《大学物理》动生电动势 (2)
大学物理动生电动势和感生电动势
dt
S不变
dB Ek dl dS L S dt
dB dS S dt
揭示了电场和磁场是相互联系的。
10 - 2 动生电动势和感生电动势
第十三章电磁感应
dB Ek dl dS L S dt
dl Rd
2
b
d
vB dl
R
v
B
vBR
2
cos d
方向:a
vB2 R
b
a
10 - 2 动生电动势和感生电动势
第十三章电磁感应
二
感生电动势(阅读)
1、感生电动势 由于磁场发生变化 而激发的电动势
G S N
是什么力使电荷运 动而在电路中产生 电流的呢???
R
10 - 2 动生电动势和感生电动势
第十三章电磁感应
例5. 匀强磁场B,导体棒OP绕OZ轴旋转,角 速度 , OP=b, 为已知 OZ轴∥ B 。求PO两端的电势差?
思路:d ( v B ) dl
vB cos dl
rB sin d l
R
B
解:方法一 作辅助线,形成闭合回路
i 0 半圆 ab 2 RBv
方向:a
a
b
10 - 2 动生电动势和感生电动势
第十三章电磁感应
有一半圆形金属导线在匀强磁场中作切割磁
力线运动。已知: v , B , R.
求:动生电动势。 解:方法二
d ( v B ) dl 0 vB sin 90 dl cos
(D) 两环中感应电动势相等。
大学物理习题答案第十一章
[习题解答]11-7 在磁感应强度大小为B = 0.50 T 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图11-11所示。
如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。
若棒的运动速率v = 4.0 m ⋅s -1 ,试求:(1)导体棒内的非静电性电场K ;(2)导体棒内的静电场E ;(3)导体棒内的动生电动势ε的大小和方向;(4)导体棒两端的电势差。
解(1)根据动生电动势的表达式,由于()的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。
于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒内的非静电性电场,为,方向沿棒由下向上。
图11-11(2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即,所以,E 的方向沿棒由上向下,大小为.(3)上面已经得到,方向沿棒由下向上。
(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。
11-8 如图11-12所表示,处于匀强磁场中的导体回路ABCD ,其边AB 可以滑动。
若磁感应强度的大小为B = 0.5 T ,电阻为R = 0.2 Ω,AB 边长为 l = 0.5 m ,AB 边向右平移的速率为v = 4 m ⋅s -1 ,求:(1)作用于AB 边上的外力;(2)外力所消耗的功率;(3)感应电流消耗在电阻R 上的功率。
解(1)当将AB 向右拉动时,AB 中会有电流通过,流向为从B 到A 。
AB 中一旦出现电流,就将受到安培力F 的作用,安培力的方向为由右向左。
所以,要使AB 向右移动,必须对AB施加由左向右图11-12的力的作用,这就是外力F外。
在被拉动时,AB中产生的动生电动势为,电流为.AB所受安培力的大小为,安培力的方向为由右向左。
外力的大小为,外力的方向为由左向右。
11-2动生电动势
v v
方法二
作辅助线,形成闭合回路 作辅助线,形成闭合回路CDEF
r r Φ = ∫ B• dS =
S
∫
a+b
a
εi = −
µ0 Ix a + b ln = 2π a dΦ
dt
µ0 I xdr 2πr
I
方向
D→C →
v v
X
µ0 I a + b dx ln ) = −( 2π a dt µ0 Iv a + b ln =− 2π a
均匀磁场
转动
r 如图,长为L的铜棒在磁感应强度为 例 如图,长为 的铜棒在磁感应强度为 B
求:棒中感应电动势的大小 和方向。 和方向。
的均匀磁场中, 轴转动。 的均匀磁场中,以角速度 ω 绕O轴转动。 轴转动
ω ××××
×××× ××××
O
r A B××× ×
解:方法一
v v v 取微元 dε = ( v × B )⋅ dl
a
+++ + +
r v v f = −e(v × B)
非静电力 它驱使电子沿导线由a向 移动 移动。 它驱使电子沿导线由 向b移动。
v B v v
r f
b
端出现过剩负电荷, 由于洛仑兹力的作用使 b 端出现过剩负电荷, a 端出现过剩正电荷 。
v 在导线内部产生静电场 E
方向a→ 方向 →b 电子受的静电力
S
v S 的法线方向应选得与曲线 L
的积分方向成右手螺旋关系
S
L
v ∂B 是曲面上的任一面元上磁感应强度的变化率 ∂t
不是积分回路线元上的磁感应强度的变化率
电磁感应——动生电动势总结
b a
b
εi
3、应用计算式计算在磁场中运动导线上的动生电动势
K K 速度也可以不同, v、 B
在一般情况下,磁场可以不均匀,导体在磁场中运动时各部分的
K 和 l 也可以不相互垂直,在这些情况下计算
运动导体内产生的总动生电动势应采取这样的步骤:
K K 先以一端为起点,在位置 l 处选取线元 dl ,计算线元上产生的动
生电动势;进而对整个处于磁场中的运动导体部分作积分,得到
总动生电动势。
K K K dε 动 = (v × B ) ⋅ d l
ε动 = ∫
L
L
K K K (v × B ) ⋅ d l
对于闭合回路
ε 动 为正时,表示电动势 为负。因此,由上式算出的电动势有正负之分, K K ε 动 为负时,则表示电动势的方向逆着dl 的方向。 方向顺着 dl 的方向;
a
K v
K B
b
K f
K K u fb 1
K K u +v
K K K K P = ( f1 + f2 ) ⋅ (v + u ) K K K K K = (−ev × B − eu × B) ⋅ (v + u ) = −evBu + euBv = 0
总洛仑兹力与总速 度垂直,不做功!
讨 论
(2)回路中的电能从何而来?
ε动的正负来判断电动势的方向。
实验演示
3、动生电动势产生过程中的能量转换
每个电子受的洛仑兹力
K B⊗
K f2
a
−eK uFra bibliotekK K K f l = f1 + f 2 K K K f1 = − ev × B
K f1 K f2
大学物理Ⅱ2.1 动生电动势
磁力线运动。已知: v, B, R.
求:动生电动势。
dl Rd
vB
解:方法一
d
(
v
B
)
dl
vBdl cos
2
vBR cosd 2 vB2R 方向:a b
b
dl
d
v
R
B
a
动生电动势
第十一章 电磁感应 电磁场
解:方法二
b
作辅助线,形成闭合回路
i 0
v
半圆
ab
2RBv
动生电动势
第十一章 电磁感应 电磁场
1、在磁场中运动的导线内的感应电动势
由于导体运动而产生的感应电动势,称为动生
电动势。
dΦ B d S Bl d x
i
dΦ dt
Bl d x
dt
D
A
v
B l
C B dx
Blv
动生电动势
第十一章 电磁感应 电磁场
解
i
b (v B) dl
a
b
vBdl
a
B
vB(ab) 2vB R2 r2
O
v
R
r dl
b
a
动生电动势
第十一章 电磁感应 电磁场
2.在磁场中转动的线圈内的感应电动势
设矩形线圈ABCD
o
的匝数为N ,面积为S, 使这线圈在匀强磁场中
绕磁直的间固感。夹B,定应当角的 强 为与时轴 度 零t 之,t线 ,与间0经OenO与的过B轴转夹时之eB垂动角n O间O,
Bv sin dl
0L Bv sin dl
BvLsin
dl
v
L
B
动生电动势 典型结论
大学物理课后习题答案13电磁感应习题
(2) v = at
(3)
e =0.2t(V)
e
=0
0.2 (4) I = = =0.1 t (A) 2 R
e
结束 目录
13-5 在两平行导线的平面内,有一矩 形线圈,如图所示。如导线中电流I随时间 变化,试计算线圈中的感生电动势。
l2 I I d1
l1
d2
结束 目录
已知: I, I1, I2, d1, d2 。 求:ei 解: Φ =Φ 1 Φ 2 m I I1 d1+ I2 m I I1 d2+ I2 ln ln = 2 2 π π d1 d2 m I I1 d1+ I2 d2+ I2 ln ln = 2 π d1 d2 m I I1 ( d1+ I2 )d2 ln = 2 ( d2+ I2 )d1 π m I1 ( d1+ I2 )d2 d I d Φ ln ei = d t = 2 ( d2+ I2 )d1 d t π
结束 目录
已知:Φ = 6t2+7t+1(Wb) 求:e (t =2s) 解: Φ e= d = -(12 t +7) ×10-3 dt
t =2
× × × × × × × × × × × × × × × × × × ×
e = -(12×2+7)×10
=-3.1×10 (V)
-2
-3
× × ×
B×
×
0 0 0 0
目录
2 dy 2 r m I π R 3 e dt 2y 4 y d 将 y=NR 及 v = 代入得到: dt 2 r m I π e = 32R2N 4 v
d Φ = dt =
8-2 动生电动势和感生电动势(下)8-3 自感与互感8-4 RL电路
电阻小,电流大,能够产生大 量的热量。
3、应用
电磁炉
感应淬火
交流磁力线 涡电流
加热线圈 变频电流
被加热物
如变压器铁芯
交变电流
涡电流
整块铁芯
1 增加能耗
弊
2 热效应过强 温 度过高 易破坏 绝缘 造成事故
应减少涡流
减小涡电流的损耗——变压器铁芯
交变电流
交变电流
涡电流
整块铁芯
彼此绝缘 的薄片
S t
dt
Ek
R2 2r
dB dt
讨论 无限长直螺线管内外的感生电场
×× ××× ××× ××××× × RB
B(t)
dB 0 dt
Ek
r dB 2 dt
R2 dB 2r dt
(r R) (r R)
Ek
R
r
4 感生电动势的计算方法
方法1: i L Ek dl
方法2:
i
d dt
(1)闭合回路 (2)非闭合回路
共同点:都对电荷有作用力 不同点:
静电场 由静止的电荷产生
感生电场
(2) 感生电场和静电场比较
共同点:都对电荷有作用力 不同点:
静电场 由静止的电荷产生
感生电场 由变化的磁场产生
(2) 感生电场和静电场比较
共同点:都对电荷有作用力 不同点:
静电场 由静止的电荷产生
有源场
感生电场 由变化的磁场产生
B(t)
dB 0
dt O
M
N
三、电子感应加速器
原理:在电磁铁的两磁极间放一个真空室,电磁铁是由
交流电来激磁的。
当磁场发生变化时,两极间任意闭合回路的磁通发生变化, 激起感生电场,电子在感生电场的作用下被加速,电子在 Lorentz力作用下将在环形室内沿圆周轨道运动。
大学物理电磁学部分18动生电动势
i
dm
dt
B dS dt
B d 1 L2 1 B wL2
dt 2 2
由楞次定律可判断动生电动势的方向沿导体棒指向o。 与用动生电动势的方法计算的结果相同。
6
例2: 在通有电流 I 的无限长载流直导线旁,距 a 垂直
放置一长为 L 以速度v 向上运动的导体棒,求导体棒
导体元所产生的动生电动势方向沿 x轴负向,
大小为:d i
vBdx
sin
cos
2
vBdx
7
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。
f
对电子做正功,f //
反抗外力做功
f
fL
B
V
f //
u
u
V
f L 洛仑兹力对电子做功的代数和为零。
结论
洛仑兹力的作用并不提供能量,而只是传 递
能量,即外力克服洛仑兹力 的一个分量 f所
做的功,通过另一个分量
f
转换为动生电流
//
的能量。实质上表示能量的转换和守恒。
[合作探究·提认知] 电视剧《闯关东》讲述了济南章丘朱家峪人朱开山一家, 从清末到九一八事变爆发闯关东的前尘往事。下图是朱开山 一家从山东辗转逃亡到东北途中可能用到的四种交通工具。
依据材料概括晚清中国交通方式的特点,并分析其成因。 提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展; 政府及各阶层人士的提倡与推动。
大学物理练习题 电磁感应定律 动生电动势
v B
bl c
(B) ε
=
0 ,U a
−Uc
=
−
1 2
Bωl 2
。
ω
(C) ε
=
Bωl 2 ,U a
−Uc
=
1 2
Bωl 2 。
(D)
ε
=
Bωl 2 ,U a
−Uc
=
−
1 2
Bωl 2 。
a 二、填空题
1. 如图所示,半径为r1的小导线环,置于半径为r2的大导线环中心,
二者在同一平面内,且r1 << r2。在大导线环中通有正弦电流I=I0sinωt, 其中ω、I为常数,t为时间,则任一时刻小导线环中感应电动势的大小
(A) A 点比 B 点电势高。
O
(B) A 点与 B 点电势相等。
C
(C) A 点比 B 点电势低。 (D) 有稳恒电流从 A 点流向 B 点。
A
O′
B
5.
如图所示,直角三角形金属框架abc放在均匀磁场中,磁场
v B
平行于
ab边,bc的长度为l。当金属框架绕ab边以匀角速度ω转动时,abc回路 b
势为
,金属框内的总电动势为 。(规定电动势沿 abca 绕为正值)
ω
v
a
B
l
l
c
bl
×××××
× ×ω × × A× ××××× × O× × r × × × × ×B × ×
18.
如右上图,在均匀磁场
r B
中,长为
L
的细杆
OA
绕
O
点在纸面内以
v
O
角速度ω 匀速转动,则杆上的动生电动势方向为
《大学物理》6.2动生电动势感生电动势解读
b
B B 1 2 dS 解: bc R S t t 2
B 0 t
× ×
O × × × ×
uc ub
a
× ×
上页
b E c
下页
四、涡电流
产生原因: 大块的金属导体处在变化的磁场中时,通过金属 块的磁通量发生变化,从而产生感应电动势,在 金属内部形成电流,称为涡电流。 涡电流特点:
A
G
E
B
。。
下页
如何度量这种本领? ε----电动势
上页
电动势: 电源把单位正电荷经内电路从 负极移到正极的过程中,非静 电力Fk所作的功 从场的观点: 非静电力对应非静电场
A非 q
q
E0
Fk qEk A非 Fk dl q Ek dl Ek dl
d 1.热效应: i dt
I
i
R
I(ω)
Q I 2 Rt 2
表明: 交流电频率越高发热越多——感应加 热原理
I(ω)
I(ω) I(ω)
I’
2.磁效应: 阻尼摆
上页 下页
小结:
动生电动势:磁场分布不变, 回路或导线在磁场中运动而引起的感应电动
势 感生电动势:导体回路不动,磁场随时间发生变化而引起的感应电动势
静电场
静止电荷
涡旋电场
变化磁场
有源场
无源场
上页 下页
感生电动势的计算 法拉第电磁感应定律
i
L
d d Ek dl
dt
dt
S B d S
因为回路固定不动,磁通量的变化仅来自磁场的变化
动生电动势
b
+ +
F + m+
+
v +
+ + +
+ -+ a+
+ + + +
产生动生电动势的非静电力就是洛仑兹力。 单位正电荷的洛仑兹力
Fm Ek v B e
太原理工大学大学物理
运动导体上的动生电动势 i l ( v B) dl 若为闭合导体 i ( v B) dl
+Q + +
+ + + + + + +
+ + +
+
+
+ +
P
1 2 BL 2
B + +
+
o
+ + +
+
+
+
+ + + + + +
在op段中应为由o指向p
+ + +
太原理工大学大学物理
非均匀磁场
导体平动
I 例4 无限长载流直导体通有 电流I,方向向上。导线ab垂 直于直导线且两者在同一平 面内,a、b距直导线的距离 分别为l1和l2,导线ab以速度v 在平面内向上运动,求ab两 端的电势差。
m Bvtdx l
l2
1
0 I l2 vt ln 2 l1
0 I vtdx 2x
B
d m 0 I l2 i v ln dt 2 l1
大学物理电动势
v
O
A
dl
解: 在铜棒上距O点为 l 处取线元 d l ,其方向 沿O指向A,其运动速度 的大小为 v 。 l 显然 d l相互垂直, B、 v、 所以 d l 上的动生电动势为
v
O
A
dl
d i (v B ) d l vB d l
L 0 1 2
如果是铜盘转动,等效于无数铜棒并联,因此,铜盘 中心与边缘电势差仍为0.39V。此为一种简易发电机 模型。
Example7-3 例2 如图,长直导线中电流为I=10A,在其附近有一 长为l=0.2m的金属棒MN,以速度v=2m/s平行于导线 做匀速运动,如果靠近导线的一端M 距离导线为 a=0.1m,求金属棒中的动生电动势。 解: 金属棒上取长度元dx,每一 dx处磁场可看作均匀的
e
B
+ + + -+ + +
+ + + O+ +
+ + + Fm - -
+ v
+
+
+ + + +
OP
( v B ) dl
P
设杆长为 l i 0 vBdl vBl
O
i
思考: 洛仑兹力不对运动电荷做功
洛仑兹力充当非静电力 矛盾?
Fm
y
fm
f
' m
P
由此可得金属棒上总电动势为
2
由图可知,v B 的方向由A指向O,此即电动势的方向 Vo VA 0.39V
0.01100 0.5 i Bl d l BL 0.39V 2
大学物理9-2
a
v
X
bILeabharlann OrOdr
Φ
ab
d L d
0 I d ln( d L ) d x dt 2 d dt
0 I 0 Ix d L xdr ln 2 r 2 d
Iv 2
L ln d d
电动势的方向与所选回路正方向相反,即沿顺时 针方向。因此在导线ab上,电动势由a指向b , b 端电势 较高。
b b i a d i a (v B) dl
i
L
(v B) dl
在磁场中运动的导线内的感应电动势
设电路中感应电流为I, 则感应电动势做功的功率为
P I i i I i Blv
D C
B
B
P F v I i lBv
这正好等于上面求得的感应电动势做功的功率。
在磁场中运动的导线内的感应电动势
例9—2 速度 在与磁场方向垂直的平面内绕棒的一端O 匀速转动, 如图所示,求棒中的动生电动势。
长为L的铜棒在磁感强度为 B 的均匀磁场中,以角
B o l l d L A
dx Bl dt
Blv
在磁场中运动的导线内的感应电动势
向 D 右运动时,导线内每个自由 电子也就获得向右的定向速 度 v ,由于导线处在磁场中, 自由电子受到的洛仑兹力 C 为 F
当导线 AB 以速度 v
若以 Ek 表示非静电场强,则有 eEk
解 在铜棒上距 O点为 l 处取 线元 d l ,其方向沿O指向A, 其运动速度的大小为 v l 。
第十三章第2次课 动生电动势和感生电动势
d dt
思考题: N
S
I
条形磁铁靠近线圈时, 线圈中那端电势高?
三角形线框靠近直导线时, 线框中电动势方向如何?
概念检测 如题图所示,一根长为l 的金属细杆ab绕竖直轴 O1O2以角速度在水平面内旋转,O1O2在离细杆a端l/3 处,若已知地球磁场在竖直方向的分量为B,则ab两 端间的电势差Uab O1 A. 大于零 B. 小于零 C. 因为没有电流, 所以Uab等于零
麦克斯韦提出了感生电场(涡旋电场)的概念
变化的磁场在其周围空间激发一 种电场,称为感生电场(涡旋电场)
——感生电场(涡旋电场)假设
麦克斯韦 (1831-1879)
变化的 激发 感生 作用 自由 引起 电荷 电场 磁场
感生电 动势
麦克斯韦假设(1861): 揭示了 电磁场的新效应。
感生电场:
Ei
R 2 dB Ei 2 r dt
r
(r R)
R dB 2 dt
Ei
变化的磁场只限于r≤R区域, 但它所激发的涡旋电场不限于 r≤R区域
o
R
r
(2) 如果将长度为l的导棒ab放在螺线管内,求导棒ab 两端的感生电动势
R
O
a
l
b
方法一: 在导棒上选一线元 dl
O
R
a
h
r
Ei
该线元上的感生电动势 d Ei dl
第十三章 电磁感应
一、电磁感应的基本现象
复习
二、楞次定律 闭合回路中感应电流的方向总是使得它所 激发的磁场来阻碍引起感应电流的磁通量的变 化。 三、法拉第电磁感应定律
四、动生电动势
dΦ dt
《大学物理》电磁感应的基本定律
dl
εd i = ( v ×B ) . dl
++ + ++
v ×B
v
fm
非静电性电场的场强为:
Ek=
fm e
= v×B
++ + ++
v ×B
所以动生电动势为:
ε . i = l E k dl
. =
l
(
v×B
)
dl
εd i = ( v ×B ) . dl ε i =l ( v×B ) . dl
v
感生电动势:由于磁场随时间变化所产生的 电动势。
由电动势定义:
ε . i
=
l
Ek
dl
E k 为非静电性电场的场强。
2-3-4 动生电动势
动生电动势:由于导线和磁场作相对运动所 产生的电动势。
感生电动势:由于磁场随时间变化所产生的 电动势。
由电动势定义:
ε . i
=
l
Ek
dl
E k 为非静电性电场的场强。对于动生电动 势非静电力为洛仑兹力
L
分四种情况讨论:
Φ n
1. Φ >0,ddΦt > 0
ε 由定律得 i< 0
( B)
ε 绕 行方向 i L
ε故 i与L方向相反。
2. Φ >0,ddΦt < 0
Φ n
ε 由定律得 i> 0
( B) 绕 行方向
εi
ε故 i与L方向相同。
L
3. (同学自证) Φ < 0,ddΦt > 0 4. (同学自证) Φ < 0,ddΦt < 0
电磁感应-2 动生电动势
ε = ε m sinω t
= ∫ vBdl = vBl
电动势方向 A→B
dΦ 解法 2 εi = dt dt
ε i = vBl
电动势方向 A→B
动生电动势
例题2. 长为L的铜棒,在均匀磁场B中以角速度ω在与磁场方 向垂直的平面上作匀速转动.求棒的两端之间的动生电动势. 解法1: ε i = ∫
v dx
B
x
ε i = −∫
a +l
μ 0 Iv dx
2π x μ 0 Iv a + l =− ln 2π a
a
l
动生电动势方向: B→A
用法拉第定律如何求解?
动生电动势
三、线圈在磁场中转动——交流发电机(alternator)
线圈在磁场中旋转→线圈切割磁感线→产生感应电动势 →产生感应电流。
θ =ωt d dΨm εi = − = − N ( BS cosθ ) = NBSω sinωt dt dt
动生电动势
例3. 一长直导线中通电流I =10A,有一长为L=0.2m的金属 棒与导线垂直共面。当棒以速度v=2m·s-1平行与长直导线匀 速运动时,求棒产生的动生电动势。 解: B =
μo I
2π x
I A x a
⊗B
v v v d ε i = ( v × B ) ⋅ d x = − Bv dx
v v v 非静电场: Ek = v × B
电动势:
b × × × × × × × × × × × Fe× × × - × × v × × × × × × × × ×fm × × × × × × × × × a
εi = ∫
L
v v b v v v× E k ⋅ dl = ∫ ( v × B ) ⋅ dl
大学物理(8.2.2)--动生电动势感生电动势
,求金
属
杆中
的
动生
电
动B 势
。O′
距 a 点为 l 处取一线元矢d量l v r l sin
b
该,处 的 非 静 电 场 场 强 为 :
Ek
v
B
r
Ek
Ek vB lB sin
该线元运动时产生的电动势 di Ek dl
al
:di Ek dl cos(900 ) Ek dl sin lBdl sin 2
计算该线元运动时产生的电动势 di
, Ek dl
(v
B)
dl
( 3 ):计算该导线运动时产生的动生电动
势
εi
l
(v
B)
dl
i 0 电动势方向与积分路线方向相同 i 0 电动势方向与积分路线方向相反
例 8-3: 一长度为 L 的金属杆 ab 在均匀B磁场 中绕平行于磁
的
金属棒,金属棒绕其一端 O 顺时针匀速转动,转动角速度为
,
O 点至导线的垂直距离为 a ,
解
:金距1属)O选棒点O求所为:在l方M处处1向)的取当为金磁一金积属感线属分棒应元棒路内强矢转线d感度l量至应为与电B:v长动直2势l0导的aI 线,大方平小向行和,方如向图I;中
该,处 的 非 静 电 场 场 强 为 :
场方向
磁场
′ 的定轴 OO′ 转动,已知杆的角速度为 ,杆相对于 的方位角为 θ ,求金属杆中的动生电动势B 。O′
b
L
a
O
例 8-3:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非静电场强 EK 定义为:
EK = FK / q 电源的电动势ε定义:
单位正电荷绕闭合回路一周时,静电力 所做的功。
ε=A非 / q
2-3-2 电源的电动势
2-3-2
非静电力 FK 把单位正电荷逆着静电场 的方 q
电源的电动势ε定义: 单位正电荷绕闭合回路一周时,静电力
2-3-2
第二节 电源的电动势
2-3-2 电源的电动势
2-3-2
2-3-2 电源的电动势
2-3-2
非静电力 FK 把单位正电荷逆着静电场 的方向从低电势处向高电势处。
2-3-2 电源的电动势
2-3-2
非静电力 FK 把单位正电荷逆着静电场 的方向从低电势处向高电势处。
非静电场强 EK 定义为: EK = FK / q
所做的功。
ε=A非 / q = OEK dl
2-3-2 电源的电动势
2-3-2
非静电力 FK 把单位正电荷逆着静电场 的方向从低电势处向高电势处。
非静电场强 EK 定义为:
EK = FK / q 电源的电动势ε定义:
单位正电荷绕闭合回路一周时,非静电 力所做的功。
2-3-2 电源的电动势
2-3-2
非静电力 FK 把单位正电荷逆着静电场 的方向从低电势处向高电势处。