空间几何体的外接球

合集下载

外接球八大模型及公式

外接球八大模型及公式

外接球八大模型及公式外接球其实就是一个外接球体,它是三维空间中最完美的几何体形状。

设计者们把它分解成八大模型和公式,用来解决各种几何问题。

据说,外接球体是宇宙中最完整的物质,也可以说是天然的几何体,比如地球,在宇宙中的球状星体就都是外接球的形状。

本文将主要介绍外接球八大模型及公式,了解外接球如何帮助我们解决几何问题。

外接球八大模型及公式1.球:具有三个半径r1,r2,r3,以及半长轴a和半短轴b,其公式为:(x2/a2) + (y2/b2) + (z2/c2) = 12.锥(截锥):具有半径r和圆锥的高h,公式为:(x2 + y2)/r2 + z2/h2 = 13.曲线:是一种二维曲线,由位置向量表示,其公式为:x2/a2 - y2/b2 = 14.筒:是一种三维的曲线,具有圆柱体的高h和半径r,公式为: (x2 + y2)/r2 = h5.锥:具有半径r和圆锥的高h,公式为:(x2 + y2)/r2 - z2/h2 = 16.物线:是一种二维曲线,由位置向量表示,其公式为:x2/a2 - y2/b2 = 17.柱:具有半径r和圆柱体的高h,公式为:x2 + y2/r2 = h8.台:是一种三维曲线,具有圆柱体的高h和半径r1,r2,其公式为:(x2 + y2)/r1 - (x2 + y2)/r2 = h应用外接球八大模型及公式在几何学中应用十分广泛,可以解决各种几何问题。

比如,我们可以用它来计算宇宙中的星球距离,并且可以计算物体的体积,在建筑、机械、测绘、地理等学科中也有重要的应用。

例如,当我们在计算一个圆锥体的体积时,可以通过以下公式来计算:V = (1/3)*π*r*h在这个公式中,π是圆周率,r半径,h圆锥体的高,V圆锥体的体积。

另一个例子是计算球锥的表面积,可以使用以下公式:S = 2*π*r*h + 2*π*r2结论外接球八大模型及公式是用来解决各种几何问题的理论模型,它们可以用来计算宇宙中的星球距离,以及物体的体积和表面积等。

外接球公式总结

外接球公式总结

外接球公式总结
外接球公式是几何中的重要问题,涉及到多面体、旋转体等空间几何图形的外接球问题。

一般情况下,外接球公式可以用来计算几何体的表面积或体积。

以下是一些关于外接球公式的总结:
1. 多面体外接球公式:对于正多面体,各顶点同在一球面上,这个球叫做正多面体的外接球。

正四棱锥的外接球公式为:DU2tR,其中 D 是底面直径,U 是底面边长,t 是棱锥的高,R 是外接球半径。

2. 旋转体外接球公式:旋转体的外接球公式比较复杂,需要根据旋转轴的不同进行分类。

一般情况下,可分为三类:
(1) 旋转轴与底面垂直时,外接球公式为:S=frac{4}{3}R^2,其中 S 是外接球表面积,R 是外接球半径。

(2) 旋转轴与底面平行时,外接球公式为:S=pi R^2,其中 S 是外接球表面积,R 是外接球半径。

(3) 旋转轴不与底面垂直或平行时,需要分类讨论,一般情况下可以采用轴对称性来求解。

3. 球体外接球公式:球体的外接球公式为:S=4pi R^2,其中 S 是外接球表面积,R 是外接球半径。

在实际应用中,外接球公式常常用于计算几何体的面积或体积,也可以用于求解几何体的表面积或体积最小值等问题。

人教版高中数学必修二《空间简单几何体的外接球问题》

人教版高中数学必修二《空间简单几何体的外接球问题》

r1 R R r2
d1
R
O O2 d2
O2 O d2
R R r2
M P1
R O d r O1
R
底面多边形有外接圆的直棱柱 底面多边形有外接圆时, 棱台存在外接球 存在外接球
底面多边形有外接圆时, 棱锥存在外接球
r1=r2=r h h1=h2= 2 h 2 2 2 R =r +( ) 2
R2=r12+d12 R2=r22+d22 h-d1=± d2 r22-r12=d12-d22=h2-2hd1 r12+h2-r22 2 2 2 d1= ,R =r1 +d1 2h
R2=r12+d12 R2=r22+d22 h-d1=± d2 r22-r12=d12-d22=h2-2hd1 r12+h2-r22 2 2 2 d1= ,R =r1 +d1 2h
侧棱相等的三棱锥存在 外接球,球心在高 O1O2上
C A
O'
B
d2=h-R R2=r22+(h-R)2
直三棱柱都有外接球 斜三棱柱无外接球
设底面正方形的中心为 解: P ABCD为正四棱锥 PO' 面ABCD且球心O在线段PO' 上 r BD 2 d OO' 4 R R2 d 2 r 2 R 2 16 8R R 2 2 R 9 4
A D O' B A C D d O' P P
2
空间简单几何体的 外接球问题
空间简单几何体的外接球问题
两条主线:
空间简单几何体的 外接球 柱体的外接球
锥体的外接球 台体的外接球
旋转 体 圆柱
圆锥 圆台

人教版高中数学必修二《空间几何体的外接球》

人教版高中数学必修二《空间几何体的外接球》

2)在长方体中画出与长方体共顶点的四面体: 四个面都是直角三角形的四面体
3)在长方体中画出与长方体共顶点的四面体: 对棱相等: 其中一条棱与一个面垂直的四面体
【例题】:在四面体中 ABCD ,共顶点的三条棱两两垂直, 其长度分别为 1, 6 , 3 ,若该四面体的四个顶点在一个球面上, 求这个球的表面积。
练习:
例题:已知四面体 A1ABC的四个顶点都在球 O的表面上, A1A 平面ABC,ABC是边长为3的等边三角形,若 A1A 2,则球O的表面积为多少?
例题:正四面体的各个棱长为a, 求其外接球半径。
【举一反三】 若正四面体的中D-ABC中,二面角A-BC-D的 大小变为90度,求变化之后的四面体D-ABC 的外接球半径。
一、球心投影面是普通三角形
O
一、【知识复习】常见多面体的外接球
长方体 直棱柱 正棱锥

(在图中 画出外接 球心位置 ,并画出 相应需要 的辅助线 ) 外接球球 心位置 球半径 如果长方体的长宽高a,b,c, 外接球半径是多少?外接球 半径是多少? 如果底面外接圆半径为r, 棱柱高为h,外接球半径 R。它们三个之间有什么 样的等量关系? 如果底面外接圆半径为r, 高为h,外接球半径R。 它们三个之间有什么样的 等量关系?
柱体外接球球心
例题:已知直三棱柱 ABC - A1B1C1的6个顶点都在球 O的球面上,若 AB 3, AC 4,AB AC,侧棱AA1 12,则球O的表面积为多少?
二、补形法
(1)在长方体中画出与长方体共顶点的四面体: 从一个顶点出发的三条侧棱两两互相垂直 的四面体
小结:一般地,若一个三棱锥的三条侧棱两两垂 直,则可以将这个三棱锥补成一个长方体,于是 长方体的体对角线的长即为外接球的直径

空间几何体外接球问题精品课件(共27张ppt)全

空间几何体外接球问题精品课件(共27张ppt)全
(3)已知正四面体A-BCD,所有棱长都相等,点 A,B,C ,D都在球O 的表面上,如何求这个球的半径?
合作探究一:
(3)已知正四面体A-BCD,所有棱长都相等,点 A,B,C ,D都在球O 的表面上,如何求这个球的半径?
合作探究一:
(4)已知三棱锥 A-BCD,AB=CD=a,AD=BC=b,AC=BD=c,则三棱锥 A-BCD 外接球的半径?
合作探究二:
(5)已知正三棱锥 P-ABC,点 P,A,B,C 都在球 O 的表面上,顶点 P 到面 ABC 的距离为 h,底面△ABC 外接圆的半径为x,如何求这个球的半径?
O
O'
合作探究二:
(6)已知直三棱柱 ABC-A1B1C1,所有顶点都在球 O 的表面上,直三棱柱的高为 h,底面△ABC 外接圆的半径为x,如何求这个球的半径?
O
O'
O''
针对训练二: 1.正四棱锥的顶点都在同一球面上,若该棱锥的高为 4,底面边长为 2,则该球的表面积为( ) A. B.16π C.9π D. 2. 正三棱柱 ABC-A1B1C1中,AA1=AB=2,则该三棱柱的外接球半径为__________.
空间几何体外接球问题
几何体与球的组合问题,一种是内切球,一种是外接球。纵观高考题,这种位置关系在高考中既是考查的热点,也是考查的难点,这是因为与球有关的几何体能很好地考察学生的空间想象能力以及化归能力。下面就常见几何体的外接球问题进行分析,找出规律,以便同学们更好地迎接高考。
已知正方体ABCD-A1B1C1D1的长、宽、高分别为a、b、c且它的8个顶点都在球面上,求这个球的半径?
长方体外接球的直径等于长方体的体对角线。
复习回顾:

高中数学立体几何外接球7大模型

高中数学立体几何外接球7大模型

02
03
04
例题1
已知长方体的长为3,宽为4 ,高为5,求其外接球的半径

解法
根据长方体外接球半径计算方 法,可得出外接球的半径为 1/2*sqrt(3^2+4^2+5^2)=
3/2*sqrt(10)。
例题2
已知长方体的长为6,宽为8 ,高为10,求其外接球的半
径。
解法
根据长方体外接球半径计算方 法,可得出外接球的半径为 1/2*sqrt(6^2+8^2+10^2) =1/2*sqrt(100+64+100)=1 /2*sqrt(264)=sqrt(66)。
长方体的每个面都是 矩形或正方形,相对 的两个面完全相同。
长方体外接球半径计算方法
01
设长方体的长、宽、高分别为a、 b、c,则长方体的体对角线长度 为sqrt(a^2+b^2+c^2)。
02
外接球的半径为体对角线长度的 一半,即 R=1/2*sqrt(a^2+b^2+c^2)。
典型例题解析
01
外接球半径$R = frac{sqrt{3}a}{3}$
典型例题解析
题目
在正四面体$P-ABC$中,点$P,A,B,C$都在同一球面上,若$angle PAB = angle PBA = angle BPC = angle ACP = 90^{circ}$,则该球的表面积为____.
解析
首先根据正四面体的性质,我们可以计算出外接球的半径$R = frac{sqrt{3}a}{3}$。然后 根据球的表面积公式$S = 4pi R^{2}$,我们可以计算出球的表面积为$S = 4pi (frac{sqrt{3}a}{3})^{2} = frac{4pi a^{2}}{3}$。

空间几何体的外接球

空间几何体的外接球

空间几何体的外接球本文介绍了几种利用几何体的特殊性质来求解外接球半径的方法。

其中第一种方法是针对长方体模型一的,只需要找到三条两两垂直的线段,就可以直接使用公式2R=a+b+c或2R=a²+b²+c²来求解半径R。

接着,文章给出了几个例题,让读者更好地理解和应用这种方法。

第二种方法是针对长方体模型二的,题设为一条直线垂直于一个平面,解题步骤包括将三角形画在小圆面上,连接直线与圆心,最后利用勾股定理求解外接球半径R。

同样,文章给出了几个例题供读者练。

最后,文章介绍了对棱相等模型的长方体模型三,这种方法需要求出补形为长方体的几何体的体积,并将其除以4π/3,就可以得到外接球的半径R。

文章提供了一个例题,让读者更好地掌握这种方法。

总的来说,本文通过多种方法介绍了如何求解几何体的外接球半径,对于需要进行相关计算的读者来说,是一份不错的参考资料。

三棱锥(即四面体)中已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD)的方法如下:第一步,画出一个长方体,并标出三组互为异面直线的对棱。

第二步,设长方体的长、宽、高分别为a、b、c,AD=BC=x,AB=CD=y,AC=BD=z,列出方程组:a^2+b^2=x^2b+c=yc^2+a^2=z^2然后,根据墙角模型,2R=a+b+c=√(x^2+y^2+z^2),求出外接球半径R。

补充:V(A-BCD)=abc/3,V(ABCD)=abc/3×4=4abc/3例如,正四面体的外接球半径也可以用此法求解。

题例3:1.在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD外接球的表面积为。

2.如图所示三棱锥A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,则该三棱锥外接球的表面积为。

3.正四面体的各条棱长都为2,则该正四面体外接球的体积为。

类型二:圆锥模型题设:如图6、7、8,P的射影是△ABC的外心,当且仅当三棱锥P-ABC的三条侧棱相等,或者三棱锥P-ABC的底面△ABC在圆锥的底面上,且顶点P点也是圆锥的顶点。

高中数学空间几何体的外接球专题(附经典例题与解析)

高中数学空间几何体的外接球专题(附经典例题与解析)

高中数学空间几何体的外接球专题(附经典例题与解析)球的性质回顾:球心O和小圆O'的连线OO'垂直于圆O'所在平面。

外接球半径的求法是利用直角三角形的勾股定理,在Rt△OAO'中,OA^2=OO'^2+O'A^2.常见平面几何图形的外接圆半径(r)的求法:1.三角形:1) 等边三角形:内心、外心、重心、垂心、中心重合于一点。

外接圆半径通常结合重心的性质(2:1)进行求解:r=a*(2/3)^(1/2) (其中a为等边三角形的边长)。

2) 直角三角形:外接圆圆心位于斜边的中点处,r=斜边/2.3) 等腰三角形:外接圆圆心位于底边的高线(即中线)上。

r=a/(2sin(A/2)) (其中A为顶角)。

4) 非特殊三角形:可使用正弦定理求解,XXX)。

2.四边形:常见具有外接圆的四边形有正方形、矩形、等腰梯形。

其中正方形与长方形半径求解方法转化为直角三角形。

几何体的外接球球心与底面外心的连线垂直于底面,即球心落在过底面外心的垂线上。

练:2.半径为2的球的内接三棱锥P-ABC,PA=PB=PC=2,AB=AC=BC,则三棱锥的高为3.1.三棱柱ABC-A1B1C1中,底面ABC是边长为2的正三角形,侧棱AA1垂直于底面ABC,且AA1=4,则此三棱柱外接球的表面积为8π。

本文介绍了三棱锥的外接球的求解方法,其中包括侧棱垂直底面的三棱锥、正三棱锥和侧面垂直于底面的三棱锥三种类型。

对于侧棱垂直底面的三棱锥,可以采用补形法或通过确定底面三角形的外心来求解外接球的半径。

补形法是指将该几何体转化为原三棱柱的外接球,从而求出外接球的半径。

而通过确定底面三角形的外心,则可以通过勾股定理求解外接球的半径。

对于正三棱锥,可以通过底面正三角形的边长来求解内切球的半径,然后再利用勾股定理求解外接球的半径。

对于侧面垂直于底面的三棱锥,则需要确定△ABC和△PAB的外心分别为O’和O’’,并通过勾股定理求解OO’的长度,从而求解外接球的半径。

几何体外接球的几种类型

几何体外接球的几种类型

几何体外接球的几种类型几何体外接球是指可以完全包围一个几何体的球。

在三维空间中,不同的几何体有不同类型的外接球。

本文将介绍一些常见的几何体外接球类型。

一、正方体外接球正方体是一种六个面都相等且相邻面都垂直的立方体,其外接球为正方形。

正方形的对角线长度为边长的根号2倍,因此正方体外接球半径为边长的根号2除以2。

二、长方体外接球长方体是一种六个面都为矩形且相邻面都垂直的立方体,其外接球为椭圆形。

椭圆形有两个不同半轴长度a和b,因此长方体外接球半径为(a²+b²)的平方根除以2。

三、圆柱体外接球圆柱体是由一个矩形沿着一条边旋转而成的几何图形,其外接球为一个圆盘。

圆盘半径等于底面半径r加上高h,即r+h。

四、锥形外接球锥形是由一个平面图形沿着一条线段旋转而成的几何图形,其外接球为一个尖锥。

尖锥半径等于底面半径r加上高h的平方根,即(r²+h²)的平方根。

五、球体外接球球体是一种几何体,其外接球为自身。

球体半径等于外接球半径。

六、四棱锥外接球四棱锥是由一个正方形底面和四个三角形侧面组成的几何图形,其外接球为一个正四面体。

正四面体边长等于底面边长a,因此四棱锥外接球半径为a除以根号3。

七、八面体外接球八面体是由八个正三角形组成的几何图形,其外接球为一个正八面体。

正八面体边长等于正方形对角线长度a,因此八面体外接球半径为a除以根号2。

总结:不同类型的几何体有不同类型的外接球。

通过计算几何图形各个参数可以求得其对应的外接球半径。

掌握这些知识可以帮助我们更好地理解空间中各种几何图形之间的关系,并在实际生活中应用到设计、建造等领域中。

空间几何体外接球与内切球问题解决方法

空间几何体外接球与内切球问题解决方法

空间几何体的外接球与内切球问题一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).2.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法).四、八大模型类型一柱体背景的模型题型1、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1(1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是(C)A.π16B.π20C.π24D.π32解:162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是π9解:933342=++=R ,ππ942==R S ;(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是.π36解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1,取BC AB ,中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD ,∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为(D )π11.A π7.B π310.C π340.D 解:在ABC ∆中,7120cos 2222=⋅⋅-+= BC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r ,∴3404)372()2()2(2222=+=+=SA r R ,340π=S ,选D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是解:由已知得三条侧棱两两垂直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则⎪⎩⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942==R S ,(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为解:3)2(2222=++=c b a R ,432=R ,23=R πππ2383334343=⋅==R V 球,题型2、对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =)第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222za c y cb x b a ⇒2)2(2222222z y xc b a R ++=++=,补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-.第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .思考:如何求棱长为a 的正四面体体积,如何求其外接球体积?例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为.解:对棱相等,补形为长方体,如图2-1,设长宽高分别为c b a ,,,110493625)(2222=++=++c b a ,55222=++c b a ,5542=R ,π55=S (2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为.π229解:如图2-1,设补形为长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S(3)正四面体的各条棱长都为2,则该正面体外接球的体积为解:正四面体对棱相等的模式,放入正方体中,32=R ,23=R ,ππ2383334=⋅=V (4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是.解:如解答图,将正四面体放入正方体中,截面为1PCO ∆,面积是2.题型3、汉堡模型(直棱柱的外接球、圆柱的外接球)题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ;第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高);第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(h r R +=,解出R 例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为解:设正六边形边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则21=a ,正六棱柱的底面积为833)21(4362=⋅⋅=S ,89833===h Sh V 柱,∴3=h ,4)3(14222=+=R 也可121()23(222=+=R ),1=R ,球的体积为34π=球V ;(2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于.解:32=BC ,4120sin 322==r ,2=r ,5=R ,π20=S ;(3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为.π16解:折叠型,法一:EAB ∆的外接圆半径为31=r ,11=OO ,231=+=R ;法二:231=M O ,21322==D O r ,4413432=+=R ,2=R ,π16=表S ;法三:补形为直三棱柱,可改变直三棱柱的放置方式为立式,算法可同上,略.换一种方式,通过算圆柱的轴截面的对角线长来求球的直径:162)32()2(222=+=R ,π16=表S ;(4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为.π3160解:法一:282164236162=⋅⋅⋅-+=BC ,72=BC ,37423722==r ,372=r ,3404328)2(2122=+=+=AA r R ,π3160=表S ;法二:求圆柱的轴截面的对角线长得球直径,此略.类型二锥体背景的模型题型4、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)1.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=;第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R .例4(1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为.解:法一:由正弦定理(用大圆求外接球直径);法二:找球心联合勾股定理,72=R ,ππ4942==R S ;(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为解:方法一:找球心的位置,易知1=r ,1=h ,r h =,故球心在正方形的中心ABCD 处,1=R ,34π=V 方法二:大圆是轴截面所的外接圆,即大圆是SAC ∆的外接圆,此处特殊,SAC Rt ∆的斜边是球半径,22=R ,1=R ,34π=V .(3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.433B.33C.43D.123解:高1==R h ,底面外接圆的半径为1=R ,直径为22=R ,设底面边长为a ,则260sin 2==a R ,3=a ,433432==a S ,三棱锥的体积为4331==Sh V ;(4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为 60,则该三棱锥外接球的体积为()A.πB.3π C.4πD.43π解:选D,由线面角的知识,得ABC ∆的顶点C B A ,,在以23=r 为半径的圆上,在圆锥中求解,1=R ;(5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为()AA.6B.6C.3D.2解:36)33(12221=-=-=r R OO ,362=h ,62362433131=⋅⋅==Sh V 球题型5、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=;第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径.例5一个几何体的三视图如图所示,则该几何体外接球的表面积为()A.π3B.π2C.316πD.以上都不对解:选C,法一:(勾股定理)利用球心的位置求球半径,球心在圆锥的高线上,221)3(R R =+-,32=R ,ππ31642==R S ;法二:(大圆法求外接球直径)如图,球心在圆锥的高线上,故圆锥的轴截面三角形PMN 的外接圆是大圆,于是3460sin 22==R ,下略;类型三二面角背景的模型题型6、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ;第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,;第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为.解:如图,3460sin 22221=== r r ,3221==r r ,312=H O ,35343121222=+=+=r H O R ,315=R ;法二:312=H O ,311=H O ,1=AH ,352121222=++==O O H O AH AO R ,315=R ;(2)在直角梯形ABCD 中,CD AB //, 90=∠A ,45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为π4解:如图,易知球心在BC 的中点处,π4=表S ;(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为π6解:如图,法一:33)2cos(cos 211-=+∠=∠πO OO B SO ,33sin 21=∠O OO ,36cos 21=∠O OO ,22cos 21211=∠=O OO O O OO ,232112=+=R ,ππ642==R S ;法二:延长1BO 到D 使111r BO DO ==,由余弦定理得6=SB ,2=SD ,大圆直径为62==SB R ;(4)在边长为32的菱形ABCD 中,60=∠BAD ,沿对角线BD 折成二面角C BD A --为120的四面体ABCD ,则此四面体的外接球表面积为π28解:如图,取BD 的中点M ,ABD ∆和CBD ∆的外接圆半径为221==r r ,ABD ∆和CBD ∆的外心21,O O 到弦BD 的距离(弦心距)为121==d d ,法一:四边形21MO OO 的外接圆直径2=OM ,7=R ,π28=S ;法二:31=OO ,7=R ;法三:作出CBD ∆的外接圆直径CE ,则3==CM AM ,4=CE ,1=ME ,7=AE ,33=AC ,72147227167cos -=⋅⋅-+=∠AEC ,7233sin =∠AEC ,72723333sin 2==∠=AEC AC R ,7=R ;(5)在四棱锥ABCD 中,120=∠BDA ,150=∠BDC ,2==BD AD ,3=CD ,二面角C BD A --的平面角的大小为120,则此四面体的外接球的体积为解:如图,过两小圆圆心作相应小圆所在平面的垂线确定球心,32=AB ,22=r ,弦心距32=M O ,13=BC ,131=r ,弦心距321=M O ,∴2121=O O ,72120sin 21==O O OM ,法一:∴292222=+==OM MD OD R ,29=R ,∴329116π=球V ;法二:2522222=-=M O OM OO ,∴29222222=+==OO r OD R ,29=R ,∴329116π=球V .题型7、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型题设:如图7,90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为()A.π12125B.π9125C.π6125D.π3125解:(1)52==AC R ,25=R ,6125812534343πππ=⋅==R V ,选C(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCD A -的外接球的表面积为.解:BD 的中点是球心O ,132==BD R ,ππ1342==R S .类型四多面体的内切球问题模型题型8、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径.第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高;第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高;第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒rS S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABCO ABCP S S S S V r -----+++=3例8(1)棱长为a 的正四面体的内切球表面积是62a π,解:设正四面体内切球的半径为r ,将正四面体放入棱长为2a的正方体中(即补形为正方体),如图,则2622313133a a V V ABCP =⋅==-正方体,又 r a r a Sr V ABC P 223343314314=⋅⋅⋅=⋅=-,∴263332a r a =,62a r =,∴内切球的表面积为6422a r S ππ==表(注:还有别的方法,此略)(2)正四棱锥ABCD S -的底面边长为2,侧棱长为3,则其内切球的半径为2217+解:如图,正四棱锥ABCD S -的高7=h ,正四棱锥ABCD S -的体积为374=-ABCD S V 侧面斜高221=h ,正四棱锥ABCD S -的表面积为284+=表S ,正四棱锥ABCD S -的体积为r r S V ABCD S ⋅+==-328431表,∴3743284=⋅+r ,771427)122(7221728474-=-=+=+=r (3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则该三棱锥的内切球半径为47332++解:如图,3=∆ABC S ,2==∆∆ACP ABP S S ,7=∆BCP S ,743++=表S ,三棱锥ABC P -的体积为332=-ABC P V ,另一表达体积的方式是r r S V ABC P ⋅++==-347331表,∴3323473=⋅++r ,∴47332++=r巩固练习:1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为()A.3B.6C.36D.9解:【A】616164)2(2=++=R ,3=R 【三棱锥有一侧棱垂直于底面,且底面是直角三角形】【共两种】2.三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等于.332π解:260sin 32== r ,16124)2(2=+=R ,42=R ,2=R ,外接球体积332834ππ=⋅【外心法(加中垂线)找球心;正弦定理求球小圆半径】3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于.解:ABC ∆外接圆的半径为,三棱锥ABC S -的直径为3460sin 22== R ,外接球半径32=R ,或1)3(22+-=R R ,32=R ,外接球体积2733233834343πππ=⋅==R V ,4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为.解:PAC ∆的外接圆是大圆,3460sin 22== R ,32=R ,5.三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为.解:973324992cos 222=⋅⋅-+=⋅-+=∠PC PA AC PC PA P ,8121697(1sin 22⋅=-=∠P ,924sin =∠P ,42922992422===R ,829=R 6.三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABCP -外接球的半径为.解:AC 是公共的斜边,AC 的中点是球心O ,球半径为1=R。

空间几何体外接球专题讲解

空间几何体外接球专题讲解

专题 外接球一、知识衔接——外接圆 1.平面几何图形,如三角形、正方形、长方形等,存 在外接圆;当然,并不是所有的平面几何图形均有 接圆;在四边形中,若不满足对角互补,则该四边形 便不存在外接圆.B 的外接圆.外接圆的圆心到各个顶点的距离相等,均 代表外接圆的半径.反之,若一个点到各个顶点的距 离相等,则该点即为外接圆的圆心.外接圆的圆心可 能在平面几何图形的内部或外部或边上. 3.圆的问题多围绕圆的半径展开.外接圆多以三角形 的外接圆居多.求三角形外接圆的半径有两大思路: ①确定圆心再求半径;②直接利用正弦定理求半径. 二、类比推新——外接球 1.存在外接球;当然,不是所有的空间几何体都有外接球. S2.定义:经过空间几何体所有顶点的球称为该空间 几何体的外接球.外接球的球心到各个顶点的距离 相等,均为外接球的半径.反之,若空间中有一个点 到各个顶点的距离相等,则该点即为外接球的球心. 3.外接球的问题多涉及外接球的半径,而求半径需 先确定外接球的球心.可以说,外接球问题的本质就 是球心位置的确定. 三、常见空间几何体的外接球 1.直三棱柱: A 1 B 2 O 2 C 1OA B O 1 C在直三棱柱中,上下两个地面三角形外心连线的中 点即为直三棱柱外接球的球心. 2.正三棱锥(正四棱锥) SO` A B O 1 C 正三棱锥(正四棱锥)外接球的球心在正三棱锥(正四 棱锥)的高上,为高上的某一点,不见得必为高的中 点,需结合已知条件求解.3.正方体(长方体)D 1 C 1A 1 B1 OD CA B正方体(长方体)体对角线的中点即为正方体(长方体) 外接球的球心. 四、填补图形求外接球 对于有些空间几何体,可将其补充为直三棱柱、正 方体、长方体等;补充后的几何体与原几何体共外 接球,从而可转化为求直三棱柱、正方体、长方体 等的外接球. S S M N ⟹A AB C B C在三棱锥S −ABC 中,侧棱SA ⊥平面ABC .可将三棱锥S −ABC 补充为直三棱柱SMN −ABC ,二者共外接球,求三棱锥外接球即求直三棱柱外接球. S S O ⟹ M A A D B D B C C在四棱锥S −ABCD 中,侧棱SA ⊥平面ABC .在上述情况下,可将四棱锥补充为直四棱柱(正方体 或长方体),且二者共外接球.求四棱锥的外接球等价 于求直四棱柱(正方体、长方体)的外接球.五、切面圆求外接球在圆中: 取弦AB ,则弦AB 平分线n 必过圆心.再取弦CD ,则弦CD 的 垂直平分线m 也必过圆 心,要求两弦不平行. 则两弦垂直平分线的交点即为圆的圆心,可以以此 确定圆心位置.同样地,在球中:对球切割,切面均为圆;当切面不经过球心O 时,所得 O 切面圆称为小圆;将球心O与小圆圆心连接,所得连线 O 1必与小圆所在平面垂直.据此,在球上任取两个不平行的切面圆,过两圆的 圆心作两圆所在平面的垂线,则两面的垂线必相交 且交点即为外接球的球心. 由上述可知,确定外接球的球心只需确定小圆圆心 与垂线. 在实际操作中,确定外接球的球心,即确定空间几 何体某个面的外接圆的圆心与过圆心的垂线.原因 在于对空间几何体的外接球切割时,可以就地取材 沿着空间几何体的某个面切割,所得切面圆即为该 面的外接圆,圆心即为该面对应多边形的外心.【例1】三棱锥D−ABC中,AB=CD=√6,其余四条棱长均为2,则三棱锥D−ABC的外接球的表面积为()A.7πB.14πC.21πD.28π解析:[法一填补几何体]结合三棱锥D−ABC的棱长,可将其填补为一个底面为棱长√3的正方形,高为1的长方体,如下图所示:A其中,AD111三棱锥D−ABC与长方体AD1BC1−FCED共外接球. 对于长方体而言,体对角线C1D的中点即为外接球的球心,体对角线长为外接球的直径长.∴2R=√DD12+D1A2+BD12=√7即R=√72故外接球的表面积S=4πR2=7π.[法二切面圆求外接球]DECH OA GM B在∆ACB与∆ADB中,∵AD=BD=AC=BC=2且AB为两三角形的公共边∴∆ADB≅∆ACB且为等腰三角形.取AB的中点M,连接MD,MC,则MD⊥AB,MC⊥AB;结合外接圆的性质及三角形的形状,可知∆ABD与∆ABC外接圆的圆心在底边上的高MD,MC 上,不妨设为G,H,分别过G,H作平面ABC,平面ABD的垂线,两垂线的交点设为O,即为外接球的球心. ⋯⋯外接球球心位置的确定在Rt∆BMC中,∵BC=2,BM=√62∴MC=√102且sinB=MCBC =√104由正弦定理可知:∆ABC的外接圆的半径满足2r=AC sinB =4√105即CG=r=2√105MG=MC−GC=√1010∵∆ABD与∆ABC全等∴DM=MC=√102DH=CG=2√105MH=MG=√1010连接MO并延长交CD于E.∵OH⊥平面ABD,OG⊥平面ABC∴∆MHO与∆MGO为全等的直角三角形,故MO为∠GMH的角平分线,又因为∆DMC是以MD=MC=√102为两腰的等腰三角形,故E为底边DC的中点在Rt∆MEC中,MC=√102,EC=√62∴ME=1tan∠CME=ECME=√62在Rt∆MGO中,tan∠OMG=OGMG=√62∴OG=√1510在Rt∆OGC中,OG=2+GC2=√72即为外接球半径故表面积S=4πR2=7π ⋯⋯算半径答案:A【例2】已知四棱锥P−ABCD的外接球为球O,底面ABCD为矩形,面PAD⊥底面ABCD且PA=PD=AD=2,AB=4,则球O的表面积为________.解析:[法一填补几何体求外接球]根据四棱锥P−ABCD的结构特征,可将该四棱锥填补为正三棱柱:P1BDORP AO1rD四棱锥P−ABCD与正三棱柱PAD−P1BD共外接球对于正三棱柱PAD−P1BD而言,外接球球心为上下两个全等三角形外心连线的中点,如图中O,O1为底面正三角形的外心.在等边∆PAD中,外接圆半径r满足2r=PDsinA=4√33∴r=2√33在Rt∆OO1A中,OO1=12AB=2∴OA =R =√OO 12+r 2=4√33故球O 的表面积为S =4πR 2=64π3[法二 切面圆求外接球]C BO 1 O D M O 2A P 由已知条件可知:该四棱锥有两个面上的多边形较 特殊,即∆PAD 为正三角形,四边形ABCD 为长方形; 沿着平面PAD 与平面ABCD 切割外接球,所得切面圆为二者的外接圆,圆心为二者的外心. 对于正∆PAD ,其外心为高的三等分点;对于长方形ABCD ,其外心为两条对角线的交点. 取棱AD 的中点M ,取长方形ABCD 对角线AC 的中点O 1连接O 1M ,MP ,则MP ⊥AD ,O 1M ⊥AD在MP 上取靠近M 的三等分点O 2,则O 2即为∆PAD 的外心. ∵平面PAD ⊥平面ABCD 且平面PAD ∩平面ABCD=AD ∴MP ⊥平面ABCD ,O 1M ⊥平面PAD 过O 2作OO 2//O 1M ,过O 1作O 1O//MP ,则O 1O ⊥平 面ABCD ,O 2O ⊥平面PAD ,交点O 为外接球的球心. 在四边形MO 2OO 1,∵ O 1M//O 2O ,O 2M//O 1O 且O 1M ⊥O 2M ∴ 四边形MO 2OO 1为长方形 ∴OO 2=12AB =2在Rt∆OO 2P 中,O 2P =23MP =2√33外接球半径R =OP =√OO 12+O 2P 2=4√33所以外接球的表面积为S =4πR 2=64π3[]x取AD 的中点O ,连接OP ,取BC 的中点O 1,连接OO 1则OP ⊥AD ,OO 1⊥AD .∵面PAD ⊥面ABCD ,且面PAD ∩面ABC =AD ∴OP ⊥平面ABCD ,OO 1⊥平面PAD 即直线OA , OP ,OO 1两两垂直,以OA ,OP ,OO 1所在直线为x 轴 y 轴、z 轴建立空间直角坐标系,则:A(1,0,0),D(−1,0,0),P(0,√3,0)与 B(1,0,4).设外接球球心M(x ,y ,z),半径为R ,则有:{√(x −1)2+y 2+z 2=R √(x +1)2+y 2+z 2=R √x 2+(y −√3)2+z 2=R√(x −1)2+y 2+(z −4)2=R解得:x =0,y =√33,z =2 R =4√33故外接球的表面积S =4πR 2=64π3答案:64π3【模拟练习】 1.已知侧棱长为√2的正四棱锥P −ABCD 的五个顶点都在同一个球面上,且球心O 在地面正方形上, 则球O 的表面积为( )A.4πB.3πC.2πD.π 2.已知四面体ABCD 的外接球球心O 恰好在棱AD 上 且AB =BC =√2,AC =2,DC =2√3,则这个四面体的体积为( ) A.23B.5√33C.4√33D.2√333.已知空间四边形ABCD ,∠BAC =2π3,AB =AC =2√3,BD =CD =6,且平面ABC ⊥平面BCD ,则空 间四边形ABCD 的外接球的表面积为_________.4.[湖南师大附中2018届高三模拟]三棱锥P −ABC 中, PA 、PB 、PC 互相垂直,PA =PB =1,M 是线段BC 上一个动点,若直线AM 与平面PBC 所成角的正切值 的最大值为√62,则三棱锥P −ABC 的外接球的表面 积为( )A.2πB.4πC.8πD.16π5.已知四棱锥P−ABCD中,平面PAD⊥平面AB6.三棱锥P−ABC中,AB=BC=√15,AC=6,PC CD,其中ABCD为正方形,∆PAD为等腰直角三角⊥平面ABC,PC=2,则该三棱锥的外接球表面积形且PA=PD=√2,则四棱锥P−ABCD外接球为()的表面积为() A.25π3B.25π2C.83π3D.83π2A.10πB.4πC.16πD.8π8.在三棱锥P−ABC中,PA⊥平面ABC,∠BAC=120°且AP=√2,AB=2,M是线段BC上一个动点,线段7.空间四点A、B、C、D都在球心为O的球面上且PM长度最小值为√3,则三棱锥P−ABC的外接球的表AD⊥平面ABC,AD=2,AB=BC=AC=2则面积为()球O的表面积为() A.9π2B.40πC.9√2πD.18πA.32π3B.28π3C.16π3D.4π。

空间几何体的外接球内切球问题

空间几何体的外接球内切球问题

P D S CAO空间几何体的外接球、内切球问题外接球问题一.棱锥的外接球三棱锥都有外接球;底面有外接圆的任意棱锥都有外接球。

1.确定棱锥外接球球心的通法先找到棱锥底面的外接圆的圆心D ,过D 作底面的垂线DP交一侧棱的中垂面于O ,点O 即为外接球的球心。

练习:1.三棱锥S-ABC 的各顶点都在同一球面上,若SB ⊥平面ABC ,SB=6,AB=AC=2120BAC ∠=︒,则此球的表面积等于 。

2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为 。

3.四面体ABCD 的四个顶点在同一球面上,AB=BC=CD=DA=3,32=AC ,6=BD ,则该球的表面积为 ( )A . π14 B.π15 C.π16 D.π182.补成长方体或正方体,再利用体对角线是外接球直径这一结论求解。

练习:1.三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为( )A .26a πB .29a πC .212a πD .224a π2.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC=O表面积等于(A)4π(B)3π(C)2π(D)π3.,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π4.3.公共边所对的两个角为直角确定球心法练习1.在矩形ABCD中,4,3AB BC==,沿AC将矩形ABCD折成一个直二面角B AC D--,则四面体ABCD的外接球的体积为A.12512π B.1259π C.1256π D.1253π2.空间四边形ABCD中,1,AB BC AD DC====ABCD的外接球的表面积为4.利用轴截面截球为大圆确定球半径正四、六、八棱锥的外接球的一个轴截面为大圆,该圆的半径等于外接球的半径.练习:1.正四棱锥S ABCD-S A B C D 、、、、都在同一球面上,则此球的体积为 .2.正六棱锥EFS ABCD-的底面边长为1S A B C D 、、、、、E、F都在同一球面上,则此球的表面积为 .3.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为AB.13π C.23π D_C_A_O_D_B二.棱柱的外接球底面有外接圆的直棱柱才有外接球。

空间几何体外接球问题7种题型总结

空间几何体外接球问题7种题型总结

空间几何体外接球问题7种题型总结
x
一、空间几何体外接球问题整体总结
空间几何体外接球问题是典型的几何形体在三维空间运动的概
念测试,其考查的内容主要有以下几种:
1、计算特定几何体外接球的半径:可以根据给定的几何体的表面积和体积来计算出它的外接球的半径;
2、定义外接球:通过给出几何体的表面积或体积来定义几何体的外接球;
3、求任意两个外接球的重叠面积:计算出两个球体的表面积和体积,利用这些参数来求出两个外接球的重叠面积;
4、求几何体到某点的最近距离:在给定的几何体的某点的情况下,根据外接球的半径来计算出该点到外接球的最近距离;
5、求几何体的体积:根据给定的外接球的半径和体积,计算出几何体的体积;
6、求两个外接球的重叠体积:根据两个外接球的表面积和体积,来计算出它们重叠的体积;
7、求几何体到某球体的最近距离:通过给定的几何体和某个球体,可以根据它们的外接球的半径来求出它们之间的最近距离。

二、总结
空间几何体外接球问题可以用来考查考生对几何形体的运动、距离和体积的理解程度,考生需要熟练掌握外接球的定义、半径的计算、
重叠面积和体积的求解以及几何体到某点和某球体最近距离的求解
等基本方法。

通过练习这些方法,考生可以提高解题的速度和准确度,从而帮助考生在备考考试的过程中更好的掌握考试知识。

素能培优(八)空间几何体外接球的五种模型

素能培优(八)空间几何体外接球的五种模型
的高.
对点训练 4 已知圆锥的顶点和底面圆周都在球 O 面上,若圆锥的侧面展开图

的圆心角为 3 ,面积为
3π,则球 O 的表面积等于(
81π
A.
8
81π
B.
2
121π
C. 8
121π
D. 2
答案 A
)
解析 圆锥的顶点和底面圆周都在球 O 面上,圆锥的侧面展开图的圆心角为
2
π,面积为
3
3π,设母线为 l,底面圆的半径为
2 +4 2 -14 1
=
=- ,得
2××2
2

中,∠BAE= ,由余弦定理得
3
a= 2,故正四面体的棱长为 2 2.
cos∠BAE
如图,将正四面体补成一个正方体,则正方体的棱长为2,则该正四面体的外
接球的直径为正方体的体对角线长,所以2R=2 3 ,即R= 3 ,故该正四面体
的外接球的表面积S=4πR2=12π.
答案

3
.
解析 由题设,将三棱锥 P-ABC 补全为棱长为 2 3的正方体,如图所示.若
AD=AF=2,则 PD=PF=4,即 D,F 在以 P 为球心,4 为半径的球面上.记 O 为底
面中心,则 OA= 6>2,OP=3 2>4,所以,底面 ABC 与球面所成弧是以 A 为圆
心,2 为半径的四分之一圆弧,故弧长为 π;侧面 PBC 与球面所成弧是以 P 为圆
A.36π
答案 B
B.84π
)
C.132π
D.180π
解析 由题意三棱柱 ABC-A1B1C1 是正三棱柱,设 N,M 是上下底面中心,MN 的

空间几何体的外接球

空间几何体的外接球

空间几何体的外接球
空间几何体的外接球就是包含该几何体的最小球。

这个球的圆心位于几何体的外部,球的半径等于从圆心到几何体表面的最远距离。

外接球是几何体的一个重要属性,可以用于计算几何体的体积、表面积等参数。

对于不同的几何体,其外接球的计算方法也不同。

例如,对于立方体,其外接球的半径等于边长的一半。

而对于球体,则其自身就是一个外接球。

在实际应用中,外接球经常被用于计算几何体的特征参数。

例如,对于多面体,外接球的半径可以用于计算多面体内切球的半径,从而进一步计算多面体的体积
和表面积。

在建筑设计中,外接球也可以用于计算建筑物的最小包围盒,从而确定建筑物的空间占用情况。

总之,空间几何体的外接球是一个重要的几何体属性,可以用于计算几何体的各种特征参数,对于建筑设计、工程计算等领域具有重要的应用价值。

空间几何体的外接球与内切球

空间几何体的外接球与内切球
sin3 = 22+ 32= 7,所以四棱锥 S-ABCD 外接球的表面积为 4πR2=4π×( 7)2=28π.
总结 提炼
外接球双面定球心法 如图,在三棱锥P-ABC中: ①选定底面△ABC,定△ABC外接圆圆心O1; ②选定面△PAB,定△PAB外接圆圆心O2; ③分别过O1作平面ABC的垂线,过O2作平面PAB的垂线,两垂 线交点即为外接球球心O.
平面SAD∩平面ABCD=AD,O1E⊂平面ABCD,所以O1E⊥ 平面SAD,同理SE⊥平面ABCD.
设等边三角形 SDA 的外接圆的圆心为 O2,过 O2 作 O1E 的平行线,过 O1 作 SE 的平 行线,两平行线交于点 O,则 OO1⊥平面 ABCD,OO2⊥平面 SAD,所以 O 为四棱锥 S-ABCD 外接球的球心,设外接球的半径为 R.由题知等边三角形 SDA 的外接圆半 径 SO2=23SE=23 SA2-AE2=23 SA2-12AD2=2(或在等边三角形 SDA 中,由正弦定 理得2 π3=2SO2,解得 SO2=2).又因为 OO2=12AB= 3,所以 R=OS= O2S2+O2O2
空间几何体的外接球与内切球
视角 1 外接球补形法
1 (1)若四面体 ABCD 的每个顶点都在球 O 的球面上,AB,AC,AD 两两垂直,
且 AB= 3,AC=2,AD=3,则球 O 的表面积为
( B)
A.64π
B.16π
C.4π
D.π
【解析】 四面体 ABCD 的外接球 O 即为以 AC,AB,AD 分别为长、宽、高的长方体 的外接球,所以球 O 的外接球半径 R=12 AB2+AC2+AD2=2,所以球 O 的表面积 S =4πR2=16π.
总结 提炼
内切球等体积法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何体的外接球类型一:长方体模型一(三条线两两垂直,不找球心的位置即可求出球半径)c ab图1CP A Babc 图2PCBAabc 图3CBPAa bc 图4PCO 2BA方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( )A .π16B .π20C .π24D .π32(2)若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9(3)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 (4)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥ABC S -外接球的表面积是(5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为长方体模型二:(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直 径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r CcB b A a 2sin sin sin ===),PA OO 211=;第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=图5ADPO 1OCB例题2:(1)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( ) π11.A π7.B π310.C π340.D (2)三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等于 .长方体模型三:对棱相等模型(补形为长方体) 题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=, 补充:abc abc abc V BCD A 31461=⨯-=- 第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R ,例如,正四面体的外接球半径可用此法。

例3:(1)在三棱锥BCD A -中,,4,3,2======BD AC BC AD CD AB 则三棱锥BCD A -外接球的表面积为 。

(2)如图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为 .(3)正四面体的各条棱长都为2,则该正面体外接球的体积为yxabc z zyx图12DCAB(1)题类型二:圆锥模型题设:如图6,7,8,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点图6PADO 1OCB图7-1PAO 1O CB图7-2PAO 1O CB图8PAO 1OCB图8-1DPOO 2ABC图8-2POO 2ABC图8-3DPOO 2AB解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R例4(1) 一个几何体的三视图如右图所示,则该几何体外接球的表面积为( ) A .π3 B .π2 C .316πD .以上都不对 (2)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为60,则该三棱锥外接球的体积为( )A .π B.3π C. 4π D.43π (3)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 。

(4)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一个球面上,则此球的体积为 (5)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C .43 D .123(6)正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .类型三、直棱柱模型(直棱柱的外接球、圆柱的外接球)图10-2题设:如图10-1,图10-2,图10-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(hr R +=,解出R例5 (1)一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 (2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。

(3)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π则直三棱柱111CB A ABC -的外接球的表面积为 。

类型四、垂面模型图9-1图9-2图9-3图9-41.题设:如图9-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R2.如图9-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=3.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R4.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .(2)三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .(3)三棱锥ABC P -中,平面PAB ⊥平面ABC ,△PAB 和ABC ∆均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 .(4)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 。

B模型五两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型图13题设:90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值。

例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为( )A .π12125 B .π9125 C .π6125 D .π3125(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCDA -的外接球的表面积为 . (3)三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .(4)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为()A .6 B.3 D .2。

相关文档
最新文档