mosfet半桥驱动电路设计要领
半桥拓扑及应用要求规范

半桥拓扑基础及应用规范摘要本技术文档主要针对半桥逆变器工作原理进行分析。
通过半桥逆变器开关分析得出结论,半桥逆变器可以有条件的实现软开关,从而提高效率。
描述对称半桥的主电路如图1所示。
图1中包括两个互补控制的功率MOSFET,其中M1的占空比为D,M2的占空比为(1-D),DS1和DS2是开关的体二极管,隔直电容C2,作为开关M2开通时的电源。
包括漏感Lk,励磁电感Lm的中心抽头的变压器,原边匝数为Np,副边匝数分别为Ns1和Ns2。
本文档针对下图的半桥逆变器展开分析,首先分析了逆变器架构以及半桥逆变器的优缺点,接着针对高效率的半桥逆变器工作原理进行分析,最后对变压器的设计,高压电容容值得选取进行了仿真,分析,并给出结论。
Figure-1 半桥逆变器架构示意图1.半桥逆变器设计分析因液晶屏本身没有发光功能,这就需要在液晶屏后加一个照明系统,该背光照明系统由发光部件、能使光线均匀照射在液晶表示面的导光板和驱动发光部件的电源构成。
现在发光部件的主流为被称作冷阴极管的萤光管。
其发光原理与室内照明用的热阴管类似,但不需象热阴管那样先预热灯丝,它在较低温状态就能点亮,因此叫冷阴极管。
但要驱动这种冷阴极管需要能输出1000~1500V交流电压的特殊电源。
这种特殊电源称之为逆变器。
小尺寸CCFL(22寸以下)逆变器方案中,由于半桥架构设计简单,成本低,应用非常广泛,通常使用一个P+N的场效应管即可实现,其工作模式比较简单,下图为小尺寸方案中,半桥架构的波形和电路示意图。
从成本和效率的角度考量,大尺寸LCD-TV逆变器的输入逐渐改为由PFC(380V-400V)的输出直接输入,这就是我们所说的LIPS(LCD-TV Integrated Power Supply,液晶集成电源)方案。
Figure-4 LIPS电源和逆变器架构大尺寸LIPS方案逆变器采用半桥或者全桥架构,半桥架构一般采用定频,MOSFET处在硬开关状态,这样会导致MOSFET上面很大的开关损耗,此外这种硬开关导致的EMI必须通过相应的手段去处理才能符合EMC 的规范要求。
桥式拓扑结构功率MOSFET驱动电路设计

图 2 栅极振荡干扰实测波形
3 驱动电路的改进
3. 1 减小分布电感
若取极限情况, 驱动电路的分布电感为零, 则 驱动信号由式 ( 3) 简化为如下形式
V
gs2
图 3 改进后驱动电路
′
= iZ ′ 2 ( s) = C gd2
R g2 E R g2C gs2 s+ 1 ton
( 6)
对其进行拉氏反变换得
2 1 2
电阻, 在 M O SFET 栅源极间并联电容以延长栅 极 电 容 的 充 电 时 间, 降 低 电 压 变 化 率。 而
M O SFET 的关断时间与开通时间存在着一定的
( 5)
由于振荡频率很高, 使 M O SFET 处于高频 开关状态, 产生很大的开关损耗。 更严重的是若振 荡的幅值达到 M O SFET 的门槛电压, 下管将开 通, 而上管正处于导通状态, 此时将造成上下功率 管的直通现象, 造成M O SFET 的损坏。以上现象 可以通过调整驱动电路参数加以抑制。
′ u gs2
理论上, 开通时间越长 d v d t 应力越小, 振荡 产生的干扰效果就越不显著, 但是由 M O SFET 开关损耗近似公式 [ 4 ] P≈ I m [ ( 0. 165+ 0. 1K ) U gs +
0. 05E ( ton + toff ) f ] ( 9)
( t) =
C gd2 E e C gs2 ton
2 ( R g2
)。 4L 2 = tan - 1 ( Ξ Α 2) ] 2 ; Υ
由式 ( 5) 和式 ( 8) 可知,M O SFET 的开通时间 是影响驱动信号振荡幅值的主要因素, 呈反比例 关系。 若适当增大器件的开通时间, 即可在很大程 度 上 减 小 振 荡 幅 值, 因 此 考 虑 在 驱 动 芯 片 与
电力电子技术课程设计mosfet电压型单相半桥无源逆变电路设计

电力电子技术课程设计一、课程设计的性质和目的1、性质:是电气自动化专业的必修实践性环节。
2、目的:1)培养学生综合运用知识解决问题的能力与实际动手能力;2)加深理解《电力电子技术》课程的基本理论;3)初步掌握电力电子电路的设计方法。
二、课程设计的题目MOSFET电压型单相半桥无源逆变电路设计(阻感性负载)设计条件:(1)输入直流电压:Ui=200V(2)输出功率:500W(3)输出电压波形:1KHz方波三、课程设计的内容,指标内容及要求,应完成的任务1、课程设计的要求1)整流电路的选择2)整流变压器额定参数的计算3)晶闸管(全控型器件)电压、电流额定的选择4)平波电抗器电感值的计算5)保护电路(缓冲电路)的设计6)触发电路(驱动电路)的设计7)画出完整的主电路原理图和控制电路原理图2、指标要求(1)输入直流电压:Ui=200V;(2)输出功率:500W;(3)输出电压波形:1KHz方波。
3、整流电路的选择整流电路选择感容滤波的二极管整流电路,由于电容两端的电压不能突变,故能够保证输出电压为大小恒定的直流电压。
u d波形更平直,电流i2的上升段平缓了许多,这对于电路的工作是有利的。
4、触发电路(驱动电路)的设计实现逆变的主电路中用的是全控型器件MOSFET,触发电路主要是针对它的触发设计,电路的原理图如下图所示。
跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。
这个很容易做到,但是,我们还需要速度。
在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。
对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。
选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。
第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。
而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。
MOSFET的驱动技术详解

MOSFET的驱动技术详解simtriex/simplis仿真电路用软件MOSFET作为功率开关管,已经是是开关电源领域的绝对主力器件。
虽然MOSFET作为电压型驱动器件,其驱动表面上看来是非常简单,但是详细分析起来并不简单。
下面我会花一点时间,一点点来解析MOSFET的驱动技术,以及在不同的应用,应该采用什么样的驱动电路。
首先,来做一个实验,把一个MOSFET的G悬空,然后在DS上加电压,那么会出现什么情况呢?很多工程师都知道,MOS会导通甚至击穿。
这是为什么呢?我根本没有加驱动电压,MOS怎么会导通?用下面的图1,来做个仿真;去探测G极的电压,发现电压波形如图2所示。
图1图2这种情况有什么危害呢?实际情况下,MOS肯定有驱动电路的么,要么导通,要么关掉。
问题就出在开机,或者关机的时候,最主要是开机的时候,此时你的驱动电路还没上电。
但是输入上电了,由于驱动电路没有工作,G级的电荷无法被释放,就容易导致MOS导通击穿。
那么怎么解决呢?在GS之间并一个电阻。
其仿真的结果如图4。
几乎为0V。
图3图4什么叫驱动能力,很多PWM 芯片,或者专门的驱动芯片都会说驱动能力,比如384X 的驱动能力为1A,其含义是什么呢?假如驱动是个理想脉冲源,那么其驱动能力就是无穷大,想提供多大电流就给多大。
但实际中,驱动是有内阻的,假设其内阻为10欧姆,在10V 电压下,最多能提供的峰值电流就是1A,通常也认为其驱动能力为1A。
那什么叫驱动电阻呢,通常驱动器和MOS 的G 极之间,会串一个电阻,就如下图5的R3。
图5对上图进行仿真,R3分别取1欧姆,和100欧姆。
下图6是MOS 的G 极的电压波形上升沿。
图7是驱动的下降沿(G 极电压)。
图6图7驱动电阻的作用,如果你的驱动走线很长,驱动电阻可以对走线电感和MOS 结电容引起的震荡起阻尼作用。
但是通常,现在的PCB 走线都很紧凑,走线电感非常小。
第二个,重要作用就是调解驱动器的驱动能力,调节开关速度。
MOSFET半桥驱动电路设计要领

MOSFET半桥驱动电路设计要领1 引言MOSFET凭开关速度快、导通电阻低等优点在开关电源及电机驱动等应用中得到了广泛应用。
要想使MOSFET在应用中充分发挥其性能,就必须设计一个适合应用的驱动电路和参数。
在应用中MOSFET 一般工作在桥式拓扑结构模式下,如图1所示。
由于下桥MOSFET驱动电压的参考点为地,较容易设计驱动电路,而上桥的驱动电压是跟随相线电压浮动的,因此如何很好地驱动上桥MOSFET成了设计能否成功的关键。
半桥驱动芯片由于其易于设计驱动电路、外围元器件少、驱动能力强、可靠性高等优点在MOSFET驱动电路中得到广泛应用。
2 桥式结构拓扑分析图1所示为驱动三相直流无刷电机的桥式电路,其中LPCB、 LS、LD为直流母线和相线的引线电感,电机为三相Y型直流无刷电机,其工作原理如下。
直流无刷电机通过桥式电路实现电子换相,电机工作模式为三相六状态,MOSFET导通顺序为Q1Q5→Q1Q6→Q2Q6→Q2Q4→Q3Q4→Q3Q5。
系统通过调节上桥MOSFET的PWM占空比来实现速度调节。
Q1、Q5导通时,电流(Ion)由VDD经Q1、电机线圈、Q5流至地线,电机AB相通电。
Q1关闭、Q5导通时,电流经过Q5,Q4续流(IF),电机线圈中的电流基本维持不变。
Q1再次开通时,由于Q3体二极管的电荷恢复过程,体二极管不能很快关断,因此体二极管中会有反向恢复电流(Irr)流过。
由于Irr的变化很快,因此在Irr回路中产生很高的di/dt。
3 半桥驱动电路工作原理图2所示为典型的半桥驱动电路。
半桥驱动电路的关键是如何实现上桥的驱动。
图2中C1为自举电容,D1为快恢复二极管。
PWM在上桥调制。
当Q1关断时,A点电位由于Q2的续流而回零,此时C1通过VCC及D1进行充电。
当输入信号Hin开通时,上桥的驱动由C1供电。
由于C1的电压不变,VB 随VS的升高而浮动,所以C1称为自举电容。
每个PWM周期,电路都给C1充电,维持其电压基本保持不变。
半桥式开关电源设计.

半桥式开关电源设计摘要随着电子技术的高速发展,电子系统的应用领域越来越广,电子设备的种类也越来越多,电子设备与我们的工作、生活的关系日益密切。
近年来,随着功率电子器件(如IGBT、MOSFET)、PWM技术以及电源理论的快速发展,新一代的电源电路开始逐步取代传统的电源电路。
该电源电路具有体积小,控制灵活方便,输出特性好、纹波小、负载调整率高等显著优点。
由于开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,因此在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。
开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激式和单端反激式等形式。
本论文采用双端驱动集成电路——TL494输的PWM脉冲控制器设计音响设备供电电源,利用BJT管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。
关键词:TL494,PWM,半桥式电路,开关电源Design of Half Bridge Switching Power SupplyABSTRACTWith the rapid development of electronic technology, electronic systems, more and more extensive applications, the types of electronic equipment, more and more electronic equipment and people work and live closer and closer. In recent years, with the power electronic devices (such as IGBT, MOSFET), PWM switching power supply technology and development of the theory, a new generation of power began to gradually replace the traditional power supply circuits. The circuit is small, flexible to control the output characteristics of a good, ripple, load adjustment rate and so on.Switching power supply in the power adjustment control work in the off state, with low power consumption, high efficiency, wide voltage range, low temperature rise, and other outstanding advantages of small size, the communication equipment, CNC equipment, Instrumentation, video audio, home appliances so widely used in electronic circuits. High frequency converter switching power supply so many forms of commonly used with push-pull converter, full bridge, half bridge, single-ended forward and the form of single-ended flyback. In this thesis, two-side driver IC - TL494 PWM pulse output of the controller design car audio power supply in use as a switch MOSFET, can improve the efficiency of the power transformer, is conducive to impulse noise suppression, but also can reduce the size of the power transformer.KEY WORDS:TL494, PWM, Half bridge circuit, Switching power目录前言 (1)第1章开关电源基础技术 (2)1.1 开关电源概述 (2)1.1.1 开关电源的工作原理 (2)1.1.2 开关电源的构成 (3)1.1.3 开关电源的特点 (4)1.2 开关电源典型结构 (4)1.2.1 串联开关电源结构 (4)1.2.2并联开关电源结构 (5)1.2.3 正激式结构 (6)1.2.4 反激式结构 (7)1.2.5 半桥型结构 (8)1.2.6 全桥型结构 (9)1.3 开关电源的技术指标 (10)第2章半桥变换电路 (12)2.1 半桥变换电路工作原理 (12)2.2 半桥变换电路的应用 (13)2.3 半桥变换电路中应注意的问题 (14)2.3.1 偏磁问题 (15)2.3.2 用作桥臂的两个电容选用问题 (15)2.3.3直通问题 (16)2.3.4 半桥电路的驱动问题 (17)2.4 双极结型晶体管 (17)2.4.1结构和定义 (17)2.4.2 三极管的特性曲线 (19)第3章脉宽调制芯片TL494应用分析 (23)3.1 TL494管脚图 (23)3.2 TL494内部电路介绍 (23)3.3 TL494管脚功能及参数 (24)3.4 TL494脉宽调压原理 (26)第4章TL494在DC-DC变换中的应用 (28)4.1 音响设备电源简述 (28)4.2音响供电电路分析 (28)第5章PCB设计制作 (31)5.1 PCB的设计制作步骤 (31)5.2 注意事项 (33)5.2.1 特殊元件的布局 (33)5.2.2布线处理 (34)结论 (35)谢辞 (36)参考文献 (37)附录 (39)外文资料翻译 (40)前言电源是实现电能变换和功率传递的主要设备。
半桥式开关电源设计

半橋式開關電源設計摘要随着电子技术的高速发展,电子系统的应用领域越来越广,电子设备的种类也越来越多,电子设备与我们的工作、生活的关系日益密切。
近年来 ,随着功率电子器件(如IGBT、MOSFET)、PWM技术以及电源理论的快速发展 ,新一代的电源电路开始逐步取代传统的电源电路。
该电源电路具有体积小,控制灵活方便,输出特性好、纹波小、负载调整率高等显著优点。
由于開關電源中的功率調整管工作在開關狀態,具有功耗小、效率高、穩壓范圍寬、溫升低、體積小等突出優點,因此在通信設備、數控裝置、儀器儀表、視頻音響、家用電器等電GAGGAGAGGAFFFFAFAF子電路中得到廣泛應用。
開關電源的高頻變換電路形式很多, 常用的變換電路有推挽、全橋、半橋、單端正激式和單端反激式等形式。
本論文采用雙端驅動集成電路——TL494輸的PWM 脈沖控制器設計音響設備供電電源,利用BJT管作為開關管,可以提高電源變壓器的工作效率,有利于抑制脈沖干擾,同時還可以減小電源變壓器的體積。
關鍵詞:TL494,PWM,半橋式電路,開關電源GAGGAGAGGAFFFFAFAFDesign of Half Bridge Switching Power SupplyABSTRACTWith the rapid development of electronic technology, electronic systems, more and more extensive applications, the types of electronic equipment, more and more electronic equipment and people work and live closer and closer. In recent years, with the power electronic devices (such as IGBT, MOSFET), PWM switching power supply technology and development of the theory, a new generation of power began to gradually replace the traditional power supply circuits. The circuit is small,GAGGAGAGGAFFFFAFAFflexible to control the output characteristics of a good, ripple, load adjustment rate and so on.Switching power supply in the power adjustment control work in the off state, with low power consumption, high efficiency, wide voltage range, low temperature rise, and other outstanding advantages of small size, the communication equipment, CNC equipment, Instrumentation, video audio, home appliances so widely used in electronic circuits. High frequency converter switching power supply so many forms of commonly used with push-pull converter, full bridge, half bridge, single-ended forward and the form of single-ended flyback. In thisGAGGAGAGGAFFFFAFAFthesis, two-side driver IC - TL494 PWM pulse output of the controller design car audio power supply in use as a switch MOSFET, can improve the efficiency of the power transformer, is conducive to impulse noise suppression, but also can reduce the size of the power transformer.KEY WORDS: TL494, PWM, Half bridge circuit, Switching powerGAGGAGAGGAFFFFAFAF目錄前言 (1)第1章開關電源基礎技術 (2)1.1 開關電源概述 (2)1.1.1 開關電源的工作原理 (2)1.1.2 開關電源的構成 (3)1.1.3 開關電源的特點 (4)1.2 開關電源典型結構 (4)1.2.1 串聯開關電源結構 (4)1.2.2并聯開關電源結構 (5)1.2.3 正激式結構 (6)GAGGAGAGGAFFFFAFAF1.2.4 反激式結構 (7)1.2.5 半橋型結構 (8)1.2.6 全橋型結構 (9)1.3 開關電源的技術指標 (10)第2章半橋變換電路 (12)2.1 半橋變換電路工作原理 (12)2.2 半橋變換電路的應用 (13)2.3 半橋變換電路中應注意的問題 (14)2.3.1 偏磁問題 (15)2.3.2 用作橋臂的兩個電容選用問題 (15)2.3.3直通問題 (16)2.3.4 半橋電路的驅動問題 (17)GAGGAGAGGAFFFFAFAF2.4 雙極結型晶體管 (17)2.4.1 結構和定義 (17)2.4.2 三極管的特性曲線 (19)第3章脈寬調制芯片TL494應用分析 (23)3.1 TL494管腳圖 (23)3.2 TL494內部電路介紹 (23)3.3 TL494管腳功能及參數 (24)3.4 TL494脈寬調壓原理 (26)第4章 TL494在DC-DC變換中的應用 (28)4.1 音響設備電源簡述 (28)4.2音響供電電路分析 (28)第5章 PCB設計制作 (31)GAGGAGAGGAFFFFAFAF5.1 PCB的設計制作步驟 (31)5.2 注意事項 (33)5.2.1 特殊元件的布局 (33)5.2.2 布線處理 (34)結論 (35)謝辭 (36)參考文獻 (37)附錄 (39)外文資料翻譯 (40)GAGGAGAGGAFFFFAFAF前言電源是實現電能變換和功率傳遞的主要設備。
半桥拓扑结构高端MOSFET驱动方案选择变压器还是硅芯片

半桥拓扑结构高端MOSFET驱动方案选择变压器还是硅芯片在半桥拓扑结构中,驱动MOSFET的方案选择关系到功率转换效率、可靠性和成本等因素。
常见的两种方案包括使用变压器或硅芯片。
首先,变压器驱动方案是传统的方法之一、它通过变压器的耦合传递信号,驱动MOSFET的开关动作。
变压器驱动方案具有以下优点:1.高隔离性和电压传输能力:变压器可以提供良好的隔离性,将输入与输出电路隔离开,从而提高系统的安全性和可靠性。
此外,变压器还可以提供较高的电压传输能力,适用于高压或大功率应用。
2.适应性强:由于变压器可以降低或升高电压,所以可以适应不同的输入和输出电压要求。
这使得变压器驱动方案更加灵活,并且适用于不同的应用场景。
3.动态响应快:变压器驱动方案具有较高的动态响应能力,能够快速地响应输入信号的变化,提供快速而精确的开关动作。
然而,变压器驱动方案也存在一些缺点:1.复杂和体积较大:由于变压器本身需要占用相当大的空间,所以在一些空间受限的应用中,使用变压器驱动方案可能会存在困难。
2.成本较高:变压器的制造和安装相对复杂,需要专门的工艺和技术支持。
这通常会使变压器驱动方案的成本较高。
相比之下,硅芯片驱动方案是一种新的技术发展。
它通过硅芯片中的电路电子元件驱动MOSFET的开关动作。
硅芯片驱动方案具有以下优点:1.简单和体积小:由于硅芯片集成了多个电子元件和电路,所以硅芯片驱动方案相对简单,体积小,适用于空间受限的应用。
2.成本较低:与传统变压器驱动方案相比,硅芯片驱动方案的制造和安装成本较低,从而可以降低整体系统的成本。
3.高效和可靠:硅芯片驱动方案通常具有较高的转换效率和稳定性,能够提供稳定而可靠的开关动作。
然而,硅芯片驱动方案也存在一些挑战和限制:1.电压传输能力弱:硅芯片驱动方案通常不能提供较高的电压传输能力,适用于低电压和小功率应用。
2.隔离性较差:硅芯片驱动方案往往无法提供与变压器相同的隔离性能,从而可能影响系统的安全性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mosfet半桥驱动电路设计要领
近年来,MOSFET(金属氧化物半导体场效应晶体管)的驱动电路正受到越来越多的关注,由于它特有的优势,如低压驱动、高效率、容量高等,流行于电气和电子领域。
本文旨在研究MOSFET半桥驱动电路设计要领。
首先,MOSFET半桥驱动电路的基本原理应该建立起来,并要明确它的设计思想和控制要素。
MOSFET半桥驱动电路应分为两部分,驱动部分和控制部分。
其次,MOSFET半桥驱动电路的驱动部分应充分考虑电感等电路参数,结合电路的结构,把握它的驱动特性,并在设计中采用先进的工艺。
驱动部分的驱动电路应选择合适的参数,如供电电压、驱动能量、驱动电流或保护电压,以确保驱动信号质量。
此外,MOSFET半桥驱动电路的控制部分应按照驱动电路的工作状态,充分考虑反馈电路对驱动电路的影响,结合温度、可靠性等因素,设计合理的控制电路。
此外,还应根据系统的要求,采用有效的保护措施,以减少故障发生的几率。
最后,应根据实际情况,合理分配各电路的空间ε比较,以及电路中各元件的应力和温度分布,并对MOSFET半桥驱动电路的参数进行全面的测试和校验,确保其安全可靠。
综上所述,MOSFET半桥驱动电路设计要领应全面考虑电路工艺、参数和控制等因素,采取先进的设计思路,同时考虑空间ε比较、元件应力和温度分布等因素,以实现MOSFET半桥驱动电路的设计理念,
并对其参数进行充分的测试和校验,使其安全可靠。