语龙岗分校必修第一册第一单元《集合与常用逻辑用语》检测(包含答案解析)

一、选择题1.设a R ∈,则“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.已知a ,b R ∈,则“0a b +<”是“0a a b b +<”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件3.24x >成立的一个充分非必要条件是( )A .23x >B .2xC .2x ≥D .3x > 4.命题“ax 2-2ax + 3 > 0恒成立”是假命题, 则实数a 的取值范围是( )A .a < 0或a ≥3B .a ≤0或a ≥3C .a < 0或a >3D .0<a <35.已知集合{}2|40A x R x x =∈-<,{}|28xB x R =∈<,则A B =( )A .()0,3B .()3,4C .()0,4D .(),3-∞6.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则AB =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,27.已知命题2:230p x x +->;命题:q x a >,且q ⌝的一个充分不必要条件是p ⌝,则a 的取值范围是( )A .(],1-∞B .[)1,+∞C .[)1,-+∞D .(],3-∞8.已知1:12p x ≥-,:||2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( ) A .(,4]-∞B .[1,4]C .(1,4]D .(1,4)9.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( ) A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈10.不等式220x x --<成立的一个充分不必要条件是21a x a <<+,则a 的取值范围为( ) A .–11a ≤≤B .–11a ≤<C .–11a <<D .11a -<≤11.已知函数32()(,,)f x x ax bx c a b c R =+++∈,则“230a b -≤”是“()f x 在R 上只有一个零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件12.设,(0,1)a b ∈,:P “a b <”,:q “log log a b a b b a <”,则p 是q 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题13.对于任意非空集合A 、B ,定义{|,}A B a b a A b B +=+∈∈,若{}2,0,1S T ==-,则S T +=________(用列举法表示)14.已知集合{}3A x x =≤,{}2B x x =<,则RA B =__________.15.已知集合{}{}22,1,A B a ==,若{}0,1,2AB =,则实数a =________.16.命题“000,1x x R ex ∃∈>+”的否定是______________________.17.已知集合{}1A x x =>,{}22B x x x =<,则AB =__________.18.已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是___________.19.若命题“[]01,1x ∃∈-,033x a ≤”为真命题,则实数a 的取值范围为______.20.记集合[],A a b =,当,64ππθ⎡⎤∈-⎢⎥⎣⎦时,函数()2cos 2cos f θθθθ=+的值域为B ,若“x A ∈”是“x B ∈”的必要条件,则b a -的最小值是______.三、解答题21.已知集合2102x a A x x a ⎧⎫--⎪⎪=<⎨⎬-⎪⎪⎩⎭,集合{}|32B x x =-<.(Ⅰ)当2a =时,求A B ;(Ⅱ)设p :x A ∈,q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围. 22.已知22:|27|3,:430p x q x mx m -<-+<,其中m >0. (1)若m =4且p ∧q 为真,求x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围.23.已知函数()f x =A ,函数2()41,[0,3]g x x x x =-+-∈的值域为B .(Ⅰ)设集合()M A B Z =⋂⋂,其中Z 是整数集,写出集合M 的所有非空子集; (Ⅱ)设集合{|121}C x a x a =-<<+,且BC =∅,求实数a 的取值范围.24.已知集合{}2650A x x x =+->,集合()(){}110B x x a x a =-+-->,其中0a >.(1)若2a =,求()RAB ;(2)设:p x A ∈,:q x B ∈.若p ⌝是q 的充分不必要条件,求a 的取值范围.25.已知集合121284x A x⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭.(1)若{}|121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围; (2)若{}|61D x x m =>+,且()A B D =∅,求实数m 的取值范围.26.已知集合121284x A x⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭. (1)若{}122C x m x m =+<≤-,()C A B ⊆⋂,求实数m 的取值范围;(2)若{}61D x x m =>+,且()AB D =∅,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】计算直线平行等价于1a =或2a =-,根据范围大小关系得到答案. 【详解】直线1:20l ax y +=与直线()2140+++=:l x a y 平行,则()12a a +=,1a =或2a =-,验证均不重合,满足.故“1a =”是“直线1:20l ax y +=与直线()2140+++=:l x a y 平行”的充分不必要条件. 故选:A. 【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.2.C解析:C 【分析】从充分性和必要性两个方面,分0,0a b <<和0,0a b <≥讨论,分别求解证明即可. 【详解】解:当 0,0a b <<,0a b +<时,此时220a a b b a b +=--<成立,当0,0a b <≥,0a b +<时,此时()()220a a b b a b a b b a +=-+=+-<成立,即0a b +<可以推出0a a b b +<,反之,若0a a b b +<,则,a b 中至少有一个负数, 若,a b 均为负数,必然有0a b +<,若0,0a b <≥,则()()220a a b b b a a b b a +=-=+-<,因为0b a ->,则必有0a b +<, 所以0a a b b +<可以推出0a b +<, 故“0a b +<”是“0a a b b +<”的充分必要条件. 故选:C. 【点睛】本题考查充分性和必要性的判断,考查学生分类讨论的思想,是中档题.3.D解析:D 【分析】根据题意,找到24x >解集的一个真子集即可求解. 【详解】由24x >解得2x >或2x <-,所以24x >成立的一个充分非必要条件是(2)(2,)-∞-+∞的真子集,因为3+∞(,) (2)(2,)-∞-+∞,所以24x >成立的一个充分非必要条件是3x >, 故选:D 【点睛】本题主要考查了充分条件、必要条件,真子集的概念,属于中档题.4.A解析:A 【分析】根据题意得出命题“x R ∃∈,2230ax ax -+≤”是真命题,然后对a 分情况讨论,根据题意得出关于a 的不等式,即可得出实数a 的取值范围. 【详解】命题“2230ax ax -+>恒成立”是假命题,即命题“x R ∃∈,2230ax ax -+≤”是真命题. 当0a =时,2230ax ax -+≤不成立; 当0a <时,合乎题意;当0a >时,则24120a a ∆=-≥,解得3a ≥. 综上所述,实数a 的取值范围是0a <或3a ≥. 故选:A. 【点睛】本题考查由全称命题的真假求参数,考查计算能力,属于中等题.5.A解析:A 【分析】解不等式确定集合,A B 后再由交集定义计算. 【详解】由题意{|04}A x x =<<,{|3}B x x =<,∴{|03}(0,3)A B x x =<<=.故选:A . 【点睛】本题考查求集合的交集运算,考查解一元二次不等式和指数不等式,属于基本题.6.A解析:A 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .7.B解析:B 【分析】解一元二次不等式化简命题p ,再利用集合间的基本关系,求得参数a 的取值范围. 【详解】由2:230p x x +->,知3x <-或1x >, 则p ⌝为31x -≤≤,q ⌝为x a ≤, p ⌝是q ⌝的充分不必要条件,∴1{|}3x x ≤≤-{|}x x a ≤∴1a ≥.故选:B. 【点睛】本题考查利用命题的充分不必要条件求参数的取值范围,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将充分不必要条件转化为真子集的关系.8.C解析:C【分析】求出p ,q 的等价条件,根据充分条件和必要条件的定义即可得到结论. 【详解】由112x ≥-,即302x x -≤-,解得23x <≤, 由||2x a -<得22a x a -<<+,若p 是q 的充分不必要条件,则2223a a -≤⎧⎨+>⎩,解得14a <≤,实数a 的取值范围为(]1,4, 故选:C. 【点睛】本题主要考查充分条件和必要条件的应用,属于中档题.9.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.10.D解析:D 【分析】求解一元二次不等式可得220x x --<的解集,再由题意得关于a 的不等式组求解即可. 【详解】由不等式220x x --<,得12x -<<,∵不等式220x x --<成立的一个充分不必要条件是21a x a <<+,∴()2,1a a +⫋()12-,, 则221112a a a a ⎧<+⎪≥-⎨⎪+≤⎩且1a ≥-与212a +≤的等号不同时成立,解得11a -<≤, ∴a 的取值范围为11a -<≤, 故选:D . 【点睛】本题主要考查充分必要条件的判定及其应用,考查数学转化思想方法,属于中档题.11.A解析:A 【分析】求出()f x ',由230a b -≤知()0f x '≥恒成立,即函数()f x 在R 上单调递增,只有一个零点,然后可举例说明在230a b ->,即()f x 有两个极值点时,()f x 也可能只有一个零点,由此可得结论. 【详解】因为32()f x x ax bx c =+++,2()32f x x ax b '=++,若230a b -≤, 则24120a b ∆=-≤,则()0f x '≥恒成立,所以()f x 在R 上单调递增. 当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞, 所以()f x 在R 上只有一个零点,即充分性成立.令32a =,0b =,1c =-,则323()12f x x x =+-,2()333(1)f x x x x x '=+=+, 则()f x 在(,1)-∞-,(0,)+∞上单调递增,在(1,0)-上单调递减,又1(1)02f -=-<,3(1)02f =>,则()f x 在R 上只有一个零点,但不满足“230a b -≤”,即必要性不成立,所以“230a b -≤”是“()f x 在R 上只有一个零点”的充分不必要条件, 故选:A . 【点睛】本题考查充分条件、必要条件的判断、函数的零点的概念.注意区别A 是B 的充分不必要条件(A B ⇒且B A ⇒/)与A 的充分不必要条件是B (B A ⇒且A B ⇒/)两者的不同.12.C解析:C 【分析】利用不等式的性质和充分必要条件的定义进行判断即可得到答案. 【详解】充分性:01a b <<<⇒22lg lg 0(lg )(lg )a b a b <<⇒>. 所以22lg lg (lg )(lg )lg lg b aa b b a ab a b<⇒< 即:log log a b a b b a <,充分性满足.必要性:因为,(0,1)a b ∈,所以log 0a b >,log 0b a >. 又因为log log a b a b b a <,所以log log a b b ba a <,即2(log )ab b a<. 当a b =时,11<,不等式不成立.当a b >时,01b a<<,log 1a b >,不等式2(log )a bb a <不成立当a b <时,1b a >,0log 1a b <<,不等式2(log )a bb a<成立. 必要性满足.综上:p 是q 的充要条件. 故选:C 【点睛】本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.二、填空题13.【分析】根据集合的新定义分别求出两个集合中各取一个元素求和的所有可能情况【详解】由题:对于任意非空集合定义若各取一个元素形成有序数对所有可能情况为所有情况两个数之和构成的集合为:故答案为:【点睛】此 解析:{}4,2,1,0,1,2---【分析】根据集合的新定义,分别求出两个集合中各取一个元素求和的所有可能情况. 【详解】由题:对于任意非空集合A 、B ,定义{|,}A B a b a A b B +=+∈∈, 若{}2,0,1S T ==-,各取一个元素,a A b B ∈∈形成有序数对(),a b ,所有可能情况为()()()()()()()()()2,2,2,0,2,1,0,2,0,0,0,1,1,2,1,0,1,1------,所有情况两个数之和构成的集合为:{}4,2,1,0,1,2--- 故答案为:{}4,2,1,0,1,2--- 【点睛】此题考查集合的新定义问题,关键在于读懂定义,根据定义找出新集合中的元素即可得解.14.【分析】根据集合的交集补集运算即可求解【详解】因为所以因此故答案为【点睛】本题主要考查了集合的补集交集运算属于中档题 解析:[]2,3【分析】根据集合的交集补集运算即可求解. 【详解】因为{}2B x x =<, 所以RB ={}2x x ≥因此RAB ={}{}32=[2,3]x x x x ≤⋂≥.故答案为[]2,3 【点睛】本题主要考查了集合的补集,交集运算,属于中档题.15.0【解析】分析:根据集合的并集的含义有集合A 或B 必然含有元素0又由集合AB 可得从而求得结果详解:根据题意若则A 或B 必然含有元素0又由则有即故答案是0点睛:该题考查的是有关集合的运算问题利用两个集合的解析:0. 【解析】分析:根据集合的并集的含义,有集合A 或B 必然含有元素0,又由集合A,B 可得20a =,从而求得结果.详解:根据题意,若{}=0,1,2A B ⋃,则A 或B 必然含有元素0, 又由{}{}22,1,A B a==,则有20a=,即0a =,故答案是0.点睛:该题考查的是有关集合的运算问题,利用两个集合的并集中的元素来确定有关参数的取值问题,属于基础题目.16.【解析】因为命题的否定是所以命题的否定是 解析:,1x x R e x ∀∈≤+【解析】因为命题“,p x ∃”的否定是“,p x ∀⌝” 所以命题“000,1x x R ex ∃∈>+”的否定是,1x x R e x ∀∈≤+17.【解析】由得:则故答案为 解析:()1,2【解析】由{}22B x x x =<得:{}02B x x =<<,则()1,2A B ⋂=,故答案为()1,2.18.【分析】若使得成立只要保证在R 上不单调即可【详解】函数的对称轴为当即时在上不是单调函数则在R 上也不是单调函数满足题意;当即时分段函数为R 上的单调增函数不满足题意故答案为:【点睛】本题以命题的形式考查 解析:(,2)-∞【分析】若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,只要保证()f x 在R 上不单调即可. 【详解】函数2y x ax =-+的对称轴为=2a x , 当12a<即2a <时,2y x ax =-+在(),1-∞上不是单调函数, 则()f x 在R 上也不是单调函数,满足题意;当12a>即2a >时,分段函数为R 上的单调增函数,不满足题意. 故答案为:(,2)-∞ 【点睛】本题以命题的形式考查了分段函数单调性,考查了转化的思想,属于中档题.19.【分析】由题意结合指数函数的单调性可得的最大值可得的范围【详解】命题为真命题可得的最大值由可得故答案为:【点睛】本题考查不等式能成立问题考查转化与化归思想属于中等题型 解析:(],1-∞【分析】由题意结合指数函数的单调性,可得0a x ≤的最大值,可得a 的范围. 【详解】命题“[]01,1x ∃∈-,033x a ≤”为真命题, 可得0a x ≤的最大值, 由[]01,1x ∈-,可得1a ≤, 故答案为:(],1-∞ 【点睛】本题考查不等式能成立问题,考查转化与化归思想,属于中等题型20.3【分析】利用倍角公式和差公式化简利用三角函数的单调性可得根据是的必要条件可得即可得出结论【详解】根据题意可得:∵∴即是的必要条件则∴∴即故答案为:3【点睛】本题考查了倍角公式和差公式三角函数的单调解析:3 【分析】利用倍角公式、和差公式化简()fθ,利用三角函数的单调性可得B ,根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆,即可得出结论. 【详解】根据题意可得:()2cos 2cos 2sin 216f πθθθθθ⎛⎫=+=++ ⎪⎝⎭.∵,64ππθ⎡⎤∈-⎢⎥⎣⎦∴()[]0,3fθ∈,即[]0,3B =“x A ∈”是“x B ∈”的必要条件,则B A ⊆∴03a b ≤⎧⎨≥⎩∴303b a -≥-=,即()min 3b a -=.故答案为:3.【点睛】本题考查了倍角公式、和差公式、三角函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.三、解答题21.(Ⅰ){|45}A B x x ⋂=<<;(Ⅱ)1,22⎡⎤⎢⎥⎣⎦【分析】(Ⅰ)当2a =时,求出集合A ,集合B ,由此能求出A B .(Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,从而A B ⊆,由此能求出实数a 的取值范围.【详解】解:(Ⅰ)当2a =时,集合215|0{|0}{|45}24x a x A x x x x x a x ⎧⎫---=<=<=<<⎨⎬--⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.{|45}A B x x ∴=<<.(Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,A B ∴⊆,当221a a <+时,1a ≠,集合221|0{|21}2x a A x x a x a x a ⎧⎫--=<=<<+⎨⎬-⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.∴22115a a ⎧⎨+⎩,且1a ≠,解得122a .且1a ≠, 当1a =时,A =∅,成立.综上,实数a 的取值范围是1,22⎡⎤⎢⎥⎣⎦. 【点睛】本题考查交集、实数的取值范围的求法,考查充分条件、交集、子集等基础知识,考查运算求解能力,属于中档题.22.(1)45x <<(2)523m ≤≤ 【分析】(1)分别求解绝对值不等式和一元二次不等式,化简p 与q ,结合p q ∧为真,解不等式组,即可得出x 的取值范围;(2)由p 是q 的充分不必要条件,建立关于m 的不等式组,求解即可得出答案.【详解】(1)由|27|3x -<,解得25x <<由22430x mx m -+<以及0m >,解得3m x m <<当4m =时,q :412x <<p q ∧为真,25412x x <<⎧∴⎨<<⎩,解得45x << (2):25,:3p x q m x m <<<<p 是q 的充分不必要条件2350m m m ≤⎧⎪∴≥⎨⎪>⎩,解得523m ≤≤ 当53m =时,5:53q x <<成立 当2m =时,:26q x <<成立 523m ∴≤≤ 【点睛】本题主要考查了根据复合命题的真假求参数的范围以及由充分不必要条件求参数的范围,属于中档题.23.(Ⅰ){}1,0,1-,{}1,0-,{}1,1-,{}0,1,{}1-,{}0,{}1;(Ⅱ)(][),14,-∞-+∞【分析】(Ⅰ)计算得到(]3,log 8A =-∞,[]1,3B =-,再计算交集得到{}1,0,1M =-,得到答案.(Ⅱ)考虑C =∅和C ≠∅两种情况,得到121211a a a -<+⎧⎨+≤-⎩或12113a a a -<+⎧⎨-≥⎩,解得答案. 【详解】(Ⅰ)函数()f x =830x -≥,即3log 8x ≤,即(]3,log 8A =-∞,()22()4123,[0,3]g x x x x x =-+-=--+∈,[]1,3y ∈-,即[]1,3B =-, []{}31,log (1,0,8)1M A B Z Z =⋂⋂=--⋂=.故集合M 的所有非空子集为{}1,0,1-,{}1,0-,{}1,1-,{}0,1,{}1-,{}0,{}1. (Ⅱ){|121}C x a x a =-<<+,B C =∅,当C =∅时,121a a -≥+,解得2a ≤-;当C ≠∅时,121211a a a -<+⎧⎨+≤-⎩或12113a a a -<+⎧⎨-≥⎩,解得(][)2,14,a ∈--+∞. 综上所述:(][),14,a ∈-∞-+∞.【点睛】 本题考查了函数的定义域,值域,子集,根据交集运算结果求参数,意在考查学生的计算能力和转化能力,忽略空集是容易发生的错误.24.(1){}13x x -<≤;(2)(0,2].【分析】分别求解一元二次不等式化简A 与B .(1)把2a =代入集合B ,再由交、并、补集的混合运算得答案;(2)由p ⌝是q 的充分不必要条件,得R A B ,进一步转化为两集合端点值间的关系列不等式组求解.【详解】 2{|650}{|16}A x x x x x =+->=-<<,{|(1)(1)0}{|1B x x a x a x x a =-+-->=<-或1}x a >+.(1)若2a =,则{|1B x x =<-或3}x >,{|13}R B x x =-,(){|16}{|13}{|13}R A B x x x x x x ∴⋂=-<<⋂-=-<;(2)若p ⌝是q 的充分不必要条件,A R 1{|x x =≤-或6}x ≥则R A B .∴01116a a a >⎧⎪--⎨⎪+⎩且不等式组中两等号不同时成立,解得02a <.a ∴的取值范围是(0,2].【点睛】本题考查交、并、补集的混合运算以及利用包含关系求参数,考查充分条件与必要条件的判定方法,考查数学转化思想方法,是中档题.25.(1)3m ≤;(2)m 1≥.【分析】(1)化简集合A ,B ,求出A B ,分类讨论C =∅和C ≠∅情况,求解,再取并集即可得出结果.(2)求出A B ,结合数轴列不等式,即可得出结果. 【详解】(1){}|27A x x =-≤≤,{}|35B y y =-≤≤,{}|25AB x x =-≤≤,①若C =∅,则121m m +>-,∴2m <;②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,∴23m ≤≤;综上3m ≤.(2){}|37A B x x ⋃=-≤≤,∴617m +≥,∴1m ≥.【点睛】本题考查了指数不等式和对数不等式,集合的运算等基本数学知识,考查了运算求解能力和逻辑推理能力,属于基础题目.26.(1)7,2⎛⎤-∞ ⎥⎝⎦;(2)[)1,+∞ 【分析】结合指数函数和对数函数性质可分别求得集合A 和集合B ;(1)由交集定义得到A B ,分别在C =∅和C ≠∅两种情况下构造不等式求得结果; (2)由并集定义得到A B ,根据交集结果可构造不等式求得结果.【详解】 {}[]12128272,74x A x x x ⎧⎫=≤≤=-≤≤=-⎨⎬⎩⎭ {}[]21log ,,32353,58B y y x x y y ⎧⎫⎡⎤==∈=-≤≤=-⎨⎬⎢⎥⎣⎦⎩⎭ (1)[]2,5A B =-当C =∅时,122+≥-m m ,解得:3m ≤,满足()C A B ⊆⋂当C ≠∅时,12212225m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得:732<≤m 综上所述:实数m 的取值范围为7,2⎛⎤-∞ ⎥⎝⎦ (2)[]3,7A B =-()A B D =∅ 617m ∴+≥,解得:m 1≥∴实数m 的取值范围为[)1,+∞【点睛】本题考查根据集合包含关系、交集结果求解参数范围的问题,涉及到指数函数和对数函数性质的应用;易错点是在根据包含关系求参数范围时,忽略子集可能为空集的情况,造成范围求解错误.。

深圳笋岗中学必修第一册第一单元《集合与常用逻辑用语》检测(含答案解析)

深圳笋岗中学必修第一册第一单元《集合与常用逻辑用语》检测(含答案解析)

一、选择题1.已知a ,b R ∈,则“0a b +<”是“0a a b b +<”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件2.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题; ③“2019a >”是“2020a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中真命题的序号为( ) A .③④ B .①② C .①③ D .②④3.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.设a ,b 都是不等于1的正数,则“log 3log 31a b >>”是“33a b <”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件5.定义:若平面点集A 中的任一个点00(,)x y ,总存在正实数r ,使得集合{(,)}x y r A <⊆,则称A 为一个开集.给出下列集合:①22{(,)|1}x y x y +=;②{(,)|20}x y x y ++≥;③{(,)|6}x y x y +<;④22{(,)|0(1}x y x y <+<. 其中是开集的是( ) A .①④B .②③C .②④D .③④6.已知ξ服从正态分布()21,N σ,a ∈R ,则“P (ξ>a )=0.5”是“关于x 的二项式321()ax x+的展开式的常数项为3”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件 D .充要条件7.已知p :02x ≤≤,q :2230x x --≥,则p 是q ⌝的( )A .既不充分也不必要条件B .必要不充分条件C .充分不必要条件D .充分必要条件8.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( ) A .12m >B .12m ≥C .1mD .m 1≥第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案9.对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则实数m 的取值范围是( ) A .[]0,2 B .(],2-∞ C .()0,2D .(),2-∞10.下列命题中,不正确的是( )A .0x R ∃∈,20010x x -+≥B .若0a b <<则11a b> C .设0a >,1a ≠,则“log 1a b >”是“b a >”的必要不充分条件D .命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”11.设,(0,1)a b ∈,:P “a b <”,:q “log log a b a b b a <”,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件12.已知a ,b R ∈,“1a b +<”是“11a b a b ⎧+<⎪⎨-<⎪⎩”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为__________.14.若“条件α:24x ≤≤”是“条件β:31m x m -≤≤-”的充分条件,则m 的取值范围是________.15.若命题“0x R ∃∈,20020x x a --=”为假命题,则实数a 的取值范围是______. 16.下列命题为真命题的序号是__________. ①“若1sin ,2α≠则6πα≠”是真命题.②“若22,am bm <则a b <”的逆命题是真命题.③,a b ∈R ,“221a b +≥”是“1a b +≥”的充分不必要条件. ④“1a =”是“直线0x ay -=与直线+0x ay =互相垂直”的充要条件.17.已知集合{}{}10|133xA aB x =-=,,,<<,若A B ⋂=∅,则实数a 的取值范围是______.18.已知命题31:01x p A xx ⎧⎫-=≤⎨⎬-⎩⎭,命题{}2:30q B x x mx =--+>.若命题q 是p 的必要不充分条件,则m 的取值范围是____; 19.已知集合{}12A =,,{}12B =-,,则A B =______.20.已知命题p :∀x ∈R,2x >0,则p ⌝为__________.三、解答题21.已知命题:[5,3]p x ∀∈--,22230x x k +-+<,:(0,)q x ∃∈+∞,242x x k x-+->.试判断“p 为真命题”与“q ⌝为真命题”的充分必要关系.22.设非空集合{}{}{}2|2,|23,,|,A x x a B y y x x A C y y x x A =-≤≤==+∈==∈,全集U =R . (1)若1a =,求()RC B ;(2)若B C B ⋃=,求a 的取值范围.23.设命题0:p x R ∃∈,2020x -=;命题:q 函数22sin y x =在,62ππ⎛⎫-⎪⎝⎭上先增后减. (1)判断p ,q 的真假,并说明理由; (2)判断p q ∨,p q ∧,()p q ∧⌝的真假.24.已知集合{}13A x x =<<,集合{}21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若A B ⊆,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.25.已知全集U={x ∈N|1≤x≤6},集合A={x |x 2-6x +8=0},集合B={3,4,5,6}. (1)求A∩B ,A ∪B ;(2)写出集合(∁U A )∩B 的所有子集.26.关于x 的不等式1x a -<的解集为A ,关于x 的不等式2320x x -+≤的解集为B ,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】从充分性和必要性两个方面,分0,0a b <<和0,0a b <≥讨论,分别求解证明即可. 【详解】解:当 0,0a b <<,0a b +<时,此时220a a b b a b +=--<成立,当0,0a b <≥,0a b +<时,此时()()220a a b b a b a b b a +=-+=+-<成立,即0a b +<可以推出0a a b b +<,反之,若0a a b b +<,则,a b 中至少有一个负数, 若,a b 均为负数,必然有0a b +<,若0,0a b <≥,则()()220a a b b b a a b b a +=-=+-<,因为0b a ->,则必有0a b +<, 所以0a a b b +<可以推出0a b +<, 故“0a b +<”是“0a a b b +<”的充分必要条件. 故选:C. 【点睛】本题考查充分性和必要性的判断,考查学生分类讨论的思想,是中档题.2.B解析:B 【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断. 【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确; “2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误. 故选:B . 【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.3.B解析:B 【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选考点:充分必要条件.4.B解析:B 【分析】由已知结合对数不等式的性质可得13a b <<<,得到33a b <;反之,由33a b <,不一定有log 3log 31a b >>成立,再由充分必要条件的判定得答案. 【详解】解:a ,b 都是不等于1的正数,由log 3log 31a b >>,得13a b <<<,33a b ∴<;反之,由33a b <,得a b <,若01a <<,1b >,则log 30a <,故log 3log 31a b >>不成立.∴ “log 3log 31a b >>”是“33a b <”的充分不必要条件.故选:B . 【点睛】本题考查指数不等式与对数不等式的性质,考查充分必要条件的判定方法,是基础题.5.D解析:D 【分析】根据开集的定义逐个验证选项,即可得到答案. 【详解】①:22{(,)|1}x y x y +=表示以原点为圆心,1为半径的圆, 则在该圆上任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆故①不是开集;②{(,)|20}x y x y ++≥,在曲线20x y ++=任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆,故该集合不是开集; ③{(,)|6}x y x y +<平面点集A 中的任一点00(,)x y ,则该点到直线的距离为d ,取r d =,则满足{(,)|}x y r A ⊆,故该集合是开集;④22{(,)|0(1}x y x y <+<表示以点()0,3为圆心,1为半径除去圆心和圆周的圆面,在该平面点集A 中的任一点00(,)x y ,则该点到圆周上的点的最短距离为d ,取r d =,则满足{(,)}x y r A <⊆,故该集合是开集. 故答案选D 项. 【点睛】本题属于集合的新定义型问题,考查对新定义的理解并解决问题,属于中档题.6.A解析:A 【解析】 试题分析:由,知1a =.因为二项式321()ax x+展开式的通项公式为31321()()r r r r T C ax x-+==3333r r ra C x --,令330r -=,得1r =,所以其常数项为212333a C a ==,解得1a =±,所以“”是“关于x 的二项式321()ax x+的展开式的常数项为3”的充分不必要条件,故选A .考点:1、正态分布;2、二项式定理;3、充分条件与必要条件.7.C解析:C 【分析】设[0,2]M =,2{|230}N x x x =--<,根据集合之间的包含关系,即可求解.【详解】因为q :2230x x --≥, 所以q ⌝:2230x x --<,设[0,2]M =,2{|230}N x x x =--<,则(1,3)N =-, 所以M N ,所以p 是q ⌝的充分不必要条件, 故选:C 【点睛】本题主要考查了充分条件、必要条件,集合的真子集,考查了推理能力,属于中档题.8.D解析:D 【分析】求出命题q 不等式的解为23x <<,p 是q 的必要不充分条件,得q 是p 的子集,建立不等式求解. 【详解】 解:命题2:21,:560p x m q x x -<++<,即: 23x <<,p 是q 的必要不充分条件,(2,3)(,21,)m ∴⊆-∞+,213m ∴+≥,解得m 1≥.实数m 的取值范围为m 1≥.故选:D .【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时, 一定要注意区间端点值的检验.9.D解析:D 【分析】设(1,2)x ∈时,2485()1x x f x x -+=-的值域A ,2()1mx m g x x -+=-的值域B ,只要A B ⊆即可满足题意.【详解】设2485()1x x f x x -+=-((1,2)x ∈),24(1)11()4(1)11x f x x x x -+==-+--, 设1t x =-,则1()4f x y t t ==+,则(0,1)x ∈,由勾形函数性质知当102t <<时,y 递减,当112t <<时,y 递增, min 1144122y =⨯+=,[4,)y ∈+∞,即()f x 值域为[4,)+∞, 2()1mx m g x x -+=-((1,2)x ∈),设1x t -=,(0,1)t ∈,则2()g x y m t==+,(0,1)t ∈时,2y m t=+是减函数,(2,)y m ∈++∞,即()(2,)g x m ∈++∞, 对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则24m +<,2m <.故选:D . 【点睛】本题考查含有存在题词与全称题词的命题恒成立问题,解题关键是把问题转化为集合之间的包含关系.10.C解析:C 【分析】根据存在性命题的判定方法,可判定A 正确;根据不等式的性质,可判定B 正确;根据对数的运算性,可判定C 不正确;根据含有一个量词的否定,可判定D 正确. 【详解】对于A 中,由2000131()024x x x -+=-+≥,所以A 为真命题; 对于B 中,由0a b <<,则110b aa b ab --=>,所以11a b>,所以B 是正确的; 对于C 中,设0a >,1a ≠,例如11,24a b ==,则121log log 24a b ==,所以充分性不成立,又如1,22a b ==,此时12log log 21a b ==-,所以必要性不成立,所以“log 1a b >”是“b a >”的既不充分也不必要条件,所以C 是错误的;对于D 中,根据全称命题和存在性命题的关系,可得命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”,所以是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到含有一个量词的真假判定及否定,对数的运算性质,不等式的性质等知识的综合应用,属于中档试题.11.C解析:C 【分析】利用不等式的性质和充分必要条件的定义进行判断即可得到答案. 【详解】充分性:01a b <<<⇒22lg lg 0(lg )(lg )a b a b <<⇒>. 所以22lg lg (lg )(lg )lg lg b aa b b a ab a b<⇒< 即:log log a b a b b a <,充分性满足.必要性:因为,(0,1)a b ∈,所以log 0a b >,log 0b a >. 又因为log log a b a b b a <,所以log log a b b ba a <,即2(log )ab b a<. 当a b =时,11<,不等式不成立. 当a b >时,01b a<<,log 1a b >,不等式2(log )a bb a <不成立当a b <时,1b a >,0log 1a b <<,不等式2(log )a bb a<成立. 必要性满足.综上:p 是q 的充要条件. 故选:C 【点睛】本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.12.C解析:C 【分析】由绝对值不等式的基本性质,集合充分必要条件的判定方法,即可求解. 【详解】由题意,a ,b R ∈,1a b +<,可得1a b a b +≤+<且1a b a b -≤+<,所以充分性是成立的;反之11a b a b ⎧+<⎪⎨-<⎪⎩,可得1111a b a b -<+<⎧⎨-<-<⎩,即1a b +<,所以必要性是成立的,综上可得:a ,b R ∈,1a b +<是11a b a b ⎧+<⎪⎨-<⎪⎩成立的充要条件.故选:C . 【点睛】本题主要考查了绝对值不等式的基本性质,以及充分条件、必要条件的判定方法,其中解答中熟练应用绝对值不等式的性质是解答的关键,着重考查了推理与运算能力.二、填空题13.【分析】集合A 中所有元素被选取了次可得集合中所有3个元素的子集的元素和为即可得结果【详解】集合中所有元素被选取了次∴集合中所有3个元素的子集的元素和为故答案为【点睛】本题考查了集合的子集正整数平方和 解析:(2)(1)(1)(21)12n n n n n --++【分析】集合A 中所有元素被选取了21n C -次,可得集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()222122123n n C -+++⋯+即可得结果.【详解】 集合{}22221,2,3,,A n =中所有元素被选取了21n C -次,∴集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()()()()()22222112121 12326n n n n n n C n ---+++++⋯+=⨯()()()()2112112n n n n n --++=,故答案为(2)(1)(1)(21)12n n n n n --++.【点睛】本题考查了集合的子集、正整数平方和计算公式,属于中档题.14.【分析】利用充分必要条件的定义问题转化为集合的包含关系根据不等式之间的关系即可得到结论【详解】设p 对应的集合为q 对应的集合为若p 是q 的充分条件则解得:实数m 的取值范围为故答案为【点睛】本题主要考查充 解析:(],4-∞-【分析】利用充分、必要条件的定义,问题转化为集合的包含关系,根据不等式之间的关系即可得到结论. 【详解】设p 对应的集合为A=[2,4),q 对应的集合为B=[3m-1,-m], 若p 是q 的充分条件, 则A B ⊆,313124m m m m -≥-⎧⎪∴-≤⎨⎪-≥⎩, 1414m m m ⎧≤⎪⎪≤⎨⎪≤-⎪⎩, 解得:4m ≤-.实数m 的取值范围为(,4]-∞-,故答案为(,4]-∞-. 【点睛】本题主要考查充分条件和必要条件的应用,以及转化思想的应用,属于中档题.15.;【分析】根据命题为假得到恒成立计算得到答案【详解】命题为假命题故恒成立故故答案为:【点睛】本题考查了根据命题的真假求参数意在考查学生的推断能力解析:1a <-; 【分析】根据命题为假得到220x x a -->恒成立,计算得到答案. 【详解】命题“0x R ∃∈,20020x x a --=”为假命题,故220x x a -->恒成立.440a ∆=+<,故1a <-. 故答案为:1a <-. 【点睛】本题考查了根据命题的真假求参数,意在考查学生的推断能力.16.①③【分析】对于①判断其逆否命题的真假;对于②写出其逆命题再判断真假;对于③利用单位圆判定;对于④根据充要条件的定义以及两直线垂直的条件可判断;【详解】对于①若则的逆否命题为若则显然为真即原命题为真解析:①③【分析】对于①判断其逆否命题的真假;对于②写出其逆命题再判断真假;对于③利用单位圆判定;对于④根据充要条件的定义以及两直线垂直的条件可判断;【详解】对于①,若1sin ,2α≠则6πα≠的逆否命题为若6πα=,则1sin 2α=,显然为真,即原命题为真,故①正确; 对于②,若22,am bm <则a b <的逆命题为若a b <,则22am bm <,当0m =时显然为假,即②错误;对于③,如图在单位圆221x y +=上或圆外任取一点(),P a b ,满足“221a b +≥”,根据三角形两边之和大于第三边,一定有“1a b +≥”,在单位圆内任取一点(),M a b ,满足“1a b +≥”,但不满足,“221a b +≥”,即“221a b +≥”是“1a b +≥”的充分不必要条件,故③正确;对于④“直线0x ay -=与直线+0x ay =互相垂直”210a ⇔-=,即1a =±, 故“实数1a =”是“直线0x ay -=与直线+0x ay =互相垂直”的充分不必要条件, 故④为假命题;故答案为:①③.【点睛】本题以命题的真假判断与应用为载体,考查了四种命题,充要条件,不等式的性质和两条直线的位置关系等,属于中档题.17.或或【解析】【分析】由指数不等式的解法得由集合的运算及集合元素的互异性可得实数的取值范围是或或【详解】解:解不等式可得即又且则或或故答案为:或或【点睛】本题考查了指数不等式的解法及集合的运算重点考查 解析:1a <-或 10a -<<或1a ≥【解析】【分析】由指数不等式的解法得{}|01B x x =<<,由集合的运算及集合元素的互异性可得实数a 的取值范围是1a <-或10a -<<或1a ≥.【详解】解:解不等式133x <<可得01x <<,即{}|01B x x =<<,又{}1,0,A a =-,且A B φ⋂=,则1a <-或10a -<<或1a ≥,故答案为:1a <-或 10a -<<或1a ≥.【点睛】本题考查了指数不等式的解法及集合的运算,重点考查了集合元素的互异性,属基础题. 18.【分析】求得命题又由命题是的必要不充分条件所以是的真子集得出不等式组即可求解得到答案【详解】由题意命题命题又由命题是的必要不充分条件所以是的真子集设则满足解得经验证当适合题意所以的取值范围是【点睛】 解析:(],2-∞【分析】 求得命题1:{|1}3p A x x =≤<,又由命题q 是p 的必要不充分条件,所以A 是B 的真子集, 得出不等式组1()03(1)0f f ⎧>⎪⎨⎪≥⎩,即可求解,得到答案.【详解】 由题意,命题311:0{|1}13x p A x x x x ⎧⎫-=≤=≤<⎨⎬-⎩⎭,命题{}2:30q B x x mx =--+>.又由命题q 是p 的必要不充分条件,所以A 是B 的真子集,设()23f x x mx =--+,则满足2111()()30333(1)130f m f m ⎧=--+>⎪⎨⎪=--+≥⎩,解得2m ≤, 经验证当2m =适合题意,所以m 的取值范围是(],2-∞.【点睛】本题主要考查了分式不等式的求解,以及利用充要条件求解参数问题,其中解答中正确求解集合A ,再根集合的包含关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.19.{-112};【解析】=={-112}解析:{-1,1,2};【解析】A B ⋃={}{}1212,,⋃-={-1,1,2} 20.【详解】根据全称命题的否定的概念可知p 为解析:00R,20x x ∃∈≤【详解】根据全称命题的否定的概念,可知⌝p 为00R,20x x ∃∈≤.三、解答题21.“p 为真命题”是“q ⌝为真命题”的充分不必要条件.【分析】由恒成立问题求得“p 为真命题”与“q ⌝为真命题”对应的参数范围,结合集合之间的关系,判断充分性和必要性.【详解】若p 为真命题,则()2max 232x x k ++<,[5,3]x ∈--令22()23(1)2f x x x x =++=++,()f x 在[5,3]x ∈--单调递减,所以max ()(5)18f x f =-=,∴218k >,9k >.:(0,)q x ⌝∀∈+∞,242x x k x-+-≤, 若q ⌝为真命题,则max 24m x x ⎡⎤⎛⎫≥-++⎪⎢⎥⎝⎭⎣⎦由2x x +≥.x =max 244x x ⎡⎤⎛⎫-++=- ⎪⎢⎥⎝⎭⎣⎦,所以4k ≥-因为{|9}{|4k k k k ≠>⊂≥-, 所以“p 为真命题”是“q ⌝为真命题”的充分不必要条件.【点睛】本题考查命题充分性和必要性的判断,涉及由恒成立问题求参数的范围,属综合中档题. 22.(1)[1,0)(4,5]-;(2)1[,3]2a ∈ 【分析】根据已知中集合A ,B ,C ,U ,结合集合的交集,交集,补集运算定义,可得答案.【详解】解:(1)若1a =,则集合{}|21A x x =-≤≤, {|23,}[1,5]B y y x x A ==+∈=-,{}2|,[0,4]C y y x x A ==∈=, ()[1,0)(4,5]R C B ∴=-;(2)当(2,0]a ∈-时,则2[1,23],[,4]B a C a =-+=,若B C B ⋃=,则234a +≥,此时不存在满足条件的a 值;当(0,2]a ∈时,则[1,23],[0,4]B a C =-+=,若B C B ⋃=,则234a +≥,解得:1[,2]2a ∈; 当(2,)a ∈+∞时,则2[1,23],[0,]B a C a =-+=,若B C B ⋃=,则223a a +≥,解得:(2,3]a ∈;综上所述,1[,3]2a ∈.【点睛】本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于中档题目. 23.(1)p 为真,q 为假,理由见解析;(2)p q ∨为真,p q ∧为假,()p q ∧⌝为真.【分析】(1)由22x =有解知命题p 为真命题,22sin 1cos 2y x x ==-,在(,)62ππ-上先减后增.即命题q 为假命题;(2)由p 为真q 为假,结合复合命题的真假可得.【详解】(1)易知0x R ∃=,故p 为真.∵22sin 1cos2y x x ==-,且23x ππ⎛⎫∈-⎪⎝⎭,, ∴1cos2y x =-在,62ππ⎛⎫-⎪⎝⎭上先减后增,故q 为假. (2)∵p 真q 假,∴p q ∨为真,p q ∧为假,()p q ∧⌝为真.【点睛】本题考查了三角函数的单调性及复合命题的真假,属中档题.24.(1){}23A B x x ⋃=-<<;(2)(],2-∞-;(3)[)0,+∞.【分析】(1)求出集合B ,利用并集的定义可求得集合A B ; (2)利用A B ⊆可得出关于实数m 的不等式组,由此可解得实数m 的取值范围; (3)分B =∅和B ≠∅两种情况讨论,结合AB =∅可得出关于实数m 的不等式组,可求得实数m 的取值范围.【详解】(1)当1m =-时,{}22B x x =-<<,则{}23A B x x ⋃=-<<; (2)由A B ⊆知122113m m m m ->⎧⎪≤⎨⎪-≥⎩,解得2m ≤-,即m 的取值范围是(],2-∞-;(3)由AB =∅得 ①若21m m ,即13m ≥时,B =∅符合题意;②若21m m ,即13m <时,需1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩. 得103m ≤<或m ∈∅,即103m ≤<. 综上知0m ≥,即实数的取值范围为[)0,+∞.【点睛】易错点睛:在求解本题第(3)问时,容易忽略B =∅的情况,从而导致求解错误. 25.(1){}2,3,4,5,6;(2)见解析.【分析】化简集合U 和A ,(1)根据交集和并集的概念得到A∩B 与A ∪B ;(2)根据集合的交集补集的概念求出(∁U A )∩B ,再写出它的所有子集.【详解】全集U={x ∈N|1≤x≤6}={1,2,3,4,5,6},集合A={x|x 2-6x+8=0}={x|x=2或x=4}={2,4},集合B={3,4,5,6};(1)A∩B={4},A ∪B={2,3,4,5,6};(2)∁U A={1,3,5,6},∴(∁U A )∩B={3,5,6},它的所有子集是∅,{3},{5},{6},{3,5},{3,6},{5,6},{3,5,6}共8个.【点睛】本题考查了集合的化简与运算问题,是基础题目.26.12a <<【分析】根据题意得出集合B 是集合A 的真子集,解绝对值不等式以及一元二次不等式得出集合,A B ,根据包含关系得出实数a 的取值范围.【详解】解:因为x A ∈是x B ∈的必要不充分条件,所以集合B 是集合A 的真子集 解不等式1x a -<,得11a x a -+<<+,所以{}11A x a x a =-+<<+ 解不等式2320x x -+≤,得12x ≤≤ 所以{}12B x x =≤≤ 因为集合B 是集合A 的真子集,所以1112a a -+<⎧⎨+>⎩即12a <<【点睛】本题主要考查了根据必要不充分条件求参数的值,属于中档题.。

深圳光明中英文书院必修第一册第一单元《集合与常用逻辑用语》测试题(答案解析)

深圳光明中英文书院必修第一册第一单元《集合与常用逻辑用语》测试题(答案解析)

一、选择题1.“不等式20mx x m ++>在R 上恒成立”的一个必要不充分条件是( )A .12m >B .01m <<C .14m >D .1m2.以下四个命题中,真命题的是( )A .()0π,sin tan x x x ∃∈=,B .ABC 中,sin sin cos cos A B A B +=+是2C π=的充要条件C .在一次跳伞训练中,甲,乙两位同学各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示p q ∧ D .∀∈θR ,函数()()sin 2f x x θ=+都不是偶函数3.已知x 、y 都是实数,那么“x y >”的充分必要条件是( ). A .lg lg x y >B .22xy >C .11x y>D .22x y >4.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a b b a ->+-”的( )( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知集合{}2|40A x R x x =∈-<,{}|28xB x R =∈<,则A B =( )A .()0,3B .()3,4C .()0,4D .(),3-∞6.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x R x =∈-≤<,则()A B C ⋃⋂=A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}7.已知点P 在椭圆C :2214x y +=上,直线l :0x y m -+=,则“35m =”是“点P 到直线l 的距离的最小值是10”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 8.若命题“∃x 0∈R ,x +(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( )A .(-1,3)B .[-1,3]C .(-∞,-1)∪(3,+∞)D .(-∞,-1]∪[3,+∞)9.判断下列命题①命题“若14m ≥-,则方程20x x m +-=有实根”的逆命题为真命题;②命题“若21x =,则1x =.”的否命题为“若21x =,则1x ≠.”;③若命题“p q ∧”为假命题,则命题“p q ∨”是假命题;④命题“x R ∀∈,22x x ≥."的否定是“0x R ∃∈,0202x x <.” 中正确的序号是( )A .①③B .②③C .①④D .②④10.已知命题P :∃0x R ∈,20010x x -+≥;命题Q :若a <b ,则1a >1b,则下列为真命题的是( ) A .P Q ∧B .P Q ⌝∧ C .P Q ⌝∧D .P Q ⌝⌝∧11.设,a b 是向量,“a a b =+”是“0b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.设,(0,1)a b ∈,:P “a b <”,:q “log log a b a b b a <”,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题,则m 的取值范围是________. 14.设全集U Z =,{}1,3,5,7,9A =,{}1,2,3,4,5B =,则下图中阴影部分表示的集合是_____.15.已知集合{}{}10|133xA aB x =-=,,,<<,若A B ⋂=∅,则实数a 的取值范围是______.16.已知下列命题:①命题“213x R x x ∃∈+>,”的否定是“213x R x x ∀∈+<,”;②已知,p q 为两个命题,若p q ∨“”为假命题,则()()“”p q ⌝⌝∧为真命题;③“2a >”是“5a >”的充分不必要条件;④“若0,xy =则0x =且0y =”的逆否命题为真命题.其中 真命题的序号是__________.(写出所有满足题意的序号) 17.已知集合{}12A x x =-<<,{}1,0,1,2B =-,则AB =__________.18.集合{}|20M x N x =∈-≤≤的子集个数为__________. 19.在正项等比数列{}n a 中,已知120151a a <=,若集合1212111|0,t t A t a a a t N a a a *⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-++-≤∈⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎩⎭,则A 中元素个数为______.20.对任意的x ∈R ,函数()327f x x ax ax =++不存在极值点的充要条件是__________.三、解答题21.已知集合{}{}|321,|53A x a x a B x x =-≤≤+=-≤≤,全集U =R . (1)当1a =时,求()UA B ;(2)若A B ⊆,求实数a 的取值范围. 22.已知幂函数2242()(1)m m f x m x -+=-⋅在(0,)+∞上单调递增,函数()2xg x k =-.(1)求m 的值;(2)当[1,2]x ∈-时,()f x 、()g x 的值域分别为A 、B ,设命题p :x A ∈,命题q :x B ∈,若命题p 是q 成立的必要条件,求实数k 的取值范围.23.设集合U 为全体实数集,{ 2 5}M x x x =|≤-≥或,121{|}N x a x a =+≤≤-. (1)若3a =,求U MC N ;(2)若N M ⊆,求实数a 的取值范围. 24.在“①AB B =,②RB A ⊆,③A B =∅”这三个条件中任选一个,补充在下面横线上,求解下列问题.问题:已知集合{}24120A x x x =-++>,集合{5}B x m x m =<<+.(1)若2m =,求AB ,()R A B ;(2)若______,求m 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分. 25.已知命题20:{100x p x +≥-≤,命题:11,0q m x m m -≤≤+>,若p ⌝是q ⌝的必要不充分条件,求实数的取值范围.26.已知集合{}1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17S =,集合{}128,,,X x x x =是集合S 的一个含有8个元素的子集.(1)当{}1,2,5,7,11,13,16,17X =时,设,(1,8)i j x x X i j ∈≤≤, ①写出方程3i j x x -=的解(,i j x x );②若方程(0)i j x x k k -=>至少有三组不同的解,写出k 的所有可能取值;(2)证明:对任意一个X ,存在正整数k ,使得方程i j x x k -=(1,8)i j ≤≤至少有三组不同的解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可. 【详解】因为“不等式2+0mx x m +>在R 上恒成立”,所以当0m =时,原不等式为0x>在R 上不是恒成立的,所以0m ≠,所以“不等式2+0mx x m +>在R 上恒成立”,等价于2>0140m m ⎧⎨∆=-<⎩,解得12m >. A 选项是充要条件,不成立; B 选项中,12m >不可推导出01m <<,B 不成立; C 选项中,12m >可推导14m >,且14m >不可推导12m >,故14m >是12m >的必要不充分条件,正确;D 选项中,1m 可推导1>2m ,且1>2m 不可推导1m ,故>1m 是12m >的充分不必要条件,D 不正确. 故选:C. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.2.B解析:B 【分析】分析()0π,sin tan x x x ∀∈≠,即得A 错误;利用充要条件的定义判断B 正确;利用复合命题的定义判断C 错误;通过特殊值验证D 错误即可. 【详解】 选项A 中,,2x ππ⎛⎫∈⎪⎝⎭时,sin 0,tan 0x x ><,即sin tan x x ≠;2x π=时,sin 1x =,tan x 无意义;0,2x π⎛⎫∈ ⎪⎝⎭时,设()sin tan sin sin cos x h x x x x x =-=-,则()32211cos cos 0cos cos xh x x x x-'=-=>,故()tan sin h x x x =-在0,2π⎛⎫ ⎪⎝⎭上单调递增, 故()()tan sin 00h x x x h =->=,即sin tan x x <;综上可知,()0π,sin tan x x x ∀∈≠,,故A 错误;选项B 中,ABC 中,若sin sin cos cos A B A B +=+,则sin cos cos sin A A B B -=-,44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即sin sin 44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又33,,,444444A B ππππππ⎛⎫⎛⎫-∈--∈- ⎪ ⎪⎝⎭⎝⎭,故44A B ππ-=-或44A B πππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以2A B π+=或A B π-=,ABC 中A B π-≠,故2A B π+=,即2C π=;反过来,若2C π=,则2A B π+=,结合诱导公式可知,sin sin cos 2A B B π⎛⎫=-= ⎪⎝⎭,sin sin cos 2B A A π⎛⎫=-= ⎪⎝⎭,所以sin sin cos cos A B A B +=+;综上,sin sin cos cos A B A B +=+是2C π=的充要条件,故B 正确;选项C 中,依题意,命题p ⌝是“甲没有降落在指定范围”, q ⌝是“乙没有降落在指定范围”,故复合命题()()p q ⌝∨⌝ 是“至少有一位学员没有降落在指定范围”,故C 错误; 选项D 中,存在2πθ=时,函数()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,满足()()f x f x -=,即()f x 是偶函数,故D 错误. 故选:B. 【点睛】 方法点睛:(1)证明或判断全称命题为真命题时,要证明对于,()x I p x ∀∈成立;证明或判断它是假命题时,只需要找到一个反例,说明其不成立即可.(2)证明或判断特称命题为真命题时,只需要找到一个情况,说明其成立即可;证明或判断它是假命题时,要证明对于,()x I p x ∀∈⌝成立.3.B解析:B 【分析】根据不等式的性质,结合充分条件与必要条件的概念,逐项判断,即可得出结果.对于A ,lg lg 0x y x y >⇔>>,故“lg lg x y >”是“x y >”的充分不必要条件,不符合题意; 对于B ,22⇔>>x y x y ,即“22x y >”是“x y >”的充要条件,符合题意;对于C ,由11x y>得,0x y <<或0x y >>,0x y <<,不能推出x y >,由x y >也不能推出11x y >,所以“11x y>”是“x y >”的既不充分也不必要条件,不符合题意; 对于D ,由22x y x y >⇔>,不能推出x y >,由x y >也不能推出22x y >,故“22x y >”是“x y >”的既不充分也不必要条件,不符合题意; 故选:B. 【点睛】方法点睛:本题主要考查判定命题的充要条件,及不等式的性质,充分条件、必要条件的三种判定方法:(1)定义法:根据p q ⇒,q p ⇒进行判断,适用于定义、定理判断性问题. (2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.4.C解析:C 【分析】构造函数()ln f x x x =+,据a ,b 的范围结合函数的单调性确定充分条件,还是必要条件即可. 【详解】设()ln f x x x =+,显然()f x 在(0,)+∞上单调递增,a b >,所以()()f a f b >ln ln a a b b ∴+>+,即ln ln a b b a ->+-,故充分性成立, 因为ln ln a b b a ->+-ln ln a a b b ∴+>+,所以()()f a f b >,a b ∴>,故必要性成立,故“a b >”是“ln ln a b b a ->+-”的充要条件, 故选:C .本题考查了函数的单调性,必要条件、充分条件与充要条件的判断,考查了构造函数法的应用,是基础题.5.A解析:A 【分析】解不等式确定集合,A B 后再由交集定义计算. 【详解】由题意{|04}A x x =<<,{|3}B x x =<,∴{|03}(0,3)A B x x =<<=.故选:A . 【点睛】本题考查求集合的交集运算,考查解一元二次不等式和指数不等式,属于基本题.6.C解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B =-,结合交集的定义可知:(){}1,0,1A B C =-.本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.7.B解析:B 【分析】“点P 到直线l ”解得:m =±. 【详解】点P 在椭圆C :2214x y +=上,直线l :0x y m -+=,考虑“点P 到直线l ” 设()[)2cos ,sin ,0,2P θθθπ∈,点P 到直线l 的距离d ϕϕ===点P 到直线l ()m θϕ++的最小值()m θϕ++符号恒正或恒负, ()m m m θϕ⎡++∈⎣当0m <时,m =-,当0m >时,m =综上所述:m =±所以“m =是“点P 到直线l ”的充分不必要条件. 故选:B 【点睛】此题考查充分条件与必要条件的辨析,关键在于根据题意准确求出参数的取值范围.8.C解析:C 【分析】根据二次函数的图象与性质,得到关于a 的不等式,即可求解. 【详解】由题意,2000,(1)10x R x a x ∃∈+-+<,则2(1)40a ∆=-->,解得3a >或1a <-, 所以实数a 的取值范围是(,1)(3,)-∞-+∞,故选C.【点睛】本题主要考查了存在性命题的真假判定及应用,其中熟记转化为二次函数,利用二次函数的图象与性质是解答的关键,着重考查了推理与计算能力.9.C解析:C 【分析】①写出原命题的逆命题,并判断真假性. ②根据否命题的知识判断真假性.③根据含有逻辑联结词命题真假性来判断命题的真假性. ④根据全称命题的否定的知识判断真假性. 【详解】①原命题的逆命题为:若方程20x x m +-=有实根,则14m ≥-.当方程20x x m +-=有实根则11404m m ∆=+≥⇒≥-.所以逆命题为真命题.所以①正确. ②原命题的否命题为:若21x ≠,则1x ≠.所以②错误.③由于p q ∧为假命题,所以,p q 中至少有一个是假命题,可能是一真一假,所以p q ∨可能为真命题.所以③错误. ④原命题的否定是0x R ∃∈,0202x x <.所以④正确.综上所述,正确的序号为①④.故选:C 【点睛】本小题主要考查四种命题,考查含有逻辑连接词命题,考查全称命题的否定,属于中档题.10.B解析:B 【分析】判断命题P 为真命题,命题Q 为假命题,再依次判断每个选项得到答案. 【详解】取00x =,则200110x x -+=≥,故命题P 为真命题;取2a =-,1b =,满足a b <,但是11a b<,故命题Q 为假命题. 故P Q ∧为假命题,P Q ⌝∧为真命题,P Q ⌝∧为假命题,P Q ⌝⌝∧为假命题.故选:B. 【点睛】本题考查了命题的真假判断,命题的否定,且命题,意在考查学生的计算能力和推断能力.11.B解析:B 【分析】根据向量的运算性质结合充分条件和必要条件的判定,即可得出答案. 【详解】 当12a b =-时,1122a b b b b a +=-+==,推不出0b =当0b =时,0b =,则0a b a a +=+= 即“a a b =+”是“0b =”的必要不充分条件 故选:B 【点睛】本题主要考查了判断必要不充分条件,属于中档题.12.C解析:C 【分析】利用不等式的性质和充分必要条件的定义进行判断即可得到答案. 【详解】充分性:01a b <<<⇒22lg lg 0(lg )(lg )a b a b <<⇒>. 所以22lg lg (lg )(lg )lg lg b aa b b a ab a b<⇒< 即:log log a b a b b a <,充分性满足.必要性:因为,(0,1)a b ∈,所以log 0a b >,log 0b a >. 又因为log log a b a b b a <,所以log log a b b ba a <,即2(log )ab b a<.当a b =时,11<,不等式不成立. 当a b >时,01b a<<,log 1a b >,不等式2(log )a bb a <不成立当a b <时,1b a >,0log 1a b <<,不等式2(log )a bb a<成立. 必要性满足.综上:p 是q 的充要条件. 故选:C 【点睛】本题主要考查充要条件,同时考查了对数的比较大小,属于中档题.二、填空题13.【分析】对分类讨论计算可得【详解】解:因为命题使得不等式是真命题当时恒成立满足条件;当时则解得综上可得即故答案为:【点睛】本题考查全称命题为真求参数的取值范围属于中档题 解析:[]0,4【分析】对m 分类讨论,计算可得. 【详解】解:因为命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题 当0m =时,10≥恒成立,满足条件; 当0m ≠时,则240m m m >⎧⎨-≤⎩解得04m <≤ 综上可得04m ≤≤即[]0,4m ∈ 故答案为:[]0,4 【点睛】本题考查全称命题为真求参数的取值范围,属于中档题.14.【分析】先判断阴影部分表示的集合为再计算得到答案【详解】集阴影部分表示的集合为:故答案为【点睛】本题考查了韦恩图的识别将图像转化为集合的运算是解题的关键 解析:{}2,4【分析】先判断阴影部分表示的集合为U B C A ⋂,再计算得到答案. 【详解】集U Z =,{}1,3,5,7,9A =,{}1,2,3,4,5B =阴影部分表示的集合为:{}2,4U B C A ⋂=故答案为{}2,4【点睛】本题考查了韦恩图的识别,将图像转化为集合的运算是解题的关键.15.或或【解析】【分析】由指数不等式的解法得由集合的运算及集合元素的互异性可得实数的取值范围是或或【详解】解:解不等式可得即又且则或或故答案为:或或【点睛】本题考查了指数不等式的解法及集合的运算重点考查 解析:1a <-或 10a -<<或1a ≥【解析】【分析】由指数不等式的解法得{}|01B x x =<<,由集合的运算及集合元素的互异性可得实数a 的取值范围是1a <-或10a -<<或1a ≥.【详解】解:解不等式133x <<可得01x <<,即{}|01B x x =<<,又{}1,0,A a =-,且A B φ⋂=,则1a <-或10a -<<或1a ≥,故答案为:1a <-或 10a -<<或1a ≥.【点睛】本题考查了指数不等式的解法及集合的运算,重点考查了集合元素的互异性,属基础题. 16.②【分析】①写出命题的否定即可判定正误;②由为假命题得到命题都是假命题由此可判断结论正确;③由时不成立反之成立由此可判断得到结论;④举例说明原命题是假命题得出它的逆否命题也为假命题【详解】对于①中命解析:②【分析】①写出命题“213x R x x ∃∈+>,”的否定,即可判定正误;②由p q ∨“”为假命题,得到命题,p q 都是假命题,由此可判断结论正确;③由2a >时,5a >不成立,反之成立,由此可判断得到结论;④举例说明原命题是假命题,得出它的逆否命题也为假命题.【详解】对于①中,命题“213x R x x ∃∈+>,”的否定为“213x R x x ∀∈+≤,”,所以不正确;对于②中,命题,p q 满足p q ∨“”为假命题,得到命题,p q 都是假命题,所以,p q ⌝⌝都是真命题,所以()()“”p q ⌝⌝∧为真命题,所以是正确的; 对于③中,当2a >时,则5a >不一定成立,当5a >时,则2a >成立,所以2a >是5a >成立的必要不充分条件,所以不正确;对于④中,“若0,xy =则0x =且0y =”是假命题,如3,0x y ==时,所以它的逆否命题也是假命题,所以是错误的;故真命题的序号是②.【点睛】本题主要考查了命题的否定,复合命题的真假判定,充分与必要条件的判断问题,同时考查了四种命题之间的关系的应用,试题有一定的综合性,属于中档试题,着重考查了推理与论证能力.17.【解析】分析:利用交集的运算直接求解即可详解:由题所以即答案为点睛:本题考查交集的运算属基础题解析:{}0,1【解析】分析:利用交集的运算直接求解即可 详解:由题{}12A x x =-<<,{}1,0,1,2B =-,所以{}0,1A B ⋂=.即答案为{}0,1点睛:本题考查交集的运算,属基础题. 18.2【解析】因为集合所以集合子集有两个:空集与故答案为解析:2【解析】因为集合{}{}|200M x N x =∈-≤≤=,所以集合M 子集有两个:空集与{}0,故答案为2.19.4029【解析】试题分析:设等比数列公比为的公比为因为所以即所以解得考点:等比数列求和公式解析:4029【解析】试题分析:设等比数列公比为{}n a 的公比为,因为,所以,,即,所以,解得.考点:等比数列求和公式. 20.【分析】求出导数可得出从而可求解出实数的取值范围【详解】由于函数在上不存在极值点则即解得因此函数不存在极值点的充要条件是故答案为:【点睛】本题考查利用函数极值点求参数解题时理解函数的极值点与导数零点 解析:021a ≤≤【分析】求出导数()2327f x x ax a '=++,可得出0∆≤,从而可求解出实数a 的取值范围.【详解】()327f x x ax ax =++,()2327f x x ax a '∴=++,由于函数()y f x =在R 上不存在极值点,则24840a a ∆=-≤,即2210a a -≤, 解得021a ≤≤.因此,函数()327f x x ax ax =++不存在极值点的充要条件是021a ≤≤. 故答案为:021a ≤≤.【点睛】本题考查利用函数极值点求参数,解题时理解函数的极值点与导数零点之间的关系,考查运算求解能力,属于中等题.三、解答题21.(1){}|52x x -≤<-;(2)4a或21a -≤≤. 【分析】(1)求出集合A 从而求U A ,再与集合B 取交集即可;(2)分A φ=和A φ≠两种情况讨论根据A B ⊆列出不等式(组)求a 的取值范围.【详解】(1)依题意,当1a =时,{}|23A x x =-≤≤,则|2U A x x =<-{或3}x >,又{}|53B x x =-≤≤, 则()|2U A B x x =<-{或{}{}|53|3}52x x x x x -≤≤->=≤<-.(2)若A B ⊆,则有{}{}|321|53x a x a x x -≤≤+⊆-≤≤,于是有: 当A φ=时,A B ⊆显然成立,此时只需321a a ->+,即4a;当A φ≠时,若A B ⊆,则 35221313214a a a a a a a -≥-≥-⎧⎧⎪⎪+≤⇒≤⎨⎨⎪⎪-≤+≥-⎩⎩,所以:21a -≤≤综上所述,a 的取值范围为:4a或21a -≤≤.【点睛】易错点点睛:在利用集合的包含关系求参数时注意以下两点:(1)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;(2)在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论.22.(1)0;(2)10,2⎡⎤⎢⎥⎣⎦. 【分析】(1)解方程2(1)1m -=检验即得解; (2)求出[0,4]A =,1[,4]2B k k =--,解不等式组10244k k ⎧-≥⎪⎨⎪-≤⎩即得解. 【详解】(1)依题意得:∵()y f x =为幂函数,∴2(1)1m -=,∴0m =或2m =,当2m =时,2()f x x -=在(0,)+∞上单调递减,舍去,当0m =时,2()f x x =在(0,)+∞上单调递增,可取,所以0m =.(2)由(1)得2()f x x =,当[1,2]x ∈-时,()[0,4]f x ∈,即[0,4]A =, 当[1,2]x ∈-时,1()[,4]2g x k k ∈--,即1[,4]2B k k =--, ∵命题p 是q 成立的必要条件,∴B A ⊆,∴10244k k ⎧-≥⎪⎨⎪-≤⎩,∴102k ≤≤, ∴k 的取值范围是1[0,]2.【点睛】本题主要幂函数的定义和单调性,考查函数的值域的求法,考查指数函数的单调性和必要条件的判断,意在考查学生对这些知识的理解掌握水平.23.(1){|2x x ≤-或5}x >.; (2)(,2)[4,)-∞+∞. 【分析】(1)当3a =,求得集合2{|M x x =≤-或5}x,45{|}N x x =≤≤,根据集合的运算,即可求解;(2)根据N M ⊆,分类讨论,列出不等式(组),即可求解.【详解】(1)当3a =,集合2{|M x x =≤-或5}x,45{|}N x x =≤≤, 可得{|4U C N x x =<或5}x >,所以{2U x x M C N =|≤-或5}x >.(2)因为N M ⊆,当N φ=时,可得121a a +>-,解得2a <,此时满足N M ⊆;当N φ≠时,要使得N M ⊆,则满足121212a a a +≤-⎧⎨-≤-⎩或12115a a a +≤-⎧⎨+≥⎩, 解得φ或4a ≥,即4a ≥,综上可得,实数a 的取值范围(,2)[4,)-∞+∞.【点睛】 根据集合的运算结果求参数的取值范围的分法:将集合中的运算关系转化为两个集合之间的关系,若集合中的运算能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到;将集合之间的关系转化为解方程(组)或不等式(组)问题求解;根据求解结果来确定参数的值或取值范围.24.(1){|26}AB x x =<<,()R A B {|2x x =≤-或2}x >;(2)选①,21m -≤≤;选②,7m ≤-或6m ≥;选③7m ≤-或6m ≥. 【分析】先解二次不等式可得A ,进而可得A R ,(1)再利用交集并集的定义直接求解即可;(2)若选①,由B A ⊆列不等式求解即可;若选②,由52m +≤-或6m ≥即可得解;若选③,由52m +≤-或6m ≥即可得解.【详解】 集合{}24120{|26}A x x x x x =-++>=-<<,{|2R A x x =≤-或6}x ≥ (1)若2m =,{27}B x x =<<,则{|26}A B x x =<<,()R A B {|2x x =≤-或2}x >.(2)若选①A B B =,则B A ⊆,所以562m m +≤⎧⎨≥-⎩,解得21m -≤≤; 若选②R B A ⊆,则52m +≤-或6m ≥,解得:7m ≤-或6m ≥;若选③AB =∅,则52m +≤-或6m ≥, 解得:7m ≤-或6m ≥.【点睛】本题主要考查了集合的交并补的运算及由集合的包含关系求参,属于基础题. 25.{}|9m m ≥【分析】化简命题p :-2≤x ≤10,若¬p 是¬q 的必要不充分条件等价于q 是p 的必要不充分条件,从而可列出不等式组,求解即可.【详解】由题意得p :-2≤x ≤10.∵¬p 是¬q 的必要不充分条件,∴q 是p 的必要不充分条件.∴p ⇒q ,qp . ∴12110m m -≤-⎧⎨+≥⎩∴39m m ≥⎧⎨≥⎩∴m ≥9. 所以实数m 的取值范围为{m |m ≥9}.【点睛】本题主要考查了必要不充分条件,逆否命题,属于中档题.26.(1)①(,)(5,2),(16,13)i j x x =②4,6.(2)证明见详解.【分析】(1)①根据两个元素之差为3,结合集合X 的元素,即可求得;②根据题意要求,写出集合X 中从小到大8个数中所有的差值(限定为正数)的可能,计算每个差值出现的次数,即可求得k ;(2)采用反证法,假设不存在满足条件的k ,根据差数的范围推出矛盾即可.【详解】(1)①方程3i j x x -=的解有:(,)(5,2),(16,13)i j x x =.②以下规定两数的差均为正,则:列出集合X 的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16.这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以k 的可能取值有4,6.(2)证明:不妨设128117x x x ≤<<<≤,记1(1,2,,7)i i i a x x i +=-=, 2(1,2,,6)i i i b x x i +=-=,共13个差数.假设不存在满足条件的k , 则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6, 从而127126()()2(126)749a a a b b b +++++++≥++++= ① 又127126818721()()()()a a a b b b x x x x x x +++++++=-++--81722()()2161446x x x x =-+-≤⨯+=,这与①矛盾.故假设不成立,结论成立.即对任意一个X ,存在正整数k ,使得方程i j x x k -=(1,8)i j ≤≤至少有三组不同的解.【点睛】本题考查集合新定义问题,涉及反证法的使用,本题的关键是要理解题意,小心计算,大胆求证.。

新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》检测卷(答案解析)

新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》检测卷(答案解析)

一、选择题1.已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,则“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.下列命题中:①命题“若1l :210ax y +-=与2l :0x y -=垂直,则2a =”的逆否命题;②命题“若1a ≠,则210a -≠”的否命题;③命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定.其中真命题的个数为( )A .0个B .1个C .2个D .3个3.已知{}n a 是等比数列,n S 为其前n 项和,那么“10a >”是“数列{}n S 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.若命题P :1x ≠或2y ≠,命题Q :3x y +≠,则P 是Q 的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分又不必有5.“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“20210S >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 7.已知a ∈R ,则“2a ≤”是“方程2210ax x ++=至少有一个负根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.设向量(sin2,cos )a θθ=,(cos ,1)b θ=,则“//a b ”是“1tan 2θ=”成立的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.判断下列命题①命题“若14m ≥-,则方程20x x m +-=有实根”的逆命题为真命题;②命题“若21x =,则1x =.”的否命题为“若21x =,则1x ≠.”;③若命题“p q ∧”为假命题,则命题“p q ∨”是假命题;④命题“x R ∀∈,22x x ≥."的否定是“0x R ∃∈,0202x x <.” 中正确的序号是( )A .①③B .②③C .①④D .②④10.命题“对任意x ∈R ,都有20x ≥”的否定为 A .对任意x ∈R ,都有20x < B .不存在x ∈R ,都有20x < C .存在0x ∉R ,使得200x < D .存在0x ∈R ,使得200x < 11.“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件12.对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则实数m 的取值范围是( ) A .[]0,2 B .(],2-∞ C .()0,2D .(),2-∞二、填空题13.集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为__________.14.已知集合U =R ,集合[]5,2A =-,()1,4B =,则下图中阴影部分所表示的集合为__________.15.命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题,则m 的取值范围是________. 16.命题“数列的前n 项和()2*3n S n n n N=+∈”成立的充要条件是________.(填一组符合题意的充要条件即可,所填答案中不得含有字母n ) 17.已知集合1,2,3,{}4,5,6X Y Z ⋃⋃=,若1,21,2,3,4,5}{},3{,X Y X Y X ⋂=⋃=∉,则集合X Y Z 、、所有可能的情况有_________种.18.集合{}|20M x N x =∈-≤≤的子集个数为__________. 19.若集合{}1,3,A x =,{}21,B x =,且{}1,3,A B x ⋃=,则x =___________.20.己知全集U =R ,集合,,则___________三、解答题21.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈-. (1)若2A ∈,则A 中至少还有几个元素? (2)集合A 是否为双元素集合?请说明理由.(3)若A 中元素个数不超过8,所有元素的和为143,且A 中有一个元素的平方等于所有元素的积,求集合A .22.已知全集U =R ,非空集合2{|0}3x A x x -=<-,2{|()(2)0}B x x a x a =---<. (1)当12a =时,求()U A B ;(2)命题p :x A ∈,命题q :x B ∈,若q 是p 的必要条件,求实数a 的取值范围.23.已知集合2102x a A xx a ⎧⎫--⎪⎪=<⎨⎬-⎪⎪⎩⎭,集合{}|32B x x =-<. (Ⅰ)当2a =时,求A B ;(Ⅱ)设p :x A ∈,q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围. 24.已知命题:342,:()(2)0p x q x a x a ->---<. (1)若1a =,p q ∧为真命题,求x 的取值范围;(2)若q 是p ⌝的必要不充分条件,求实数a 的取值范围.25.已知函数4321x x A x -+⎧⎫⎪⎪=>⎨⎬⎪⎪⎩⎭,{}321B x m x m =-≤≤+. (1)当2m =时,求A 和()RA B ⋂;(2)若x B ∈是x A ∈的充分不必要条件,求实数m 的取值范围.26.已知0a >,设p :实数x 满足22430x ax a -+<,q :实数x 满足()231x -<. (1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】充分性:若0,3B π⎛⎤∈ ⎥⎝⎦,则2221cos 122a c b B ac+-≤=<,即2222ac a c b ac ≤+-<,即222222a c ac b a c ac +-<≤+-,并不能得出2b ac =一定成立,故充分性不成立;必要性:若2b ac =,由余弦定理得:2221cos 222a c ac ac ac B ac ac +--=≥=,因为()0,B π∈,所以0,3B π⎛⎤∈ ⎥⎝⎦,故必要性成立, 综上,“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的必要不充分条件,故选:C . 【点睛】方法点睛:判断充要条件的四种常用方法:定义法、传递性法、集合法、等价命题法.2.D解析:D 【分析】根据原命题和逆否命题同真假来判断①是真命题,根据定义写出命题的否命题和命题的否定,再判断②③的真假即可. 【详解】①中,若1l :210ax y +-=与2l :0x y -=垂直,则()1210a ⨯+⨯-=,则2a =.故该命题是真命题,其逆否命题也是真命题;②中,命题“若1a ≠,则210a -≠”的否命题是:“若1a =,则210a -=”,易见若1a =,则21a =,则210a -=,故“若1a =,则210a -=”是真命题;③中,命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定是“对任意的0ω<,函数()sin y x ωϕ=+存在最小正周期”, 对任意的0ω<,函数()sin y x ωϕ=+存在最小正周期2T πω=,故命题“存在0ω<,函数()sin y x ωϕ=+不存在最小正周期”的否定是真命题.故①②③均为真命题. 故选:D. 【点睛】 思路点睛:一般互为逆否的两个命题判断真假时,可以选择容易的进行判断,则另一个就同真假.3.B解析:B 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】设等比数列{}n a 的公比为q ,充分性:当10a >,0q <时,111n n nn S a S a q ++-==,无法判断其正负,显然数列{}n S 为不一定是递增数列,充分性不成立;必要性:当数列{}n S 为递增数列时,10n n n S S a --=>,可得10a >,必要性成立. 故“10a >”是“数列{}n S 为递增数列”的必要而不充分条件. 故选:B . 【点睛】方法点睛:证明或判断充分性和必要性的常用方法:①定义法,②等价法,③集合包含关系法.4.B解析:B 【分析】通过举反例,判断出P 成立推不出Q 成立,通过判断逆否命题的真假,判断出原命题的真假得到后者成立能推出前者成立,由充分条件、必要条件的定义得到结论. 【详解】当0x =,3y =时,Q 不成立,即P Q ⇒不成立,即充分性不成立; 判断必要性时,写出原命题:3x y +≠时,则1x ≠或2y ≠, 由于原命题不好判断,故转化为逆否命题进行判断,即原命题变为:若1x =且2y =,则有3x y +=,对于该命题,明显成立,所以,原命题也成立;即必要性成立;所以P 是Q 的必要而不充分条件, 故选:B 【点睛】关键点睛:判断一个命题是另一个命题的什么条件,一般先判断前者成立是否能推出后者成立,再判断后者成立能否推出前者成立;本题难点在于:利用逆否命题的真假性判断原命题的真假性,属于中档题.5.A解析:A 【分析】求出函数()()xf x x a e =-的极值点,利用该极值点在()0,∞+内求得实数a 取值范围,利用集合的包含关系可得出结论. 【详解】()()x f x x a e =-,则()()1x f x x a e '=-+,令()0f x '=,可得1x a =-.当1x a <-时,()0f x '<;当1x a >-时,()0f x '>. 所以,函数()y f x =在1x a =-处取得极小值.若函数()y f x =在()0,∞+上有极值,则10a ->,1a ∴>.因此,“2a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的充分不必要条件.故选:A.本题考查充分不必要条件的判断,同时也考查了利用导数求函数的极值点,考查计算能力与推理能力,属于中等题.6.C解析:C 【分析】结合等比数列的前n 项和公式,以及充分、必要条件的判断方法,判断出正确选项. 【详解】由于数列{}n a 是等比数列,所以2021111n q S a q -=⋅-,由于101nq q ->-,所以 2021111001nq S a a q-=⋅>⇔>-,所以“10a >”是“20210S >”的充要条件. 故选:C 【点睛】本小题主要考查等比数列前n 项和公式,考查充分、必要条件的判断,属于中档题.7.B解析:B 【分析】分类讨论a 的正负,利用两根与系数的关系、判别式,进而求解判断即可. 【详解】(1)当0a =时,方程变为210x +=,有一负根12x =-,满足题意;(2)当0a <时,440∆=->a ,方程的两根满足1210x x a=<,此时有且仅有一个负根,满足题意;(3)当0a >时,由方程的根与系数关系可得2010aa⎧-<⎪⎪⎨⎪>⎪⎩,∴方程若有根,则两根都为负根,而方程有根的条件440a ∆=-≥,01a ∴<≤.综上可得,1a ≤.因此,“2a ≤”是“方程2210ax x ++=至少有一个负根”的必要不充分条件. 故选:B. 【点睛】本题考查必要不充分条件的判断,考查二次方程根的分布问题,考查分类讨论思想的应用,属于中等题.8.B【分析】先将//a b 等价化简为cos 0θ=或1tan 2θ=,再判断解题即可. 【详解】//a b ⇔(sin 2,cos )//(cos ,1)θθθ⇔2sin 2cos θθ=⇔cos 0θ=或1tan 2θ=,所以“//a b ”是“1tan 2θ=”成立的必要不充分条件. 故选:B. 【点睛】本题考查向量平行的坐标表示、判断p 是q 的什么条件、三角恒等变换化简,是中档题.9.C解析:C 【分析】①写出原命题的逆命题,并判断真假性. ②根据否命题的知识判断真假性.③根据含有逻辑联结词命题真假性来判断命题的真假性. ④根据全称命题的否定的知识判断真假性. 【详解】①原命题的逆命题为:若方程20x x m +-=有实根,则14m ≥-.当方程20x x m +-=有实根则11404m m ∆=+≥⇒≥-.所以逆命题为真命题.所以①正确. ②原命题的否命题为:若21x ≠,则1x ≠.所以②错误.③由于p q ∧为假命题,所以,p q 中至少有一个是假命题,可能是一真一假,所以p q ∨可能为真命题.所以③错误. ④原命题的否定是0x R ∃∈,0202x x <.所以④正确.综上所述,正确的序号为①④.故选:C 【点睛】本小题主要考查四种命题,考查含有逻辑连接词命题,考查全称命题的否定,属于中档题.10.D解析:D 【解析】命题“对任意x R ∈,都有20x ≥”的否定为:存在0x R ∈,使得200x <,选D.11.B解析:B 【分析】根据异面直线的定义及直线与平面平行的定义即可判定. 【详解】因为满足“一条直线l 与平面α内无数条直线异面”这样条件的直线可以和平面相交, 所以推不出“这条直线与平面α平行”,当直线满足与平面α平行时,可以推出这条直线与平面α内无数条直线异面, 所以“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的必要不充分条件, 故选:B 【点睛】本题主要考查了充分条件、必要条件,直线与平面的位置关系,属于中档题.12.D解析:D 【分析】设(1,2)x ∈时,2485()1x x f x x -+=-的值域A ,2()1mx m g x x -+=-的值域B ,只要A B ⊆即可满足题意.【详解】设2485()1x x f x x -+=-((1,2)x ∈),24(1)11()4(1)11x f x x x x -+==-+--, 设1t x =-,则1()4f x y t t ==+,则(0,1)x ∈,由勾形函数性质知当102t <<时,y 递减,当112t <<时,y 递增, min 1144122y =⨯+=,[4,)y ∈+∞,即()f x 值域为[4,)+∞, 2()1mx m g x x -+=-((1,2)x ∈),设1x t -=,(0,1)t ∈,则2()g x y m t==+,(0,1)t ∈时,2y m t=+是减函数,(2,)y m ∈++∞,即()(2,)g x m ∈++∞, 对于()11,2x ∀∈,()21,2x ∃∈,使得211212485211x x mx m x x -+-+=--,则24m +<,2m <.故选:D . 【点睛】本题考查含有存在题词与全称题词的命题恒成立问题,解题关键是把问题转化为集合之间的包含关系.二、填空题13.【分析】集合A 中所有元素被选取了次可得集合中所有3个元素的子集的元素和为即可得结果【详解】集合中所有元素被选取了次∴集合中所有3个元素的子集的元素和为故答案为【点睛】本题考查了集合的子集正整数平方和 解析:(2)(1)(1)(21)12n n n n n --++【分析】集合A 中所有元素被选取了21n C -次,可得集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()222122123n n C -+++⋯+即可得结果.【详解】 集合{}22221,2,3,,A n =中所有元素被选取了21n C -次,∴集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()()()()()2222211212112326n n n n n n C n ---+++++⋯+=⨯()()()()2112112n n n n n --++=,故答案为(2)(1)(1)(21)12n n n n n --++.【点睛】本题考查了集合的子集、正整数平方和计算公式,属于中档题.14.【解析】因为所以或则图中阴影部分所表示的集合为应填答案 解析:[]5,1-【解析】因为[]5,2A =-,()1,4B =,所以{|1U C B x x =≤或4}x ≥,则图中阴影部分所表示的集合为(){|51}U C B A x x ⋂=-≤≤,应填答案[]5,1-.15.【分析】对分类讨论计算可得【详解】解:因为命题使得不等式是真命题当时恒成立满足条件;当时则解得综上可得即故答案为:【点睛】本题考查全称命题为真求参数的取值范围属于中档题 解析:[]0,4【分析】对m 分类讨论,计算可得. 【详解】解:因为命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题 当0m =时,10≥恒成立,满足条件;当0m ≠时,则2040m m m >⎧⎨-≤⎩解得04m <≤综上可得04m ≤≤即[]0,4m ∈ 故答案为:[]0,4 【点睛】本题考查全称命题为真求参数的取值范围,属于中档题.16.数列为等差数列且【分析】根据题意设该数列为由数列的前项和公式分析可得数列为等差数列且反之验证可得成立综合即可得答案【详解】根据题意设该数列为若数列的前项和则当时当时当时符合故有数列为等差数列且反之当解析:数列为等差数列且14a =,6d =. 【分析】根据题意,设该数列为{}n a ,由数列的前n 项和公式分析可得数列为等差数列且14a =,6d =,反之验证可得23n S n n =+成立,综合即可得答案.【详解】根据题意,设该数列为{}n a ,若数列的前n 项和23n S n n =+,则当1n =时,114a S ==,当2n 时,162n n n a S S n -=-=-, 当1n =时,14a =符合62n a n =-, 故有数列为等差数列且14a =,6d =,反之当数列为等差数列且14a =,6d =时,62n a n =-,21()232n n a a S n n +⨯==+; 故数列的前n 项和23(*)n S n n n N =+∈”成立的充要条件是数列为等差数列且14a =,6d =,故答案为:数列为等差数列且14a =,6d =. 【点睛】本题考查充分必要条件的判定,关键是掌握充分必要条件的定义,属于基础题.17.【分析】通过确定XYZ 的子集利用乘法公式即可得到答案【详解】根据题意可知由于可知Z 共有种可能而有4种可能故共有种可能所以答案为128【点睛】本题主要考查子集相关概念乘法分步原理意在考查学生的分析能力 解析:128【分析】通过确定X,Y ,Z 的子集,利用乘法公式即可得到答案. 【详解】根据题意,可知1,2,1,236{}{},{}Z X Y ⊆⊆⊆,,由于{6}Z ⊆,可知Z 共有 52=32种可能,而(){4},5X Y ⊆⋃有4种可能,故共有432=128⨯种可能,所以答案为128.【点睛】本题主要考查子集相关概念,乘法分步原理,意在考查学生的分析能力,计算能力,难度较大.18.2【解析】因为集合所以集合子集有两个:空集与故答案为解析:2【解析】因为集合{}{}|200M x N x =∈-≤≤=,所以集合M 子集有两个:空集与{}0,故答案为2.19.0或【解析】由题意得解析:0或3±【解析】由题意得2223,1,3,103x x x x x x x 或或==≠≠≠⇒=±20.【解析】试题分析:本题首先求出集合AB 再求它们的运算这两个集合都是不等式的解集故解得因此考点:集合的运算 解析:【解析】试题分析:本题首先求出集合A ,B ,再求它们的运算,这两个集合都是不等式的解集,故解得{|31}A x x x =-或,{|02}B x x =<≤,因此()(0,1]U A B ⋂=.考点:集合的运算. 三、解答题21.(1)A 中至少还有两个元素;(2)不是双元素集合,答案见解析;(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 【分析】(1)由x A ∈(1x ≠且0x ≠),则11A x ∈-,结合2A ∈可计算得出集合A 中的元素;(2)由x A ∈,逐项可推导出11A x ∈-,1x A x -∈,结合集合元素满足互异性可得出结论;(3)由(2)A 中有三个元素为x 、11x -、1x x -(1x ≠且0x ≠),设A 中还有一个元素m ,可得出11A m ∈-,1m A m-∈,由已知条件列方程求出x 、m 的值,即可求得集合A 中的所有元素.【详解】(1)2A ∈,1112A ∴=-∈-. 1A -∈,()11112A ∴=∈--. 12A ∈,12112A ∴=∈-. A ∴中至少还有两个元素为1-,12; (2)不是双元素集合.理由如下:x A ∈,11A x ∴∈-,11111x A x x-=∈--, 由于1x ≠且0x ≠,22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,则210x x -+≠, 则()11x x -≠,可得11x x≠-,由221x x x -+≠-,即()21x x -≠-,可得111x x x-≠-, 故集合A 中至少有3个元素,所以,集合A 不是双元素集合.(3)由(2)知A 中有三个元素为x 、11x -、1x x -(1x ≠且0x ≠), 且1111x x x x-⋅⋅=--, 设A 中有一个元素为m ,则11A m ∈-,1m A m -∈,且1111m m m m -⋅⋅=--, 所以,1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,且集合A 中所有元素之积为1. 由于A 中有一个元素的平方等于所有元素的积, 设2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭,解得0x =(舍去)或2x =或12x =. 此时,2A ∈,1A -∈,12A ∈, 由题意得1111421213m m m m -+-+++=-,整理得3261960m m m -++=, 即()()()621320m m m -+-=,解得12m =-或3或23,所以,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 【点睛】 关键点点睛:本题考查集合中元素相关的问题,解题时要结合题中集合A 满足的定义推导出其它的元素,以及结合已知条件列方程求解,同时注意集合中元素满足互异性. 22.(1)934xx ⎧⎫≤<⎨⎬⎩⎭;(2)(,1][1,2]-∞-⋃. 【分析】(1)先解分式不等式和二次不等式得集合,A B ,再求补集和交集即可;(2)先判断22a a +>得2{|2}B x a x a =<<+,再根据必要条件得到集合的包含关系,列不等式求解即可.【详解】(1)∵12a =时,2{|0}{|23}3x A x x x x -=<=<<-, 1119{|()(2)0}{|}2424B x x x x x =---<=<<, 全集U =R ,∴1{|2UC B x x =≤或9}4x ≥.∴9(){|3}4U C B A x x ⋂=≤<. (2)∵命题p :x A ∈,命题q :x B ∈,q 是p 的必要条件,∴A B ⊆. ∵221772()0244a a a +-=-+≥>,∴22a a +>, ∵23{|}A x x =<<,2{|2}B x a x a =<<+,∴2223a a ≤⎧⎨+≥⎩,解得1a ≤-或12a ≤≤,故实数a 的取值范围(,1][1,2]-∞-⋃. 【点睛】本题主要考查了集合的运算及求参问题,涉及必要条件的转化,属于基础题.23.(Ⅰ){|45}A B x x ⋂=<<;(Ⅱ)1,22⎡⎤⎢⎥⎣⎦【分析】(Ⅰ)当2a =时,求出集合A ,集合B ,由此能求出A B . (Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,从而A B ⊆,由此能求出实数a 的取值范围.【详解】解:(Ⅰ)当2a =时,集合215|0{|0}{|45}24x a x A x x x x x a x ⎧⎫---=<=<=<<⎨⎬--⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.{|45}A B x x ∴=<<.(Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,A B ∴⊆,当221a a <+时,1a ≠,集合221|0{|21}2x a A x x a x a x a ⎧⎫--=<=<<+⎨⎬-⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.∴22115a a ⎧⎨+⎩,且1a ≠,解得122a .且1a ≠, 当1a =时,A =∅,成立. 综上,实数a 的取值范围是1,22⎡⎤⎢⎥⎣⎦. 【点睛】本题考查交集、实数的取值范围的求法,考查充分条件、交集、子集等基础知识,考查运算求解能力,属于中档题.24.(1)()2,3;(2)20,3⎛⎫ ⎪⎝⎭.【分析】(1)首先根据题意分别解得p 真和q 真时x 的范围,再根据p q ∧为真命题解不等式组即可.(2)首先解出p ⌝和q ,再根据q 是p ⌝的必要不充分条件解不等式组即可. 【详解】(1)p 真:342x ->或342x -<-,即p 真:2x >或23x <. :(1)(3)0q x x --<,q 真:13x <<.因为p q ∧为真命题,所以p ,q 都为真命题. 所以22313x x x ⎧><⎪⎨⎪<<⎩或,解得23x <<.(2)由(1)知2:23p x ⌝≤≤,:2q a x a <<+. 因为q 是p ⌝的必要不充分条件, 所以2203322a a a ⎧<⎪⇒<<⎨⎪+>⎩,a 的取值范围是2(0,)3. 【点睛】本题第一问考查逻辑连接词,第二问考查充分不必要条件,属于中档题.25.(1)()()34-∞-+∞,,,[]1,4-;(2)2m <-或7m >.【分析】(1)由指数函数的单调性可得403x x ->+,解分式方程即可得集合A ,从而可求出()R A B ⋂. (2)由题意知BA ,分B =∅和B ≠∅两种情况进行讨论,从而可求出实数m 的取值范围. 【详解】(1)∵4321x x -+>,∴40322x x -+>,∴403x x ->+,解得3x <-或4x >, ∴()(),34,A =-∞-⋃+∞,又2m =,[]1,5B =-,[]3,4R A =- ∴()[]1,4R A B ⋂=-.(2)∵x B ∈是x A ∈的充分不必要条件,∴BA , (1)当B =∅时,则321m m ->+,即4m <-.(2)当B ≠∅时,32134m m m -≤+⎧⎨->⎩或321213m m m -≤+⎧⎨+<-⎩∴7m >或42m -≤<- 综上所述,2m <-或7m >.【点睛】结论点睛:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 26.(1) 23x <<;(2) 4,23⎡⎤⎢⎥⎣⎦. 【解析】试题分析:(1)p 为真时实数x 的取值范围是13x <<,q 为真时实数x 的取值范围是,然后求交集即可;(2)p ⌝是q ⌝的充分不必要条件即即q 是p 的充分不必要条件,易得:2a ≤且43a ≤.试题(1)由22430x ax a -+<得()()30x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.由()231x -<,得24x <<,即q 为真时实数x 的取值范围是24x << 因为p q ∧为真,所以p 真且q 真,所以实数x 的取值范围是23x <<.(2)由22430x ax a -+<得()()30x a x a --<,所以,p 为真时实数x 的取值范围是3a x a <<.因为 p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件所以2a ≤且43a ≤所以实数a 的取值范围为:4,23⎡⎤⎢⎥⎣⎦.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,则“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.以下四个命题中,真命题的是( )A .()0π,sin tan x x x ∃∈=,B .ABC 中,sin sin cos cos A B A B +=+是2C π=的充要条件C .在一次跳伞训练中,甲,乙两位同学各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示p q ∧ D .∀∈θR ,函数()()sin 2f x x θ=+都不是偶函数 3.已知命题2:11xp x <-,命题:()(3)0q x a x -->,若p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .(,1]-∞B .[1,3]C .[1,)+∞D .[3,)+∞4.已知:250p x ->,2:20q x x -->,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件5.下列命题中,不正确...的是( ) A .0x R ∃∈,200220x x -+≥B .设1a >,则“b a <”是“log 1a b <”的充要条件C .若0a b <<,则11a b> D .命题“[]1,3x ∀∈,2430x x -+≤”的否定为“[]01,3x ∃∈,200430x x -+>”6.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a b b a ->+-”的( )( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 7.命题“ax 2-2ax + 3 > 0恒成立”是假命题, 则实数a 的取值范围是( ) A .a < 0或a ≥3B .a ≤0或a ≥3C .a < 0或a >3D .0<a <38.已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“20210S >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件10.设等比数列{}n a 中,10a >,公比为q ,则“1q >”是“{}n a 是递增数列”的( ). A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既非充分又非必要条件11.下列命题中,不正确的是( )A .0x R ∃∈,20010x x -+≥B .若0a b <<则11a b> C .设0a >,1a ≠,则“log 1a b >”是“b a >”的必要不充分条件D .命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”12.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为__________.14.已知:条件p :120x-≥和q :()()22110x a x a a -+++<,若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是______.15.已知互异复数120z z ≠,集合{}{}221212,,z z z z =,则12z z +=__________.16.已知集合{}{}21,,A m B m ==,若B A ⊆,则实数m 的值是__________.17.若命题:“2000,10x R ax ax ∃∈-->”为假命题,则实数a 的取值范围是__________.18.已知集合{}12A =,,{}12B =-,,则A B =______.19.已知命题:①将一组数据中的每个数都变为原来的2倍,则方差也变为原来的2倍; ②命题“2,10x R x x ∃∈++<”的否定是“2,10x R x x ∀∈++<”; ③在ABC ∆中,若sin sin A B A B ><,则; ④在正三棱锥S ABC -内任取一点P ,使得12P ABC S ABC V V --<的概率是78; ⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则实数a 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭. 以上命题中正确的是__________(填写所有正确命题的序号).20.某学校举办运动会时,高一(1)班共有26名学生参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,则同时参加球类比赛和田径比赛的学生有__人.参考答案三、解答题21.在①()RB A ⊆,②()A B R =R ,③A B B =这三个条件中任选一个,补充在下面问题中.若问题中的实数a 存在,求a 的取值范围;若问题中的实数a 不存在,请说明理由.已知集合{}2540A x x x =-+≤,{}121B x a x a =+<<-,是否存在实数a ,使得________?22.已知命题p :01x ≤≤;q :()120a x a a -≤≤>. (1)若1a =,写出命题“若p 则q ”的逆否命题,并判断真假; (2)若p 是q 的充分不必要条件,求实数a 的取值范围. 23.已知22:|27|3,:430p x q x mx m -<-+<,其中m >0. (1)若m =4且p ∧q 为真,求x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围.24.设集合{}22240A x x x =+-≥,集合1,11B y y x x x ⎧⎫==+>-⎨⎬+⎩⎭,集合1C x ax a ⎧⎛⎫=-⎨ ⎪⎝⎭⎩()}60x +≤.(1)求AB ;(2)若C A ⊆,求实数a 的取值范围.25.若集合A={x|x 2+5x ﹣6=0},B={x|x 2+2(m+1)x+m 2﹣3=0}. (1)若m=0,写出A ∪B 的子集; (2)若A∩B=B ,求实数m 的取值范围.26.已知0a >,设p :实数x 满足22430x ax a -+<,q :实数x 满足()231x -<.(1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】充分性:若0,3B π⎛⎤∈ ⎥⎝⎦,则2221cos 122a c b B ac+-≤=<,即2222ac a c b ac ≤+-<,即222222a c ac b a c ac +-<≤+-,并不能得出2b ac =一定成立,故充分性不成立;必要性:若2b ac =,由余弦定理得:2221cos 222a c ac ac ac B ac ac +--=≥=,因为()0,B π∈,所以0,3B π⎛⎤∈ ⎥⎝⎦,故必要性成立, 综上,“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的必要不充分条件, 故选:C . 【点睛】方法点睛:判断充要条件的四种常用方法:定义法、传递性法、集合法、等价命题法.2.B解析:B 【分析】分析()0π,sin tan x x x ∀∈≠,即得A 错误;利用充要条件的定义判断B 正确;利用复合命题的定义判断C 错误;通过特殊值验证D 错误即可. 【详解】 选项A 中,,2x ππ⎛⎫∈⎪⎝⎭时,sin 0,tan 0x x ><,即sin tan x x ≠;2x π=时,sin 1x =,tan x 无意义;0,2x π⎛⎫∈ ⎪⎝⎭时,设()sin tan sin sin cos x h x x x x x =-=-,则()32211cos cos 0cos cos xh x x x x-'=-=>,故()tan sin h x x x =-在0,2π⎛⎫ ⎪⎝⎭上单调递增, 故()()tan sin 00h x x x h =->=,即sin tan x x <;综上可知,()0π,sin tan x x x ∀∈≠,,故A 错误;选项B 中,ABC 中,若sin sin cos cos A B A B +=+,则sin cos cos sin A A B B -=-,44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即sin sin 44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又33,,,444444A B ππππππ⎛⎫⎛⎫-∈--∈-⎪ ⎪⎝⎭⎝⎭,故44A B ππ-=-或44A B πππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以2A B π+=或A B π-=,ABC 中A B π-≠,故2A B π+=,即2C π=;反过来,若2C π=,则2A B π+=,结合诱导公式可知,sin sin cos 2A B B π⎛⎫=-=⎪⎝⎭, sin sin cos 2B A A π⎛⎫=-= ⎪⎝⎭,所以sin sin cos cos A B A B +=+;综上,sin sin cos cos A B A B +=+是2C π=的充要条件,故B 正确;选项C 中,依题意,命题p ⌝是“甲没有降落在指定范围”, q ⌝是“乙没有降落在指定范围”,故复合命题()()p q ⌝∨⌝ 是“至少有一位学员没有降落在指定范围”,故C 错误; 选项D 中,存在2πθ=时,函数()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,满足()()f x f x -=,即()f x 是偶函数,故D 错误. 故选:B. 【点睛】 方法点睛:(1)证明或判断全称命题为真命题时,要证明对于,()x I p x ∀∈成立;证明或判断它是假命题时,只需要找到一个反例,说明其不成立即可.(2)证明或判断特称命题为真命题时,只需要找到一个情况,说明其成立即可;证明或判断它是假命题时,要证明对于,()x I p x ∀∈⌝成立.3.C解析:C 【分析】化简命题q ,分类讨论a 解不等式()(3)0x a x -->,根据p 是q 的充分不必要条件列式可解得结果. 【详解】因为211xx <-,所以2101x x x -+<-,所以(1)(1)0x x -+<,所以11x -<<, 当3a <时,由()(3)0x a x -->得x a <或3x >,因为p 是q 的充分不必要条件,所以1a ≥,所以13a ≤<, 当3a =时,由()(3)0x a x -->得3x ≠,满足题意,当3a >时,由()(3)0x a x -->得3x <或x a >,满足题意, 综上所述:1a ≥. 故选:C 【点睛】关键点点睛:本题考查由充分不必要条件求参数的取值范围,一般可根据如下规则求解: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.4.A解析:A 【分析】先求出,p q 对应的不等式的解,再利用集合包含关系,进而可选出答案. 【详解】由题意,5:2502p x x ->⇒>,设5|2A x x ⎧⎫=>⎨⎬⎩⎭2:20q x x -->,解得:2x >或1x <-,设{|2B x x =>或}1x <-显然A 是B 的真子集,所以p 是q 的充分不必要条件. 故选:A. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.5.B解析:B 【分析】由()2200022110x x x -+=-+≥,可判断A ;由对数函数的定义域和对数函数的单调性得充分性不一定成立,必要性成立,可判断B ;运用作差法,判断其差的符号可判断C ;根据全称命题的否定是特称命题可判断D. 【详解】由()2200022110x x x -+=-+≥,得A 为真命题;由“b a <”不能推出“log 1a b <”,所以充分性不一定成立,由“log 1a b <”得“b a <”,所以必要性成立,故B 不正确; 由0a b <<,则110b aa b ab --=>,∴11a b>,故C 正确;根据全称命题的否定是特称命题知D 正确. 故选:B. 【点睛】本题考查判断命题的真假,对数函数的定义域,单调性,全称命题与特称命题的关系,属于中档题.6.C解析:C 【分析】构造函数()ln f x x x =+,据a ,b 的范围结合函数的单调性确定充分条件,还是必要条件即可. 【详解】设()ln f x x x =+,显然()f x 在(0,)+∞上单调递增,a b >,所以()()f a f b >ln ln a a b b ∴+>+,即ln ln a b b a ->+-,故充分性成立, 因为ln ln a b b a ->+-ln ln a a b b ∴+>+,所以()()f a f b >,a b ∴>,故必要性成立,故“a b >”是“ln ln a b b a ->+-”的充要条件, 故选:C . 【点睛】本题考查了函数的单调性,必要条件、充分条件与充要条件的判断,考查了构造函数法的应用,是基础题.7.A解析:A 【分析】根据题意得出命题“x R ∃∈,2230ax ax -+≤”是真命题,然后对a 分情况讨论,根据题意得出关于a 的不等式,即可得出实数a 的取值范围. 【详解】命题“2230ax ax -+>恒成立”是假命题,即命题“x R ∃∈,2230ax ax -+≤”是真命题. 当0a =时,2230ax ax -+≤不成立; 当0a <时,合乎题意;当0a >时,则24120a a ∆=-≥,解得3a ≥. 综上所述,实数a 的取值范围是0a <或3a ≥.故选:A. 【点睛】本题考查由全称命题的真假求参数,考查计算能力,属于中等题.8.C解析:C 【分析】结合等比数列的前n 项和公式,以及充分、必要条件的判断方法,判断出正确选项. 【详解】由于数列{}n a 是等比数列,所以2021111n q S a q -=⋅-,由于101nq q ->-,所以 2021111001nq S a a q-=⋅>⇔>-,所以“10a >”是“20210S >”的充要条件. 故选:C 【点睛】本小题主要考查等比数列前n 项和公式,考查充分、必要条件的判断,属于中档题.9.A解析:A 【分析】根据充分条件、必要条件的定义,结合双曲线的方程即可判定. 【详解】因为当3k >时,30k ->,30k +>,方程22133x y k k -=-+表示双曲线;当方程22133x y k k -=-+表示双曲线时,(3)(3)0k k -+>,即3k >或3k <-,不能推出3k >,所以“3k >”是“方程22133x y k k -=-+表示双曲线”的充分不必要条件,故选:A 【点睛】本题主要考查了充分条件、必要条件,双曲线的标准方程,属于中档题.10.C解析:C 【分析】根据等比数列的通项公式和单调性的判定方法,结合充分条件、必要条件的判定,即可求解. 【详解】在等比数列{}n a 中,可得11n n a a q -=,若10,1a q >>,可得11111()(1)0n n n n n a a a q q a q q --+-=-=->,即1n n a a +>,所以数列{}n a 为递增数列,故充分性是成立的; 反之:若等比数列{}n a 为递增数列,即111(1)0n n n a a a qq -+-=->,若10a >,则1(1)0n q q -->,可得1q >,故必要性是成立的,所以“1q >”是“{}n a 是递增数列”的充分必要条件. 故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,以及数列的单调性的判定方法及应用,其中解答中熟记数列的单调性的判定方法是解答的关键,着重考查推理与论证能力.11.C解析:C 【分析】根据存在性命题的判定方法,可判定A 正确;根据不等式的性质,可判定B 正确;根据对数的运算性,可判定C 不正确;根据含有一个量词的否定,可判定D 正确. 【详解】对于A 中,由2000131()024x x x -+=-+≥,所以A 为真命题; 对于B 中,由0a b <<,则110b aa b ab --=>,所以11a b>,所以B 是正确的; 对于C 中,设0a >,1a ≠,例如11,24a b ==,则121log log 24a b ==,所以充分性不成立,又如1,22a b ==,此时12log log 21a b ==-,所以必要性不成立,所以“log 1a b >”是“b a >”的既不充分也不必要条件,所以C 是错误的;对于D 中,根据全称命题和存在性命题的关系,可得命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”,所以是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到含有一个量词的真假判定及否定,对数的运算性质,不等式的性质等知识的综合应用,属于中档试题.12.A解析:A 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.二、填空题13.【分析】集合A 中所有元素被选取了次可得集合中所有3个元素的子集的元素和为即可得结果【详解】集合中所有元素被选取了次∴集合中所有3个元素的子集的元素和为故答案为【点睛】本题考查了集合的子集正整数平方和 解析:(2)(1)(1)(21)12n n n n n --++【分析】集合A 中所有元素被选取了21n C -次,可得集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()222122123n n C -+++⋯+即可得结果.【详解】 集合{}22221,2,3,,A n =中所有元素被选取了21n C -次,∴集合{}22221,2,3,,A n =中所有3个元素的子集的元素和为()()()()()22222112121 12326n n n n n n C n ---+++++⋯+=⨯()()()()2112112n n n n n --++=,故答案为(2)(1)(1)(21)12n n n n n --++.【点睛】本题考查了集合的子集、正整数平方和计算公式,属于中档题.14.【分析】根据是的必要不充分条件得到计算得到答案【详解】即;即是的必要不充分条件故得到解得故答案为:【点睛】本题考查了根据必要不充分条件求参数意在考查学生的推断能力 解析:102-<≤a【分析】根据p ⌝是q ⌝的必要不充分条件,得到{}1012x x x a x a ≠⎧⎫<≤⊂<<+⎨⎬⎩⎭,计算得到答案. 【详解】120x-≥,即102x <≤;()()22110x a x a a -+++<,即1a x a <<+.p ⌝是q ⌝的必要不充分条件,故{}1012x x x a x a ≠⎧⎫<≤⊂<<+⎨⎬⎩⎭,得到0112a a ≤⎧⎪⎨+>⎪⎩,解得102-<≤a .故答案为:102-<≤a .【点睛】本题考查了根据必要不充分条件求参数,意在考查学生的推断能力.15.【分析】根据集合相等可得或可解出【详解】①或②由①得(舍)由②两边相减得故答案为【点睛】本题主要考查了集合相等集合中元素的互异性复数的运算属于中档题 解析:1-【分析】根据集合相等可得211222z z z z ⎧=⎨=⎩或212221z z z z ⎧=⎨=⎩,可解出12z z +. 【详解】{}{}221212,,z z z z =,211222z z z z ⎧=∴⎨=⎩①或212221z z z z ⎧=⎨=⎩②. 120z z ≠,∴由①得121z z ==(舍),由②两边相减得,221212z z z z -=-121z z ⇒+=-,故答案为121z z +=-. 【点睛】本题主要考查了集合相等,集合中元素的互异性,复数的运算,属于中档题.16.【解析】分析:根据集合包含关系得元素与集合属于关系再结合元素互异性得结果详解:因为所以点睛:注意元素的互异性在解决含参数的集合问题时要注意检验集合中元素的互异性否则很可能会因为不满足互异性而导致解题 解析:0【解析】分析:根据集合包含关系得元素与集合属于关系,再结合元素互异性得结果.详解:因为B A ⊆,所以22110.m m m m m m m =≠⎧⎧∴=⎨⎨≠=⎩⎩或 点睛:注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.17.【解析】由题意得 解析:[]4,0-【解析】由题意得2004040a a a a a <⎧=∴-≤≤⎨∆=+≤⎩或 18.{-112};【解析】=={-112}解析:{-1,1,2}; 【解析】A B ⋃={}{}1212,,⋃-={-1,1,2} 19.③④⑤【解析】所以将一组数据中的每个数都变为原来的2倍则方差也变为原来的4倍;故①错误;命题的否定是故②错误;在中若则由正弦定理得故③正确;在正三棱锥内任取一点P 使得则在与底面平行的中截面上则中截面解析:③④⑤ 【解析】,所以将一组数据中的每个数都变为原来的2倍,则方差也变为原来的4倍;故①错误;命题“2,10x R x x ∃∈++<”的否定是“”,故②错误;在ABC ∆中,若,则,由正弦定理,得,故③正确;在正三棱锥S ABC -内任取一点P ,使得12P ABC S ABC V V --<,则,在与底面平行的中截面上,则中截面将正三棱锥的体积分成的两部分,所以所求概率是78,即④正确;⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则,即,令,显然在上为减函数,且,即,即实数a 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭,故⑤正确;所以选③④⑤.考点:命题的判定.20.5【解析】【分析】根据15人参加游泳比赛有8人参加田径比赛同时参加游泳和田径的有3人同时参加游泳和球类比赛的有3人可以求得只参加游泳比赛的人数;再结合总人数即可求得同时参加田径和球类比赛的人数【详解解析:5 【解析】 【分析】根据15人参加游泳比赛,有8人参加田径比赛,同时参加游泳和田径的有3人,同时参加游泳和球类比赛的有3人,可以求得只参加游泳比赛的人数;再结合总人数即可求得同时参加田径和球类比赛的人数. 【详解】解:有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,这三项累加时,比全班人数多算了三部分,即同时参加游泳比赛和田径比赛的、同时参加游泳比赛和球类比赛的和同时参加田径比赛和球类比赛的重复算了两次所以15+8+14﹣3﹣3﹣26=5,就是同时参加田径比赛和球类比赛的人数, 所以同时参加田径比赛和球类比赛的有5人. 故答案为5. 【点睛】本题主要考查集合之间的元素关系,注意每两种比赛的公共部分,属于中档题.三、解答题21.答案见解析. 【分析】 若选①:求出A R,分B =∅和B ≠∅两种情况,列出不等式组可得答案;若选②:由()A B R =R,得B ≠∅,列出不等式组可得答案;若选③:由A B B =可知B A ⊆,分B =∅和B ≠∅列出不等式组可得答案.【详解】集合{}{}254014A x x x x x =-+≤=≤≤. 若选①:{1RA x x =<或4}x >,由()RB A ⊆得,当B =∅时,121a a +≥-,解得2a ≤;当B ≠∅时,121211a a a +<-⎧⎨-≤⎩或12114a a a +<-⎧⎨+≥⎩,解得a ∈∅或3a ≥,所以实数a 的取值范围是[)3,+∞. 综上,存在实数a ,使得()RB A ⊆,且a 的取值范围为(][),23,-∞⋃+∞. 若选②:{1RA x x =<或4}x >,由()A B R =R,得B ≠∅,所以21411a a ->⎧⎨+<⎩,解得a ∈∅,所以不存在实数a ,使得()A B R =R.若选③: 由AB B =可知B A ⊆,当B =∅时,121a a +≥-,解得2a ≤;当B ≠∅时,12111214a a a a +<-⎧⎪+≥⎨⎪-≤⎩,解得522a <≤.综上,存在实数a ,使得A B B =,且a 的取值范围为5,2⎛⎤-∞ ⎥⎝⎦.【点睛】本题考查了集合的运算,解题关键点是对于()RB A ⊆和()A B R =R 中含有参数的集合要分情况进行讨论,要熟练掌握集合间的基本运算.22.(1)逆否命题为“若0x <或2x >,则0x <或1x >”,真命题;(2)112a ≤≤.【分析】(1)直接写出命题“若p 则q ”逆否命题并判断真假即可; (2)由题意得{}|01x x ≤≤(){}|120x a x a a -≤≤>,即1021a a -≤⎧⎨≥⎩解不等式组可得答案. 【详解】(1)若1a =,则q :02x ≤≤,命题“若p 则q ”为“若01x ≤≤,则02x ≤≤”, 命题“若p 则q ”的逆否命题为“若0x <或2x >,则0x <或1x >”,是真命题; (2)若p 是q 的充分不必要条件,{}|01x x ≤≤(){}|120x a x a a -≤≤>则1021a a -≤⎧⎨≥⎩,解得112a ≤≤,实数a 的取值范围为112a ≤≤. 【点睛】结论点睛:充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等; (4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 23.(1)45x <<(2)523m ≤≤ 【分析】(1)分别求解绝对值不等式和一元二次不等式,化简p 与q ,结合p q ∧为真,解不等式组,即可得出x 的取值范围;(2)由p 是q 的充分不必要条件,建立关于m 的不等式组,求解即可得出答案. 【详解】(1)由|27|3x -<,解得25x <<由22430x mx m -+<以及0m >,解得3m x m << 当4m =时,q :412x <<p q ∧为真,25412x x <<⎧∴⎨<<⎩,解得45x <<(2):25,:3p x q m x m <<<<p 是q 的充分不必要条件2350m m m ≤⎧⎪∴≥⎨⎪>⎩,解得523m ≤≤当53m =时,5:53q x <<成立 当2m =时,:26q x <<成立523m ∴≤≤ 【点睛】本题主要考查了根据复合命题的真假求参数的范围以及由充分不必要条件求参数的范围,属于中档题.24.(1)[)4,+∞;(2)1,02⎡⎫-⎪⎢⎣⎭. 【分析】(1)解二次不等式求出集合A ,利用基本不等式求出集合B ,进而可得AB ;(2)由()2160a x x a ⎛⎫-+≤ ⎪⎝⎭,知0a ≠,分0a >和0a <两类讨论,利用C A ⊆,即可求得a 的取值范围. 【详解】解:(1)集合{}22240A x x x =+-≥, 即满足()()640x x +-≥,解一元二次不等式可得{6A x x =≤-或}4x ≥, 而集合1,11B y y x x x ⎧⎫==+>-⎨⎬+⎩⎭,则111111y x x x x =+=++-++11≥=,当且仅当111x x +=+时,即0x =时取等号 所以{}1B y y =≥;由集合交集运算可得{6A B x x ⋂=≤-或}4x ≥{}1y y ⋂≥{}4x x =≥ 即[)4,AB =+∞;(2)集合()160C x ax x a ⎧⎫⎛⎫=-+≤⎨⎬ ⎪⎝⎭⎩⎭. 则0a ≠.化简可得()2160a x x a ⎛⎫-+≤ ⎪⎝⎭当0a >时,可得216C x x a ⎧⎫=-≤≤⎨⎬⎩⎭,{6A x x =≤-或}4x ≥ 则C A ⊆不成立.当0a <时,可得{6C x x =≤-或21x a ⎫≥⎬⎭若C A ⊆,则214a≤,解得102a -≤<或102a <≤. 又由于0a <,所以102a -≤<. 综上可知,当C A ⊆时实数a 的取值范围为1,02a ⎡⎫∈-⎪⎢⎣⎭. 【点睛】本题主要考查交集及其运算,考查集合的包含关系,考查学生计算能力和分类讨论的思想,是中档题.25.(1)A ∪B 的子集:Φ,{﹣6},{﹣3},{1},{﹣6,﹣3},{﹣6,1},{﹣3,1},{﹣6,﹣3,1}(2)m 的取值范围是(﹣∞,﹣2]. 【分析】(1)由x 2+5x ﹣6=0得6,1x x =-=或,所以{1-6}A =,,当0m =时,化简{}1,3B =-,求出A ∪B {}6,3,1=--,写出子集即可(2)由A B B ⋂=知B A ⊆,对判别式进行分类讨论即可. 【详解】 (1)根据题意,m=0时,B={1,﹣3},A ∪B={﹣6,﹣3,1};∴A ∪B 的子集:Φ,{﹣6},{﹣3},{1},{﹣6,﹣3},{﹣6,1},{﹣3,1},{﹣6,﹣3,1},(2)由已知B ⊆A , •①m <﹣2时,B=Φ,成立 ‚②m=﹣2时,B={1}⊆A ,成立ƒ③m >﹣2时,若B ⊆A ,则B={﹣6,1}; ∴⇒m 无解,综上所述:m 的取值范围是(﹣∞,﹣2]. 【点睛】本题主要考查了集合的并集运算,子集的概念,分类讨论的思想,属于中档题. 26.(1) 23x <<;(2) 4,23⎡⎤⎢⎥⎣⎦.【解析】试题分析:(1)p 为真时实数x 的取值范围是13x <<,q 为真时实数x 的取值范围是,然后求交集即可;(2)p ⌝是q ⌝的充分不必要条件即即q 是p 的充分不必要条件,易得:2a ≤且43a ≤.试题(1)由22430x ax a -+<得()()30x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<. 由()231x -<,得24x <<,即q 为真时实数x 的取值范围是24x <<因为p q ∧为真,所以p 真且q 真,所以实数x 的取值范围是23x <<. (2)由22430x ax a -+<得()()30x a x a --<, 所以,p 为真时实数x 的取值范围是3a x a <<.因为 p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件 所以2a ≤且43a ≤ 所以实数a 的取值范围为:4,23⎡⎤⎢⎥⎣⎦.。

相关文档
最新文档