线性代数计算方法

合集下载

线性代数求解方法和技巧

线性代数求解方法和技巧

线性代数求解方法和技巧线性代数是数学中重要的一个分支,研究向量空间、线性变换和线性方程组等内容。

在实际问题中,我们常常需要用线性代数的方法来解决问题,因此掌握线性代数的求解方法和技巧对于理解和应用数学是非常重要的。

首先,我们讨论线性方程组的求解方法。

线性方程组是由一组线性方程组成的方程组,其中每个方程的未知数的次数都为1。

对于n个未知数和m个方程的线性方程组,我们有以下几种常用的求解方法:1. 列主元消元法:这是最常用的线性方程组求解方法之一。

它的基本思想是通过行变换将线性方程组化为一个三角形式,进而求解得到方程组的解。

在进行行变换时,要选择合适的列主元,即选择主元元素绝对值最大的一列作为主元素。

2. 矩阵求逆法:对于一个可逆的n阶方阵A,我们可以通过求A的逆矩阵来求解线性方程组Ax=b。

具体地,我们首先通过高斯消元法将方程组化为三角形式,然后根据三角形式的矩阵求逆公式来求解x。

3. LU分解法:对于一个n阶非奇异矩阵A,我们可以将其分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。

接着,我们可以通过LU分解来求解线性方程组Ax=b。

具体地,我们首先通过LU分解将方程组化为Lc=b和Ux=c两个方程组,然后依次求解这两个方程组得到x的值。

除了以上的求解方法,还有一些线性方程组的特殊情况和对应的求解方法:1. 齐次线性方程组:如果线性方程组右边的常数项都为0,即b=0,那么我们称为齐次线性方程组。

对于齐次线性方程组,其解空间是一个向量空间。

我们可以通过高斯消元法来求解齐次线性方程组,先将其化为三角形式,然后确定自由未知量的个数,最后确定解空间的基底。

2. 奇异线性方程组:如果线性方程组的系数矩阵A是奇异矩阵,即det(A)=0,那么我们称为奇异线性方程组。

对于奇异线性方程组,其解可能不存在,或者存在无穷多解。

我们可以通过计算矩阵A的秩来确定线性方程组的解的情况。

另外,在实际问题中,我们可能会遇到大规模的线性方程组,这时候求解方法和技巧还需要考虑到计算效率的问题。

#线性代数技巧行列式的计算方法

#线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。

下面介绍几种常用的方法,并举例说明。

1.利用行列式定义直接计算 例1 计算行列式001002001000000n D n n=-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故(1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ijD a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j i a a =-知i i i ia a =-,即 0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n nnnna a a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n nn nnn a a a a a a D a a a a a a -----=- 12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------ (1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

例3 计算n 阶行列式a b b b ba b b D bb a bbbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n b a b bD a n bb a b a n bb b a+-+-=+-+- 11[(1)]11b b b a b b a n b b a b b ba =+- 100[(1)]00b bb a b a n b a b a b-=+--- 1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

线性代数技巧行列式的计算方法

线性代数技巧行列式的计算方法

线性代数技巧行列式的计算方法行列式是线性代数中重要的概念,它是一个数,可以用来描述矩阵的性质。

在计算行列式时,可以使用不同的方法,如拉普拉斯展开、余子式法、矩阵分解等。

下面我将详细介绍三种常用的行列式计算方法。

1.拉普拉斯展开法拉普拉斯展开法是计算行列式最常用的方法之一、对于一个n阶方阵A,它的行列式可以用下式计算:det(A) = a1jC1j + a2jC2j + ... + anjCnj其中,a1j、a2j、..、anj 表示第1行、第2行、..、第n行的第j 列元素,C1j、C2j、..、Cnj 表示第1行、第2行、..、第n行的第j列的余子式。

在计算过程中,我们可以选择第i行或第j列,将行列式分成两个更小的行列式,然后递归计算这两个行列式的值。

这种方法的计算复杂度为O(n!),在计算较大的行列式时效率较低。

2.余子式法余子式法是计算行列式的另一种常用方法,它的基本思想是利用代数余子式的概念来计算行列式。

对于一个n阶方阵A,它的行列式可以用下式计算:det(A) = a11A11 + a12A12 + ... + a1nAn其中,a11、a12、..、a1n表示第1行的各个元素,A11、A12、..、An表示对应元素所在的代数余子式。

代数余子式的计算公式如下:Ai = (-1)^(i+1) × det(Mi)其中,Mi表示去掉第1行和第i列之后的(n-1)阶方阵。

通过递归计算,可以将大的行列式转化为多个小的行列式的计算,从而提高计算效率。

3.矩阵分解法矩阵分解法是一种便捷的计算行列式的方法。

对于特殊的矩阵,如三对角矩阵、上(下)三角矩阵、对角矩阵等,可以通过矩阵的分解来简化行列式的计算。

例如,对于上(下)三角矩阵A,它的行列式等于主对角线上的元素相乘:det(A) = a11 × a22 × ... × ann这种方法的计算复杂度为O(n),适用于这类特殊矩阵。

考研线性代数行列式的计算方法

考研线性代数行列式的计算方法

考研线性代数行列式的计算方法线性代数中的行列式是一个非常重要的概念,它在矩阵论以及其他数学和工程学科中有着广泛的应用。

本文将介绍如何计算行列式以及相关的一些重要性质。

1.行列式的定义和表示方式:一个 n 阶方阵 A 的行列式可以表示为 det(A),也可以用竖线括起来 A 的元素的形式表示为,A。

2.二、三阶行列式的计算:二阶行列式计算公式为:,A,=a11×a22-a12×a21三阶行列式计算公式为:,A,=a11×a22×a33+a12×a23×a31+a13×a21×a32-a13×a22×a31-a12×a21×a33-a11×a23×a323.行列式的性质:a.若A是一个n阶方阵,则,A,=,A^T,即行列式的值不受转置的影响。

b. 若 A 是一个 n 阶上三角矩阵(即主对角线以下的元素全为零),则,A,= a11 × a22 × ... × ann,即上三角矩阵的行列式等于其主对角线元素的乘积。

c. 若 A 是一个 n 阶方阵且存在一个可逆矩阵 P,使得 PA 是一个上三角矩阵,则,PA, = ,A,× ,P,= a11 × a22 × ... ×ann × ,P。

d.若A是一个对称矩阵,则,A,=λ1×λ2×...×λn,其中λ1,λ2,...,λn是A的n个特征值。

e.若A,B是两个n阶矩阵,则,AB,=,A,×,B。

4.行列式按列展开法:设 A 是一个 n 阶方阵,其行列式为,A。

对于任意一列 j,可以按第 j 列展开,A,= a1j × A1j - a2j × A2j + ... + (-1)^(n+j)× anj × Anj,其中 Akj 表示 A 的剩余元素经过剔除第 j 列和第 k行后的 (n-1) 阶方阵。

线性代数行列式计算方法总结

线性代数行列式计算方法总结

线性代数行列式计算方法总结在线性代数中,行列式是一个非常重要的概念,它在矩阵运算和线性方程组的求解中起着至关重要的作用。

本文将总结一些常见的行列式计算方法,希望能够帮助读者更好地理解和运用线性代数中的行列式。

1. 代数余子式法。

代数余子式法是一种常见的计算行列式的方法。

对于一个n阶矩阵A,它的行列式可以通过以下公式来计算:det(A) = a11A11 + a12A12 + ... + a1nA1n。

其中,a11, a12, ..., a1n是矩阵A的第一行元素,A11, A12, ..., A1n分别是对应元素的代数余子式。

代数余子式的计算方法是先将对应元素所在的行和列去掉,然后计算剩下元素构成的(n-1)阶矩阵的行列式,再乘以对应元素的符号(正负交替)。

通过递归的方式,可以计算出整个矩阵的行列式。

2. 克拉默法则。

克拉默法则是一种用于求解线性方程组的方法,它也可以用来计算行列式。

对于一个n阶方阵A,如果它的行列式不为0,那么可以通过克拉默法则来求解它的逆矩阵。

逆矩阵的元素可以通过矩阵A的各个元素的代数余子式和行列式的比值来计算。

虽然克拉默法则在实际计算中并不常用,但它对于理解行列式的性质和逆矩阵的计算方法有一定的帮助。

3. 初等行变换法。

初等行变换法是一种通过对矩阵进行一系列行变换来简化行列式计算的方法。

这些行变换包括交换两行、某一行乘以一个非零常数、某一行加上另一行的若干倍。

通过这些行变换,可以将一个矩阵化简为上三角形矩阵或者对角矩阵,从而更容易计算它的行列式。

需要注意的是,进行行变换时要保持行列式的值不变,即每一次行变换都要乘以一个相应的系数。

4. 特征值法。

特征值法是一种通过矩阵的特征值和特征向量来计算行列式的方法。

对于一个n阶矩阵A,它的行列式可以表示为其特征值的乘积。

通过计算特征值和特征向量,可以得到矩阵A的行列式的值。

特征值法在实际计算中比较复杂,但它对于理解矩阵的性质和特征值分解有一定的帮助。

线性代数行列式计算方法总结

线性代数行列式计算方法总结

线性代数行列式计算方法总结线性代数是数学的一个重要分支,而行列式是线性代数中的一个重要概念。

行列式计算方法是线性代数的基础知识,掌握好行列式的计算方法对于深入理解线性代数具有重要的意义。

本文将对线性代数中行列式的计算方法进行总结,希望能够帮助读者更好地掌握这一知识点。

1. 行列式的定义。

在开始介绍行列式的计算方法之前,我们先来回顾一下行列式的定义。

对于一个n阶方阵A,它的行列式记作|A|,定义为:|A| = Σ(−1)^σP1,1 P2,2 ... Pn,n。

其中,σ是1到n的一个排列,P1,1 P2,2 ... Pn,n是这个排列的乘积,Σ表示对所有可能的排列求和。

2. 行列式的计算方法。

接下来,我们将介绍几种常见的行列式计算方法。

2.1 余子式法。

余子式法是计算行列式的一种常用方法。

对于一个n阶方阵A,它的行列式可以通过递归的方式计算得到。

具体步骤如下:对于n阶方阵A,选择第i行(或第j列)展开,得到A的余子式Mij;计算Mij的行列式|Aij|,其中Aij是Mij的转置矩阵;根据公式|A| = ai1 |A1| + ai2 |A2| + ... + ain |An|,计算得到行列式|A|。

2.2 克拉默法则。

克拉默法则是一种用于求解n元线性方程组的方法,它也可以用来计算行列式。

对于一个n阶方阵A,它的行列式可以通过克拉默法则计算得到。

具体步骤如下:对于n元线性方程组Ax = b,其中A是系数矩阵,x是未知数向量,b是常数向量,如果A是非奇异矩阵(即|A| ≠ 0),则方程组有唯一解;解出方程组的每个未知数,可以得到方程组的解向量x;根据克拉默法则,方程组的解向量x的每个分量可以表示为xj = |Aj| / |A|,其中Aj是将系数矩阵A的第j列替换为常数向量b得到的矩阵的行列式。

2.3 对角线法则。

对角线法则是一种简单直观的计算行列式的方法。

对于一个n阶方阵A,它的行列式可以通过对角线法则计算得到。

线性代数技巧行列式的计算方法

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。

下面介绍几种常用的方法,并举例说明。

1.利用行列式定义直接计算 例1 计算行列式001002001000000n D n n =-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故 (1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由ijji aa =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n n nnna a a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n n nnnn a a a a a a D a a a a a a -----=-12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

例3 计算n 阶行列式a b b b ba b b D bb a b bbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n b a bb D a n bb a b a n bb b a+-+-=+-+-11[(1)]11b b b a b b a n b b a b b ba=+-100[(1)]000b b b a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

线性代数行列式计算方法总结

线性代数行列式计算方法总结

线性代数行列式计算方法总结线性代数是数学的一个分支,研究向量空间与线性映射的代数理论。

行列式是线性代数中重要的概念之一,用于判断线性方程组的解的存在与唯一性,以及计算线性变换的特征值与特征向量等。

本文将介绍线性代数中行列式的计算方法,并总结为以下几种常见的方法。

方法一:定义法行列式的定义是一个很重要的概念,也是计算行列式的基础。

对于一个n阶方阵A,它的行列式表示为|A|或det(A),定义为n个行向量或列向量所组成的n维向量空间的基向量所构成的平行多面体的有向体积。

根据这个定义,我们可以通过构造平行多面体来计算行列式的值,方法即是代数余子式展开法。

方法二:对角线法则对角线法则是计算2阶或3阶方阵行列式的简易方法。

对于2阶方阵A,其行列式的值等于主对角线上元素的乘积减去副对角线上元素的乘积;对于3阶方阵A,其行列式的值等于主对角线上元素的乘积与副对角线上元素的乘积之差。

此方法适用于小规模方阵的计算。

方法三:按行展开法按行展开法是计算n阶方阵行列式的一种常用方法。

对于一个n阶方阵A,选择其中一行(通常选择第一行)展开,即将该行中的元素与所在行和列上排列的剩余元素分别构成n-1阶的方阵,然后将其乘以对应元素的代数余子式,最后再按正负号相间相加得到行列式的值。

按行展开法在计算大规模方阵的行列式时,不仅简化了计算过程,还可以通过递归的方式实现。

方法四:按列展开法按列展开法与按行展开法类似,只是选择展开的对象变为一列。

选择第j列展开,则将该列中的元素与所在行和列上排列的剩余元素分别构成n-1阶的方阵,然后将其乘以对应元素的代数余子式,最后再按正负号相间相加得到行列式的值。

方法五:性质法行列式具有一系列的性质,可以根据这些性质来简化行列式的计算过程。

这些性质包括行列对换,相同行列的元素倍加,行列式放缩等。

利用这些性质,我们可以通过对行列式进行简单的变换,使其更容易计算,例如将行列式转化为上三角形矩阵,然后直接求解主对角线上元素的乘积即可。

线性代数行列式计算方法总结

线性代数行列式计算方法总结

线性代数行列式计算方法总结1. 引言行列式是线性代数中的重要概念,用于描述线性方程组的性质以及向量空间的基本性质。

在实际应用中,行列式计算是非常常见的操作。

本文将总结常用的线性代数行列式计算方法,并通过具体的例子进行说明。

2. 行列式的定义行列式是一个将矩阵映射为一个标量的函数。

设A为一个n阶方阵,则其行列式记作|A|,它由元素a_ij组成的n×n矩阵所决定。

行列式的计算方法有多种,下面将介绍其中几种常用的方法。

3. 基本行列变换法基本行列变换法是求解行列式值的一种常见方法。

它包括以下三种基本行列变换:3.1 行交换行交换是将两行互换位置的操作。

当行交换次数为偶数次时,行列式的值保持不变;当行交换次数为奇数次时,行列式的值取负。

例如,对于一个3×3矩阵 A:A = [a b c][d e f][g h i]如果我们交换第一行和第三行,得到矩阵 B:B = [g h i][d e f][a b c]则有 |A| = -|B|。

3.2 行倍加行倍加是将某一行乘以一个非零常数,并加到另一行上去的操作。

行倍加不改变行列式的值。

例如,对于一个3×3矩阵 A:A = [a b c][d e f][g h i]如果我们将第一行的2倍加到第二行上,得到矩阵 C:C = [a b c][2a+e 2b+f 2c+f][g h i]则有 |A| = |C|。

3.3 行倍乘行倍乘是将某一行乘以一个非零常数的操作。

行倍乘改变行列式的值。

例如,对于一个3×3矩阵 A:A = [a b c][d e f][g h i]如果我们将第三行乘以2,得到矩阵 D:D = [a b c][d e f][2g 2h 2i]则有 |A| = 2|D|。

4. Laplace展开法Laplace展开法是求解行列式值的另一种常用方法。

它基于以下原理:设A是一个n阶方阵,将A的第i行第j列的元素记为a_ij,则A的行列式可展开为a_ij 与其余元素构成的n-1阶矩阵的行列式的代数余子式之和。

考研线性代数 解题方法汇总(非知识点汇总)

考研线性代数 解题方法汇总(非知识点汇总)

考研线性代数解题方法汇总(非知识点汇总)行列式的计算消零化基本形法•思想:通过恒等变形变为基本形求解•恒等变形o消零化▪当列/行元素大致相同时,用第一行倍加▪当列/行元素具有递推性质时,用i行倍加i+1行▪相同优先o互换▪变为分块对角矩阵▪变换主/副对角线(变换次数为(n-1)n/2)o展开定理•常见行列式形状o爪形行列式o行和相等行列式▪求法▪1、所有元素向第一列求和▪2、提出第一列公因式▪3、将第一列归零化,视情况采用相应方法加边法•使用场景:无法通过互换、倍加、倍乘化简的行列式•使用方法:每列元素都含有同一参数的项,且该项系数(可以是其他参数)具有规律性数学归纳法与递推法•使用场景:具有递推性质的n阶行列式的证明•第一类归纳法o1、验证n=1时成立o2、假设n=k时成立o3、证明n=k+1时成立•第二类归纳法o1、验证n=1、n=2时成立o2、假设n<k时成立o3、证明n=k时成立•常见行列式形状o三主对角线行列式▪行和相等▪行和不相等用范德蒙德行列式行列式形式与解法总结•特殊形状行列式o爪形行列式o行和相等行列式o三主对角线行列式•多个行/列元素大致相同•行列元素具有递推性质•零的分布有规律•第一列只有两个元素o消去第二个元素o放置两头采用展开定理•具有递推性质的n阶行列式•所有元素都为齐次式余子式和代数余子式的线性组合计算法1:转化为行列式计算法2:用伴随矩阵计算•1、利用 A=|A|A逆计算A•2、由伴随阵的相应元素得到余子式•要求:需要A逆好求,没啥大用特别:所有代数余子式和的计算抽象行列式的计算|A+B|•知列向量o拆分o将向量的线性组合转化为矩阵乘积o将对矩阵的变换过程转化为矩阵乘积•完全抽象•知部分具体矩阵C 或 C的特征值o向|C|、|C+kE|靠拢▪相似:知A~B,可得|A+kE|=|B+kE|▪特征值性质:A+kE的特征值为 A的特征值+k行列式方程•1、将方程化为待求矩阵为因子的因式方程行列式表示的函数和方程求行列式函数f最高次数•化简行列式计算fo观察有差相同的行列,尽可能化零o多项式行列式化为基本型求解求行列式函数f的复合函数求行列式函数f的根或根的个数由行列式函数f的根特征(二重根)求参数行列式在Ax=0上的应用——克拉默法则注意:在求解|A|=0时,使用展开定理直接求因式乘积,不要先求多项式再因式分解,可能很难因式分解|A|=0的证明充要条件•|A|=k|A|o将关于A一次幂的表达式两边取行列式o特别:正交矩阵相关证明【李线代讲义例2.29】•Ax=0有非零解•反证法•存在零特征值o当题目中提到列向量时使用o题目中有A的多项式函数:同乘å•矩阵的秩注意矩阵方阵的幂通用步骤o对角阵o小三角阵o对角线元素相同的三角阵o零分布规则的阵分解为矩阵乘积•1、若给定矩阵向量成比例,则可分解为两向量乘积•2、利用结合律将两向量交换相乘•原理o行向量*列向量=数o列向量*行向量=各行成比例的矩阵利用递推式•使用场景:给定矩阵无法分解•1、依次求矩阵前几次幂,得递推式o形式:A^m=k*A^s(n>m)o注意•2、由递推式用法化简求值o1)从A^n中提出A^s,将其看作催化剂o2)A^s把A^n剩余部分全部转化为k▪转化为(n-s)/(m-s)个k乘积▪当n-s/m-s不是整数时分类讨论利用对角阵•1、求其相似对角阵代入•2、当对角阵元素相同时,求幂不需要求P两方阵和的幂•通过二项式定理展开•特别:对角线元素相同的三角阵o1、将给定矩阵分解为单位阵E和小三角阵B的和o2、用二项式定理展开,消去零项,再求和o背景知识:小三角阵▪对角元素为0的三角阵▪小三角阵的幂=更小三角阵▪小三角阵的”非零对角线到角的线数+1”次幂=O矩阵乘法的可交换性求与其可交换的矩阵•待定系数法o1、假设同阶矩阵B与其可交换o2、列式AB=BA并化简o3、令对应元素相等得解•拆解单位阵法o应用场景:给定矩阵与单位阵相近o1、将给定矩阵呢拆解为单位阵E和矩阵Bo2、求与矩阵B可交换的矩阵证明两矩阵可交换•利用伴随矩阵公式o应用场景:被证明式中含有伴随阵o1、凑出与伴随阵对应的矩阵o2、用公式进行矩阵交换后恢复•利用可逆矩阵公式o应用场景:给定两被证矩阵关系式o1、将已知条件凑出AB=E,证明可逆o2、由可逆矩阵可交换写出交换乘积等式o3、将乘积展开,消去多余项相关结论•对角矩阵与对角矩阵可交换•(E+A)^(-1)与(E-A)可交换对称矩阵和反对称矩阵相关结论•n阶方阵=对称矩阵+反对称矩阵待定证明A可逆并求A逆求数值矩阵A的逆•分块矩阵法求抽象矩阵的逆•分解成多个可逆矩阵的乘积o将待证矩阵分解为已知可逆矩阵的乘积o相关结论分块矩阵的逆•主对角线分块矩阵的逆•副对角线分块矩阵的逆•待定系数法o1、设出逆矩阵,令其与原矩阵相乘为单位阵o2、由对应块相等列方程可逆矩阵的判别验证•证明可逆o证明|A|≠0o特征值全为0部分+特征值全不为0部分证明A=O证明aij=0证明r(A)=0相关结论抽象矩阵式化简先化简条件,再化简被证式用条件将被证式的不可转化单元表出伴随矩阵低阶阵:定义法一般/抽象阵:公式法记忆方阵的行列式常见恒等变换•交换某项乘积顺序o解法:一边消一边补o例:(E+AB)=A(E+BA)A^(-1)•(A^(-1)+B^(-1))=A^(-1)(A+B)B^(-1)矩阵方程技巧•知A*可直接求|A|、A^(-1)•A逆的逆可乘进括号逆中初等矩阵将左乘初等矩阵看作行变换证明正交阵证明ATA=AAT=E,不能只证一部分矩阵的秩与等价矩阵向量向量组的线性表出计算题转化为线性方程组有没有解证明题构造方程组,证明方程组有解•等价证明r(å1,å2,...,ås)=r(å1,å2,...,ås,ç)找出两个条件•å1,å1,...,ås线性无关•å1,å1,...,ås,ç线性相关证明k≠0反证法向量组的线性相关、无关具体相关性计算转化为Ax=0有没有非零解特别•有零向量•向量数>维数•n维n个向量行列式=0•向量数>矩阵秩抽象相关性证明定义法•1、设k1a1+k2a2+...+knan=0•2、恒等变形证明k1 k2 ... kn=0▪同乘使1项为0,需要多次同乘▪同乘后与原式相加减消元o常用条件▪特征向量:不同特征值特征向量线性无关▪基础解系:基础解系线性无关秩•1、将被证向量组以列排为矩阵A•2、证明r(A)=so A若有A=BCo A若有AB=Co A若有AB=O秩向量组极大无关向量组•含一参向量组求极大【李线代讲义例3.21】o拼矩阵、行变换、由参讨论秩求两向量组矩阵计算证明•思路:分别找到表大于和表小于的两个条件•条件o向量o方程组▪解向量的秩=n-r(A)▪若Ax=b、Ax=0有s个线性无关解向量,则s≤n-r(A)▪若AB=O,则r(B)≤n-r(A)其他•已知r(A)求r(B)等价矩阵和等价向量组分别证明向量组1、11可以相互线性表出r(A)=r(B)=r(A,B)当A B其中一个满秩时不需要求r(A,B)A可由B表出,B不能由A表出1、由r(A)<r(A,B)≤n得|A|=0解未知数2、代入看是否满足r(A)<r(B)=r(A,B)向量空间线性方程组齐次线性方程组具体型求解1、将系数矩阵化为含最大单位阵的矩阵2、非单位阵列的位置填写100;010;0013、在解向量其他位置填写填1列元素相反数抽象型求解1、推断r(A)知解向量个数2、找出n-r(A)个å使得Ax=0证明向量组是Ax=0的基础解系1、验证Açi=02、证明ç 1 ç 2 ... çt无关3、说明t=n-r(A)非齐次线性方程组具体型求解一般步骤•1、将增广矩阵化为含最大单位阵的矩阵•2、自由变量赋值o1/选取剩余非单位矩阵列作为自由变量o2/给通解的自由变量列赋值100;010;001o3/给特解的自由变量列赋值000•3、填写其他元素o1/通解解向量其他位置填写填1列元素相反数o2/特解解向量其他位置填写b向量元素含参注意•首先尽量消去参数•不能对某行同乘/除(可能为零)含参项•不能对某行同除含参项后加到另一行(可能为∞)含两参数的分类讨论•1、令|A|=0求出得唯一解参数范围•2、剩余范围画树状图讨论o三个主分支o次分支标准▪r(A)=?=r([A,b])•3、写情况类别o将每种情况对应的路线取交集,得参数范围o无解情况参数范围可取并集,合并为一种o无穷解情况不可合并抽象型求解1、推断解的结构2、找出n-r(A)个线性无关齐次方程解向量3、找出特解A的行向量与Ax=0的解的关系线性方程组系数矩阵列向量和解的关系求两个方程组的公共解两个方程组联立成大方程组求解抽象方程组:证明大方程组有非零解一个方程组+另一方程组的基础解系1、求出方程组的基础解系2、将公共解用两个基础解系分别表示•其中一个基础解系用负系数表示•移项得两个基础解系的线性组合=03、建立新齐次方程组并求解4、代回2步骤式得公共解同解方程组具体型同解必要条件题目•同未知数不同方程数的两个齐次方程组同解求参数步骤•1、由方程式较多的方程组1非满秩求参数•2、将方程组1求解得基础解系•3、将基础解系代入方程组2中求参数•4、验证两方程组秩相同抽象型1、证明方程组(1)的解是(11)的解2、证明方程组(11)的解是(1)的解方程组的几何应用求矩阵AX=B型•将其看作多个同系数矩阵的方程组•1、设X=[x,y,z],x y z为列向量•2、将A、B组成增广矩阵[A,B]求解f(X)=B型(不可化为AX=B)•1、设未知矩阵为具体矩阵•2、代入条件令对应元素相等转化为方程组特征值与特征向量求特征值/向量数值矩阵特征方程法•1、利用特征方程求解特征根o展开公式法▪找到两行/列相乘加满足o一般方法▪1、合并同类项写成降幂多项式▪2、猜根后通过多项式除法进行因式分解•2、带入特征根解齐次线性方程组求特征向量观察法•秩1矩阵•主对角线ai,其他为b抽象矩阵方法•公式法•定义法o思想:将题目条件转化为Aå=kå形式o常见•相似法o背景知识▪P^(-1)AP~B,特征值相同▪B的特征向量=P^(-1)*A的特征向量▪A的特征向量=P*B的特征向量o思想:构造相似阵,求其特征,公式法求原矩阵特征o题目特征▪题目出现‘å1 å2线性无关’,‘Aå1’,‘Aå2’•同乘å法o步骤▪1、对f(A)=0同乘å转化为f(λ)=0,求λ可能值▪2、由’秩’ + ’可相似对角化’ 确定λ题目•‘å1 å2线性无关’,‘Aå1’,‘Aå2’•多项式f(A)=0两个矩阵是否有相同的特征值判断思路特征多项式是否相等常见判断矩阵与转置阵相似矩阵。

线性代数解题方法和技巧

线性代数解题方法和技巧

第一部分 行列式一、行列式的概念(1) 二阶与三阶行列式的对角线法则 (2) n 阶行列式的定义(3) 余子式、代数余子式的定义【测试题】四阶行列式中含有1123a a 的项是__________二、数字型行列式的计算计算数字型行列式的常见思路有:(1) 如果在行列式的某一行(列)中,零的个数比较多,可按该行(列)展开;(2) 利用行列式的性质,将行列式某行(列)中尽可能多的元素化为零,然后再按该行(列)展开(课本P.18例7的第二种解法);(3) 三角形法:利用行列式的性质,将给定的行列式化为上(下)三角形行列式(课本P.12例7、例8、例9);(4) 递推法或数学归纳法(课本P.15例11,P.18例12); (5) 利用范德蒙行列式;(6) 利用拉普拉斯定理(同济第五版的线性代数没有介绍该定理,不作为期末考试要求). 【测试题】1.计算下列各行列式(k D 为k 阶行列式): (1) 11n aD a=O,其中对角线上的元素都是a ,未写出的元素都是0;(2) n x a aa x aD a a x=L L M M M L ;(3) 1111(1)()(1)()1111nn n n n n n a a a n a a a n D a a a n −−−+−−−−=−−LL M M M L L;(4) 11211nnn nna b a b D c d c d =ONNO,其中未写出的元素都是0.2.设3521110513132413D −−=−−−−,D 的(,)i j 元的余子式和代数余子式依次记作ij M 和ij A ,求11121314A A A A +++及11213141M M M M +++.3.四阶行列式1122433440000000a b a b D b a b a =的值等于__________(A) 12341234a a a a b b b b −;(B) 12341234a a a a b b b b +;(C) 12123434()()a a b b a a b b −−; (D) 23231414()()a a b b a a b b −−.三、抽象型行列式的计算 【测试题】1.设12312,,,,αααββ均为4维列向量,且已知4阶行列式1231,,,m αααβ=,1223,,,n ααβα=,则4阶行列式32112,,,αααββ+=__________(A) m n +; (B) ()m n −+; (C) n m −; (D) m n −.2.若1112132122233132331a a a D a a a a a a ==,则1111121312121222331313233423423423a a a a D a a a a a a a a −=−=−__________ 3.设A 为3阶矩阵,12A =,求:(1) 1*(2)3A A −−;(2) *1(3)2A A −−. 4.设A 为n 阶(实)矩阵,且满足Tn A A E =.如果0A <,求行列式A E +的值. 5.设4阶矩阵A 与B 相似,A 的特征值为1111,,,2345,求行列式1B E −−的值.四、行列式等于零的判定设A 为n 阶方阵,则与“0A =”等价的说法有: (1) A 是奇异矩阵;(2) A 是降秩矩阵,即()R A n <; (3) n 元齐次线性方程组0Ax =有非零解;(4) A 的列(行)向量组中至少存在一个列(行)向量可以由其余1n −个列(行)向量线性表示;(5) A 的列(行)向量组线性相关; (6) A 至少有一个特征值等于零. 【测试题】1.设A 为n 阶矩阵,且0A =,则下列各选项中正确的是__________ (A) A 中必有一列(行)的元素全等于零; (B) A 中必有两列(行)的元素对应成比例;(C) A 的列(行)向量组中必有一个列(行)向量可以由其余的列(行)向量线性表示; (D) A 的列(行)向量组中任意一个列(行)向量都可以由其余的列(行)向量线性表示.2.设A 为m n ×矩阵,B 为n m ×矩阵,则下列各选项中正确的是__________ (A) 当m n >时,必有行列式0AB ≠; (B) 当m n >时,必有行列式0AB =; (C) 当n m >时,必有行列式0AB ≠;(D) 当n m >时,必有行列式0AB =.第二部分 矩阵一、矩阵的概念及运算1.矩阵的概念(方阵、行矩阵、列矩阵、同型矩阵、零矩阵、单位阵、对角阵、对称阵、纯量阵、伴随矩阵、可逆矩阵、奇异矩阵、非奇异矩阵、满秩矩阵、降秩矩阵、正交阵等) 2.矩阵的运算 矩阵的加法 数乘矩阵 矩阵的乘法* 矩阵的转置*方阵的幂方阵的行列式*说明:重点复习带*号的矩阵运算. 3.行列式与矩阵的区别【测试题】1.设A 和B 均为n 阶矩阵,k 为正整数,则下列各选项中正确的是__________(可以多选) (A) A B A B +=+; (B) AB BA =; (C) AB BA =; (D) 111()A B A B −−−+=+; (E) 111()AB A B −−−=(F) 111()kA A k−−=; (G) 111[()]()()T T T AB A B −−−=; (H) T T A B A B +=+;(I) TTA BA B +=+; (J) ()kkk AB A B =⋅.2.设A 和B 均为n 阶矩阵,且AB O =,则下列各选项中正确的是__________(A) A O =或B O =; (B) A B O +=; (C) 0A =或0B =; (D) 0A B +=. 3.设,,A B C 均为n 阶矩阵,E 为n 阶单位阵,则下列各选项中正确的是__________(A) 22()()A B A B A B +−=−; (B) 222()AB A B =; (C) 由AC BC =一定可以推出A B =;(D) 22()()A E A E A E −=+−.4.设A 是m 阶矩阵,B 是n 阶矩阵,已知A a =,B b =,若分块矩阵3O A C B O ⎛⎞=⎜⎟⎝⎠,则C =__________ (A) 3ab −; (B) 3mab ;(C) (1)3mn m ab −; (D) (1)(1)3m nm ab +−;二、伴随矩阵设n 阶方阵()ij n n A a ×=,其中2n ≥,则对于A 的伴随矩阵*A 有以下结论:(1) 定义:1121112222*12n n nnnn A A A A A A A A A A ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L L M M M L ,其中ij A 为元素ij a 的代数余子式(,1,2,,i j n =L ); (2) **A A AA A E ==; (3)1*n A A−=,故当A 可逆时,*A 也可逆;(4) 若||0A ≠,则1*1A A A −=,*1A A A −=,1**11()()A A A A−−==; (5) **()()T TA A =;(6) *,(),()1,()1,0,() 2.n R A n R A R A n R A n =⎧⎪==−⎨⎪≤−⎩当当当【测试题】1.设A 为(2)n n ≥阶可逆矩阵,对于A 的伴随矩阵*A ,必有**()A =__________ (A) 1n AA −; (B) 1n AA +; (C) 2n AA −; (D) 2n AA +.2.设A 为(3)n n ≥阶矩阵,对于A 的伴随矩阵*A 和常数(0,1)k k ≠±,必有*()kA =__________(A) *kA ; (B) 1*n kA −;(C) *n k A ;(D) 1*k A −.3.设A 和B 均为(2)n n ≥阶矩阵,**,A B 分别为A 和B 的伴随矩阵,对于分块矩阵A O C OB ⎛⎞=⎜⎟⎝⎠,C 的伴随矩阵*C =__________(A) **A A O OB B ⎛⎞⎜⎟⎜⎟⎝⎠; (B) **B B O O A A ⎛⎞⎜⎟⎜⎟⎝⎠; (C) **A B O OB A ⎛⎞⎜⎟⎜⎟⎝⎠; (D) **B A O O A B ⎛⎞⎜⎟⎜⎟⎝⎠. 4.设3阶矩阵a b b A b a b b b a ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,若A 的伴随矩阵*A 的秩等于1,则必有__________(A) a b =或20a b +=;(B) a b =且20a b +≠; (C) a b ≠且20a b +=;(D) a b ≠且20a b +≠. 5.设100120123A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,对于A 的伴随矩阵*A ,求1*()A −和*1()A −.三、可逆矩阵1.设A 为n 阶(实)方阵,则与“A 为可逆矩阵”等价的说法有: (1) 存在与A 同阶的方阵B ,使得AB E =(或BA E =)成立; (2) A 是非奇异矩阵,即0A ≠; (3) A 是满秩矩阵,即()R A n =; (4) A 可以表示为一些初等矩阵的乘积;(5) n 元齐次线性方程组0Ax =只有零解(不存在非零解); (6) A 的列(行)向量组线性无关; (7) A 的列(行)向量组是nR 的一个基; (8) A 的特征值都不等于零;(9) TA A 为正定矩阵(不作为期末考试要求).2.求逆矩阵的方法 (1) 伴随矩阵法:1*1AA A−=(最适合于2阶可逆矩阵). 设a b A c d ⎛⎞=⎜⎟⎝⎠可逆,则1*11d b A A c a A ad bc −−⎛⎞==⎜⎟−−⎝⎠(2) 初等行(列)变换法(适合于3阶或更高阶的可逆矩阵):y 若(,)~(,)rA E E X ,则1AX −=;y若~c A E E X ⎛⎞⎛⎞⎜⎟⎜⎟⎝⎠⎝⎠,则1A X −=; 需要特别注意的是,在进行初等行变换时,绝对不能同时进行初等列变换................................. (3) 特殊分块矩阵的逆矩阵设n 阶方阵A 和s 阶方阵B 都可逆,则111A O A O O B OB −−−⎛⎞⎛⎞=⎜⎟⎜⎟⎝⎠⎝⎠;111O A O B B O AO −−−⎛⎞⎛⎞=⎜⎟⎜⎟⎝⎠⎝⎠; 11111A O A O C B B CA B −−−−−⎛⎞⎛⎞=⎜⎟⎜⎟−⎝⎠⎝⎠(4) 定义法:给定矩阵方程()f A O =,求A 或A 的多项式的逆矩阵. 【测试题】1.求3201022112320121−−⎛⎞⎜⎟⎜⎟⎜⎟−−−⎜⎟⎝⎠逆矩阵. 2.设n 阶矩阵,,A B C 满足ABC E =,则下列各选项中正确的是__________ (A) ACB E =;(B) BAC E =;(C) BCA E =;(D) CBA E =.3.设11,,,A B A B A B −−++均为n 阶可逆矩阵,则111()A B −−−+=__________(A) 11A B −−+;(B) A B +;(C) 1()A A B B −+; (D) 1()A B −+.4.设n 阶矩阵A 满足24A A E O +−=,求1()A E −−.四、矩阵方程最基本的矩阵方程形如:AX B =和XA B =,其中,A B 为已知矩阵,且A 可逆,X 为未知矩阵,这两个矩阵方程的解分别为1X A B −=和1X BA −=.对于一般的矩阵方程,设法利用矩阵的运算法则及恒定变形,将所给的矩阵方程化为上述基本形式之一,再进行求解.常见解法:(1) 课本P.45例12;(2) 课本P.65例3. 【测试题】已知,A B 为3阶矩阵,且满足124A B B E −=−,其中E 为3阶单位阵.(1) 证明:矩阵2A E −可逆;(2) 若120120002B −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,求矩阵A .五、列满秩矩阵设m n ×矩阵A 为列满秩阵,即()R A n =,则有以下结论:(1) A 的行最简形矩阵为n m nE O ×⎛⎞⎜⎟⎝⎠; (2) 若AB C =,则()()R B R C =;(3) 若AB O =,则B O =(矩阵乘法的消去律); (4) A 的列向量组一定线性无关;(5) 若m n >,则A 的行向量组也线性无关.【测试题】设m n ×矩阵A 的秩()R A m n =<,E 为m 阶单位阵,则下列各选项中正确的是__________(A) A 的任意m 个列向量线性无关; (B) A 的任意一个m 阶子式都不等于零; (C) 若矩阵B 满足BA O =,则B O =;(D) A 通过初等行变换必可以化为()(,)m m n m E O ×−的形式.六、正交矩阵1.与“A 为正交阵”等价的说法有:(1) T A A E =(或TAA E =); (2) A 可逆且1T AA −=;(3) A 的行(列)向量组两两正交,且都是单位向量. 2.正交阵的性质 (1) 若A 为正交阵,则1T AA −=也是正交阵,且1A =±;(2) 若,A B 为正交阵,则AB 也是正交阵.【测试题】设,A B 是n 阶正交阵,则下列各选项中不正确的是__________ (A) A B +是正交阵; (B) AB 是正交阵;(C) 1A −是正交阵;(D) 若1A =−,则1λ=−是A 的特征值.七、矩阵的初等变换与初等矩阵(口诀:左行右列) 【测试题】1.设111213212223313233a a a A a a a a a a ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,212223111213311132123313a a a B a a a a a a a a a ⎛⎞⎜⎟=⎜⎟⎜⎟+++⎝⎠,1010100001P ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠, 2100010101P ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,则下列各选项中正确的是__________(A) 12APP B =;(B) 21AP P B =;(C) 12PP A B =;(D) 21P P A B =.2.设11121314212223243132333441424344a a a a a a a a A a a a a a a a a ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠,14131211242322213433323144434241a a a a a a a a B a a a a a a a a ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠,100010********000P ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠, 21000001001000001P ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠,则1B −=__________ (A) 112A PP −; (B) 112P A P −; (C) 112PP A −; (D) 121P A P −.八、矩阵的秩 1.矩阵的秩的概念矩阵的秩等于最高阶非零子式的阶数,也等于行阶梯形矩阵非零行的行数. 规定零矩阵的秩等于零.2.矩阵的秩的性质(课本P.69至P.70) 【测试题】1.设A 为m n ×矩阵,B 为n 阶可逆矩阵,矩阵A 的秩等于r ,矩阵C AB =的秩等于1r ,则下列各选项中正确的是__________ (A) 1r r >;(B) 1r r <;(C) 1r r =;(D) r 与1r 的关系视乎B 而定.2.(3)n n ≥阶矩阵1111a a a aa a A aa a a a a⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎝⎠L L L M M M M L ,若矩阵A 的秩为1n −,则a =__________(A) 1; (B) 11n −; (C) 1−; (D) 11n −.九、行阶梯形矩阵vs.行最简形矩阵第三部分 线性方程组一、线性方程组的解的判定【测试题】设123123123(1)0(1)3(1)x x x x x x x x x λλλλ+++=⎧⎪+++=⎨⎪+++=⎩,问λ取何值时,此方程组有唯一解、无解或有无限多解?并在有无限多解时求其同解.(试用两种方法求解本题)二、齐次线性方程组的通解(基础解系) 【测试题】1.写出一个以1222341001x c c −⎛⎞⎛⎞⎜⎟⎜⎟−⎜⎟⎜⎟=+⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠为通解的齐次线性方程组.2.求一个齐次线性方程组,使它的基础解系为12(0,1,2,3),(3,2,1,0)TTξξ==. 3.设n 阶矩阵A 的各行元素之和均等于零,且()1R A n =−,求0Ax =的通解.三、非齐次线性方程组的通解 【测试题】1.设四元非齐次线性方程组的系数矩阵的秩为3,已知123,,ηηη是它的三个解向量,且123(2,3,4,5),(1,2,3,4)T T ηηη=+=,求该方程组的通解.2.设矩阵1234(,,,)A a a a a =,其中234,,a a a 线性无关,1232a a a =−.向量1234b a a a a =+++,求该方程组的通解.3.已知12,ββ是线性方程组Ax b =的两个不同的解,12,αα是对应的齐次线性方程组0Ax =的基础解系,12,k k 是任意常数,则Ax b =的通解是__________(A) 1211221()2k k ββααα−+++; (B) 1211212()2k k ββααα++−+;(C) 1211221()2k k ββαββ−+++; (D) 1211212()2k k ββαββ++−+.第四部分 向量组一、线性方程组的四种等价形式y一般形式 11112211211222221122,,.n n n nm m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L Ly向量方程的形式1112111212222212n n m m mn n m a a a x b a a a x b a a a x b ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠L L L L M M L ,简记为Ax b =. y增广矩阵的形式 11121121222212n n m m mnm a a a b a a a b a a a b ⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠L L M M M M L ,简记为(,)A b . y向量组线性组合的形式 1112112122221212n n n m m mn m a a a b a a a b x x x a a a b ⎛⎞⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟+++=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠L M M M M , 若12(,,,)n A a a a =L ,则可简记为1122n n x a x a x a b +++=L .二、线性方程组、矩阵、向量组的相互关系三、向量组的线性组合n 元线性方程组Ax b = 其中A 是m n ×矩阵矩阵(,)A b向量组12:,,,n A a a a L及向量b是否存在解?()(,)R A R A b =是否成立?向量b 能否由向量组A线性表示?无解 ()(,)R A R A b < NO 有解 ()(,)R A R A b = YES(x 的分量就是线性组合的系数)唯一解()(,)R A R A b n ==(未知数个数)表达式唯一 无穷解()(,)R A R A b n =<(未知数个数)表达式不唯一矩阵方程矩阵 向量组AX B =有解 ()(,)R A R A B =向量组B 可以由向量组A 线性表示AX B =,BX A =都有解()()(,)R A R B R A B ==向量组B 与向量组A 等价,特别地,向量组与自己的最大无关组等价,于是有限向量组中成立的结论可推广到一般的情形.线性方程组矩阵向量组0Ax =只有零解()R A =A 的列向量的个数A 的列向量组线性无关0Ax =与0Bx =同解~rA B即A 能通过初等行.变换..化为B y矩阵A 的行向量组....与矩阵B 的行向量组....等价(P.84)y矩阵A 的列向量组....与矩阵B 的列向量组....有相同的线性关系(P. 93例11)【测试题】1.设有向量组12321:2,1,11054A a a a α−−⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟===⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠,及向量11b β⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠,问,αβ为何值时,(1) 向量b 不能由向量组A 线性表示;(2) 向量b 能由向量组A 线性表示,且表示式唯一; (3) 向量b 能由向量组A 线性表示,且表示式不唯一.2.设向量β可由向量组12,,,m αααL 线性表示,但不能由向量组()Ⅰ:121,,,m ααα−L 线性表示,记向量组()Ⅱ:121,,,,,m αααβ−L 则下列各选项中正确的是__________ (A) m α不能由()Ⅰ线性表示,也不能由()Ⅱ线性表示; (B) m α不能由()Ⅰ线性表示,但可由()Ⅱ线性表示; (C) m α可由()Ⅰ线性表示,也可由()Ⅱ线性表示; (D) m α可由()Ⅰ线性表示,但不能由()Ⅱ线性表示.四、向量组的线性相关性n 元齐次线性方程组0Ax =(其中A 是m n ×矩阵)矩阵A向量组12:,,,n A a a a L是否存在非零解?()R A n <是否成立?是否线性相关?只有零解()R A n =(列向量的个数)线性无关 存在非零解()R A n <(列向量的个数)线性相关(x 的分量就是线性组合的系数)1.设向量组12:,,,n A a a a L ,则与“向量组A 线性相关”等价的说法有:(1) 存在不全为零的实数12,,,n k k k L ,使得11220n n k a k a k a +++=L (零向量)成立; (2) n 元齐次线性方程组0Ax =有非零解; (3) ()R A n <(列向量的个数);(4) A 的列向量组中至少存在一个列向量可以由其余1n −个列向量线性表示.2.设向量组12:,,,n A a a a L ,则与“向量组A 线性无关”等价的说法有:(1) 如果11220n n k a k a k a +++=L (零向量)成立,则必有120n k k k ====L ; (2) n 元齐次线性方程组0Ax =只有零解; (3) ()R A n =(列向量的个数);(4) A 的列向量组中任意一个列向量都不能由其余1n −个列向量线性表示. 3.课本P.89定理5【测试题】1.已知123(,,)2R a a a =,234(,,)3R a a a =,证明:(1) 1a 能由23,a a 线性表示;(2) 4a 不能由123,,a a a 线性表示.2.设向量组12:,,,r A αααL 可由向量组12:,,,s B βββL 线性表示,则下列各选项中正确的是__________(A) 当r s <时,向量组B 必线性相关; (B) 当r s >时,向量组B 必线性相关; (C) 当r s <时,向量组A 必线性相关;(D) 当r s >时,向量组A 必线性相关. 3.设12,,,s αααL 均为n 维向量,则下列各选项中不正确的是__________(A) 若对任意一组不全为零的系数12,,,s k k k L ,都有11220s s k k k ααα+++≠L ,则12,,,s αααL 线性无关;(B) 若12,,,s αααL 线性相关,则对任意一组不全为零的系数12,,,s k k k L ,都有11220s s k k k ααα+++=L ;(C) 12,,,s αααL 线性无关的充分必要条件是12(,,,)s R s ααα=L ; (D)12,,,s αααL 线性无关的必要条件是其中任意两个向量线性无关.4.设112b a a =+,223b a a =+,334b a a =+,441b a a =+,证明向量组1234,,,b b b b 线性相关.五、向量组的秩【测试题】求矩阵11221021512031311041A ⎛⎞⎜⎟−⎜⎟=⎜⎟−⎜⎟−⎝⎠的列向量组的一个最大无关组,并把不属于最大无关组的列向量用最大无关组线性表示.第五部分 方阵的特征值和特征向量一、向量的内积、长度及正交性1.向量内积的性质(对称性、线性性质、非负性、施瓦兹不等式) 2.向量长度的性质(非负性、齐次性、三角不等式) 3.向量的正交性的性质 y 两两正交的非零向量组一定线性无关; y施密特正交化过程.4.正交矩阵的性质(参阅矩阵部分)二、特征值和特征向量的概念、性质及计算(特征值和特征向量这两个概念只针对方阵而言) 特征多项式 A E λ−(以λ为未知数的一元n 次多项式) 特征方程 0A E λ−=关于方阵的特征值和特征向量有以下结论: (1) 特征值就是特征方程0A E λ−=的根.(2) 特征方程在复数范围内一定有解,根的个数等于方程的次数(重根按重数计算),因此n阶矩阵A 在复数范围内有n 个特征值.(3) 设n 阶矩阵()ij n n A a ×=的特征值为12,,,n λλλL ,则121122n nn a a a λλλ+++=+++L L ,12n A λλλ=L .(4) 设i λ是矩阵A 的一个特征值,则由()0i A E x λ−=求得的任意一个非零解i p 都是A 对应于特征值i λ的特征向量(若i λ为实数,则i p 可取实向量;若i λ为复数,则i p 可取复向量).(5) 对应于特征值i λ的特征向量并不唯一(有无限多个),()0i A E x λ−=的任意一个基础解系都可以作为这无限多个特征向量的最大无关组.(6) 一般来说,对应于特征值i λ的线性无关的特征向量最多只有()i n R A E λ−−个,与特征值i λ的重数没有直接关系.(7) 对应于不同特征值的特征向量线性无关.(8) n 阶矩阵最多只有n 个线性无关的特征向量(因为向量空间nR 的维数等于n ). (9) 若λ是A 的特征值,则k λ是k A 的特征值;()ϕλ是()A ϕ的特征值(其中01()m m a a a ϕλλλ=+++L 是λ的多项式,01()m m A a E a A a A ϕ=+++L 是矩阵A的多项式)(参阅课本P.120例8). (10) TA 与A 有相同的特征值.(11) n 阶零矩阵O 的特征值只能等于0.特别地,若A 是n 阶对称阵,λ是A 的k 重特征值,则 y ()R A E n k λ−=−,从而对应于特征值λ恰有k 个线性无关的特征向量;y 对应于不同特征值的特征向量两两正交;yn 阶对称阵恰有n 个线性无关的特征向量.【测试题】 1.矩阵3113A −⎛⎞=⎜⎟−⎝⎠的特征值为__________2.设n 阶矩阵,A B 满足()()R A R B n +<,证明,A B 有公共特征值,有公共特征向量. 3.已知3阶矩阵A 的特征值为1,2,3−,求*32A A E ++.4.设12(,,,)Tn a a a a =L ,10a ≠,T A aa =,证明0λ=是n 阶矩阵A 的1n −重特征值.三、方阵的相似对角化1.关于n 阶方阵的相似对角化,有以下结论:(1) n 阶方阵A 可以相似对角化当且仅当A 有n 个线性无关的特征向量; (2) 如果n 阶方阵A 的n 个特征值各不相同,则A 可以相似对角化; (3) 对称矩阵一定可以相似对角化.2.n 阶方阵A 相似对角化的一般步骤:(i) 求出A 的所有互不相等的特征值12,,,s λλλL (s n ≤),它们的重数依次为12,,,s k k k L(121s k k k +++=L ).(ii) 如果s n =,则A 可以相似对角化,转入第(iv)步;否则转入第(iii)步.(iii) 如果对每一个i k 重特征值i λ,()i i R A E n k λ−=−都成立,则A 可以相似对角化,转入第(iv)步;否则A 不能相似对角化,算法结束.(iv) 对每一个i k 重特征值i λ,求()0i A E x λ−=的基础解系,得i k 个线性无关的特征向量,转入第(v)步.因为121s k k k +++=L ,所以一共可以得到n 个线性无关的特征向量. (v) 这n 个线性无关的特征向量构成可逆矩阵P ,满足1P AP −=Λ.注意Λ中对角元的排列次序应与P 中列向量的排列次序相对应.特别地,对称阵对角化的步骤参阅课本P.125.3.若方阵,A B 相似,则(1) 方阵,A B 有相同的特征多项式,从而有相同的特征值; (2) 方阵,A B 的多项式()A ϕ与()B ϕ也相似;(3) 特别地,若有可逆矩阵P ,使得1P AP −=Λ为对角阵,则1k k P A P −=Λ,1()()P A P ϕϕ−=Λ,因为12kkkk n λλλ⎛⎞⎜⎟⎜⎟Λ=⎜⎟⎜⎟⎜⎟⎝⎠O,12()()()()n ϕλϕλϕϕλ⎛⎞⎜⎟⎜⎟Λ=⎜⎟⎜⎟⎝⎠O ,所以可以通过()ϕΛ计算方便地计算A 的多项式()A ϕ; (4) 特别地,若()ϕλ是A 的特征多项式,则()A O ϕ=(零矩阵). 【测试题】1.设矩阵20131405A x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠可相似对角化,求x .2.已知111p ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠是矩阵2125312A a b −⎛⎞⎜⎟=⎜⎟⎜⎟−−⎝⎠的一个特征向量. (1) 求参数,a b 及特征向量p 所对应的特征值; (2) 问A 能不能相似对角化?并说明理由.3.设3阶对称阵A 的特征值为16λ=,233λλ==,与特征值16λ=对应的特征向量为1(1,1,1)T p =,求矩阵A .。

大一线性代数知识点公式

大一线性代数知识点公式

大一线性代数知识点公式线性代数是大一数学课程中的一门重要学科,涵盖了许多核心概念和基本公式。

下面将介绍一些大一线性代数中常见的知识点和相关公式。

1. 向量的加法和标量乘法向量的加法和标量乘法是线性代数中最基本的运算。

对于向量v和w,其加法定义为:v + w = (v₁ + w₁, v₂ + w₂, ..., vₙ + wₙ)其中vᵢ和wᵢ是向量v和w的第i个分量。

标量乘法定义为:k · v = (k · v₁, k · v₂, ..., k · vₙ)其中k是一个实数。

2. 向量的点乘和模长向量的点乘也称为向量的内积或数量积。

对于向量v和w,其点乘定义为:v ∙ w = v₁w₁ + v₂w₂ + ... + vₙwₙ点乘的结果是一个实数。

另外,向量的模长定义为:‖v‖ = √(v₁² + v₂² + ... + vₙ²)模长表示向量的长度或大小。

3. 矩阵的加法和标量乘法矩阵的加法和标量乘法也是线性代数中常见的操作。

对于m×n 的矩阵A和B,其加法定义为:A +B = [aᵢₙ + bᵢₙ]其中aᵢₙ和bᵢₙ是矩阵A和B的第i行第j列的元素。

标量乘法定义为:k · A = [kaᵢₙ]其中k是一个实数。

4. 矩阵的乘法矩阵的乘法是线性代数中最重要的运算之一。

对于m×n的矩阵A和n×p的矩阵B,它们的乘积AB定义为:AB = [cᵢₙ]其中cᵢₙ是矩阵乘积的第i行第j列的元素,计算公式为:cᵢₙ = aᵢ₁b₁ₙ + aᵢ₂b₂ₙ + ... + aᵢₙbₙₙ5. 行列式的计算行列式是线性代数中独特的概念,用于描述矩阵的性质。

对于n阶方阵A,其行列式定义为|A|或det(A)。

行列式的计算公式较复杂,可以通过展开定理、高斯消元法等方法进行计算。

6. 矩阵的转置和逆矩阵的转置是将其行和列对调得到的新矩阵。

线性代数行列式计算方法总结

线性代数行列式计算方法总结

线性代数行列式计算方法总结线性代数中,行列式是一个非常重要的概念。

它是一种用于表示线性变换、矩阵和线性方程组性质的数值指标。

在实际应用中,我们常常需要计算行列式的值。

下面将总结一些常用的行列式计算方法。

一、定义法行列式的定义法是最基本的计算方法。

对于一个n阶方阵A=[a[i][j]],其行列式表示为det(A),可以通过如下公式进行计算:det(A) = Σ[(-1)^perm] * a[1][p[1]] * a[2][p[2]] * ... *a[n][p[n]]其中,Σ表示求和,perm表示排列p[1]、p[2]、..、p[n]的所有可能情况。

公式中的(-1)^perm是一个符号因子,当一些排列具有奇数个逆序时,符号为负;当一些排列具有偶数个逆序时,符号为正。

这种方法简单直观,但对于大型的n阶矩阵计算复杂度较高。

因此,我们需要探索一些优化方法。

二、拉普拉斯展开法拉普拉斯展开法也是一种常用的行列式计算方法。

它基于行列式的定义法,并通过将行列式展开为一系列子行列式的和来计算。

对于一个n阶方阵A=[a[i][j]],其行列式表示为det(A),可以通过以下公式进行计算:det(A) = Σ[(-1)^(i+1)] * a[i][j] * det(A[i][j])其中,A[i][j]表示A删去第i行和第j列后的子矩阵。

公式中的Σ表示求和,从j=1到j=n进行累加。

拉普拉斯展开法的优点是可以通过递归地计算子矩阵的行列式来减少计算量,但其复杂度仍然为O(n!),对于大型矩阵仍然不够高效。

三、行变换法行变换法是一种常用的行列式计算方法,通过矩阵的初等行变换将矩阵转化为易于计算的上(下)三角形式,从而求得行列式的值。

对于一个n阶方阵A=[a[i][j]],其行列式表示为det(A),可以通过以下步骤进行计算:1.对A进行初等行变换,将其转化为上(下)三角形形式。

2.计算上(下)三角形矩阵对角线上的元素的乘积,即可得到行列式的值。

考研数学线性代数行列式的计算方法

考研数学线性代数行列式的计算方法

考研数学线性代数行列式的计算方法线性代数是数学中的一个重要分支,对于考研数学来说,线性代数是必不可少的一部分。

而在线性代数中,行列式的计算是一个非常重要且基础的部分。

本文将详细介绍行列式的计算方法。

一、行列式的基本定义行列式是对一个方阵进行运算得到的值,用来描述一个线性变换对空间进行了多大的“拉伸”。

对于一个n阶方阵A(n*n矩阵),其行列式记作,A,或det(A)。

二阶行列式的计算非常简单,对于一个二阶方阵:aA=,cd其行列式的计算方法为:,A, = ad - bc。

三阶行列式的计算方法稍微复杂一些,对于一个三阶方阵:abA=,defgh其行列式的计算方法为:,A, = aei + bfg + cdh - ceg - bdi - afh。

对于多阶行列式的计算,可以利用行列式的性质进行简化。

以下是行列式的一些基本性质:1.行列式与转置行列式不受转置操作的影响,即对于一个方阵A,有det(A) =det(A^T)。

2.行列式的行列互换行列互换会改变行列式的正负号。

对于一个方阵A,如果交换了第i 行和第j行,那么行列式的值变为-,A。

同理,对于方阵A,如果交换了第i列和第j列,行列式的值也变为-,A。

可以利用这一性质来简化计算。

3.行列式的公因子对于一个方阵A,如果存在一个数k,使第i行(或第i列)的元素分别乘以k,则行列式的值也应该乘以k。

4.行列式的零行(零列)与行列式的值如果一个方阵A的其中一行(或其中一列)的元素全部为0,则行列式的值为0。

5.行列式的线性性质行列式满足线性运算的性质,即对于一个方阵A和一个数k,有det(kA) = k^n * det(A),其中n为方阵的阶数;另外,如果方阵A的第i行(或第i列)的元素分别加上方阵B的第i行(或第i列)的元素,得到一个新的方阵C,则有det(C) = det(A) + det(B)。

通过上述性质,我们可以采用行列变换的方法,将一个方阵化简为一个三角行列式或对角行列式,从而简化计算。

线性代数计算法则

线性代数计算法则

线性代数计算法则线性代数是数学中的一个分支,主要研究向量空间、线性变换和线性方程组等内容。

它在科学、经济学和工程学等各个领域都有广泛的应用。

线性代数的计算法则是进行线性代数运算的方法和规则,下面将对线性代数计算法则进行详细介绍。

一、向量和矩阵的基本运算1.向量和矩阵的加法:向量和矩阵的对应元素相加,即两个向量或矩阵的对应元素分别相加形成一个新的向量或矩阵。

2.向量和矩阵的数乘:一个向量或矩阵中的每个元素乘以一个实数,即实数与向量或矩阵的每个元素相乘形成一个新的向量或矩阵。

3.向量的内积:两个向量的内积等于对应元素乘积的和。

4.矩阵的乘法:矩阵的乘法是指两个矩阵相乘的运算,其中第一个矩阵的列数等于第二个矩阵的行数。

矩阵乘法的结果是一个新的矩阵,其中每个元素是第一个矩阵的其中一行与第二个矩阵的其中一列对应元素乘积的和。

5.矩阵的转置:将矩阵的行和列互换,得到一个新的矩阵。

6.矩阵的逆:对于一个方阵A,如果存在一个方阵B,使得AB=BA=I,其中I为单位矩阵,则称矩阵A可逆,矩阵B称为A的逆矩阵。

二、矩阵的行列式1.行列式定义:行列式是一个标量值,它是一个n阶方阵中元素的代数和。

2.行列式性质:-行列式的值与它的转置矩阵的值相等。

-交换矩阵中两行或两列的位置,行列式取负。

-将矩阵的其中一行(或其中一列)的所有元素乘以一个数k,行列式的值也乘以k。

-如果矩阵的其中一行(或其中一列)的元素全为0,则行列式的值等于0。

-如果矩阵的两行(或两列)相等,则行列式的值等于0。

-行列式的值等于每一行(或每一列)的元素与它们所在行(或列)的代数余子式相乘再求和。

三、矩阵的特征值和特征向量1.特征值和特征向量定义:对于一个n阶方阵A,如果存在一个数λ和非零向量X,使得AX=λX,则称λ为矩阵A的特征值,X为对应的特征向量。

2.特征值和特征向量的计算:-特征值是矩阵A减去λ的单位矩阵后的行列式等于0的解。

-对每个求解得到的特征值λ,代入(A-λI)X=0的线性方程组中,求解得到对应的特征向量X。

线性代数技巧行列式的计算方法

线性代数技巧行列式的计算方法

1.利用行列式定义直接计算 例1 计算行列式001002001000000n D n n=-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故 (1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ijD a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零.证明:由i j j i a a =-知i i ii a a =-,即 0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n nnnnaa a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n nn nnn a a a a a a D a a a a a a -----=- 12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------ (1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

例 3 计算n 阶行列式a b b b b a b b D bb a bbbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b bb a n b a b b D a n b b a b a n bb b a+-+-=+-+-11[(1)]11b b b a b b a n b b a b bba=+-100[(1)]000b b b a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

线性代数之——行列式公式及代数余子式

线性代数之——行列式公式及代数余子式

线性代数之——⾏列式公式及代数余⼦式计算机通过主元来计算⾏列式,但还有另外两种⽅法,⼀种是⼤公式,由n! 项置换矩阵组成;另⼀种是代数余⼦式公式。

主元的乘积为 2∗32∗43∗54=5。

⼤公式有 4!=24 项,但只有 5 个⾮零项。

detA=16−4−4−4+1=516 来⾃于对⾓线上 4 个 2 的乘积,其余的通过公式我们也都可以找到。

代数余⼦式公式⽤第⼀⾏的数字 2,-1,0, 0分别乘以它们的代数余⼦式 4, 3, 2, 1,得到 8-3 = 5。

1. 主元公式消元过程会让主元d1,⋯,d n最后出现在矩阵U的对⾓线上,如果没有⾏交换,那么有:detA=(detL)(detU)=(1)(d1d2⋯d n)如果有⾏交换,那么有PA=LU⽽且有 |P|=±1,所以detA=±(d1d2⋯d n)如果主元的个数少于n,那么detA=0,矩阵是不可逆的。

例 1例 2detA=2∗32∗43∗54⋯∗n+1n=n+1⽽且,我们可以看到,前k个主元来⾃于矩阵A左上⾓⼤⼩为k×k的矩阵A k。

detA k=d1d2⋯d k 假设没有⾏交换,那在我们消元的过程中,有A k=L k U k,因此det A k det A k−1=det U kdet U k−1→d k=d1d2⋯d k−1d kd1d2⋯d k−12. ⼤公式⼤公式直接利⽤矩阵中的每⼀个元素来计算⾏列式,⼀个 3×3 矩阵的计算公式如下所⽰。

注意到,每⼀项乘积的三个元素都分别来⾃于矩阵中的三⾏和三列,⽽其前⾯的符号其实是由置换矩阵来决定的。

由⾏列式的线性性质我们可以将⼀个 2×2 矩阵的⾏列式分成四项:其中,第⼀个和第四个⾏列式为 0,因为它们有全零列。

因此,只余下 2!=2 项需要计算。

对于⼀个 3×3 的矩阵,其⾏列式可以分成 27 项,但只有 6 个⾮零项。

前⾯三个置换矩阵有偶数次⾏交换,因此其⾏列式为 1;⽽后⾯三个置换矩阵有奇数次⾏交换,因此其⾏列式为 -1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( k 1) bi( k ) bi( k 1) lik bk
(2)回代过程:
(0) (0) (0) a11 x1 b1(0) a12 ... a1 第3章 线性代数计算方法 n (1) (1) (1) x a ... a 22 2n 2 b2 . . . . ... . . . . . ( n 1) ( n 1) ann xn xi (bi
k i 1
xn1 (bn1 an1n xn ) / an1n1
aik xk ) / aii , i n, n 1, ,1

n
第3章
线性代数计算方法
《 计 算 方 法 》
a11 a12 0 a22 0 0 0 0
《 计 算 方 法 》
( n 1) ( n 1) xn bn / ann
(i 1) (i 1) aii xi aii 1 xi 1
( i 1) ain xn
(i 1) ain xn bi(i1)
( i 1) bi(i 1) aii 1 xi 1 xi ( i 1) aii
105 x1 x2 0.6 99999 x2 59999
x1=105(0.6-0.6000)=0
而方程组的解应为
x1=0.4000 x2=0.6000
第3章
线性代数计算方法
显然用上述方法求出的解 x1 与方程组的实际解相差 很大。若改变两个方程的顺序,即 x1+x2=1 10-5 x1+x2=0.6
b1 b 2 ... bn 1 b n
x1 b1 / a11
xi (bi aik xk ) / aii , k 1,3, , i 1, i 2
k 1 i 1
第3章
线性代数计算方法
《 计 算 方 法 》
《 计 算 方 法 》
例如:
电学中的网络问题, 船体数学放样中建立三次样条函数问题, 用最小二乘法求实验数据的曲线拟合问题等
第3章
线性代数计算方法
n 阶线性方程组:
《 计 算 方 法 》
a 11 x1 a 12 x 2 a 21 x1 a 22 x 2 a n1 x1 a n 2 x 2
a 1n x n b 1 a 2n x n b 2 a nn x n b n
矩阵表示记为 AX b 这里 A [a ij ]nn , X (x , 1
, xn )
T
, b (b , 1
, bn )
T
第3章
线性代数计算方法
解线性方程组的两类方法: 直接法:
《 计 算 方 法 》
(0) an 2
(0) (0) x a1 b 1 n 1 (0) (0) x a2 b2 n 2 ... ... (0) (0) x ann n bn
, xn1
(0) a21 第2行:计算比例因子 l21 (0) a11
第 n 行:消去 x1
第3章
线性代数计算方法
第k步:消去 xk
( k 1) 设 akk
且计算
《 计 算 方 法 》
( k 1) aik 0,计算因子 lik ( k 1) akk
(k ) ( k 1) ( k 1) aij aij lik akj (k ) ( k 1) ( k 1) b b l b i ik k i (i, j k 1, ..., n)
经过有限次运算后可求得方程组精确解的方法 (不计舍入误差!)
迭代法:
从解的某个近似值出发,通过构造一个无穷序列 去逼近精确解的方法(一般有限步内得不到精确 解)
第3章
线性代数计算方法
§1 高斯消去法
一、高斯消去法
《 计 算 方 法 》
a11 x1 a12 x2 a1n xn b1 a22 x2 a2 n xn b2 an 1n 1 xn 1 an 1n xn bn 1 ann xn bn
②-①×2 ③-①×3
《 计 算 方 法 》
x1 4 x2 7 x2 1 3 x2 6 x2 1 6 x2 10 x3 2
③- ②×2
x1 4 x2 7 x3 1 3 x2 6 x3 1 2 x3 0
的基本思想是在逐次消元时总是选绝对值最大的元素
《 计 算 方 法 》
(称之为主元)做除数,按顺序消去法的步骤消元。 这里主要介绍求解线性方程组最常用的列主元素 消去法和全主元素消去法。
第3章
线性代数计算方法
列主元消去法
所谓列主元素消去法就是在每一步消元过程中取 系数子矩阵的第一列元素中绝对值最大者作主元。对 线性方程组进行n-1次消元后,可得到上三角形方程组
1 1 T x ( , , 0) 3 3
消去法的数值计算过程:
(0) a11 (0) a21 (0) an1 (0) a12 (0) a22
第3章
线性代数计算方法
... ... ... ...
《 计(1)消去过程: 消去 x , x , 1 2 算 方 (0) 法 第一步:消 x1 ,设 a11 0 》
(0) (0) a11 a12 (1) 0 a 22 (1) 0 a n2 (0) x ... a1(0) b 1 n 1 (1) x ... a2(1) n 2 b2 ... ... ... (1) (1) ... ann xn bn
a11 x1 a1n xn b1 a x a x b nn n n n1 1
a11 a21 A an 11 a n1 a12 a22 ... ... ... an 12 ... an 1n 1 an 2 ... an 1n 1 a1n 1 a2 n 1 a1n a2 n an 1n ann
10 5 x1 x2 0.6 x1 x2 1
《 计 算 方 法 》


②-①×10 5
105 x1 x2 0.6 99999 x2 59999
x2=0.5999959999
第3章
线性代数计算方法
化简可得
x2=0.6000
《 计 算 方 法 》
回代求得
第3章
线性代数计算方法
消元过程总体流程:
对于
《 计 算 方 法 》
k 1, 2,
, n 1 做 ,n 做
对于
i k 1,
(k ) aik 0
( k 1) aik lik ( k 1) akk
对于
j k 1,
,n做
(k ) ( k 1) ( k 1) aij aij lik akj
第2 行 - l21 第1行,得到:
(1) (0) (0) a2 a l a j 2j 21 1 j (1) (0) (0) b b b 2 2 21 1
j 2,3, , n
第3章
线性代数计算方法
-1
-1
《 计 算 方 法 》
第3章
线性代数计算方法
第2行:
(1) (0) (0) a2 a l a j 2j 21 1 j (1) (0) (0) b b l b 2 2 21 1
第3章
线性代数计算方法
第3章 线性代数计算方法
§1 高斯消去法
《 计 算 方 法 》
§2 高斯―约当消去法
§3 解实三对角线性方程组的追赶法
§4 §5 §6 §7 §8 矩阵的三角分解 行列式和逆矩阵的计算 迭代法 迭代法的收敛性 矩阵的特征值与特征向量的计算
第3章
线性代数计算方法
在自然科学和工程技术中很多问题的解决 常常归结为解线性代数方程组。
B
且aii≠0,i=1,2,…,n
第3章
线性代数计算方法
《 计 算 方 法 》
a11 a21 an 11 a n1
0 a22 an 12 an 2
... ... ...
0 0
... an 1n 1 ... an 1n 1
0 x1 0 x 2 ... 0 xn 1 x ann n
( k 1) a 即使主因素 kk 0 但很小,其作除数 ,也会导 致其它元素数量级的严重增长和舍误差的扩散。
《 计 算 方 法 》
为避免这种情况的发生,可通过交换方程的次序, 选取绝对值大的元素作主元。 基于这种思想导出了主元素法
第3章
线性代数计算方法
例如:用高斯消去法求解下列方程组(用四位有效数字计算):
(i k 1, ..., n)
共进行 n 1步,得到
(0) a11 (0) a12 (1) a22
... ... ...
(0) (0) x a1 b 1 n 1 (1) (1) x a2 n 2 b2 . . . . . . . . . ( n 1) ( n 1) ann xn bn
《 计 算 方 法 》
① ②
②-①×10-5得
(1.000-1.000×10-5)x2=0.6-1.000×10-5
0.99999x2=0.59999 x2=0.5999959999 x2=0.6000 回代求得
相关文档
最新文档