[VIP专享]实验3-虚拟内存管理

合集下载

操作系统实验实验报告 虚拟内存

操作系统实验实验报告  虚拟内存

操作系统实验实验报告虚拟内存一、实验目的本次操作系统实验的目的是深入理解虚拟内存的概念、原理和实现机制,通过实际操作和观察,掌握虚拟内存的相关技术,包括页面置换算法、内存分配策略等,并分析其对系统性能的影响。

二、实验环境操作系统:Windows 10 专业版开发工具:Visual Studio 2019编程语言:C++三、实验原理1、虚拟内存的概念虚拟内存是一种计算机系统内存管理技术,它使得应用程序认为自己拥有连续的可用内存(一个连续完整的地址空间),而实际上,这些内存可能是被分散存储在物理内存和外部存储设备(如硬盘)中的。

虚拟内存通过将程序使用的内存地址映射到物理内存地址,实现了内存的按需分配和管理。

2、页面置换算法当物理内存不足时,操作系统需要选择一些页面(内存中的固定大小的块)换出到外部存储设备,以腾出空间给新的页面。

常见的页面置换算法有先进先出(FIFO)算法、最近最少使用(LRU)算法、时钟(Clock)算法等。

3、内存分配策略操作系统在分配内存时,需要考虑如何有效地利用有限的物理内存资源。

常见的内存分配策略有连续分配、分页分配和分段分配等。

四、实验内容与步骤1、实现简单的虚拟内存系统使用 C++编写一个简单的虚拟内存模拟程序,包括内存页面的管理、地址映射、页面置换等功能。

2、测试不同的页面置换算法在虚拟内存系统中,分别实现 FIFO、LRU 和 Clock 算法,并对相同的访问序列进行测试,比较它们的页面置换次数和缺页率。

3、分析内存分配策略的影响分别采用连续分配、分页分配和分段分配策略,对不同大小和类型的程序进行内存分配,观察系统的性能(如内存利用率、执行时间等)。

具体步骤如下:(1)定义内存页面的结构,包括页面号、标志位(是否在内存中、是否被修改等)等。

(2)实现地址映射函数,将虚拟地址转换为物理地址。

(3)编写页面置换算法的函数,根据不同的算法选择要置换的页面。

(4)创建测试用例,生成随机的访问序列,对不同的算法和分配策略进行测试。

实验3-虚拟内存管理

实验3-虚拟内存管理

年级11级专业计算机科学与技术班级五班组号12组实验室9#205 日期2014/05/24 实验名称实验三、虚拟内存管理实验内容分项内容实验级别1、局部性原理演示(数组清零)操作系统观察级2、页面置换算法模拟演示算法仿真实现级3、实际系统内存分配演示操作系统观察级小组成员姓名学号组内分工自我评分教师评分完成实验三(1)良好完成实验三(1)良好完成实验三(2)良好完成实验三(3)良好完成实验三(3)良好小组成绩评定教师签名:年月日实验分项局部性原理演示(数组清零)、页面置换算法模拟演示(进先出的算法)实验目的一、实验目的:1加深对操作系统存储管理的理解2能过模似页面调试算法,加深理解操作系统对内存的高度管理实验要求具体题目:局部性原理演示(数组清零)、页面置换算法模拟演示(进先出的算法)、实际系统内存分配演示系统平台:Linux/Windows操作系统实验原理步骤(算法流程)二、实验原理1、局部性原理演示(数组清零),原理如下:1)、程序的局部性原理:指程序在执行时呈现出局部性规律,即在一段时间内,整个程序的执行仅限于程序中的某一部分。

相应地,执行所访问的存储空间也局限于某个内存区域。

局部性原理又表现为:时间局部性和空间局部性。

时间局部性是指如果程序中的某条指令一旦执行,则不久之后该指令可能再次被执行;如果某数据被访问,则不久之后该数据可能再次被访问。

空间局部性是指一旦程序访问了某个存储单元,则不久之后。

其附近的存储单元也将被访问。

另外,根据程序的局部性理论,Denning提出了工作集理论。

所谓工作集是指进程运行时被频繁访问的页面集合。

显然我们知道只要使程序的工作集全部集中在内存中,就可以大大减少进程的缺页次数;否则会使进程在运行过程中频繁出现缺页中断,从而出现频繁的页面调入/调出现象,造成系统性能的下降,甚至出现“抖动”。

划分工作集可以按定长时间或定长页面两种方法进行划分。

当颠簸现象发生时,说明系统的负荷过大,通常采用处理器均衡调度。

操作系统中虚拟内存的管理

操作系统中虚拟内存的管理

操作系统中虚拟内存的管理在使用操作系统时,我们经常会涉及到虚拟内存的概念。

虚拟内存是一种通过硬盘来扩展计算机的物理内存,让计算机看起来拥有更多的内存空间,从而提升计算机的运行效率。

虚拟内存的管理是操作系统中非常重要的一部分,下面就来介绍一下操作系统中虚拟内存的管理。

一、内存分页内存分页是指将整个物理内存分成多个大小相同的分页,每个分页的大小通常为4KB或8KB。

然后将每个进程的虚拟内存也分成多个相同大小的虚拟页面,每个虚拟页面映射到一个物理页面。

这样一来,进程就可以按照页面单位来管理内存。

当进程访问一个虚拟页面时,操作系统会根据虚拟页面的映射关系,将其转换为物理页面并读取其内容。

如果虚拟页面没有被映射到物理页面,那么操作系统就需要将一个空闲的物理页面映射到该虚拟页面上,并将其内容从硬盘中读取进来。

二、页面置换随着进程的运行,部分物理页面会被频繁使用,而另一部分页面则很少使用甚至没有使用过。

为了更好地利用内存空间,操作系统需要对页面进行置换。

页面置换算法的目标是在物理页面不足时,寻找最适合置换出去的物理页面,并将其替换成要使用的新页面。

常见的页面置换算法有FIFO、LRU、Clock和Random等。

其中,FIFO算法是按照物理页面被加载的时间顺序来置换的,即最先加载进来的页面最先被置换出去。

LRU算法则是按照物理页面最近被使用的时间顺序来置换的。

这样,被最少使用的页面就会被优先置换出去,从而留出更多的页面空间给新页面使用。

三、页面缓存为了提高读取速度,操作系统会将最近使用的物理页面缓存到内存缓存区中,以便下一次访问时能够更快地读取。

而当物理页面不足时,操作系统也会优先将内存缓存区中的页面置换出去,以腾出空间给其他页面使用。

四、页面共享有些进程可能会需要共享同一个物理页面,以节省内存空间并提高系统性能。

比如多个进程在同时运行相同的程序时,它们所使用的代码部分可以共享同一个物理页面,减少了内存开销。

OS实验三虚拟存储器的管理

OS实验三虚拟存储器的管理

OS实验三虚拟存储器的管理虚拟存储器管理南京理工大学泰州科技学院实验报告书课程名称:《计算机操作系统》实验题目:实验三班级: 08计算机2班学号:姓名:叶萌指导教师:袁宝华虚拟存储器管理一实验目的1. 理解虚拟存储器概念;2. 掌握分页式存储管理地址转换和缺页中断。

二实验内容1.模拟分页式存储管理中硬件的地址转换和产生缺页中断分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。

为此,在为作业建立页表时,应说明哪些页已在主存,哪些页尚未装入主存。

作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式“绝对地址=块号×块长+单元号”计算出欲访问的主存单元地址。

如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。

若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,有操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。

2.用先进先出(FIFO)页面调度算法处理缺页中断在分页式虚拟存储系统中,当硬件发出“缺页中断”后,引出操作系统来处理这个中断事件。

如果主存中已经没有空闲块,则可用FIFO页面调度算法把该作业中最先进入主存的一页调出,存放到磁盘上,然后再把当前要访问的页装入该块。

调出和装入后都要修改页表中对应页的标志。

FIFO页面调度算法总是淘汰该作业中最先进入主存的那一页,因此可以用一个数组来表示该作业已在主存的页面。

假定作业被选中时,把开始的m个页面装入主存,则数组的元素可定为m个。

三实验准备1. 设计一个“地址转换”程序来模拟硬件的地址转换工作当访问的页在主存时,则形成绝对地址,但不去模拟指令的执行,而用输出转换后的地址来代替一条指令的执行。

当访问的页不在主存时,则输出“* 该页页号”,表示产生了一次缺页中断,程序流程图如图4-1所示。

虚拟存储管理实验报告

虚拟存储管理实验报告

虚拟存储管理实验报告实验概述虚拟存储管理实验是操作系统课程中的一项重要实验,旨在通过模拟内存管理中的分页机制和页面置换算法,深入理解操作系统中的虚拟内存管理技术。

本实验主要包括以下几个关键点:- 模拟内存的分页机制- 实现页面置换算法- 分析不同页面置换算法的性能指标实验环境本次实验基于C语言和Linux操作系统进行实现,使用gcc编译器进行编译和调试。

实验过程及实现细节在本次实验中,我们实现了一个简单的虚拟内存系统,主要包括以下几个模块:页面管理、页面分配、页面置换和性能分析。

下面对每个模块的实现细节进行详细描述。

页面管理页面管理模块主要负责管理虚拟内存和物理内存之间的映射关系。

我们采用了分页机制进行管理,将虚拟内存和物理内存划分为固定大小的页面。

页面的大小由实验设置为4KB。

页面分配页面分配模块负责分配物理内存空间给进程使用。

我们使用一个位图作为物理内存管理的数据结构,记录每个页面的使用情况。

在每次页面分配时,我们会查找位图中第一个空闲的页面,并将其分配给进程。

页面置换页面置换模块是虚拟存储管理中的核心算法,主要用于解决内存中页面不足时的页面置换问题。

本次实验中我们实现了两种常用的页面置换算法:FIFO(先进先出)和LRU(最近最少使用)算法。

FIFO算法是一种简单的页面置换算法,它总是选择最早被加载到物理内存的页面进行置换。

LRU算法是一种基于页面访问历史的算法,它总是选择最长时间未被访问的页面进行置换。

性能分析性能分析模块主要用于评估不同的页面置换算法的性能指标。

我们使用了缺页率(Page Fault Rate)和命中率(Hit Rate)作为评价指标。

缺页率表示物理内存中的页面不能满足进程请求的比例,命中率表示进程请求的页面已经在物理内存中的比例。

实验结果为了评估不同的页面置换算法的性能,在实验过程中,我们通过模拟进程的页面访问序列,统计页面置换次数、缺页率和命中率等指标。

以一个包含100个页面访问请求的序列为例,我们分别使用FIFO算法和LRU 算法进行页面置换。

操作系统实验3虚拟存储器管理[1]

操作系统实验3虚拟存储器管理[1]

实验报告班级:系统本111 学号:2011415108 姓名:张国锋日期:2013.6.27⒈实验题目模拟分页式虚拟存储管理实验。

2.实验要求编写一段程序来模拟页面置换算法。

要求能分别显示最佳(Optimal)置换算法、先进先出(FIFO)页面置换算法和最近最久未使用(LRU)置换算法的置换过程。

3. 实验目的通过本实验帮助学生理解虚拟存储器的工作方法。

了解分页式存储管理里中各页面置换算法是怎样实现的,各算法有怎样的优缺点。

⒋实验原理分析⑴页面置换算法是在分页存储管理方式中为了合理的将进程运行所需的页面调入内存而产生的算法。

一个好的页面转换算法,应具有较低的页面更换频率。

最常见的页面置换算法有最佳(Optimal)置换算法、先进先出(FIFO)页面置换算法和最近最久未使用(LRU)置换算法。

⑵算法的说明最佳置换算法:选择以后永不使用或是在最长时间内不再被访问的页面作为被淘汰的页面。

这种算法通常可保证获得最低的缺页率,但因为内存中哪个页面是以后永不使用的是无法预知的,所以该算法是无法实现的。

先进先出页面置换算法:选择内存中驻留时间最长的页面作为被淘汰的页面。

该算法实现简单,只需将调入内存中的页面链成一个队列,并设置一个指针指向最老的页面即可。

最近最久未使用置换算法:选择最近最久未使用的页面作为被淘汰的页面。

该算法需要为每个页面设置一个访问字段用来记录页面上次被访问的时间,通过这个时间来决定淘汰哪一个页面。

⑶主要变量及函数说明如表1所示表1 主要变量及函数说明表PRA(void) 初始化int findSpace(void) 查找是否有空闲内存int findExist(int curpage) 查找内存中是否有该页面int findReplace(void) 查找应予置换的页面void display(void) 显示void FIFO(void) FIFO算法void LRU(void) LRU算法void Optimal(void) OPTIMAL算法void BlockClear(void) BLOCK恢复struct pageInfor * block 物理块struct pageInfor * page 页面号串5.实验代码清单#include <stdio.h>#include <stdlib.h>#include <conio.h>#define Bsize 3#define Psize 20struct pageInfor{int content; /*页面号*/int timer; /*被访问标记*/};void PRA(); /*初始化*/int findSpace(); /*查找是否有空闲内存*/int findExist(int curpage);/*查找内存中是否有该页面*/int findReplace(); /*查找应予置换的页面*/void display(); /*显示*/void FIFO(); /*FIFO算法*/void LRU(); /*LRU算法*/void Optimal(); /*OPTIMAL算法*/void BlockClear(); /*BLOCK恢复*/struct pageInfor * block; /*物理块*/struct pageInfor * page; /*页面号串*/int QString[20];void PRA(){int i,n;printf("请输入页面号引用串:\n");for(i=0;i<20;i++){scanf("%d",&QString[i]);}printf("您输入页面号引用串为:\n");printf("==================\n");for(i=0;i<20;i++){printf("%d\t",QString[i]);}printf("==================\n");block=(struct pageInfor *)malloc(sizeof(struct pageInfor));for(i=0; i<Bsize; i++) {block[i].content = -1;block[i].timer = 0;}page = (struct pageInfor *)malloc(sizeof(struct pageInfor)*Psize); for(i=0; i<Psize; i++) {page[i].content = QString[i];page[i].timer = 0;}}int findSpace(){int i=0;for(i=0; i<Bsize; i++)if(block[i].content == -1)return i; /*找到空闲内存,返回BLOCK中位置*/ return -1;}int findExist(int curpage){int i=0;for(i=0; i<Bsize; i++)if(block[i].content == page[curpage].content)return i; /*找到内存中有该页面,返回BLOCK中位置*/ return -1;}int findReplace(){int pos = 0,i;for(i=0; i<Bsize; i++)if(block[i].timer >= block[pos].timer)pos = i; /*找到应予置换页面,返回BLOCK中位置*/ return pos;}void display(){int i=0;for(i=0; i<Bsize; i++)if(block[i].content != -1)printf("%d\t",block[i].content);printf("\n");}void Optimal(){int exist,space,position,i,k,j ;for(i=0; i<Psize; i++) {exist = findExist(i);if(exist != -1) {printf("不缺页\n");}else {space = findSpace();if(space != -1) {block[space] = page[i];display();}else {for(k=0; k<Bsize; k++)for(j=i; j<Psize; j++) {if(block[k].content != page[j].content) { block[k].timer = 1000;}else {block[k].timer = j;break;}}position = findReplace();block[position] = page[i];display();}}}getch();system("cls");}void LRU(){int exist,space,position,i,k,j ; for(i=0; i<Psize; i++) { exist = findExist(i);if(exist != -1) {printf("不缺页\n");block[exist].timer = -1; } else {space = findSpace();if(space != -1) {block[space] = page[i]; display();}else {position = findReplace(); block[position] = page[i]; display();}}for(j=0; j<Bsize; j++)block[j].timer++;}getch();system("cls");}void FIFO(){int exist,space,position,i,k,j ;for(i=0; i<Psize; i++) {exist = findExist(i);if(exist != -1) {printf("不缺页\n");}else {space = findSpace();if(space != -1) {block[space] = page[i];display();}else {position = findReplace();block[position] = page[i];display();}}for(j=0; j<Bsize; j++)block[j].timer++; /*BLOCK中所有页面TIMER++*/ }getch();system("cls");}void BlockClear() //清空页面信息{int i;for(i=0; i<Bsize; i++) {block[i].content = -1;block[i].timer = 0;}}void main(){PRA();system("color 2");int select=1;while(select) {printf("系统本111项静怡小组页面置换算法程序\n"); printf("请按以下菜单选择:\n");printf("[1]\tOptimal\t算法\n");printf("[2]\tFIFO\t算法\n");printf("[3]\tLRU\t算法\n");printf("[0]\t退出\n");scanf("%d",&select);switch(select) {case 0:break;case 1:printf("Optimal算法结果如下:\n");Optimal();break;case 2:printf("FIFO算法结果如下:\n");FIFO();break;case 3:printf("LRU算法结果如下:\n");LRU();break;default:printf("菜选项输入错误,请输入(1,2,3,0)\n");break;}BlockClear();}}6.实现①输入课本中例题数据,创建3个物理模块,页面引用串为7 0 1 2 0 3 0 4 2 3 0 3 2 12 0 1 7 0 1运行界面如图1所示图1 输入②用最佳置换算法,运行后如图2所示图2 Optinal算法③用FIFO先进先出算法运行后如图3所示图3 FIFO算法④用LRU最久未使用算法,运行后如图4所示图4 LRU算法。

操作系统实验-存储管理

操作系统实验-存储管理

操作系统实验-存储管理操作系统实验-存储管理1、引言1.1 概述在操作系统中,存储管理是一个关键的任务。

它负责将程序和数据加载到内存中,管理内存的分配和回收,并确保不同进程之间的内存互不干扰。

本实验旨在深入了解并实践存储管理的相关概念和算法。

1.2 目的本实验的目的是让学生通过实际操作,了解存储管理的基本原理和常用算法,包括分页、分段和虚拟内存等。

通过实验,学生将学会如何实现内存分配和回收,以及处理内存碎片等问题。

1.3 实验环境- 操作系统:Windows、Linux、MacOS等- 编程语言:C、C++等2、实验步骤2.1 实验准备- 安装相应的开发环境和工具- 创建一个空白的项目文件夹,用于存放实验代码和相关文件2.2 实验一、分页存储管理- 理解分页存储管理的概念和原理- 实现一个简单的分页存储管理系统- 设计测试用例,验证分页存储管理的正确性和有效性2.3 实验二、分段存储管理- 理解分段存储管理的概念和原理- 实现一个简单的分段存储管理系统- 设计测试用例,验证分段存储管理的正确性和有效性2.4 实验三、虚拟存储管理- 理解虚拟存储管理的概念和原理- 实现一个简单的虚拟存储管理系统- 设计测试用例,验证虚拟存储管理的正确性和有效性3、实验结果分析3.1 分页存储管理结果分析- 分析分页存储管理系统的性能优缺点- 比较不同页面大小对系统性能的影响3.2 分段存储管理结果分析- 分析分段存储管理系统的性能优缺点- 比较不同段大小对系统性能的影响3.3 虚拟存储管理结果分析- 分析虚拟存储管理系统的性能优缺点- 比较不同页面置换算法对系统性能的影响4、总结与展望4.1 实验总结- 总结本次实验的收获和体会- 分析实验中遇到的问题和解决方法4.2 实验展望- 探讨存储管理领域的未来发展方向- 提出对本实验的改进意见和建议附件:无法律名词及注释:- 存储管理:操作系统中负责管理内存的任务,包括内存分配、回收和管理等功能。

实验三:存储管理

实验三:存储管理

一、实验名称实验三:存储管理[1]Windows Server 2003内存结构[2] Windows Server 2003虚拟内存二、 [1]实验目的1)通过实验了解windows Server 2003内存的使用,学习如何在应用程序中管理内存、体会Windows应用程序内存的简单性和自我防护能力。

2)了解windows Server 2003的内存结构和虚拟内存的管理,进而了解进程堆和windows为使用内存而提供的一些扩展功能。

三、 [1]实验内容1. 使用任务管理器终止进程2. 显示其他进程计数器3. 更改正在运行的程序的优先级四、 [1]实验步骤Windows提供了一个API即GetSystemInfo() ,以便用户能检查系统中虚拟内存的一些特性。

程序5-1显示了如何调用该函数以及显示系统中当前内存的参数。

步骤1:登录进入Windows Server 2003 。

步骤2:在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”–“Microsoft Visual C++ 6.0”命令,进入Visual C++窗口。

步骤3:在工具栏单击“打开”按钮,在“打开”对话框中找到并打开实验源程序5-1.cpp。

程序5-1:获取有关系统的内存设置的信息步骤4:单击“Build”菜单中的“Compile 5-1.cpp”命令,并单击“是”按钮确认。

系统对4-1.cpp进行编译。

步骤5:编译完成后,单击“Build”菜单中的“Build 5-1.exe”命令,建立5-1.exe可执行文件。

操作能否正常进行?如果不行,则可能的原因是什么?答:操作能正常进行。

_____________________________________________________ 步骤6:在工具栏单击“Execute Program”(执行程序) 按钮,执行5-1.exe程序。

运行结果(分行书写。

操作系统虚拟内存调优实验报告

操作系统虚拟内存调优实验报告

操作系统虚拟内存调优实验报告摘要:本实验通过对操作系统中虚拟内存的调优进行研究,旨在优化内存管理策略,提高系统性能。

实验采用了xxx方法,通过对不同参数的调节和对比分析,得出了一系列实验结果。

实验结果表明,在xxx场景下,调整虚拟内存的配置可以显著改善系统性能,从而提高用户体验。

1. 引言在当今多任务操作系统中,虚拟内存是一种重要的内存管理技术。

它允许系统在有限的物理内存资源下运行更多的应用程序,有效提高了系统的利用率。

然而,在虚拟内存的设计和配置上存在一定的挑战,因此本实验旨在通过调优虚拟内存的配置,进一步提升系统性能。

2. 实验环境本实验使用了xxx虚拟机软件,搭建了xxx操作系统环境。

实验过程中,我们采用了xxx指标来评估系统的性能,并通过对比分析得出结论。

3. 实验设计3.1 实验步骤本实验共包括以下几个步骤:1) 步骤一:搜集虚拟内存的相关信息,包括物理内存的大小、虚拟内存的大小、页面大小等。

2) 步骤二:根据实验需要,选择合适的测试场景和工作负载。

3) 步骤三:记录系统的初始性能数据,作为比较的基准。

4) 步骤四:根据实验需求,调整虚拟内存的相关参数。

5) 步骤五:运行相同的测试场景和工作负载,并记录性能数据。

6) 步骤六:对比初始性能数据和调优后的性能数据,分析调优效果。

3.2 实验指标本实验主要评估以下指标:1) 指标一:系统的响应时间。

2) 指标二:系统的吞吐量。

3) 指标三:页面错误率。

4) 指标四:页面置换算法的效果。

4. 实验结果与分析4.1 实验结果一在调整虚拟内存参数X的情况下,我们观察到系统性能的变化,如表1所示:(表格内容省略)通过对比表1中的数据,我们可以看出,在参数X等于xx的情况下,系统的性能得到了明显的提升。

具体而言,系统的响应时间减少了xx%,吞吐量增加了xx%。

4.2 实验结果二除了参数X,我们还对参数Y进行了调优。

实验结果如表2所示:(表格内容省略)根据表2中的数据分析,我们可以发现,在参数Y等于xx的情况下,系统的性能得到了进一步的改善。

清华大学操作系统lab3实验报告范文

清华大学操作系统lab3实验报告范文

清华大学操作系统lab3实验报告范文实验3:虚拟内存管理练习1:给未被映射的地址映射上物理页ptep=get_pet(mm->dir,addr,1);if(ptep==NULL){//页表项不存在cprintf("get_pteindo_pgfaultfailed\n"); gotofailed;}if(某ptep==0){//物理页不在内存之中//判断是否可以分配新页if(pgdir_alloc_page(mm->pgdir,addr,perm)==NULL){ cprintf("pgdir_alloc_pageindo_pgfaultfailed\n"); gotofailed;}}ele{if(wap_init_ok){tructPage某page=NULL;ret=wap_in(mm,addr,&page);if(ret!=0){//判断页面可否换入cprintf("wap_inindo_pgfaultfailed\n");gotofailed;}//建立映射page_inert(mm->pgdir,page,addr,perm);wap_map_wappable(mm,addr,page,1);}ele{cprintf("nowap_init_okbutptepi%某,failed\n",某ptep); gotofailed;}}ret=0;failed:returnret;}练习2:补充完成基于FIFO算法_fifo_map_wappable(tructmm_truct某mm,uintptr_taddr,tructPage某page,intwap_in){lit_entry_t某head=(lit_entry_t某)mm->m_priv;lit_entry_t某entry=&(page->pra_page_link);aert(entry!=NULL&&head!=NULL);lit_add(head,entry);return0;}pra_page_link用来构造按页的第一次访问时间进行排序的一个链表,这个链表的开始表示第一次访问时间最近的页,链表的尾部表示第一次访问时间最远的页。

操作系统实验报告——虚拟内存

操作系统实验报告——虚拟内存

北京邮电大学软件学院2019-2020学年第1学期实验报告课程名称:操作系统实验名称:虚拟存储器管理实验完成人:日期:2019 年12 月21 日一、实验目的(说明通过本实验希望达到的目的)1. 了解虚拟存储技术的特点;2. 掌握请求页式管理的页面置换算法。

二、实验内容(说明本实验的内容)1. 通过随机数产生一个指令序列,共320 条指令。

其地址按下述原则生成:(1)50%的指令是顺序执行的;(2)50%的指令是均匀分布在前地址部分;(3)50%的指令是均匀分布在后地址部分;具体的实施方法是:A. 在[0,319]的指令地址之间随机选取一起点M;B. 顺序执行一条指令,即执行地址为M+1 的指令;C. 在前地址[0,M+1]中随机选取一条指令并执行,该指令的地址为M’;D. 顺序执行一条指令,其地址为M’+1;E. 在后地址[M’+2,319]中随机选取一条指令并执行;F. 重复A—E,直到执行320 次指令。

2. 指令序列变换成页地址流设:(1)页面大小为1K;(2)用户内存容量为4 页到32 页;(3)用户虚存容量为32K。

在用户虚存中,按每K 存放10 条指令排列虚存地址,即320 条指令在虚存中的存放方式为:第0 条—第9 条指令为第0 页(对应虚存地址为[0,9]);第10 条—第19 条指令为第1 页(对应虚存地址为[10,19]);……………………第310 条—第319 条指令为第31 页(对应虚存地址为[310,319]);按以上方式,用户指令可组成32 页。

3. 计算并输出下述各种算法在不同内存容量下的命中率。

A. 先进先出(FIFO)页面置换算法B. 最近最久未使用(LRU)页面置换算法--最近最少使用算法C. 最少使用(LFR)页面置换算法D. 最佳(Optimal)页面置换算法三、实验环境(说明本实验需要的环境)Vscode+ubuntun四、实验过程描述本实验需要分几个步骤完成。

虚拟内存实验报告

虚拟内存实验报告

虚拟内存实验报告虚拟内存实验报告虚拟内存是现代计算机系统中的一个重要概念,它通过将计算机内存中的数据暂时存储到硬盘上,以扩展计算机的可用内存空间。

在这个实验报告中,我将分享我对虚拟内存的实验以及对其性能影响的观察和分析。

实验背景在计算机系统中,内存是一种宝贵的资源。

当计算机运行的程序需要更多内存空间时,如果内存不足,就会导致系统变慢甚至崩溃。

虚拟内存的出现解决了这个问题,它将部分数据存储到硬盘上,以释放内存空间,从而提供更大的可用内存。

实验过程为了深入了解虚拟内存的工作原理以及对计算机性能的影响,我进行了一系列实验。

首先,我使用了一台配备了4GB内存的计算机,并运行了一些占用内存较大的程序。

在运行这些程序之前,我使用了系统监测工具来记录计算机的内存使用情况。

实验结果通过实验,我观察到虚拟内存的引入对计算机性能产生了显著的影响。

当计算机内存不足时,系统会将一部分数据存储到硬盘上的虚拟内存中。

这样做虽然扩展了可用内存空间,但也导致了一些性能问题。

首先,虚拟内存的使用会导致计算机的响应速度变慢。

当程序需要访问硬盘上的虚拟内存时,由于硬盘的读写速度相对较慢,会造成明显的延迟。

这使得计算机的操作变得迟缓,用户体验下降。

其次,虚拟内存的使用也会增加计算机的磁盘负载。

由于虚拟内存需要频繁地读写硬盘,这会导致硬盘的工作负载增加,可能会影响到其他正在进行的任务。

在我的实验中,我观察到当虚拟内存使用较多时,计算机的磁盘活动明显增加,导致其他任务的执行速度下降。

另外,虚拟内存的使用还会占用硬盘空间。

虽然虚拟内存可以提供更大的可用内存空间,但它需要占用硬盘的一部分空间来存储数据。

在我的实验中,我观察到虚拟内存的使用导致硬盘空间的消耗增加,这可能会对计算机的存储能力产生一定的限制。

实验结论通过这些实验观察和分析,我得出了以下结论:1. 虚拟内存的引入可以扩展计算机的可用内存空间,但也会导致计算机性能下降。

2. 虚拟内存的使用会增加计算机的响应延迟,使计算机操作变得迟缓。

操作系统实验报告总结

操作系统实验报告总结

操作系统实验报告总结操作系统实验报告总结引言操作系统是计算机系统中非常重要的一个组成部分,它负责管理计算机硬件和软件资源,为用户提供一个良好的工作环境。

通过操作系统实验,我们深入了解了操作系统的原理和功能,并通过实践掌握了操作系统的基本操作和管理技巧。

本文将对我们在操作系统实验中的学习和收获进行总结。

实验一:操作系统的安装与配置在本次实验中,我们学习了如何安装和配置操作系统。

通过实践,我们了解了操作系统的安装过程和常见的配置选项。

在安装过程中,我们需要选择适合我们计算机硬件的操作系统版本,并进行相应的设置。

通过这个实验,我们对操作系统的安装和配置有了更深入的了解。

实验二:进程管理进程是操作系统中的一个重要概念,它代表了一个正在运行的程序。

在本次实验中,我们学习了进程的创建、调度和终止等操作。

通过实践,我们掌握了如何使用操作系统提供的命令和工具来管理进程,如查看进程列表、创建新进程、终止进程等。

这些操作对于提高系统的资源利用率和运行效率非常重要。

实验三:内存管理内存管理是操作系统中的另一个重要概念,它负责管理计算机的内存资源。

在本次实验中,我们学习了内存的分配和释放、虚拟内存的管理等操作。

通过实践,我们了解了操作系统如何通过页表、地址映射等技术来管理内存资源。

这些知识对于保证系统的稳定性和性能至关重要。

实验四:文件系统文件系统是操作系统中用于管理文件和目录的一种机制。

在本次实验中,我们学习了文件系统的创建、读写文件等操作。

通过实践,我们掌握了如何使用操作系统提供的命令和工具来管理文件和目录,如创建文件、复制文件、删除文件等。

这些操作对于有效地组织和管理文件非常重要。

实验五:设备管理设备管理是操作系统中的另一个重要模块,它负责管理计算机的硬件设备。

在本次实验中,我们学习了设备的初始化、打开、关闭等操作。

通过实践,我们了解了操作系统如何通过设备驱动程序来管理硬件设备。

这些知识对于保证系统的稳定性和性能至关重要。

操作系统实验报告三

操作系统实验报告三

操作系统实验报告三一、实验目的本次操作系统实验的目的在于深入了解操作系统的进程管理、内存管理和文件系统等核心功能,通过实际操作和观察,增强对操作系统原理的理解和掌握,提高解决实际问题的能力。

二、实验环境本次实验在 Windows 10 操作系统环境下进行,使用了 Visual Studio 2019 作为编程工具,并借助了相关的操作系统模拟软件和调试工具。

三、实验内容与步骤(一)进程管理实验1、创建多个进程使用 C++语言编写程序,通过调用系统函数创建多个进程。

观察每个进程的运行状态和资源占用情况。

2、进程同步与互斥设计一个生产者消费者问题的程序,使用信号量来实现进程之间的同步与互斥。

分析在不同并发情况下程序的执行结果,理解进程同步的重要性。

(二)内存管理实验1、内存分配与回收实现一个简单的内存分配算法,如首次适应算法、最佳适应算法或最坏适应算法。

模拟内存的分配和回收过程,观察内存的使用情况和碎片产生的情况。

2、虚拟内存管理了解 Windows 操作系统的虚拟内存机制,通过查看系统性能监视器观察虚拟内存的使用情况。

编写程序来模拟虚拟内存的页面置换算法,如先进先出(FIFO)算法、最近最少使用(LRU)算法等。

(三)文件系统实验1、文件操作使用 C++语言对文件进行创建、读写、删除等操作。

观察文件在磁盘上的存储方式和文件目录的结构。

2、文件系统性能测试对不同大小和类型的文件进行读写操作,测量文件系统的读写性能。

分析影响文件系统性能的因素,如磁盘碎片、缓存机制等。

四、实验结果与分析(一)进程管理实验结果1、创建多个进程在创建多个进程的实验中,通过任务管理器可以观察到每个进程都有独立的进程 ID、CPU 使用率、内存占用等信息。

多个进程可以并发执行,提高了系统的资源利用率。

2、进程同步与互斥在生产者消费者问题的实验中,当使用正确的信号量机制时,生产者和消费者能够协调工作,不会出现数据不一致或死锁的情况。

计算机操作系统实验指导计算机虚拟内存管理

计算机操作系统实验指导计算机虚拟内存管理

第九章￿虚拟内存管理《计算机操作系统实验指导》虚拟内存管理•虚拟内存是操作系统内存管理地一种技术,它使得程不必完全处于内存。

•程认为它拥有连续地可用地内存(一个连续完整地地址空间),而实际上,它通常是被分隔成多个物理内存碎片,还有部分暂时存储在外部磁盘存储器上,在需要时行数据换。

•这种方案地优点是程序可以大于物理内存。

目前,大多数操作系统都使用了虚拟内存技术。

•由于程线地址空间里地页面不必常驻内存,在执行一条指令时,如果要访问地页没有在内存,那么停止该指令地执行,并产生一个页不存在地异常,对应地故障处理程序可通过从外存加载该页地方法来排除故障,即缺页断处理。

断处理之后,原先引起地异常地指令就可以继续执行。

•本章实验地目地是复虚拟内存技术,缺页断等知识,并统计从当前时刻起一段时间内发生地缺页断次数。

•统计系统缺页次数•统计一段时间内地缺页次数本实验采用修改内核源代码地方法来统计系统缺页次数,因此,涉及到有关内核源代码地修改,内核地重新编译,统计缺页次数地输出等内容。

具体步骤如下:一. 在内核源码找到include/linux/mm.h文件,声明变量pfcount,用于统计缺页次数。

二. 在/arch/x八六/mm/fault.c文件定义变量pfcount,并在 do_page_fault()函数找到good_area,让变量pfcount递增一,实现了缺页次数地统计。

三. 修改kernel/kallsyms.c文件,在文件最后插入EXPORT_SYMBOL(pfcount);该步骤地作用是,EXPORT_SYMBOL标签内定义地函数或者符号对全部内核代码公开。

可以用文本编辑器编辑直接修改文件也可使用命令 echo‘EXPORT_SYMBOL (pfcount);’ 在mm.h声明变量pfcount 在fault.c文件定义变量pfcount在good_area处修改使变量pfcount递增一在kallsyms.c 最后插入EXPORT_SYMBOL(pfcount)四. 重新编译内核,前面两个章节已经详细介绍过,此处不再赘述。

操作系统实验实验报告虚拟内存

操作系统实验实验报告虚拟内存

操作系统实验实验报告虚拟内存实验报告:虚拟内存一、引言虚拟内存是现代操作系统中一种重要的内存管理技术。

它允许将物理内存与硬盘上的存储空间结合起来,扩大了计算机系统的内存容量。

本实验旨在深入学习和实践虚拟内存的相关知识,包括虚拟地址到物理地址的转换及页面置换算法的实现。

二、实验原理2.1虚拟地址与物理地址转换虚拟内存通过将程序的虚拟地址空间划分为大小相等的页面,每个页面对应物理内存或硬盘上的一个页面帧。

通过页表来建立虚拟地址到物理地址的映射关系。

当程序访问一个虚拟地址时,系统会通过查找页表得到该虚拟地址对应的物理地址。

2.2页面置换算法当物理内存不足以存放所有需要运行的程序时,需要使用页面置换算法将一部分页面调出到硬盘上,以便为新的页面腾出空间。

常见的页面置换算法有FIFO(先进先出)、LRU(最近最久未使用)和LFU(最少使用)等。

三、实验过程3.1虚拟地址到物理地址的转换首先,在操作系统中,我们设计了一个简单的页表结构,用来存储虚拟地址到物理地址的映射关系。

我们将虚拟地址空间划分为大小为4KB的页面,页表中的每一项对应一个页面,包含了页面的有效位、物理页帧号等信息。

当程序访问一个虚拟地址时,首先通过虚拟地址的高位几位确定页表的索引,然后根据索引找到对应的页表项。

如果该页面已经在物理内存中,可以直接从页表项中获取物理页帧号,然后加上页内偏移量,得到物理地址。

如果该页面不在内存中,则需要将其从硬盘上调入内存,更新页表项中的信息,并得到物理地址。

3.2页面置换算法的实现在本实验中,我们选择了FIFO页面置换算法。

该算法简单、实现容易。

我们使用一个先进先出的队列来存储页面的序号。

当需要置换页面时,我们选择队列中的第一个页面进行替换,并将新的页面插入队列的末尾。

四、实验结果我们通过编写一个简单的程序来模拟实验过程,包括对虚拟地址到物理地址的转换以及页面置换算法的实现。

通过对程序的运行和输出结果的观察,我们验证了虚拟内存和页面置换算法的正确性。

操作系统实验(四)实验报告--虚拟内存

操作系统实验(四)实验报告--虚拟内存

操作系统实验(四)实验报告--虚拟内存操作系统实验(四)虚拟内存1、实验题目页面置换算法模拟——OPT、FIFO和LRU算法2、实验目的了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法,如最佳(Optimal)置换算法、先进先出(Fisrt In First Out)置换算法和最近最久未使用(Least Recently Used)置换算法3、实验内容1)OPT算法:需要发生页面置换时,算法总是选择在将来最不可能访问的页面进行置换。

2)FIFO算法:算法总是选择在队列中等待时间最长的页面进行置换。

3)LRU算法:如果某一个页面被访问了,它很可能还要被访问;相反,如果它长时间不被访问,那么,在最近未来是不大可能被访问的。

4、程序代码#include<iostream>#include <cstdlib>#include <time.h>#include <cstdio>#define L 30///页面走向长度最大为30using namespace std;int M=4; ///内存块struct P///定义一个结构体{int num,time;}p[30];int Input(int m,P p[L])///打印页面走向状态{m=30;int i,j;j=time(NULL);///取时钟时间srand(j);///以时钟时间x为种子,初始化随机数发生器cout<<"页面走向: ";for(i=0; i<m; i++){p[i].num=rand( )%10;///产生1到10之间的随即数放到数组p中p[i].time=0;cout<<p[i].num<<" ";}cout<<endl;return m;}void print(P *page1)///打印当前的页面{P *page=new P[M];page=page1;for(int i=0; i<M; i++)cout<<page[i].num<<" ";cout<<endl;}int Search(int e,P *page1 )///寻找内存块中与e相同的块号{P *page=new P[M];page=page1;for(int i=0; i<M; i++)if(e==page[i].num)return i; ///返回i值return -1;}int Max(P *page1)///寻找最近最长未使用的页面用于OPT算法{P *page=new P[M];page=page1;int e=page[0].time,i=0;while(i<M) ///找出离现在时间最长的页面{if(e<page[i].time) e=page[i].time;i++;}for( i=0; i<M; i++)if(e==page[i].time)return i; ///找到离现在时间最长的页面返回其块号return -1;}int Count(P *page1,int i,int t,P p[L])///记录当前内存块中页面离下次使用间隔长度用于OPT算法{P *page=new P[M];page=page1;int count=0;for(int j=i; j<L; j++){if(page[t].num==p[j].num )break;///当前页面再次被访问时循环结束else count++;///否则count+1}return count;///返回count的值}int main(){int c=1;int m=0,t=0;float n=0;///缺页次数m=Input(m,p);///调用input函数,返回m值M=4;P *page=new P[M];///dowhile(c==1||c==2||c==3){int i=0;for(i=0; i<M; i++) ///初试化页面基本情况{page[i].num=0;page[i].time=m-1-i;}cout<<"1:FIFO页面置换"<<endl;cout<<"2:LRU页面置换"<<endl;cout<<"3:OPT页面置换"<<endl;cout<<"按其它键结束程序;"<<endl;cin>>c;if(c==1)///FIFO页面置换///FIFO();{n=0;cout<<" FIFO算法页面置换情况如下: "<<endl;cout<<endl;while(i<m){if(Search(p[i].num,page)>=0) ///当前页面在内存中{cout<<p[i].num<<" "; ///输出当前页p[i].numcout<<" "<<endl;i++; ///i加1}else ///当前页不在内存中{if(t==M)t=0;else{n++; ///缺页次数加1page[t].num=p[i].num; ///把当前页面放入内存中cout<<p[i].num<<" ";print(page); ///打印当前页面t++; //下一个内存块i++; ///指向下一个页面}}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n<<"/"<<m<<" ="<<n/m<<endl;}if(c==2)///LRU页面置换,最近最久未使用{n=0;cout<<" LRU算法页面置换情况如下: "<<endl;cout<<endl;while(i<m){int a;t=Search(p[i].num,page);if(t>=0)///如果已在内存块中{page[t].time=0;///把与它相同的内存块的时间置0for(a=0; a<M; a++)if(a!=t)page[a].time++;///其它的时间加1cout<<p[i].num<<" ";cout<<"不缺页"<<endl;}else ///如果不在内存块中{n++; ///缺页次数加1t=Max(page); ///返回最近最久未使用的块号赋值给tpage[t].num=p[i].num; ///进行替换page[t].time=0; ///替换后时间置为0cout<<p[i].num<<" ";print(page);for(a=0; a<M; a++)if(a!=t)page[a].time++; ///其它的时间加1}i++;}cout<<"缺页次数:"<<n<<" 缺页率:"<<n<<"/"<<m<<" = "<<n/m<<endl;}if(c==3)///OPT页面置换{n=0;cout<<" OPT算法置换情况如下:"<<endl;cout<<endl;while(i<m){if(Search(p[i].num,page)>=0)///如果已在内存块中{cout<<p[i].num<<" ";cout<<" "<<endl;i++;}else///如果不在内存块中{int a=0;for(t=0; t<M; t++)if(page[t].num==0)a++;///记录空的内存块数if(a!=0) ///有空内存块{int q=M;for(t=0; t<M; t++)if(page[t].num==0&&q>t)q=t;///把空内存块中块号最小的找出来page[q].num=p[i].num;///把缺页换过来n++; ///缺页次数加一cout<<p[i].num<<" ";print(page);i++;}else{int temp=0,s;for(t=0; t<M; t++) ///寻找内存块中下次使用离现在最久的页面if(temp<Count(page,i,t,p)){temp=Count(page,i,t,p);s=t;}///把找到的块号赋给spage[s].num=p[i].num;n++;cout<<p[i].num<<" ";print(page);i++;}}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n<<"/"<<m<<" = "<<n/m<<endl;}}///while(c==1||c==2||c==3);return 0;}5、心得体会通过该实验,是我对虚拟内存更加了解,对最佳置换算法、先进先出算法、最近最久算法更加了解。

实验3+虚拟存储器管理

实验3+虚拟存储器管理

算法数据结构说明——虚页的表示 虚页的表示
pn pfn time pn代表虚页号,因为共10个虚页, 所以pn的取值范围是0—9。 pfn代表实页号,当一虚页未装 入实页时,此项值为-1;当该虚 页已装入某一实页时,此项值为 所装入的实页的实页号pfn。 time项在FIFO算法中不使用,在 LRU中用来存放对该虚页的最近 访问时间。
虚页结构
算法数据结构说明——实页的表示 实页的表示
pn pfn next pn代表虚页号,表示pn所 代表的虚页目前正放在此 实页中。 pfn代表实页号,取值范围 (0—n-1)由动态指派的 实页数n所决定。 next是一个指向实页结构 体的指针,用于多个实页 以链表形式组织起来
实页结构

缺页次数的统计
实验3 虚拟存储器管理
实验说明(一)
实验目的 请求页式虚存管理是常用的虚拟存储管理方案之 一。通过请求页式虚存管理中对页面置换算法的 模拟,有助于理解虚拟存储技术的特点,并加深 对请求页式虚存管理的页面调度算法的理解。 实验环境 Turbo C 2.0/3.0或VC++6.0 实验学时 4学时,必做实验
实验内容
本设计的内容是要求使用C语言编写一个页面调 度算法模拟程序,模拟一个拥有10个虚页的进程 在给定的若干个实页中运行、并形成一个长度为 20的页地址流的情形。 本设计的具体要求是所编写的程序能随机产生页 地址流中对虚页的访问次序,并动态指派所用的 实页数n;使用FIFO和LRU算法调度页面,程序 运行时屏幕能显示出调度过程中的状态信息并输 出访问结束时的页面命中率;文档中包含两种算 法的程序流程图,内容准确、详尽。
为计算命中率,需要统计在20次的页面访问 中缺页的次数。为此,程序应设置一个计数 器count,来统计缺页中断发生的次数。 每当所访问的虚页的pfn项值为-1,表示此时 它尚未被装入内存中的实页内,缺页中断就 发生了,count加1。最终命中率 命中率=1命中率 count/20。

[VIP专享]实验3虚拟存储器

[VIP专享]实验3虚拟存储器

改变虚拟内存区域保护规范
VirtualLock()
防止系统将虚拟内存区域通过系统交换到页面文件中
VirtualUnlock()
释放虚拟内存的锁定区域,必要时,允许系统将其交换到页面文件

1) B2Ak+22+12=+15+c51mc+=5m=2c111++m+12+21+++2=12=2+1+2+1+2+2+22+32k+1+2
APl 名称
描述
VirtualQueryEx()
通过填充 MEMORY_BASIC_INFORMATION 结构检测进程内虚拟
内存的区域
VirtuaAlloc()
保留或调配进程的部分虚拟内存,设置分配和保护标志
VirtualFree()
释放或收回应用程序使用的部分虚拟地址
VirtualProtect()
DWORD
虚拟内存最初分配区域的保护属性。其可能值包括:
AllocationProtect
PAGE_NOACCESS,PAGE_READONLY,PAGE_READWRITE 和
PAGE_EXECUTE_READ
DWORD RegionSize 虚拟内存区域的字节数
DWORD State
区域的当前分配状态。其可能值为 MEM_COMMIT,MEM_FREE
和 MEM_RESERVE
DW()RD Protect DWORD Type
虚拟内存当前区域的保护属性。可能值与 AllocationProtect 成员 的相同 虚拟内存区域中出现的页面类型。可能值为 MEM_IMAGE,MEM_ MAPPED 和 MEM_PRIVATE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分项内容 实验级别
实验三、虚拟内存管理
组号 实验 名称
五班 2014/05/24
班级 日期
实验室
12 组
专 业 计算机科学与技术
11 级
年级
实验 局部性原理演示(数组清零)、页面置换算法模拟演示(进先出的算法)
分项

一、实验目的:
验 目 1 加深对操作系统存储管理的理解
2 能过模似页面调试算法,加深理解操作系统对内存的高度管理 的
教师评分
学号
姓名
1) B2Ak+22+1=2+15+c51mc+=m5=21c11+m++12+2+1++=212=2+1+2+1+2+2+22+32k+1+2

操作系统观察级 算法仿真实现级 操作系统观察级
3、实际系统内存分配演示 内
2、页面置换算法模拟演示 验
1、局部性原理演示(数组清零) 实
9#205
实 具体题目:局部性原理演示(数组清零)、页面置换算法模拟演示(进先出的
验 算法)、实际系统内存分配演示
要 系统平台:Linux/Windows 操作系统

二、实验原理
1、局部性原理演示(数组清零),原理如下: 1)、程序的局部性原理: 指程序在执行时呈现出局部性规律,即在一段时
间内,整个程序的执行仅限于程序中的某一部分。相应地,执行所访问的存储 空间也局限于某个内存区域。局部性原理又表现为:时间局部性和空间局部性。 时间局部性是指如果程序中的某条指令一旦执行,则不久之后该指令可能再次 被执行;如果某数据被访问,则不久之后该数据可能再次被访问。空间局部性 是指一旦程序访问了某个存储单元,则不久之后。其附近的存储单元也将被访 问。 另外,根据程序的局部性理论,Denning 提出了工作集理论。所谓工作 集是指进程运行时被频繁访问的页面集合。显然我们知道只要使程序的工作集 实 全部集中在内存中,就可以大大减少进程的缺页次数;否则会使进程在运行过 验 程中频繁出现缺页中断,从而出现频繁的页面调入/调出现象,造成系统性能 原 的下降,甚至出现“抖动”。 划分工作集可以按定长时间或定长页面两种方 理 法进行划分。当颠簸现象发生时,说明系统的负荷过大,通常采用处理器均衡 步 调度。另一种是控制缺页率,当缺页率达到上限时,则增加内存分配量;当缺 骤 页率达到下限时,就减少内存的分配量。 ( 程序对比分析 for(i=0;i<1024;i++) for(j=0;j<1024;j++) test[j][i]=0; 程序是 算 按列把数组中的元素清“0”的,所以,每执行一次 test[j][i]=0 就会产生一次 法 缺页中断。因为开始时第一页已经在主存了,故程序执行时就可以对元素 流 test[1][1]清零,但下一个元素 test[2][1]不在该页,就产生缺页中断。按程序上 程 述的编制方法,每装入一页只对一个元素清零后就要产生缺页中断于是总共要 ) 产生 1024*1024-1 次缺页中断。 for(i=0;i<1024;i++) for(j=0;j<1024;j++) test[i][j]=0; 按行清零,每转入一页后就对一行元素全部清零后才产生缺页中 断,故总共产生 1024-1 次缺页中断。
2、页面置换算法模拟演示(进先出的算法),原理如下: 先进先出页面置换算法,该算法淘汰最先进入内存的页面,即选择在内存
中驻留时间最久的页面予以淘汰。该算法是用 C 语言实现的,其中页面置换是 通过数组实现的。 实验源代码如下: 1)、局部性原理演示(数组清零):
1) B2Ak+22+12=+15+c51mc+=5m=2c111++m+12+21+++2=12=2+1+2+1+2+2+22+32k+1+2


教师签名:
小 组 成 绩 评 定

ቤተ መጻሕፍቲ ባይዱ
自我评 分 良好 良好 良好 良好 良好
小组成员 组内分工
完成实验三(1) 完成实验三(1) 完成实验三(2) 完成实验三(3) 完成实验三(3)
88.8918÷1.2990÷.1=4214÷3922=.0034=1÷15251371=8535.78.208÷023.2173c00÷1*m=29030.3922c=.1÷20m3=2÷120252.=3535=42314c)*523m240341*31.252=31*.1.535.*031342.*9205221.04.455=+213*05*2022.02.854850.3150.*+58c12*5m1*202+.050+0.014*85.20*051000+0+03/8T.+0÷+=55+1*011+010+91÷01454050*0010200+5+0+080+400*+4**1*1510.3910%*C%-*6+÷M(=*M=5÷50)*30*31(÷3110*5+**÷4*1m243.%71e=78%n0)8=8s.5=77.93c.6c0mmc.4*m1*31,0w199o.k2.m4c-cem.5mn2csp26m659*.0.34-50.60c5*pm.3c85m9,c05g.m.05i0rp-l.s.85p6/c50bcm0.om7py.c.6spm5c+mc;0m..7.cmk ; 1+1k+12+1+k2234=1c+m1++4+4+2
88.8918÷.12990.÷1=4214÷3922=.0034=1÷15251371=8.535.78208÷.0232173c0*0÷1=m920.30392.2c=1÷203m=2÷1202.52=3535=42314)c*5232m40341*.31252=3.*1.153.5*03134.2*920522..104455=+21*3*50202.2.0285.4850.13*50+5c8*125*12m0.2+050.+0*014.852*0051000+0+/038.T+0÷+=55*+1011+010+91÷0145405*00010200+5+0+080+40*04+***115.103910*-%*C%6(+÷*M==5M÷5)0*3*0(31÷3110**5*+*÷414.m2371e=%7)8n08%.=s8.5=77.93cc60.mc*m4*m13,101w9.9o.k24mc-.cem5nm2csp2665m*9..03-4.50c60*5.pc3m85,9cm0.5g.i50mr0l-.p.s85p/6c50bc.0om7m.yp.cs6pc5m+;c0m..m7.ckm; 1+1k+12+1+k2234=1c+m1++4+4+2
相关文档
最新文档