初三中考数学限时训练测试.pdf
中考数学总复习选择填空30分钟限时训练(1-10)
中考数学总复习选择填空限时训练目录:中考数学总复习选择填空限时训练(1) 2——4中考数学总复习选择填空限时训练(2) 5——7中考数学总复习选择填空限时训练(3) 8——10中考数学总复习选择填空限时训练(4) 11——13中考数学总复习选择填空限时训练(5) 14——16中考数学总复习选择填空限时训练(6) 17——19中考数学总复习选择填空限时训练(7) 20——22中考数学总复习选择填空限时训练(8) 23——25中考数学总复习选择填空限时训练(9) 26——28中考数学总复习选择填空限时训练(10) 29——31参考答案32——35选择填空限时训练(一)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分) 1.-2的相反数是( ) A.12B .-2 C .2 D .-122.如图X 1-1,下面几何体的俯视图是( )图X 1-1图X 1-23.据统计,2015年广州地铁日均客运量约为6590000人次.将6590000用科学记数法表示为( )A .6.59³104B .659³104C .65.9³105D .6.59³1064.已知一组数据0,-1,1,2,3,则这组数据的方差为( ) A .0 B .1 C.2D .25.把不等式组⎩⎪⎨⎪⎧x>-1,x +2≤3的解表示在数轴上,下列选项正确的是( )图X 1-36.在Rt △ABC 中,两直角边的长分别为6和8,则其斜边上的中线长为( ) A .10 B .3 C .4 D .57.如图X 1-4,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =5,则AE 的长为( )X 1-4A .4B .6C .8D .108.已知关于x 的方程ax +b =0(a ≠0)的解为x =-2,点(1,3)是抛物线y =ax 2+bx +c (a ≠0)上的一个点,则下列四个点中一定在该抛物线上的是( )A .(2,3)B .(0,3)C .(-1,3)D .(-3,3)9.如图X 1-5,已知A ,B 是反比例函数y =kx(k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C ,动点P 从坐标原点O 出发,沿O →A →B →C 匀速运动,终点为C ,过运动路线上任意一点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是( )图X 1-5图X 1-610.如图X 1-7,正方形ABCD 的边长为6,点E ,F 分别在AB ,AD 上,若CE =3 5,且∠ECF =45°,则CF 的长为( )X 1-7A .2 10B .3 5C.5310D.1035二、填空题(本题有6小题,每小题4分,共24分)11.请写出一个解为x =1的一元一次方程:______________________.12.如图X 1-8是一个斜体的“土”字,AB ∥CD ,已知∠1=75°,则∠2=________°.X 1-813.为了了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如下表:则这15名同学每天睡眠时间的众数是________小时,中位数是________小时.14.如图X 1-9,将弧长为6π的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(粘连部分忽略不计),则圆锥形纸帽的底面圆半径是________.图X 1-9图X 1-1015.如图X 1-10,已知点B ,D 在反比例函数y =ax (a >0)的图象上,点A ,C 在反比例函数y =bx (b <0)的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的同侧,AB =4,CD =3,AB 与CD 间的距离为1,则a -b 的值是________.16.如图X 1-11,点A (2,0),以OA 为半径在第一象限内作圆弧AB ,使∠AOB =60°,点C 为弧AB 的中点,D 为半径OA 上一动点(不与点O ,A 重合),点A 关于直线CD 的对称点为E ,若点E 落在半径OA 上,则点E 的坐标为________;若点E 落在半径OB 上,则点E 的坐标为________.图X 1-11 加 加 练17.计算:||3-2+20170-(-13)-1+3tan30°+8.选择填空限时训练(二)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分)1.某小区经过改进用水设施,5年内小区居民累计节水39400吨,将39400用科学记数法表示为( )A .3.9³104B .3.94³104C .39.4³103D .4.0³1042.下列运算正确的是( ) A .(-3)2=-9 B .(-1)2015³1=-1C .-5+3=8 D .-|-2|=23.下列图形中,是轴对称图形但不是中心对称图形的是( ) A .等边三角形 B .平行四边形C .矩形 D .圆 4.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2²3ab 3=-3a 2b 5C.b a -b +a b -a =-1D.a 2-1a ²1a +1=-1 5.在⊙O 中,圆心O 到弦AB 的距离为AB 长度的一半,则弦AB 所对圆心角的大小为( ) A .30° B .45°C .60° D .90°6.用反证法证明命题:在一个三角形中,至少有一个内角不大于60°.证明的第一步是( )A .假设三个内角都不大于60°B .假设三个内角都大于60°C .假设三个内角至多有一个大于60°D .假设三个内角至多有两个大于60° 7.已知点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( ) A .AB 2=AC 2+BC 2 B .BC 2=AC ²BA C.BC AC =5-12 D.AC BC =5-128.从某市8所学校中抽取共1000名学生进行800米跑达标抽样检测.结果显示该市成绩达标的学生人数超过半数,达标率达到52.5%.如图X 2-1①、②反映的是本次抽样中的具体数据.根据数据信息,下列判断:①小学高年级被抽检人数为200人;②小学、初中、高中学生中高中生800米跑达标率最大;③小学生800米跑达标率低于33%;④高中生800米跑达标率超过70%.其中判断正确的有( )图X 2-1A .0个B .1个C .2个D .3个9.如图X 2-2,D 是等边三角形ABC 边AB 上的一点,且AD ∶DB =1∶2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE ∶CF =( )X 2-2A.45B.35C.56D.6710.若二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法:①b 2-4ac >0;②x =x 0是方程ax 2+bx +c =y 0的解;③x 1<x 0<x 2;④a (x 0-x 1)(x 0-x 2)<0.其中正确的结论是( )A .①③④B .①②④C .①②③D .②③ 二、填空题(本题有6小题,每小题4分,共24分)11.一组数据2,3,3,5,7的中位数是________;方差是________. 12.计算:2tan60°+(x -3)0-(12)-1=________.13.二次函数y =x 2+4x +5(-3≤x ≤0)的最大值是________,最小值是________. 14.当1<a <2时,代数式(a -2)2+|1-a |=________.15.如图X 2-3,已知点A 1,A 2,…,A n 均在直线y =x -1上,点B 1,B 2,…,B n 均在双曲线y =-1x 上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x轴,B n A n +1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若a 1=-1,则a 3=________,a 2015=________.X 2-316.如图X 2-4,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A ′MN ,连结A ′C ,则A ′C 长度的最小值是________.X 2-4加 加 练17.先化简:(3a +1-a +1)÷a 2-4a +4a +1,并从0,-1,2中选一个合适的数作为a 的值代入求值.选择填空限时训练(三)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分) 1.12的相反数是( )A .2 B .-2 C.12D .-122.下列汽车标志中,既是轴对称图形,又是中心对称图形的是( )图X 3-13.羊年除夕当天微信红包收发总量达80.8亿个,其中80.8亿用科学记数法可表示为( )A .8.08³108B .0.808³109C .8.08³109D .0.808³10104.下列运算正确的是( )A .x 2+x =x 3B .2x 2-x 2=1 C .x 2²x =2x 2D .x 6÷x 3=x 35.如图X 3-2,已知直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )X 3-2A .35°B .40°C .55°D .75°6.抛物线y =ax 2+bx +c 向左平移5个单位或向右平移1个单位后都会经过原点,则此抛物线的对称轴与x 轴的交点的横坐标是( )A .2B .-2C .3D .-37.如图X 3-3,AB 是⊙O 的弦,点C 在圆上,且∠OBA =40°,则∠C =( ) A .40° B .50° C .60° D .80°图X 3-3图X 3-48.如图X 3-4,直线y 1=12x +2与双曲线y 2=6x 交于A (2,m )、B (-6,n )两点.则当y 1<y 2时,x 的取值范围是( )A .x >-6或0<x <2B .-6<x <0或x >2C .x <-6或0<x <2D .-6<x <29.如图X 3-5,在平面直角坐标系xOy 中,A (-4,0),B (0,2),连结AB 并延长到C ,连结CO ,若△COB ∽△CAO ,则点C 的坐标为( )X 3-5A .(1,52)B .(43,83)C .(5,2 5) D .(3,2 3)10.如图X 3-6,对正方形纸片ABCD 进行如下操作:图X 3-6(1)过点D 任作一条直线与BC 边相交于点E 1(如图X 3-6①),记∠CDE 1=α1;(2)作∠ADE 1的平分线交AB 边于点E 2(如图X 3-6②),记∠ADE 2=α2;(3)作∠CDE 2的平分线交BC 边于点E 3(如图X 3-6③),记∠CDE 3=α3;按此作法从操作(2)起重复以上步骤,得到α1,α2,…,αn ,现有如下结论:①当α1=10°时,α2=40°;②2α4+α3=90°;③当α5=30°时,△CDE 9≌△ADE 10;④当α1=45°时,BE 2=2AE 2.其中正确的个数为( )A .1B .2C .3D .4二、填空题(本题有6小题,每小题4分,共24分) 11.分解因式:x 2-x =________.12.如图X 3-7,数轴上所表示的关于x 的不等式组的解为________.图X 3-713.从长度分别为1、3、5、7的四条线段中任选三条,能构成三角形的概率为________.14.如图X 3-8,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.图X 3-8图X 3-915.如图X 3-9,在△ABC 中,AB =2,BC =4,∠B =45°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,CD 的长为________.16.如图X 3-10,⊙O 是△ABC 的外接圆,BC 是⊙O 的直径,AB =AC ,∠ABC 的平分线交AC 于点D ,交⊙O 于点E ,连结CE .若CE =2,则BD 的长为________.图X 3-10 加 加 练17.(1)计算:12+2-1+⎪⎪⎪⎪⎪⎪-12; (2)化简:(a -3)2+3a (a +2).选择填空限时训练(四)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分)1.给出四个数:-1、0、2、3.14,其中为无理数的是( ) A .-1 B .0 C.2D .3.14 2.下列计算正确的是( )A .x 3+x 4=x 7B .x 3-x 4=x -1C .x 3²x 4=x 7D .x 3÷x 4=x3.如图X 4-1所示的支架是由两个长方体构成的组合体,则它的主视图是( )图X 4-1图X 4-24.如图X 4-3,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )A.12B.13C.14D.16图X 4-3图X 4-45.如图X 4-4,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=60°,则∠2等于( )A .130°B .140°C .150°D .160° 6.若a -b =2ab ,则1a -1b 的值为( )A .-2B .-12C.12D .27.若将直尺的0 cm刻度线与半径为5 cm的量角器的0°线对齐,并让量角器沿直尺的边缘无滑动地滚动(如图X4-5),则直尺上的10 cm刻度线对应量角器上的度数约为( )X4-5A.90° B.115°C.125° D.180°8.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:这次测试成绩的中位数和众数分别为( )A.47,49 B.48,49C.47.5,49 D.48,509.如图X4-6,在矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的平分线交AB 于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )图X4-6图X4-710.如图X4-8,已知在平面直角坐标系中,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点,直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E.设直线l1,l2,l3围成的三角形的面积为S1,直线l2,l3,l4围成的三角形的面积为S2,且S2=3S1,则∠BOA的度数为( )X4-8A.15° B.30°C.15°或30° D.15°或75°二、填空题(本题有6小题,每小题4分,共24分) 11.分解因式:a 2-4b 2=________.12.二次根式1-2x 中,x 的取值范围是________.X 4-913.如图X 4-9,把正三角形ABC 的外接圆对折,使点A 落在弧BC 的中点F 上,若BC =6,则折痕在△ABC 内的部分DE 的长为________.14.如图X 4-10,在边长为2的菱形ABCD 中,∠ABC =120°,E ,F 分别为AD ,CD 上的动点,且AE +CF =2,则线段EF 长的最小值是________.X 4-1015.如图X 4-11,一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…,若P (m ,2)在第3段抛物线C 3上,则m =________.X 4-1116.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a ,b 中较大的数,如:max {2,4}=4.按照这个规定,方程max {x ,-x }=2x +1x的解为________. 加 加 练17.(1)计算:(-3)2+|-4|³2-1-(2-1)0; (2)化简:x 2-2x +1x 2-1+1x +1.选择填空限时训练(五)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分) 1.2016的倒数是( )A .2016B .-2016 C.12016D .-120162.某地区轨道交通3号线于2015年12月23日开工建设,预计2020年全线开通,3号线全长32.83千米,32.83千米用科学记数法表示为( )A .3.283³104米 B .32.83³104米 C .3.283³105米 D .3.283³103米 3.下列运算中,正确的是( )A .2x +3y =5xyB .a 3-a 2=a C .a -(a -b )=-b D .(a -1)(a +2)=a 2+a -2 4.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )图X 5-15.下列说法正确的是( )A .两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B .某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C .学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D .为了解某市学校“阳光体育”活动开展情况,必须采用普查的方法6.小兵制作了一个正方体玩具,其展开图如图X 5-2所示,正方体中与“全”字所在的面正对的面上标的字是( )X 5-2A .文B .明C .城D .国7.如果一个正比例函数的图象经过不同象限的两点A (2,m )、B (n ,3),那么一定有( ) A .m >0,n >0 B .m >0,n <0C .m <0,n <0 D .m <0,n >08.如图X 5-3,在平行四边形ABCD 中,AB =3 cm ,AD =6 cm ,∠ADC 的平分线DE 交BC 于点E ,交AC 于点F ,CG ⊥DE ,垂足为G ,DG =323cm ,则EF 的长为( ) A.3cm B .2 cm C .1 cmD.233cm图X 5-3图X 5-49.如图X 5-4,用四个螺丝将四根不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为( )A .6B .7C .8D .910.已知二次函数y =x 2-2x -3,点P 在该函数的图象上,点P 到x 轴、y 轴的距离分别为d 1、d 2.设d =d 1+d 2,下列结论中:①d 没有最大值;②d 没有最小值;③-1<x <3时,d 随x 的增大而增大;④满足d =5的点P 有四个.其中正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题(本题有6小题,每小题4分,共24分) 11.若根式x -1有意义,则x 的取值范围是________.12.如图X 5-5,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2=________.图X 5-5图X 5-613.袋子中装有3个红球、5个黄球、2个白球,这些球除颜色外形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是________.14.如图X 5-6,在△ABC 中,∠CAB =60°,AB =4,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.15.如图X 5-7,点A 在双曲线y =kx 第一象限的图象上,AB ⊥y 轴于点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为________.图X5-7图X 5-816.如图X 5-8,点P (t ,0)(t >0)是x 轴正半轴上的一点,AB ︵是以原点为圆心,半径为1的圆的14,且A (-1,0),B (0,1),点M 是AB ︵上的一个动点,连结PM ,作直角三角形MPM 1(M 1在第一象限),并使得∠MPM 1=90°,∠PMM 1=60°,我们称点M 1为点M 的对应点.(1)设点A 和点B 的对应点为A 1和B 1,当t =1时,A 1的坐标为________;B 1的坐标为________.(2)当P 是x 轴正半轴上的任意一点时,点M 从点A 运动至点B ,则M 1的运动路径长为________.加 加 练17.(1)计算:(13)-1-|-2|+16-(3+1)0; (2)化简:ab +c a +b +a 2-c a +b .选择填空限时训练(六)(限时30分钟 满分54分)一、选择题(本题有10小题,每小题3分,共30分)1.下列实数中,是无理数的为( ) A .0 B .-13C.3D .3.142.2016年2月8日凌晨,随着春晚接近尾声,持续了许多天的支付宝“五福”集福活动宣告结束,支付宝官方宣布到活动截止时,有约79万个小伙伴集齐了五福,平分2.15亿现金红包.请将79万用科学记数法表示为( )A .7.9³104B .7.9³105C .79³104D .0.79³1063.下列运算正确的是( )A .(ab )3=a 3b B.-a -b a +b=-1C .a 6÷a 2=a 3 D .(a +b )2=a 2+b 24.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出红色笔芯的概率是( )A.23B.15C.25D.355.函数y =2-x 的自变量的取值范围是( ) A .x ≥0 B .x ≠2 C .x <2 D .x ≤26.如图X 6-1,已知⊙O 的半径为R ,C 、D 是直径AB 的同侧圆周上的两点,弧AC 的度数为100°,BC ︵=2BD ︵,动点P 在线段AB 上,则PC +PD 的最小值为( )A .R B.2R C.3R D.52R图X 6-1图X 6-27.抛物线y =x 2-3x +2与y 轴交点、与x 轴交点、及顶点连结而成的四边形的面积是( )A .1 B.98C .2 D.948.如图X 6-2,已知正方形ABCD 的边长为2,△BPC 是等边三角形,则PD 的长是( )A.7-4 3B .2-3C.3-2 D.8-4 39.如图X 6-3,AB 是半圆O 的直径,半径OC ⊥AB 于点O ,点D 是弧BC 的中点,连结CD 、AD 、OD ,给出以下四个结论:①∠DOB =∠ADC ;②CE =OE ;③△ODE ∽△ADO ;④2CD 2=CE ²A B.其中正确结论的序号是( )A .①③B .②④C .①④D .①②③图X 6-3图X 6-410.如图X 6-4,直线l 1:y =x +1与直线l 2:y =12x +12相交于点P (-1,0).直线l 1与y 轴交于点A.一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线l 2上的点B 1处后,改为垂直于x 轴的方向运动,到达直线l 1上的点A 1处后,再沿平行于x 轴的方向运动,到达直线l 2上的点B 2处后,又改为垂直于x 轴的方向运动,到达直线l 1上的点A 2处后,仍沿平行于x 轴的方向运动,…,按照此规律运动,动点C 依次经过点B 1,A 1,B 2,A 2,B 3,A 3,…,B 2014,A 2014,…,则当动点C 到达点A 2015处时,运动的总路径的长为( )A .20162B .22016-2C .22016+1 D .22015-1二、填空题(本题有6小题,每小题4分,共24分) 11.因式分解:x 2-4y 2=________.12.一组数据1,-2,x ,0的平均数是0,那么这组数据的中位数是________. 13.如图X 6-5所示,用一个半径为60 cm ,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为________cm.图X 6-5图X 6-614.如图X 6-6,在Rt △ABC 中,∠C =90°,AD 是∠CAB 的平分线,tan B =12,则CD ∶DB=________.15.如图X 6-7,已知动点A 在反比例函数y =kx(x >0)的图象上,AB ⊥x 轴于点B ,AC⊥y 轴于点C ,延长CA 至点D ,使AD =AC ,延长BA 至点E ,使AE =A B.直线DE 分别交x 轴,y 轴于点M ,N .若S △MON =18,则k 的值为________.图X 6-7图X 6-816.如图X 6-8,在平行四边形ABCD 中,以对角线AC 为直径的⊙O 分别交BC ,CD 于M ,N ,若AB =13,BC =14, CM =9,则MN 的长度为________.加 加 练17.解方程:2x -3=3x .选择填空限时训练(七)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分) 1.-2016的绝对值为( ) A .-2016 B .2016C .-12016D.120162.下列运算结果正确的是( )A.(-5)2=-5 B .(x 3)2=x 5C .x 6÷x 3=x 2D .(-14)-2=163.2016年1月21日开建的印尼雅万高铁是中国和印尼合作的重大标志性项目,这条高铁的总长为152 km ,其中“152 km ”用科学记数法可以表示为( )A .0.152³106m B .1.52³105m C .1.52³106m D .152³105m 4.下列调查中,最适宜采用全面调查方式(普查)的是( ) A .对某班学生进行6月5日是“世界环境日”知晓情况的调查 B .对某省中学生视力情况的调查 C .对某市中学生每天学习所用时间的调查 D .对某市初中学生课外阅读量的调查5.某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30,则这组数据的众数与中位数分别是( )A .30,27B .30,29C .29,30D .30,286.如图X 7-1,已知量角器的直径(0刻度线)与直角三角板ABC 的斜边重合,点P 是量角器的半圆弧上一动点,连结PC ,当∠PCB =70°时,点P 在量角器上对应的读数(大于0°且小于90°)是( )A .20° B .35° C .40° D .70°图X 7-1图X 7-27.如图X 7-2,已知点A 、B 、C 都在正方形网格的格点上,则sin ∠BAC 的值为( )A.53B.35C.33434D.534348.如图X 7-3,在三角形纸片ABC 中,AB =6,BC =8,AC =4.沿虚线剪下的涂色部分的三角形与△ABC 相似的是( )图X 7-3图X 7-49.如图X 7-5,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m ,3 3),反比例函数y =kx的图象与菱形对角线AO 交于D 点,连结BD ,当BD ⊥x 轴时,k 的值是( )A .6 3B .-6 3C .12 3D .-12 3图X 7-5图X 7-610.如图X 7-6,把两块同样大小的含30°角的三角板的直角重合并按如图X 7-6方式放在一起,已知AB =2,设P 是两块三角板的边DE 和AC 的交点,若三角板CDE 绕点C 沿顺时针方向旋转90°,则点P 所走过的路程一共是( )A .1 B.32C.3-1 D.3+12二、填空题(本题有6小题,每小题4分,共24分) 11.方程x 2-4=0的根是________.12.不等式组⎩⎪⎨⎪⎧2x -4≤x+2,x -3>0的解是________.13.一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同,现随机从袋中摸出两个球,颜色是一红一蓝的概率是________.14.如图X 7-7,已知在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为________.图X 7-7 图X 7-815.如图X 7-8,△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于________.16.如图X 7-9,点D 在等边三角形ABC 边CB 的延长线上,点E ,F 分别是边BC 和边AB 上的动点,连结EF ,以EF 为边构造等边三角形EFG ,连结DG .若DB =2,则DG 的最小值是________.图X 7-9加 加 练17.先化简,再求值:(1-1x )÷x -1x 2+2x ,其中x 请从-2,-1,1,2中选一个恰当的数.选择填空限时训练(八)(限时30分钟满分54分)一、选择题(本题共10小题,每小题3分,共30分)1.计算(-6)+5的结果是( )A.-11 B.11 C.-1 D.12.函数y=x-2中,自变量x的取值范围是( )A.x≠2 B.x≥2 C.x>2 D.x≥-23.在以下“绿色食品”、“节能减排”、“循环回收”、“质量安全”四个标志中,是轴对称图形的是( )图X8-14.如图X8-2是由4个相同的正方体搭成的几何体,则其俯视图是( )图X8-2图X8-35.一个不透明的布袋中有2个白球,3个黑球,除颜色外其他都相同,从中随机摸出一个球,恰好为黑球的概率是( )A.15B.25C.35D.456.如图X8-4,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于( )A.8 B.10 C.12 D.18图X8-4图X8-57.不等式2(x-1)≥x的解在数轴上表示为( )8.如图X8-6,已知D,E分别是△ABC的边AB,AC上的点,DE∥BC,且BD=3AD,那么AE∶AC等于( )A.2∶3 B.1∶2 C.1∶3 D.1∶4图X8-6图X8-79.如图X8-7,已知正方形ABCD的边长为1,分别以顶点A,B,C,D为圆心,1为半径画弧,四条弧交于点E,F,G,H,则图中阴影部分的外围周长为( )A.13π B.23π C.π D.43π10.把三张大小相同的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图X8-8①、②摆放,阴影部分的面积分别为S1和S2,则S1和S2的大小关系是( )图X8-8A.S1=S2 B.S1<S2 C.S1>S2 D.无法确定二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:ab-2a=________.12.已知一组数据:2,1,-1,0,3,则这组数据的中位数是________.13.在同一平面直角坐标系内,将函数y=2x2-3的图象向右平移2个单位,再向下平移1个单位后得到新图象的顶点坐标是________.14.如图X8-9,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是________.图X8-9图X8-1015.如图X 8-10,在平面直角坐标系中,直线y =kx +b 与x 轴,y 轴分别交于点A (4,0),B (0,2),点C 为线段AB 上任意一点,过点C 作CD ⊥OA 于点D ,延长DC 至点E 使CE =DC ,作EF ⊥y 轴于点F ,则四边形ODEF 的周长为________.16.如图X 8-11,已知AB ,CD 是⊙O 的两条相互垂直的直径,E 为半径OB 上一点,且BE =3OE ,延长CE 交⊙O 于点F ,线段AF 与DO 交于点M ,则DM MC的值是________.图X 8-11加 加 练17.(1)计算:8-2cos45°+(12)-1; (2)化简:a -b a +b +a +3ba +b .选择填空限时训练(九)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分) 1.2017的相反数是( )A .2017B .-2017C .12017D .-120172.下列运算正确的是( )A .3a 2-a 2=3 B .(a 2)3=a 5C .a 3²a 6=a 9D .(2a 2)2=4a 23.下列图案中,既是中心对称图形又是轴对称图形的是( )图X 9-14.已知⎩⎪⎨⎪⎧x =1,y =2是关于x ,y 的二元一次方程x -ay =3的一组解,则a 的值为( )A .1B .-1C .2D .-25.今年是猴年,在“猴年马月”和“猴头猴脑”这两个词语的八个汉字中,任选一个汉字是“猴”字的概率是( )A.18B.38C.58D.786.如图X 9-2,某登山运动员从营地A 沿坡角为30°的斜坡AB 到达山顶B ,如果AB =600 m ,那么他实际上升的高度BC 为( )A .300 3mB .1200 mC .300 mD .200 3m图X 9-2图X 9-37.把不等式组⎩⎪⎨⎪⎧2x -4≥0,6-x>3的解表示在数轴上,正确的是( )8.如图X9-4,圆弧形拱桥的桥顶到水面的距离CD为6 m,桥拱半径OC为4 m,则水面宽AB为( )A.3m B.2 3m C.4 3m D.6 3m图X9-4图X9-59.某几何体的三视图如图X9-5所示,其中主视图和左视图都是腰长为13 cm,底长为10 cm的等腰三角形,则这个几何体的侧面积是( )A.60π cm2 B.65π cm2 C.70π cm2 D.75π cm210.如图X9-6,已知顶点坐标为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是( )X9-6A.b2>4ac B.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-1C.ax2+bx+c≥-6D.若点(-2,m),(-5,n)在抛物线上,则m>n二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:a2-1=________.12.如图X9-7,三角板的直角顶点在直线l上,且∠1=55°,则∠2的度数是________.图X9-7图X9-813.若一组数据2,-1,0,2,-1,a的众数为2,则这组数据的平均数为________.14.如图X9-8,在▱ABCD中,已知AD=8 cm,AB=6 cm,DE平分∠ADC交BC边于点E,则BE 等于________.15.如图X 9-9,一次函数y =kx +3的图象分别与x 轴,y 轴交于点N ,M ,与反比例函数y =3x(x >0)的图象交于点A ,若AM ∶MN =2∶3,则k =________.图X 9-9图X 9-1016.如图X 9-10,在平面直角坐标系中,直线y =-34x +3与x 轴交于点A ,与y 轴交于点B.点Q 在直线AB 上,点P 在x 轴上,且∠OQP =90°.(1)当点P 与点A 重合时,点Q 的坐标为________; (2)设点P 的横坐标为a ,则a 的取值范围是________.加 加 练17.计算:sin30°-12+||-2-(13)0.选择填空限时训练(十)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分) 1.2的相反数是( ) A.12B .2 C .-2 D .-122.资料显示,2016年“五²一”全国实现旅游收入约463亿元,用科学记数法表示463亿这个数是( )A .463³108B .4.63³108C .4.63³1010D .0.463³10113.下列电视台图标中,属于中心对称图形的是( )图X 10-1图X 10-24.函数y =12x -3中,自变量x 的取值范围为( )A .x >32B .x ≠32C .x ≠32且x ≠0 D.x <325.如图X 10-2,在▱ABCD 中,AD =6,AB =4,DE 平分∠ADC 交BC 于点E ,则BE 的长是( )A .2B .3C .4D .56.如图X 10-3是一个正方体被截去一角后得到的几何体,它的俯视图是( )图X 10-3图X 10-47.若x >y ,则下列式子中错误的是( )A .x -3>y -3B .x +3>y +3C .-3x >-3y D.x 3>y 38.如图X10-5,直线l1∥l2,以直线l1上的点A为圆心,适当长为半径画弧,分别交直线l1,l2于点B,C,连结AC,B C.若∠ABC=67°,则∠1=( )X10-5A.23° B.46°C.67° D.78°9.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表.从平均价格看,谁买的比较划算( )A.一样划算 B.小菲划算C.小琳划算 D.无法比较10.如图X10-6,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为( )图X10-6图X10-7二、填空题(本题有6小题,每小题4分,共24分)11.因式分解:2a2-4a=________.12.用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的底面圆半径为________.13.五一劳动节期间,某服装店开展优惠酬宾活动,广告如图X10-8所示,请你把广告牌补充完整,原价是________元.图X 10-8图X 10-914.如图X 10-9,已知第一象限内的点A 在反比例函数y =1x的图象上,第二象限的点B 在反比例函数y =k x的图象上,且OA ⊥OB ,∠A =30°,则k 的值为________.15.如图X 10-10,在边长相同的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AC ,BD 相交于点P ,则tan ∠APD 的值是________.图X 10-10图X 10-1116.如图X 10-11,一次函数y =-x +1的图象与x 轴、y 轴分别交于点A ,B ,点C 在y 轴的正半轴上,且OC =3.在直线AB 上有一点P ,若满足∠CPB >∠ACB ,则点P 横坐标x 的取值范围是________.加 加 练17.计算:(12)-2-(3-2)0+2sin30°+||-3.参考答案中考数学总复习选择填空限时训练(1)1.C 2.A 3.D 4.D 5.B6.D 7.C 8.D 9.B 10.A 11.x-1=0(答案不唯一) 12.10513.8 8 14.3 15.12 16.(23-2,0) (3-1,3-3)加加练17.解:原式=2-3+1-(-3)+3³33+22=6+2 2.中考数学总复习选择填空限时训练(2)1.B 2.B 3.A 4.C 5.D6.B 7.C 8.C 9.A 10.B11.3 3.2 12.23-1 13.5 114.1 15.122 16.7-1加加练17.解:原式=-a+2a-2,当a=0时,原式=1.中考数学总复习选择填空限时训练(3)1.D 2.C 3.C 4.D 5.B6.A 7.B 8.C 9.B 10.D11.x(x-1) 12.-2≤x<113.1414.7 15.4-2 2 16.2 2加加练17.解:(1)原式=23+12+12=23+1.(2)原式=a2-6a+9+3a2+6a=4a2+9.中考数学总复习选择填空限时训练(4)1.C 2.C 3.D 4.A 5.C6.A 7.B 8.B 9.D 10.D11.(a+2b)(a-2b) 12.x≤1213.4 14. 3 15.7或816.x=1+2或x=-1 加加练17.解:(1)原式=3+4³12-1=3+2-1=4.(2)原式=(x-1)2(x+1)(x-1)+1x+1=x-1x+1+1x+1=xx+1.中考数学总复习选择填空限时训练(5)1.C 2.A 3.D 4.A 5.C6.B 7.C 8.A 9.D 10.B11.x≥1 12.28°13.31014.4 15.16316.(1)A1(1,23) B1(1+3,3) (2)32π加加练17.解:(1)原式=3-2+4-1=4.(2)原式=ab+c+a2-ca+b=a(b+a)a+b=a.中考数学总复习选择填空限时训练(6)1.C 2.B 3.B 4.D 5.D6.C 7.B 8.D 9.C 10.B11.(x+2y)(x-2y) 12.0.513.25 14.5515.4 16.18013加加练解:方程两边同乘x(x-3),得2x=3(x-3),解得x=9.检验:当x=9时,x(x-3)≠0.所以,原方程的解为x=9.中考数学总复习选择填空限时训练(7)1.B 2.D 3.B 4.A 5.B6.C 7.D 8.C 9.D10.A [解析] 在旋转过程中P点先从E点开始向C点运动,当DE⊥AC时P点离C点最近,此时运动的路程为1-32,继续旋转时点P向A点运动,直至到达A点,运动路程为32,所以点P一共走过的路程为1-32+32=1,故选A.11.x=±212.3<x≤613.2314.(4,4) 15.2-116. 3 [解析] 如图,连结BG,过点F作FH∥AC,交BC于H,易证得△FGB≌△FEH,所以∠GBF=∠EHF=60°,所以∠GBD=60°,即G是∠ABD平分线上的一个动点,所以当DG⊥BG时,DG取到最小值,最小值为BD²sin60°=2³32= 3.加加练解:原式=x-1x÷x-1x2+2x=x-1x³x(x+2)x-1=x+2,∵x≠1,-2,∴x可取-1或2.当x=2时,原式=2+2=4.(或当x=-1时,原式=-1+2=1) 中考数学总复习选择填空限时训练(8)1.C 2.B 3.A 4.A 5.C6.C 7.C 8.D 9.B 10.A11.a(b-2) 12.1 13.(2,-4)14.70°15.8 16.1 4加加练解:(1)原式=22-2³22+2=2+2.(2)原式=a-b+a+3ba+b=2a+2ba+b=2(a+b)a+b=2.中考数学总复习选择填空限时训练(9)1.B 2.C 3.B 4.B 5.B6.C 7.A 8.C 9.B 10.D11.(a-1)(a+1) 12.35°13.2314.2 cm 15.10316.(1)(3625,4825) (2)a≥3或a≤-12加加练17.解:原式=12-23+2-1=32-2 3.中考数学总复习选择填空限时训练(10)1.C 2.C 3.D 4.B 5.A6.A 7.C 8.B 9.C 10.B11.2a(a-2) 12.2 13.25014.-1315.2 16.-4<x<2且x≠0加加练17.解:(12)-2-(3-2)0+2sin30°+||-3=4-1+1+3 =7.。
2020年福建省九年级数学中考专题训练(pdf版,无答案)
4.某商店销售 A 型和 B 型两种电脑,其中 A 型电脑每台的利润为 400 元, B 型电脑每台的利润为 500 元.该商店计划再一次性购进两种型号的电脑共 100 台,其中 B 型电脑的进货量不超过 A 型电 脑的 2 倍,设购进 A 型电脑 x 台,这 100 台电脑的销售总利润为 y 元. (1)求 y 关于 x 的函数关系式; (2)该商店购进 A 型、 B 型电脑各多少台,才能使销售总利润最大,最大利润是多少? (3)实际进货时,厂家对 A 型电脑出厂价下调 a ( 0 a 200 )元,且限定商店最多购进 A 型电
(二)巩固训练
1.直线 y = 1 x 与双曲线 y = k ( k 0 ,x 0 )交于点 A ,将直线 y = 1 x 向上平移 2 个单位长度
2
x
2
后,与 y 轴交于点 C ,与双曲线交于点 B ,若 OA = 3BC ,则 k 的值为____.
2.如图,点 A ,D 在反比例函数 y = m( m 0 )的图象上,点 B ,C 在反比例函数 y = n ( n 0 )
(2)求改变后得到的矩形面积的最大值.
3.某销售商准备采购一批丝绸,经调查,用 10000 元采购 A 型丝绸的件数与用 8000 元采购 B 型丝 绸的件数相等,一件 A 型丝绸进价比一件 B 型丝绸进价多 100 元. (1)求一件 A 型、 B 型丝绸的进价; (2)若销售商购进 A 型、 B 型丝绸共 50 件,其中 A 型的件数不大于 B 型的件数、且不少于 16 件, 设购进 A 丝绸 m 件.已经 A 型的售价是 800 元/件,销售成本为 2n 元/件;B 型的售价为 600 元/件, 销售成本为 n 元/件.如果 50 n 150 ,求销售这批丝绸的最大利润 w (元)与 n (元)的函数关
中考数学选择填空限时训练(一)
)E Al)( )DL B T C Mx)A. (2 , 3) B5 •把不等式组8已知关于 该抛物线上的是( B10 .如图 X 1 - 7 A. 4 B . 6 C . 8 D . 10(0 , 3) C . ( -1 , 3) D . ( -3, 3)图 X 1- 4匀速运动,终点为 C,过运动路线上任意一点 P 作PMLx 轴于M PNLy 轴于N,设四边形OMP 的面积为S, P 点运动的时间为 于t 的函数图象大致是B图 X 1-6图 X 1- 5( )则AE 的长为(( )图 X 1- 7正方形ABCD 勺边长为6,点E,7.如图X 1-4,在?ABC [中,用直尺和圆规作/ BAD 勺平分线AG 交BC 于点E 若BF = 6, AB= 5A. 10 B . 3 C . 4 D . 5t ,则S 关-io-i B 图 X 1-3A. 0 B . 1 C. .2 D . 2 x> — 1 ,的解表示在数轴上,下列选项正确的是x + 2<36•在Rt △ ABC 中,两直角边的长分别为 6和8,则其斜边上的中线长为 A. 2 ,10 B . 3k9•如图X 1 -5,已知AB 是反比例函数y = x (k >0,x >0)图象上的两点,BC" x 轴,交y 轴于点C 动点P 从坐标原点0出发,沿 x 的方程ax + b = 0(a ^0)的解为x =- 2,点(1 , 3)是抛物线y =ax 2 + bx + c (a ^0)上的一个点,则下列四个点中一定在)6590000人次.将6590000用科学 D . 6.59 X 10 65 C. | ■ 10 D. 10 52. 如图X 1- 1,下面几何体的俯视图是(3. 据统计,2015年广州地铁日均客运量约为 记数法表示为( )A . 6.59 X 104 B . 659 X 1044•已知一组数据0,— 1, 1 , 2, 3,则这组数据的方差为( A.2 B . - 2 C . 2 D . - 1C . 65.9 X 105 F 分另U 在AB AD 上,若CE= 3砺,且/ EC = 45°, _则CF 的长为(选择填空限时训练(一)(限时30分钟 满分54分) -、选择题(本题共10小题,每小题3分,共30分)1 .-2的相反数是()二、填空题(本题有6小题,每小题4分,共24分)11 •请写出一个解为x= 1的一元一次方程: ________12 .如图X1 - 8是一个斜体的“土”字,AB// CD已知/ 1 = 75°,则/2= ____________图X1- 813 •为了了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如下表:每天睡眠时间(单位:小时)77.588.59人数24531则这1514. 如图X1 -9,将弧长为6 n的扇形纸片AOB S成圆锥形纸帽,使扇形的两条半径0A与0B重合(粘连部分忽略不计),则圆锥形纸帽的底面圆半径是 _________ .a b15. 如图X1 -10,已知点B D在反比例函数y=-(a>0)的图象上,点A, C在反比例函数y = -(b<0)的图象上,AB// CD// x轴,ABX —AB= 4, CD= 3, AB与CD间的距离为1,贝U a- b的值是 ______16. _______________________________________________________________________________ 如图X1 - 11,点A(2 , 0),以0A为半径在第一象限内作圆弧AB使/ A0= 60°,点C为弧AB的中点,D为半径0A上一动点(不与点0 A重合),点A关于直线CD的对称点为E若点E落在半径0A上,则点E的坐标为______________________________________________________________ ;若点E落在半径0B上,则点E的坐标为_________ .计算:1| 3-2| + 20170-( -3) -1+ 3tan30 ° +8.CD在—轴的同侧,图X1- 10参考答案1. C 2.A 3.D 4.D 5.B6. D7.C8.D9.B 10.A11.x - 1 = 0(答案不唯一)12.10513. 8 8 14.3 15.1216. (2 3 - 2, 0) (.3 - 1, 3 - 3)加加练解:原式=2- .3+ 1 -( -3) +3X。
杭州市九年级数学中考总复习限时训练24(PDF版)(解直角三角形含答案)
九年级数学总复习限时训练24 姓名(解直角三角形)1.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=( )A.B.1 C.D.2.在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值( )A.都扩大两倍B.都缩小两倍C.不变 D.都扩大四倍3.在△ABC中,∠C=90°,BC:AC=1:2,则cosA=( )A.2 B. C.D.4.若锐角α满足cosα<且tanα<,则α的范围是( )A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°5.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数是( )A.45°B.60°C.75°D.105°6.在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则的值为( )A.B.C.1 D.7.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为( )A.B.C.D.8.(规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny.据此判断下步列等式成立的共有( )①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinxcosx;④sin(x﹣y)=sinx﹣cosy﹣cosx﹣siny.A.1个B.2个C.3个D.4个9.如图,为安全起见,萌萌拟加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB的长为3m,点D、B、C在同一水平地面上,那么加长后的滑梯AD的长是( )A.2B.2C.3D.3m10.已知α为锐角,则sinα的值不可能为( )A.B.C.D.211.在△ABC中,已知∠A,∠B都是锐角,且sinA=,tanB=1,则∠C的度数为( )A.75°B.105°C.60°D.45°12.在三角形ABC中,∠C为直角,sinA=,则tanB的值为( )A.B.C.D.13.在△ABC中,A,B都是锐角,且sinA=,tanB=,AB=8,则AB边上的高为( )A.4 B.8C.16D.2414.在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C的度数为( )A.30°B.45°C.60°D.75°15.在△ABC中,∠B=45°,∠C=60°,BC边上的高AD=3,则BC的长为( )A.3+3B.3+C.2+D.+16.计算sin245°+cos30°•tan60°,其结果是( )A.2 B.1 C.D.17.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A.1,2,3 B.1,1,C.1,1,D.1,2,18.如图,在Rt△ABC中,D是AB的中点,BC=5,AC=12,则sin∠DCA的值为( )A.B.C.D.19.在Rt△ABC中,∠C=90°,cosA=,则tanB等于( )A.B.C.D.220.如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为( )A.cm2B.cm2C.cm2D.cm221.小明在学习“锐角三角函数”中发现,将如图的含30°(∠BAC)角的直角三角形纸片ABC沿过点A的直线折叠,使点C落在AB上的点D处,这样就可以求出75°角的正切值是( )A.2﹣B.2+C.2.5 D.22.如图,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,则AD:DC=( )A.B.C.﹣l D.﹣l23.如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.24.由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC中∠A=30°,tanB=,AC=,求AB的长”.这时小明去翻看了标准答案,显示AB=10.你能否帮助小明通过计算说明污渍部分的内容是什么?25.如图,在Rt△ABC中,已知∠C=90°,,AC=8,D为线段BC上一点,并且CD=2.(1)求BD的值;(2)求cos∠DAC的值.参考答案1.A.2.C.3.B.4.B.5.C.6.C.7.B8.B.9.C.10.D.11.B.12.C.13.A.14.B.15.B.16.A.17.D.18.B.19.C.20.D.21.B.22.D.23.解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.24.解:作CH⊥AB于H,Rt△ACH中,CH=AC•sinA,=4×sin30°,=2,AH=AC•cosA,=4×cos30°,=6,∴BH=AB﹣AH=4,∴tanB==,∴污渍部分内容内为.25.(1)在Rt△ABC中,sinB==,∵AC=8,∴AB=10,BC===6,又∵BD=BC﹣CD,CD=2,∴BD=6﹣2=4;(2)在Rt△ACD中,∵AD===2,∴cos∠DAC===.。
中考数学第一轮专题限时训练精选试题及答案
2015年中考数学一轮复习资料毛坦厂中学叶集分校皖西当代中学二零一四年十月坚持到底,三载拼搏终有回报决胜中考,父母期盼定成现实序言第一轮复习的目的第一轮复习的目的是要“过三关”:(1)过记忆关。
必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。
要求学生记牢认准所有的公式、定理,特别是平方差公式、完全平方和、差公式,没有准确无误的记忆。
要求学生用课前5 ---15分钟的时间来完成这个要求,有些内容重点串讲。
(2)过基本方法关。
如,待定系数法求函数解析式,过基本计算关:如方程、不等式、代数式的化简,要求人人能熟练的准确的进行运算,这部分是决不能丢。
(3)过基本技能关。
如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。
做到对每道题要知道它的考点。
基本宗旨:知识系统化,练习专题化。
2、具体要求与做法:(1)认真阅读考纲,搞清课本上每一个概念,公式、法则、性质、公理、定理。
重视教材的基础作用和示范作用。
抓基本概念的准确性;抓公式、定理的熟练和初步应用;抓基本技能的正用、逆用、变用、连用、巧用;能准确理解教材中的概念;能独立证明书中的定理;能熟练求解书中的例题;能说出书中各单元的作业类型;能掌握书中的基本数学思想、方法,做到基础知识系统化,基本方法类型化,解题步骤规范化(2)抓住基本题型,学会对基本题目进行演变,如适当改变题目条件,改变题目问法等。
(3)初中数学教材中出现的数学方法有:换元法、配方法、图象法、解析法、待定系数法、分析法、综合法、分析综合法、反证法、作图法。
这些方法要按要求灵活运用。
因此复习中针对要求,分层训练,避免不必要的丢分,从而形成明晰的知识网络和稳定的知识框架。
研读课标(特别注意课标中可操作性语言,对“了解”“理解”“掌握”“灵活应用”等做出具体界定),以课本为依据,不扩展范围和提高要求.据课本内容将有关的概念、公式、法则、定理及基本运算、基本推理,基本作图,基本技能和方法等形成合理的知识网络结构,通过网络结构,体现知识发生、发展的过程,体现知识的联系,体现知识的应用功能,做到遗漏的知识要补充;模糊的概念要明晰;零散的内容要整合;初浅的理解要深化,要关注基础知识和基本技能的训练,关注“双基”所蕴涵的数学本质及其在具体情况中的合理应用.(4)防范错误。
九年级数学限时练试卷
培优限时训练数学试题(一)一、选择题(本大题共1小题,共3.0分)1.如图,锐角三角形ABC中,BC=6,BC边上的高为4,直线MN交边AB于点M,交AC于点N,且MN∥BC,以MN为边作正方形MNPQ,设其边长为x(x>0),正方形MNPQ与△ABC公共部分的面积为y,则y与x的函数图象大致是()A. B C D二、填空题(本大题共1小题,共3.0分)2.如图,在Rt△ABC中,AB=3,BC=4,点P为AC上一点,过点P作PD⊥BC于点D,将△PCD沿PD折叠,得到△PED,连接AE.若△APE为直角三角形,则PC=______.三、解答题(本大题共3小题,共24.0分)3.直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.4.如图1,在△ABC中,AB=AC=2,∠BAC=120°,点D、E分别是AC、BC的中点,连接DE.探索发现:(1)图1中,的值为______;的值为______.(2)据图2探究:若将△CDE绕点C逆时针方向旋转一周,在旋转过程中的大小有无变化?请证明(3)问题解决:当△CDE旋转至A,D,E三点共线时,直接写出线段BE的长.0),C(0,2)三点,直线y=kx+t经过B、C两点,点D是抛物线上一个动点,过点D作y轴的平行线,与直线BC相交于点E.(1)求直线和抛物线的解析式;(2)当点D在直线BC下方的抛物线上运动,使线段DE的长度最大时,求点D 的坐标;(3)点D在运动过程中,若使O、C、D、E为顶点的四边形为平行四边形时,请直接写出满足条件的所有点D的坐标.答案和解析1.【答案】D【解析】解:作AD⊥BC于D点,交MN于E点,公共部分分为三种情形:①在三角形内;②刚好一边在BC上,此时为正方形;③正方形有一部分在三角形外,此时为矩形.①②情况中0<x≤2.4,公共部分是正方形时的面积,∴y=x2,③是2.4<x<6,公共部分是矩形时如图所示:作AD⊥BC于D点,交MN于E点,设DE=a,∵MN∥BC,∴=,即=,∴ED=4-x,∴y=x(4-x)=-x2+4x,∴y与x的函数图象大致是D,故选:D.根据题意画出符合的两种情况:分别求出函数的解析式,再判断图象即可.本题考查了相似三角形的判定与性质,矩形的对边平行且相等,正方形的对边平行且相等的性质,根据相似三角形的对应高的比等于对应边的比列出比例式是解题的关键.2.【答案】【解析】解:当∠AEP=90°时,设PC=x,在Rt△PDC中,sinC=,cosC=,所以PD=,CD=.∵△PCD沿PD折叠,得到△PED,∴DE=CD=.∴BE=BC-CE=4-=.在△ABE和△EDP中,∠B=∠PDE,∠BAE+∠AEB=90°,∠PED+∠AEB=90°,∴∠BAE=∠PED.∴△ABE∽△EPD.∴,即,解得x=.故答案为.当∠AEP=90°时,设PC=x,根据相似三角形的性质或三角函数用x表示出PD、DC、DE,证明△ABE∽△EPD,列比例式求出x即可.本题主要考查折叠的性质、勾股定理、相似三角形的判定和性质及解直角三角形.3.【答案】解:(1)∵点A(m,4)和点B(8,n)在y=图象上,∴m==2,n==1,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入y=kx+b中得解得:,所以直线AB的解析式为:y=-x+5;(2)由图象可得,当x>0时,kx+b>的解集为2<x<8.(3)由(1)得直线AB的解析式为y=-x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==5∵A(2,4),∴AD==4设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10-a由∠CDO=∠ADP可得①当△COD∽△APD时,,∴,解得a=2,故点P坐标为(2,0)②当△COD∽△PAD时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【解析】(1)将点A,B坐标代入双曲线中即可求出m,n,最后将点A,B坐标代入直线解析式中即可得出结论;(2)根据点A,B坐标和图象即可得出结论;(3)先求出点C,D坐标,进而求出CD,AD,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论.此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.4.【答案】【解析】解:(1)如图1,连接AE,∵AB=AC=2,点E分别是BC的中点,∴AE⊥BC,∴∠BEC=90°,∵AB=AC=2,∠BAC=120°,∴∠B=∠C=30°,在Rt△ABE中,AE=AB=1,根据勾股定理得,BE=∵点E是BC的中点,∴BC=2BE=2,∴==,∵点D是AC的中点,∴AD=CD=AC=1,∴==,故答案为:,;(2)无变化,理由:由(1)知,CD=1,CE=BE=,∴=,,∴=,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,(3)当点D在线段AE上时,如图2,过点C作CF⊥AE于F,∠CDF=180°-∠CDE=60°,∴∠DCF=30°,∴DF=CD=,∴CF=DF=,在Rt△AFC中,AC=2,根据勾股定理得,AF==,∴AD=AF+DF=,由(2)知,,∴BE=AD=当点D在线段AE的延长线上时,如图3,过点C作CG⊥AD交AD的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴DG=CD=,∴CG=DG=,在Rt△ACG中,根据勾股定理得,AG=,∴AD=AG-DG=,由(2)知,,∴BE=AD=即:线段BE的长为或.(1)先判断出∠AEB=90°,再判断出∠B=30°,进而的粗AE,再用勾股定理求出BE,即可得出结论;(2)先判断出=,进而得出△ACD∽△BCE,即可得出结论;(3)分点D在线段AE上和AE的延长线上,利用含30度角的直角三角形的性质和勾股定理,最后用线段的和差求出AD,即可得出结论.此题是相似形综合题,主要考查了等腰三角形的性质,含30度角的直角三角形的性质,勾股定理,相似三角形的判定和性质,构造出直角三角形是解本题的关键.5.【答案】解:(1)把点B(4,0),C(0,2)代入直线y=kx+t,得:,解得,∴y=-x+2;把点A(1,0)、B(4,0),C(0,2)代入y=ax2+bx+c,得:,解得,∴y=x2-x+2;(2)设点D坐标为(m,m2-m+2),E点的坐标为(m,-m+2),∴DE=(-m+2)-(m2-m+2)=-m2+2m=-(m-2)2+2,∴当m=2时,DE的长最大,为2,当m=2时,m2-m+2=-1,∴D(2,-1);(3)①当D在E下方时,如(2)中,DE=-m2+2m,OC=2,OC∥DE,∴当DE=OC时,四边形OCED为平行四边形,则-m2+2m=2,解得m=2,此时D(2,-1);②当D在E上方时,DE=(m2-m+2)-(-m+2)=m2-2m,令m2-2m=2,解得m=2,∴此时D(2+2,3-)或(2-2,3+),综上所述,点D的坐标是(2,-1)或(2+2,3-)或(2-2,3+)时,都可以使O、C、D、E为顶点的四边形为平行四边形.【解析】(1)利用待定系数法求解可得;(2)设点D坐标为(m,m2-m+2),则E点的坐标为(m,-m+2),由DE=(-m+2)-(m2-m+2)=-m2+2m=-(m-2)2+2可得答案;(3)分点D在DE上方和下方两种情况,用m的代数式表示出DE的长度,依据DE=2得出关于m的方程,解之可得.本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式,二次函数的性质及平行四边形的判定与性质等知识点.。
(中考冲刺)中考数学考点解答题限时训练
中考数学考点解答题限时训练1【有理数】1.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.2.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?3.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.4.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期一二三四五每股涨跌(元)+2﹣0.5+1.5﹣1.8+0.8根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?5.先阅读下面的材料,再解答后面的各题:现代社会对保密要求越来越高,密码正在成:为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q、W、E、…、N、M这26个字母依次对应1,2,3…25,26这26个自然数(见下表):Q W E R T Y U I O P A S D12345678910111213F G H J K L Z X C V B N M14151617181920212223242526给出一个变换公式:将明文转换成密文,如:4⇒,即R变为L.11⇒,即A变为S.将密文转换成明文,如:21⇒3×(21﹣17)﹣2=10,即X变为P13⇒3×(13﹣8)﹣1=14,即D变为F.(1)按上述方法将明文NET译为密文;(2)若按上述方法将明文译成的密文为DWN,请找出它的明文.【无理数与实数】6.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣17.计算:2﹣1+tan45°﹣|2﹣|+÷.8.如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.(1)求m的值;(2)求|m﹣1|+(m+6)0的值.9.设a,b是任意两个实数,规定a与b之间的一种运算“⊕”为:a⊕b=,例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2=﹣5,(x2+1)⊕(x﹣1)=(因为x2+1>0)参照上面材料,解答下列问题:(1)2⊕4=,(﹣2)⊕4=;(2)若x>,且满足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.10.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【代数式】11.观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.12.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.13.先观察下列等式,然后用你发现的规律解答下列问题.……(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.14.观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.15.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.【整式】16.先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.17.某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.18.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:19.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5356891227 d(x)3a﹣b+c2a﹣b a+c1+a﹣b﹣c3﹣3a﹣3c4a﹣2b3﹣b﹣2c6a﹣3b20.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【因式分解】21.因式分解:mx2﹣my2.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.23.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.24.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.25.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【分式】26.先化简,再求值:(1﹣)÷,其中m=2+.27.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.28.化简•﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.29.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.30.在解题目:“当x=1949时,求代数式的值”时,聪聪认为x只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理由.【二次根式】31.先化简,再求值:,其中.32.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.33.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a =,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?34.先化简,后求值:,其中,.35.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.【一元一次方程】36.解方程:﹣=1.37.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?38.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.39.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?40.如图,在矩形ABCD中,AB=12cm,BC=6cm.点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?中考数学考点解答题限时训练2【二元一次方程组】1.解方程组.2.根据图中的信息,求梅花鹿和长颈鹿现在的高度.3.若关于x、y的二元一次方程组的解满足x+y>﹣,求出满足条件的m的所有正整数值.4.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.5.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:地点票价历史博物馆10元/人民俗展览馆20元/人(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?【一元二次方程】6.已知关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2﹣17=0,求m的值.7.若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.8.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?9.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.10.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.【分式方程】11.解方程:=.12.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?13.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?14.某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?15.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?【不等式(组)】16.解不等式+1>x﹣3.17.如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在.A.点A的左边B.线段AB上C.点B的右边18.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.19.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)A B第一次2155第二次1365根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.20.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【平面直角坐标系】21.某市有A,B,C,D四个大型超市,分别位于一条东西走向的平安大路两侧,如图所示,请建立适当的直角坐标系,并写出四个超市相应的坐标.22.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.23.已知:如图,矩形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A坐标为(0,3),∠OAB=60°,以AB为轴对折后,使C点落在D点处,求D点坐标.24.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.25.如图,在直角坐标系中,点A的坐标为(﹣4,0),点C为y轴上一动点,连接AC,过点C作CB⊥AC,交x轴于B.(1)当点B坐标为(1,0)时,求点C的坐标;(2)如果sin A和cos A是关于x的一元二次方程x2+ax+b=0的两个实数根,过原点O作OD⊥AC,垂足为D,且点D的纵坐标为a2,求b的值.【函数基本知识】26.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?27.某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.28.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x…123579…y… 1.98 3.95 2.63 1.58 1.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.29.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示.根据图象回答下列问题:(1)小明家离图书馆的距离是千米;(2)小明在图书馆看书的时间为小时;(3)小明去图书馆时的速度是千米/小时.30.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E 以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y 与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是;(2)d=,m=,n=;(3)F出发多少秒时,正方形EFGH的面积为16cm2?【一次函数】31.“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?32.如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.33.如图,直线y=2x+3与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.34.某企业开展献爱心扶贫活动,将购买的60吨大米运往贫困地区帮扶贫困居民,现有甲、乙两种货车可以租用.已知一辆甲种货车和3辆乙种货车一次可运送29吨大米,2辆甲种货车和3辆乙种货车一次可运送37吨大米.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨大米?(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用w(元)与租用甲种货车的数量x(辆)之间的函数关系式.(3)在(2)的条件下,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?35.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C 港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,a=;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.【反比例函数】36.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.37.已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B两点,且点A的横坐标和点B 的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积.38.如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.39.如图,已知直线AB与x轴交于点C,与双曲线交于A(3,)、B(﹣5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.40.(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.中考数学考点解答题限时训练3【二次函数】1.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值.2.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?3.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.4.抛物线y=x2﹣x+2与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,+的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.。
杭州市九年级数学中考总复习限时训练20(综合训练4pdf版含答案)
6.萧山区某天 6 个整点时的气温绘制成的统计图如图所示,则这 6 个整点时的中位数是( A. 18.6 B. 15.4 C. 15.8 D. 15.6 7.如图, 在平行四边形 ABCD 中, 对角线 AC, BD 相交成的锐角为 α, 若 AC=a, BD=b, ) 则平行四边形 ABCD 的面积是( A.
九年级数学总复习限时训练 20
1.下列各数中,比-3 小的无理数是( A. ) C.- 3 D.-4 ) D.(2, -2)
2
B.-
2.若函数 y
k 的图像过点(1,-1) ,那么函数图像经过 的点是( .. x
A. (-1,1) B.(1, 1) C.(-1,-1) 3.一个几何体零件如图所示,则它的俯视图是( )
16.有四张卡片(形状,大小,质地都相同) ,分别写上 x,x+1,(x+1)2,2; (1)从中随机抽取一张卡片,求抽中单项式的概率。 (2)从中随机抽取一张卡片,再从剩下的卡片中抽取另一张,写出所有可能的结果(用树状图或列表法 求解) 。 (3)第一次抽取的卡片的整式作为分子,第二次的作为分母,求能组成分式的概率。
9.已知
2x y 1 2m ,且-1<x-y≤1,则 m 的取值范围为( x 2y 3m
1
A. -1<m≤
2 5
B.0<m≤
2 5
C.0≤m<
2 5
D.
2 ≤m<1 5
10.关于 x 的函数,y=kx2-(k+1)x+1(k 为实数),有以下 4 个结论:①存在函数,其图像经过(1,0);②函 数图像与坐标轴总有 3 个不同的交点;③若函数有最大值,则最大值为正数;④当 x>1 时,不是 y 随 x 的 增大而增大就是 y 随 x 的增大而减小;其中正确的是( ) A. ①② B. ①③ C. ③④ D. ①④ 4 . 11.分解因式:m -16= 12.已知 a,b 满足 2a 3b 5 +(a 4b 13) 0 ,则 a+b=
2024年中考数学模拟考试试卷(含有答案)
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是
∴
∴
∴
故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4
∴
∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径
∴
∵
∴
又∵
∴
∴பைடு நூலகம்是等边三角形
∴
∵
∴
∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
杭州市九年级数学中考总复习限时训练13(圆的基本性质1基础题,PDF版含答案)
九年级数学总复习限时训练13(圆的基本性质1)1.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3cm,则∠BAC的度数为( ) A.15° B.75°或15° C.105°或15° D.75°或105°2.下列语句中,正确的是( )①三个点确定一个圆;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A.①② B.②③ C.②④ D.④3.对下列生活现象的解释其数学原理运用错误的是( )A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理4.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )A.DE=EB B.DE=EB C.DE=DO D.DE=OB5.如图,已知⊙O是等腰Rt△ABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是( )A.3 B.2 C.1 D.1.26.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )A.6 B.2+1 C.9 D.7.在圆内接四边形ABCD中,若∠A:∠B:∠C=2:3:6,则∠D等于( )A.67.5° B.135° C.112.5° D.45°8.如图,△ABD内接于⊙O,点C在线段AD上,AC=2CD,点E在上,∠ECD=∠ABD,EC=1,则AE等于( )A. B. C. D.29.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CF⊥AB于点E,过点D的切线交FC的延长线于点G,连接AD,分别交CF、CB于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②AD=CB;③点P是△ACQ的外心;④GP=GD;⑤CB∥GD.其中正确结论的序号是( )A.①②④ B.②③⑤ C.③④ D.②⑤10.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为 .11.如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,点M是边AB的中点,连结CM,点P从点C 出发,以1cm/s的速度沿CB运动到点B停止,以PC为边作正方形PCDE,点D落在线段AC上.设点P 的运动时间为t(s).(1)当t=时,点E落在△MBC的边上;(2)以E为圆心,1cm为半径作圆E,则当t=时,圆E与直线AB或直线CM相切.12.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=. 13.如图,Rt△ABC中,AC=BC=8,⊙C的半径为2,点P在线段AB上一动点,过点P作⊙C的一条切线PQ,Q为切点,则切线长PQ的最小值为 .14.如图,⊙O是Rt△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,若AC=6,CD=2,则⊙O的半径 .15.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.16.如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA=,cot∠ABC=,AD=8.求(1)⊙D的半径;(2)CE的长.参考答案1. C.2. C.3. B.4. D.5. C.6. C.7. C.8. C.9. C.10. .11.(1) (2) ;;5 12. .13. 2.14. .15.(1)证明:△=(k+3)2﹣4×3k=(k﹣3)2≥0,故不论k取何实数,该方程总有实数根;(2)解:当△ABC的底边长为2时,方程有两个相等的实数根,则(k﹣3)2=0,解得k=3,方程为x2﹣6x+9=0,解得x1=x2=3,故△ABC的周长为:2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,方程为x2﹣5x+6=0,解得,x1=2,x2=3,故△ABC的周长为:2+2+3=7.16.解:(1)∵CD⊥AB,AD=8,tanA=,在Rt△ACD中,tanA==,AD=8,CD=4,在Rt△CBD,cot∠ABC==,BD=3,∴⊙D的半径为3;(2)过圆心D作DH⊥BC,垂足为H,∴BH=EH,在Rt△CBD中∠CDB=90°,BC==5,cos∠ABC==,在Rt△BDH中,∠BHD=90°,cos∠ABC==,BD=3,BH=,∵BH=EH,∴BE=2BH=,∴CE=BC﹣BE=5﹣=.。
初三数学中考模拟试卷,附详细答案【解析版】(2020年8月整理).pdf
初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7-16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2B.a的绝对值是2C.a的倒数等于2D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3B.x3•x3C.(x3)3D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4B.众数是2C.平均数是2D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2B.k≠0C.k<2且k≠0D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6B.9C.12D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30°B.40°C.50°D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k 的值为()A.1B.2C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8B.0<CE≤5C.0<CE<3或5<CE≤8D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3B.4C.5D.616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2B.4+C.6D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q(1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53.5°方求:建筑物B到公路ON的距离.向上.(参考数据:sin53.5°=0.8,cos53.5°=0.6,tan53.5°≈1.35)23.(11分)(2015•南宁校级一模)(2015•邢台一模)中国是世界上13个贫水国家之一.某校有800名在校学生,学校为鼓励学生节约用水,展开“珍惜水资源,节约每一滴水”系列教育活动.为响应学校号召,数学小组做了如下调查:小亮为了解一个拧不紧的水龙头的滴水情况,记录了滴水时间和烧杯中的水面高度,如图1.小明设计了调查问卷,在学校随机抽取一部分学生进行了问卷调查,并制作出统计图.如图2和图3.经结合图2和图3回答下列问题:(1)参加问卷调查的学生人数为人,其中选C的人数占调查人数的百分比为.(2)在这所学校中选“比较注意,偶尔水龙头滴水”的大概有人.若在该校随机抽取一名学生,这名学生选B的概率为.请结合图1解答下列问题(3)在“水龙头滴水情况”图中,水龙头滴水量(毫升)与时间(分)可以用我们学过的哪种函数表示?请求出函数关系式.(4)为了维持生命,每人每天需要约2400毫升水,该校选C的学生因没有拧紧水龙头,2小时浪费的水可维持多少人一天的生命需要?24.(10分)(2015•邢台一模)如图,直线y=kx﹣4与x轴,y轴分别交于B、C两点.且∠OBC=.(1)求点B的坐标及k的值;(2)若点A时第一象限内直线y=kx﹣4上一动点.则当△AOB的面积为6时,求点A的坐标;(3)在(2)成立的条件下.在坐标轴上找一点P,使得∠APC=90°,直接写出P点坐标.25.(13分)(2015•邢台一模)如图,足球上守门员在O处开出一高球.球从离地面1米的A处飞出(A在y轴上),把球看成点.其运行的高度y(单位:m)与运行的水平距离x(单位:m)满足关系式y=a(x﹣6)2+h.(1)①当此球开出后.飞行的最高点距离地面4米时.求y与x满足的关系式.②在①的情况下,足球落地点C距守门员多少米?(取4≈7)③如图所示,若在①的情况下,求落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求:站在距O 带你6米的B处的球员甲要抢到第二个落点D处的求.他应再向前跑多少米?(取2=5)(2)球员乙升高为1.75米.在距O点11米的H处.试图原地跃起用头拦截.守门员调整开球高度.若保证足球下落至H正上方时低于球员乙的身高.同时落地点在距O点15米之内.求h的取值范围.26.(14分)(2015•南宁校级一模)已知矩形ABCD中,AB=10cm,AD=4cm,作如下折叠操作.如图1和图2所示,在边AB上取点M,在边AD或边DC上取点P.连接MP.将△AMP或四边形AMPD沿着直线MP折叠得到△A′MP或四边形A′MPD′,点A的落点为点A′,点D的落点为点D′.探究:(1)如图1,若AM=8cm,点P在AD上,点A′落在DC上,则∠MA′C的度数为;(2)如图2,若AM=5cm,点P在DC上,点A′落在DC上,①求证:△MA′P是等腰三角形;②直接写出线段DP的长.(3)若点M固定为AB中点,点P由A开始,沿A﹣D﹣C方向.在AD,DC边上运动.设点P的运动速度为1cm/s,运动时间为ts,按操作要求折叠.①求:当MA′与线段DC有交点时,t的取值范围;②直接写出当点A′到边AB的距离最大时,t的值;发现:若点M在线段AB上移动,点P仍为线段AD或DC上的任意点.随着点M位置的不同.按操作要求折叠后.点A的落点A′的位置会出现以下三种不同的情况:不会落在线段DC上,只有一次落在线段DC上,会有两次落在线段DC上.请直接写出点A′由两次落在线段DC上时,AM的取值范围是.初三数学中考模拟试卷参考答案与试题解析一、选择题(共16小题,1-6小题,每小题2分,7-16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2B.a的绝对值是2C.a的倒数等于2D.a的绝对值大于2考点:实数与数轴;实数的性质.分析:根据数轴确定a的取值范围,选择正确的选项.解答:解:由数轴可知,a<﹣2,a的相反数>2,所以A不正确,a的绝对值>2,所以B不正确,a的倒数不等于2,所以C不正确,D正确.故选:D.点评:本题考查的是数轴和实数的性质,属于基础题,灵活运用数形结合思想是解题的关键.2.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.点评:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列式子化简后的结果为x6的是()A.x3+x3B.x3•x3C.(x3)3D.x12÷x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的运算法则进行计算即可.解答:解:A、原式=2x3,故本选项错误;B、原式=x6,故本选项正确;C、原式=x9,故本选项错误;D、原式=x12﹣2=x10,故本选项错误.故选:B.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.4.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6考点:平方差公式的几何背景.分析:由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答:解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.点评:本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.5.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4B.众数是2C.平均数是2D.方差是7考点:方差;算术平均数;中位数;众数.分析:分别求出这组数据的平均数、众数、中位数、方差,再对每一项分析即可.解答:解:A、把1,﹣2,4,2,5从小到大排列为:﹣2,1,2,4,5,最中间的数是2,则中位数是2,故本选项错误;B、1,﹣2,4,2,5都各出现了1次,则众数是1,﹣2,4,2,5,故本选项错误;C、平均数=×(1﹣2+4+2+5)=2,故本选项正确;D、方差S2=[(1﹣2)2+(﹣2﹣2)2+(4﹣2)2+(2﹣2)2+(5﹣2)2]=8,故本选项错误;故选C.点评:本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.6.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2B.k≠0C.k<2且k≠0D.k>2考点:根的判别式;一元二次方程的定义.分析:根据一元二次方程的定义和根的判别式△的意义得到k≠0且△>0,即(﹣4)2﹣4×k×2>0,然后解不等式即可得到k的取值范围.解答:解:∵关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,∴k≠0且△>0,即(﹣4)2﹣4×k×2>0,解得k<2且k≠0.∴k的取值范围为k<2且k≠0.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6B.9C.12D.18考点:位似变换.分析:利用位似图形的定义得出四边形EFGH与四边形ABCD是位似图形,再利用位似图形的性质得出答案.解答:解:∵E,F,G,H分别是OA,OB,OC,OD的中点,∴四边形EFGH与四边形ABCD是位似图形,且位似比为:1:2,∴四边形EFGH与四边形ABCD的面积比为:1:4,∵四边形EFGH的面积是3,∴四边形ABCD的面积是12.故选:C.点评:此题主要考查了位似变换,根据题意得出位似比是解题关键.8.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30°B.40°C.50°D.60°考点:旋转的性质.分析:如图,首先由旋转变换的性质得到∠PAQ=∠BAC;由平行线的性质得到解答:解:如图,由旋转变换的性质得:∠PAQ=∠D=40°,即可解决问题.∠PAQ=∠BAC;∵AP∥BD,∴∠PAQ=∠D=40°,∴∠BAC=40°.故选B.点评:该题主要考查了旋转变换的性质、平行线的性质等几何知识点及其应用问题,灵活运用旋转变换的性质来分析、判断、推理或解答是解题的关键.9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.考点:列表法与树状图法;专题:正方体相对两个面上的文字.分析:由数字3与4相对,数字1与5相对,数字2与6相对,直接利用概率公式求解即可求得答案.解答:解:∵数字3与4相对,数字1与5相对,数字2与6相对,∴任意掷这个玩具,上表面与底面之和为偶数的概率为:.故选D.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个考点:作图—基本作图.分析:根据角平分线的做法可得①正确,再根据直角三角形的高的定义可得②正确,然后计算出∠CAD=∠DAB=29°,可得AD≠BD,根据到线段两端点距离相等的点在线段的垂直平分线上,因此③错误,根据三角形内角和可得④正确.解答:解:根据作法可得AD是∠BAC的平分线,故①正确;∵∠C=90°,∴CD是△ADC的高,故②正确;∵∠C=90°,∠B=32°,∴∠CAB=58°,∵AD是∠BAC的平分线,∴∠CAD=∠DAB=29°,∴AD≠BD,∴点D不在AB的垂直平分线上,故③错误;∵∠CAD=29°,∠C=90°,∴∠CDA=61°,故④正确;共有3个正确,故选:C.点评:此题主要考查了基本作图,关键是掌握角平分线的做法和线段垂直平分线的判定定理.11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°考点:多边形内角与外角;等边三角形的性质.分析:根据图1先求出正三角形ABC内大钝角的度数是120°,则两锐角的和等于60°,正五边形的内角和是540°,求出每一个内角的度数,然后解答即可.解答:解:如图,图1先求出正三角形ABC内大钝角的度数是180°﹣30°×2=120°,180°﹣120°=60°,60°÷2=30°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴图3中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.点评:本题主要考查了多边形的内角与外角的性质,仔细观察图形是解题的关键,难度中等.12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k 的值为()A.1B.2C.D.无法确定考点:反比例函数图象上点的坐标特征.分析:过点D作DE⊥x轴于点E,由点D为斜边OA的中点可知DE是△AOB的中位线,设A(x,),则D(,),再求出k的值即可.解答:解:过点D作DE⊥x轴于点E,∵点D为斜边OA的中点,点A在反比例函数y=上,∴DE是△AOB的中位线,设A(x,),则D(,),∴k=•=1.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8B.0<CE≤5C.0<CE<3或5<CE≤8D.3<CE≤5考点:直线与圆的位置关系;平行四边形的性质.分析:过A作AM⊥BC于N,CN⊥AD于N,根据平行四边形的性质求出AD∥BC,AB=CD=5,求出AM、CN、AC、CD的长,即可得出符合条件的两种情况.解答:解:过A作AM⊥BC于N,CN⊥AD于N,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=5,∴AM=CN,∵AB=5,cosB==,∴BM=4,∵BC=8,∴CM=4=BC,∵AM⊥BC,∴AC=AB=5,由勾股定理得:AM=CN==3,∴当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是0<CE<3或5<CE≤8,故选C.点评:本题考查了直线和圆的位置关系,勾股定理,平行四边形的性质的应用,能求出符合条件的所有情况是解此题的关键,此题综合性比较强,有一定的难度.14.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)考点:二次函数图象与几何变换.分析:根据抛物线m的解析式求得点P、C的坐标,然后由点P′在y轴上,点C′在x轴上得到平移规律,由此可以确定点P′、C′的坐标.解答:解:∵y=﹣2x2﹣2x=﹣2x(x+1)或y=﹣2(x+)2+,∴P(﹣1,0),O(0,0),C(﹣,).又∵将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在y轴上,∴该抛物线向下平移了个单位,向右平移了1个单位,∴C′(,0),P′(0,﹣).综上所述,选项B符合题意.故选:B.点评:主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3B.4C.5D.6考点:估算无理数的大小.专题:新定义.分析:根据[a]表示不超过a的最大整数计算,可得答案.解答:解:900→第一次[]=30→第二次[]=5→第三次[]=2→第四次[]=1,即对数字900进行了4次操作后变为1.故选:B.点评:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.16.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2B.4+C.6D.4考点:轴对称-最短路线问题;一次函数图象上点的坐标特征.分析:在y轴的正半轴上截取OF=OE=3,连接EF,证得F是E关于直线y=x的对称点,连接BF交OA于P,此时△BEP周长最小,最小值为BF+EB,根据勾股定理求得BF,因为BE=1,所以△BEP周长最小值为BF+EB=5+1=6.解答:解:在y轴的正半轴上截取OF=OE=3,连接EF,∵A点为直线y=x上一点,∴OA垂直平分EF,∴E、F是直线y=x的对称点,连接BF交OA于P,根据两点之间线段最短可知此时△BEP周长最小,最小值为BF+EB;∵OF=3,OB=4,∴BF==5,∵EB=4﹣3=1,△BEP周长最小值为BF+EB=5+1=6.故选C.点评:本题考查了轴对称的判定和性质,轴对称﹣最短路线问题,勾股定理的应用等,作出P点是解题的关键.二、填空题(共4小题,每小题3分,满分12分)17.计算:=.考点:二次根式的加减法.分析:先将二次根式化为最简,然后合并同类二次根式即可得出答案.解答:解:=3﹣=2.故答案为:2.点评:本题考查二次根式的减法运算,难度不大,注意先将二次根式化为最简是关键.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为0.考点:一元二次方程的解.分析:把x=1代入已知方程,可得:a+b﹣1=0,然后适当整理变形即可.解答:解:∵x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,∴a+b﹣1=0,∴a+b=1,∴1﹣a﹣b=1﹣(a+b)=1﹣1=0.故答案是:0.点评:本题考查了一元二次方程的解的定义.把根代入方程得到的代数式巧妙变形来解题是一种不错的解题方法.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=360°﹣2α.(用含α的式子表示)考点:圆周角定理.分析:在优弧AB上取点D,连接AD、BD,根据圆内接四边形的性质求出∠D的度数,再解答:解:在优弧AB上取点D,连接AD、BD,根据圆周角定理求出∠AOB的度数.∵∠ACB=α,∴∠D=180°﹣α,根据圆周角定理,∠AOB=2(180°﹣α)=360°﹣2α.故答案为:360°﹣2α.点评:本题考查的是圆周角定理及圆内接四边形的性质,解答此题的关键是熟知以下概念:圆周角定理:同弧所对的圆周角等于它所对圆心角的一半;圆内接四边形的性质:圆内接四边形对角互补.20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q(1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是①②③④(填写序号).考点:动点问题的函数图象.分析:(1)当x=0时,y的值即是AB的长度;(2)图乙函数图象的最低点的y值是AH的值;(3)在直角△ACH中,由勾股定理来求AC的长度;(3)当点P运动到点H时,此时BP(H)=1,AH=,在Rt△ABH中,可得出∠B=60°,则判定△ABP是等边三角形,故BP=AB=2,即x=2(5)分两种情况进行讨论,①∠APB为钝角,②∠BAP为钝角,分别确定x的范围即可.解答:解:(1)当x=0时,y的值即是AB的长度,故AB=2,故①正确;(2)图乙函数图象的最低点的y值是AH的值,故AH=,故②正确;(3)如图乙所示:BC=6,BH=1,则CH=5.又AH=,∴直角△ACH中,由勾股定理得:AC===2,故③正确;(4)在Rt△ABH中,AH=,BH=1,tan∠B=,则∠B=60°.又△ABP是等腰三角形,∴△ABP是等边三角形,∴BP=AB=2,即x=2.故④正确;(5)①当∠APB为钝角时,此时可得0<x<1;②当∠BAP为钝角时,过点A作AP⊥AB,则BP==4,即当4<x≤6时,∠BAP为钝角.综上可得0<x<1或4<x≤6时△ABP为钝角三角形,故⑤错误.故答案为:①②③④.点评:此题考查了动点问题的函数图象,有一定难度,解答本题的关键是结合图象及函数图象得出AB、AH的长度,第三问推知△ABP是等边三角形是解题的难点.三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM 和ON ,其中OM 为东西走向,ON 为南北走向,A 、B 是两条公路所围区域内的两个标志性建筑.已知A 、B 关于∠MON 的平分线OQ 对称.OA=1000米,测得建筑物A 在公路交叉口O 的北偏东53.5°方向上. 求:建筑物B 到公路ON 的距离.(参考数据:sin53.5°=0.8,cos53.5°=0.6,tan53.5°≈1.35)考点:解直角三角形的应用-方向角问题.分析:连结OB ,作BD ⊥ON 于D ,AC ⊥OM 于C ,则∠CAO=∠NOA=53.5°,解Rt △AOC ,求出AC=OA •cos53.5°=600米,再根据AAS 证明△AOC ≌△BOD ,得出AC=BD=600米,即建筑物B 到公路ON 的距离为600米. 解答:解:如图,连结OB ,作BD ⊥ON 于D ,AC ⊥OM 于C ,则∠CAO=∠NOA=53.5°, 在Rt △AOC 中,∵∠ACO=90°,∴AC=OA •cos53.5°=1000×0.6=600(米), OC=OA •sin53.5°=1000×0.8=800(米).∵A 、B 关于∠MON 的平分线OQ 对称,∴∠QOM=∠QON=45°,∴OQ 垂直平分AB ,∴OB=OA ,∴∠AOQ=∠BOQ ,∴∠AOC=∠BOD . 在△AOC 与△BOD 中,,∴△AOC ≌△BOD (AAS ),∴AC=BD=600米. 即建筑物B 到公路ON 的距离为600米.点评:本题考查了解直角三角形的应用﹣方向角问题,轴对称的性质,全等三角形的判定与性质,准确作出辅助线证明△AOC ≌△BOD 是解题的关键.23.(11分)(2015•南宁校级一模)(2015•邢台一模)中国是世界上13个贫水国家之一.某校有800名在校学生,学校为鼓励学生节约用水,展开“珍惜水资源,节约每一滴水”系列教育活动.为响应学校号召,数学小组做了如下调查:小亮为了解一个拧不紧的水龙头的滴水情况,记录了滴水时间和烧杯中的水面高度,如图1.小明设计了调查问卷,在学校随机抽取一部分学生进行了问卷调查,并制作出统计图.如图2和图3.经结合图2和图3回答下列问题:(1)参加问卷调查的学生人数为60人,其中选C的人数占调查人数的百分比为10%.(2)在这所学校中选“比较注意,偶尔水龙头滴水”的大概有440人.若在该校随机抽取一名学生,这名学生选B的概率为.请结合图1解答下列问题(3)在“水龙头滴水情况”图中,水龙头滴水量(毫升)与时间(分)可以用我们学过的哪种函数表示?请求出函数关系式.(4)为了维持生命,每人每天需要约2400毫升水,该校选C的学生因没有拧紧水龙头,2小时浪费的水可维持多少人一天的生命需要?考点:一次函数的应用;用样本估计总体;扇形统计图;条形统计图;概率公式.分析:(1)根据A的人数除以占的百分比求出调查总人数;求出C占的百分比即可;(2)求出B占的百分比,乘以800得到结果;找出总人数中B的人数,即可求出所求概率;(3)水龙头滴水量(毫升)与时间(分)可以近似看做一次函数,设为y=kx+b,把两点坐标代入求出k与b的值,即可确定出函数解析式;(4)设可维持x人一天的生命需要,根据题意列出方程,求出方程的解即可得到结果.解答:解:(1)根据题意得:21÷35%=60(人),选C的人数占调查人数的百分比为×100%=10%;(2)根据题意得:选“比较注意,偶尔水龙头滴水”的大概有800×(1﹣35%﹣10%)=440(人);若在该校随机抽取一名学生,这名学生选B的概率为=;(3)水龙头滴水量(毫升)与时间(分)可以近似地用一次函数表示,设水龙头滴水量y(毫升)与时间t(分)满足关系式y=kt+b,依题意得:,解得:,∴y=6t,经检验其余各点也在函数图象上,∴水龙头滴水量y(毫升)与时间t(分)满足关系式为y=6t;(4)设可维持x人一天的生命需要,依题意得:800×10%×2×60×6=2400x,解得:x=24.则可维持24人一天的生命需要.故答案为:(1)60;10%;(2)440;.点评:此题考查了一次函数的应用,扇形统计图,条形统计图,以及用样本估计总体,熟练掌握运算法则是解本题的关键.24.(10分)(2015•邢台一模)如图,直线y=kx﹣4与x轴,y轴分别交于B、C两点.且∠OBC=.(1)求点B的坐标及k的值;(2)若点A时第一象限内直线y=kx﹣4上一动点.则当△AOB的面积为6时,求点A的坐标;(3)在(2)成立的条件下.在坐标轴上找一点P,使得∠APC=90°,直接写出P点坐标.考点:一次函数综合题.分析:(1)由y=kx﹣4可知C(0,﹣4),即OC=4,根据tan∠OBC=,得出OB=3,即可求得B的坐标为(3,0);(2)根据题意可知直线为y=x﹣4,根据三角形的面积求得A的纵坐标,把A的纵坐标代入直线的解析式即可求得A的坐标;(3)分两种情况分别讨论即可求得.。
2023年中考数学基础满分挑战训练四十分钟限时练习卷十含答案解析
40分钟限时练习(10)一.选择题(共8小题,满分24分,每小题3分)1.(3分)若实数a满足|a|a=―1,则( )A.a>0B.a<0C.a≥0D.a≤0【分析】根据绝对值的性质,正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0,即可作出判断.【解答】解:根据|a|a=―1,可得|a|=﹣a,且a≠0则a一定是负数,即a<0.故选:B.【点评】本题主要考查了绝对值的性质,容易忽视的问题是a≠0这一条件,错选D.2.(3分)下列计算正确的是( )A.x•x=2x B.x+x=2x C.(x3)3=x6D.x3÷x=x3【分析】直接利用同底数幂的乘除运算法则以及合并同类项法则、幂的乘方运算法则分别判断得出答案.【解答】解:A.x•x=x2,故此选项不合题意;B.x+x=2x,故此选项符合题意;C.(x3)3=x9,故此选项不合题意;D.x3÷x=x2,故此选项不合题意;故选:B.【点评】此题主要考查了幂的乘方运算、合并同类项、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.(3分)在一次中学生田径运动会上,参加男子跳高的14名运动员的成绩如表所示:成绩/m1.501.611.661.701.751.78人数232151则这些运动员成绩的众数是( )A.1.66m B.1.67m C.1.68m D.1.75m【分析】根据众数的定义直接解答即可.【解答】解:∵175出现了5次,出现的次数最多,∴这些运动员成绩的众数是175m;故选:D.【点评】本题考查众数,解题的关键是明确众数的定义,会找一组数据的众数.4.(3分)将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线的函数关系式( )A.y=﹣x2B.y=﹣x2﹣1C.y=x2﹣1D.y=﹣x2+1【分析】根据关于原点对称的两点的横坐标纵坐标都互为相反数求则可.【解答】解:根据题意﹣y=(﹣x)2+1,化简为y=﹣x2﹣1.故选:B.【点评】考查根据二次函数的图象的变换求抛物线的解析式.5.(3分)关于x的不等式组2x―3≥x―53x+a≥4x―3只有3个整数解,则a的取值范围为( )A.﹣3≤a<﹣2B.﹣3≤a≤﹣2C.﹣3<a≤﹣2D.﹣3<a<﹣2【分析】先求出每个不等式的解集,根据已知不等式组只有3个整数解得出不等式组,求出不等式组的解集即可.【解答】解:2x―3≥x―5①3x+a≥4x―3②,解不等式①,得x≥﹣2,解不等式②,得x≤a+3,∵关于x的不等式组2x―3≥x―53x+a≥4x―3只有3个整数解(3个整数解是﹣2,﹣1,0)∴0≤a+3<1,∴﹣3≤a<﹣2,故选:A.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a的不等式组0≤a+3<1是解此题的关键.6.(3分)如图,圆锥的底面圆半径r为5cm,高h为12cm,则圆锥的侧面积为( )A.65πcm2B.60πcm2C.100πcm2D.130πcm2【分析】根据圆锥的侧面积公式:S=πrl,直接代入数据求出即可.【解答】解:由圆锥底面半径r=5cm,高h=12cm,根据勾股定理得到母线长l=r2+ℎ2=13cm,根据圆锥的侧面积公式:πrl=π×5×13=65πcm2,故选:A.【点评】此题主要考查了圆锥侧面积公式,熟练地应用圆锥侧面积公式求出是解决问题的关键.7.(3分)如图,给出下列条件①∠CAD=∠ACB;②∠CAB=∠ACD;③AD∥BE且∠D =∠B;其中能推出AB∥DC的条件个数是( )A.0个B.1个C.2个D.3个【分析】利用内错角相等两直线平行,等量代换,同旁内角互补,两直线平行即可得到结果.【解答】解:①∠CAD=∠ACB,可判定AD∥BC,不能判定AB∥DC;②∠CAB=∠ACD,可判定AB∥CD;③AD∥BE可得∠D+∠BCD=180°,再由∠D=∠B,可得∠B+∠BCD=180°,可判定AB∥CD.所以能推出AB∥DC的条件个数是2个,故选:C.【点评】此题主要考查了平行线的判定,解题的关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.8.(3分)如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从A开始沿边AB向点B以1cm/s的速度移动,动点Q从B开始沿边BC向点C以2cm/s的速度移动,如果P、Q两点分别从A、B两点同时出发,则四边形APQC的面积的最小值是( )A.9B.18C.27D.36【分析】根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系求最小值.【解答】解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为S cm2,则有:S=S△ABC﹣S△PBQ=12×12×6―12(6﹣t)×2t=t2﹣6t+36=(t﹣3)2+27.∴当t=3s时,S取得最小值为27.故选:C.【点评】本题考查了函数关系式的求法以及最值的求法,解题的关键是根据题意列出函数关系式,并根据二次函数的性质求出最值.二.填空题(共8小题,满分32分,每小题4分)9.(4分)据测算,我国每年因沙漠造成的直接经济损失超过5400000万元,这个数用科学记数法表示为 5.4×106 万元.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.【解答】解:5400000=5.4×106万元.故答案为5.4×106.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).10.(4分)若二次根式3x―1有意义,则x的取值范围是 x≥13 .【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据二次根式有意义,得:3x﹣1≥0,解得:x≥1 3.故答案为:x≥1 3.【点评】本题考查二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.11.(4分)若代数式2a2+3a+1的值是6,则代数式6a2+9a+3的值为 18 .【分析】根据已知代数式的值确定出2a2+3a的值,原式变形后代入计算即可求出值.【解答】解:∵2a2+3a+1=6,即2a2+3a=5,∴原式=3(2a2+3a)+3=15+3=18,故答案为:18【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.(4分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC 至点D,使BD=3CD,连接DM、DN、MN.若AB=6,则DN= 3 .【分析】连接CM,根据直角三角形的性质求出CM,根据三角形中位线定理、平行四边形的判定定理证明四边形NDCM是平行四边形,根据平行四边形的性质解答.【解答】解:连接CM,∵∠ACB=90°,M是AB的中点,∴CM=12AB=3,∵M、N分别是AB、AC的中点,∴MN=12BC,MN∥BC,∵BD=3CD,∴BC=2CD,∴MN=CD,又MN∥BC,∴四边形NDCM是平行四边形,∴DN=CM=3,故答案为:3.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.13.(4分)某产品的合格率如表所示,购买这样的产品,合格的概率是 0.91 .(精确到0.01)抽取的件数51010020050080010002000合格产品数58881754517299091820合格品的频率10.80.880.8750.9020.9110.9090.910【分析】根据图表给出的合格品的频率即可得出答案.【解答】解:从上面的数据可以看出合格频率稳定在0.91附近,购买这样的产品,合格的概率是 0.91.故答案为:0.91.【点评】此题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.熟记频率=所求情况数与总情况数之比是解题的关键.14.(4分)若关于x 的分式方程3x +2x ―1=m x ―1有增根,则实数m 的值是 5 .【分析】分式方程去分母转化为整式方程,由分式方程有增根得到x ﹣1=0,求出x 的值,代入整式方程求出m 的值即可.【解答】解:去分母得:3x +2=m ,由分式方程有增根,得到x ﹣1=0,即x =1,把x =1代入整式方程得:3+2=m ,解得:m =5,故答案为:5.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.15.(4分)如图,点A 的坐标为(1,2),AB ⊥x 轴于点B ,将△AOB 绕点A 逆时针旋转90°得到△ACD ,双曲线y =kx(x >0)恰好经过点C ,交AD 于点E ,则点E 的坐标为 (32,2) .【分析】根据点A 的坐标求出OB 、AB ,根据旋转的性质可得AD =AB ,CD =OB ,然后求出点C 的横坐标与纵坐标,从而得到点C 的坐标,利用待定系数法求出反比例函数解析式,再根据点E 的纵坐标利用反比例函数解析式求出横坐标,从而得解.【解答】解:∵点A 的坐标为(1,2),AB ⊥x 轴于点B ,∴OB =1,AB =2,∵△AOB 绕点A 逆时针旋转90°得到△ACD ,∴AD =AB =2,CD =OB =1,∴点C 的横坐标为1+2=3,纵坐标为2﹣1=1,∴点C 的坐标为(3,1),∵双曲线y =kx(x >0)恰好经过点C ,∴k3=1,解得k =3,所以,双曲线为y =3x,∵△AOB 绕点A 逆时针旋转90°得到△ACD ,双曲线y =kx(x >0)交AD 于点E ,∴点E 的纵坐标为2,∴3x =2,解得x =32,∴点E 的坐标为(32,2).故答案为:(32,2).【点评】本题考查了坐标与图形变化﹣旋转,反比例函数图象上点的坐标特征,熟记旋转的性质并求出点C 的坐标是解题的关键,也是本题的难点.16.(4分)如图,正方形ABCD 的边长为12,点E 、F 分别为AB 、BC 上动点(E 、F 均不与端点重合),且AE +CF =4,P 是对角线AC 上的一个动点,则PE +PF 的最小值是 413 .【分析】作点E 关于AC 的对称点E ',则AE =AE ',PE =PE ',连接E 'F 交AC 于点P ,过F 作AD 的垂线交AD 于点G ,则E 'F 的长即为所求,由AD =8即可求出GE '的长,再由勾股定理即可求出E 'F 的长.【解答】解:作点E 关于AC 的对称点E ',连接PE ′、PF ,过F 作FG ⊥AD 于点G ,当P 、E '、F 在同一直线上时,PE +PF =PE '+PF =E 'F ,此时PE +PF 最小,即E 'F 即为所求.∵四边形ABCD是正方形,∴∠DAC=∠BAC=45°,∴点E'在边AD上.∵GF⊥AD,∠D=∠BCD=90°,∴四边形CDGF是矩形,∴GD=CF,∴GE'=12﹣(GD+AE')=12﹣4=8,在R t△GFE中,GE'=8,GF=12,∴E′F=FG2+E′G2=122+82=413.故答案为:413.【点评】本题考查的是最短路线问题,矩形的判定与性质,勾股定理及正方形的性质,根据题意作出辅助线是解答此题的关键.三.解答题(共4小题,满分44分)17.(10分)计算:(1)20080+|﹣1|―3cos30°+(12)3;(2)|3―2|―(―2)2+2sin60°.【分析】(1)分别根据0指数幂、绝对值的性质、特殊角的三角函数值及数的乘方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)分别根据绝对值的性质、特殊角的三角函数值及数的乘方法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(1)原式=1+1―3×32+18=2―32+18=5 8;(2)原式=2―3―4+2×32=﹣2.【点评】本题考查的是实数的混合运算,熟知0指数幂、绝对值的性质、特殊角的三角函数值及数的乘方法则是解答此题的关键.18.(10分)先化简,再求值:1―a+1a2+2a÷a2+2a+1a3―4a,其中a=2.【分析】先将原式中的分子和分母能进行因式分解的进行因式分解,然后先算除法,再算减法,最后代入求值.【解答】解:原式=1―a+1a(a+2)⋅a(a+2)(a―2)(a+1)2=1―a―2 a+1=a+1a+1―a―2a+1=3a+1,当a=2时,原式=32+1=1.【点评】本题考查分式的化简求值,掌握分式混合运算的运算顺序(先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的)和计算法则是解题关键.19.(12分)随着课后服务的全面展开,某校组织了丰富多彩的社团活动.炯炯和露露分别打算从以下四个社团:A.快乐足球,B.数学历史,C.文学欣赏,D.棋艺鉴赏中,选择一个社团参加.(1)炯炯选择数学历史的概率为 14 .(2)用画树状图或列表的方法求炯炯和露露选择同一个社团的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有16种等可能的结果,其中炯炯和露露选择同一个社团的结果有4种,再由概率公式求解即可.【解答】解:(1)炯炯选择数学历史的概率为1 4,故答案为:1 4;(2)画树状图如下:共有16种等可能的结果,其中炯炯和露露选择同一个社团的结果有4种,∴炯炯和露露选择同一个社团的概率为416=14.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(12分)为了了解学生参加体育活动的情况,学校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少”,此题共有四个选项:A.1.5小时以上;B.1~1.5小时;C.0.5~1小时;D.0.5小时以下.下图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次一共调查了多少名学生?(2)在条形统计图中将选项D的部分补充完整;(3)若该校有1000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?(4)请你根据统计图中提供的信息,再提一个问题,并回答该问题.【分析】(1)由图可知:A累类有60人,占20%即可求得总人数;(2)D部分所占的百分比为1﹣50%﹣30%﹣15%=5%,乘以总人数即可算得;(3)该校有1000名学生中平均每天参加体育活动的时间在0.5小时以下的学生人所占的比例是1﹣50%﹣30%﹣15%,乘以总人数即可求解;(4)若该校有1500名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以上.【解答】解:(1)60÷30%=200或100÷50%=200或30÷15%=200,答:本次一共调查了200名学生;(2)图如下面所示:(3)1000×(1﹣50%﹣30%﹣15%)=50,答:全校可能有50名学生平均每天参加体育活动的时间在0.5小时以下.(4)若该校有1500名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以上(只要能根据图中信息提出问题并正确回答问题即可得分).【点评】本题考查的是条形统计图和扇形图的综合运用,读懂统计图,从不同的统计图中得到信息是解决问题的关键.。
人教版九年级下册2020年中考数学复习课时训练 一元二次方程及其应用pdf版(含答案)
课时训练(六) 一元二次方程及其应用(限时:35分钟)|夯实基础1.[2019 ·怀化]一元二次方程x²+2x+1=0的解是( )A.xi=1,x2=- 1B.Xi=X2=1C.xi=X2= 1D.xi=- 1,x2=22.[2019 ·金华]用配方法解方程x²-6x-8=0时,配方结果正确的是( )A.(x-3)²=17B.(x-3)²=14C.(x-6)²=44D.(x-3)²=13.[2019 ·泰州]方程2x²+6x-1=0的两根为xi,X2,则xi+x2等于( )A.-6B.6C.-3D.34.[2019 ·河南]一元二次方程(x+1)(x-1)=2x+3的根的情况是( )A.有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D.没有实数根5. [2019 ·烟台]当b+c=5时,关于x的一元二次方程3x²+bx-c=0的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D. 无法确定6. [2019 ·遂宁]已知关于x的一元二次方程(a-1)r²-2x+a²-1=0有一个根为x=0,则a的值为( )A.0B.±1C.1D.- 17.[2019-聊城]若关于x的一元二次方程(k-2)x²-2kx+k=6有实数根,则k的取值范围为( )A.k≥0 B .K≥0且k≠2C.18.[2019 ·遵义]新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销售量全球第一,2016年销售量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆,设年平均增长率为x,则可列方程为( )A.50.7(1+x)²=125.6B.125.6(1-x)²=50.7C.50.7(1+2x)=125.6D.50.7(1+x2)=125.69.[2019 ·黑龙江]某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A.4B.5C.6D.710.[2019 ·泰安]已知关于x的一元二次方程x²- (2k-1)x+k²+3=0有两个不相等的实数根,则实数k的取值范围是11.[2019 ·盐城]设xi,X2是方程x²-3x+2=0的两个根,则xj+X2-Xi:X2=12 [2019 ·宁夏]你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程x²+5x-14=0,即x(x+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如图K6-1)中大正方形的面积是(x+x+5)?,它又等于四个矩形的面积加上中间小正方形的面积,即4×14+5²,据此易得x=2.那么在图K6-2所示三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程x2-4x-12=0的正确构图是.(只填序号)图K6-1①②③图K6-213. [2018 ·黄冈]一个三角形的两边长分别为3和6,第三边长是方程x²-10x+21=0的根,则三角形的周长为14.[2019 ·山西]如图K6-3,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为77 m2,设道路的宽为xm,则根据题意,可列方程为图K6-315.(1)[2019-无锡]解方程:x²-2x-5=0.(2)[2019 ·呼和浩特]用配方法求一元二次方程(2x+3)(x-6)=16的实数根.(3)[2019 ·绍兴]x为何值时,两个代数式x²+1,4x+1的值相等?16. [2019 ·衡阳]关于x的一元二次方程x²-3x+k=0有实数根.(1)求k的取值范围(2)如果k是符合条件的最大整数,且一元二次方程(m-1)x²+x+m-3=0与方程x²-3x+k=0有一个相同的根,求此时m的值.17.[2019 ·徐州]如图K6-4,有一矩形的硬纸板,长为30 cm,宽为20 cm,在其四个角各剪去一个相同的小正方形,然后把四周的矩形折起,可做成一个无盖的长方体盒子,当剪去的小正方形的边长为何值时,所得长方体盒子的底面积为200 cm²?图K6-4|拓展提升|18.[2017-滨州]根据要求,解答下列问题.(1)解下列方程(直接写出方程的解即可):①方程x2-2x+1=0的解为②方程x2-3x+2=0的解为③方程x²-4x+3=0的解为(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x+8=0的解为②关于x的方程的解为xi=1,X2=n.(3)请用配方法解方程x²-9x+8=0,以验证猜想结论的正确性.参考答案1.C2.A3.C [解析]根据一元二次方程根与系数的关系,故选C4.A5.A [解析]因为b+c=5,所以c=5-b.因为J=b²-4×3·(-c)=b²+4×3-(5-b)=(b-6)²+24>0,所以该一元二次方程有两个不相等的实数根.6.D [解析]当x=0时,a²-1=0,∵a=±1,∵a- 1≠0,a≠1,·a=- 1,故选D .7.D [解析]∵原方程是一元二次方程,:.k-2≠0,:.k≠2,∵原方程有实数根,:(-2k)²-4(k-2)(k-6)≥0,解得:k的取值范围为且k≠2,故选D.8.A [解析]由题意知,在2016年50.7万的基础上,每年增长x,则到2018年为50.7(1+x)²,所以选A.9.C [解析]设这种植物每个支干长出x个小分支,依题意,得1+x+x²=43,解得xi=-7(舍去),x2=6.10.[解析]∵关于x的一元二次方程x²- (2k-1)x+K²+3=0有两个不相等的实数根,:J=(2k- 1)²-4(k²+3)>0,解得11.112.②[解析] ∵x²-4x- 12=0, 即x(x-4)=12,.:.构造如题图②中大正方形的面积是(x+x-4)?,它又等于四个矩形的面积加上中间小正方形的面积,即4×12+42,据此易得x=6.故填②.13.16 [解析]解方程x2-10x+21=0,得xl=3,x2=7,因为已知两边长为3和6,所以第三边长x的范围为:6-3<x<6+3,即3<x<9,所以三角形的第三边长为7,则三角形的周长为3+6+7=16.14.(12-x)(8-x)=7715.解±x²-2x-5=0, ∵J=4+20=24>0,:xi=1+√6,x2=1√6.(2)原方程化为一般形式为2x²-9x-34=0,(3)由题意得x²+1=4x+1,∵x²-4x=0,∵x(x-4)=0,解得xi=0,x2=4,..当x的值为0或4时,代数式x²+1,4x+1的值相等.16.解:(1)由一元二次方程x²-3x+k=0有实数根,得b2-4ac=9-4k≥0,:(2)k可取的最大整数为2, …方程可化为x²-3x+2=0,该方程的根为1和2.∵方程x²-3x+k=0与一元二次方程(m-1)x²+x+m-3=0有一个相同的根,:.当x=1时,方程为(m-1)+1+m-3=0,解得当x=2时,方程为(m-1)×22+2+m-3=0,解得m=1(不合题意).故17.解:设剪去的小正方形的边长为x cm,根据题意有:(30-2x)(20-2x)=200,解得xi=5,x2=20,当x=20时,30-2x<0,20-2x<0,所以x=5.答:当剪去的小正方形的边长为5cm时,长方体盒子的底面积为200 cm2.18.解:(1)①xi=1,x2=1 ②xl=1,x2=2③xi=1,x2=3(2)①xi=1x2=8 ②x²-(1+n)x+n=0(3)r²-9x+8=0,x²-9x=-8,课时训练(七) 分式方程及其应用(限时:20分钟)夯实基础|1.[2019-海南]分式方的解是( )A.x=1B.x=- 1C.x=2D.x=-2 2.[2019 ·益阳]解分式方程时,去分母化为一元一次方程,正确的是 ( )A.x+2=3B.x-2=3C.x-2=3(2x- 1)D.x+2=3(2x- 1)3.[2019 ·广州]甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是 ( ).4.[2019 ·齐齐哈尔]关于x 的分式方的解为非负数,则a的取值范围为5.[2019 ·绵阳]一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120 km 所用时间,与以最大航速逆流航行60 km 所用时间相同,则江水的流速为 km/h. 6.[2019 · 巴中]若关于x 的分式方程有增根,则m 的值为7.[2018-达州]若关于x 的分式方程 无解,则a 的值为 8.解分式方程:(1)[2019-无锡(2)[2019 ·]C9.[2019 ·黄冈]为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.|拓展提升|10.[2018 ·吉林]如图K7-1是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.15.3分式方程甲、乙两个工程队,甲队修路冰冰:400米与乙队修路600米所用时间相等,乙队每天比甲队多修庆庆:20米,求甲队每天修路的长度.图K7-1根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.参考答案1.B [解析]去分母得,1=x+2,移项,合并同类项,得x=-1,经检验x=-1是原分式方程的解,:x=-1,故选B.2.C [解析]两边同时乘以(2x-1),得x-2=3(2x-1).故选C.3.D4 . a≤4且a≠3[解析]方程两边同时乘以(x-1),去分母得(2x-a)+1=3(x-1),∵x=4-a.∵方程的解为非负数,·x≥0且x≠1,∵a≤4且α≠3.5.10 [解析]设江水的流速为xkm/h,根据题意可得解得:x=10经检验,x=10是原方程的根,且符合题意,所以江水的流速为10 km/h.6.1 [解析]分式方程去分母,得x-2m=2m- (x-2),若原分式方程有增根,则x=2,得2-2m=2m(2-2),解得m=1.或1 [解析]去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,得时,分式方程无解,得a=1,故关于x的分式方程无解,则a的值为:18.解:(1)去分母,得x+1=4(x-2),解得x=3,经检验x=3是原分式方程的解.所以方程的解为x=3.(2)方程两边同时乘(x-2)²得:x(x-2)-(x-2)²=4,解得x=4,检验:当x=4时,(x-2)²≠0.所以原方程的解为x=4.9.解:设其他班的平均速度为x米/分,则九(1)班的平均速度为1.25x米/分,依题意得:),解得:x=80.经检验:x=80是所列方程的解.此时,1.25x=1.25×80=100.答:九(1)班的平均速度为100米/分,其他班的平均速度为80米/分.10.解:(1)∵冰冰是根据时间相等列出的分式方程,·x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∵y表示甲队修路400米(乙队修路600米)所需的时间.故答案为:甲队每天修路的长度甲队修路400米(乙队修路600米)所需的时间(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度-甲队每天修路的长度=20米. (选择一个即可)(3)选冰冰所列的方程:去分母,得:400x+8000=600x,移项x的系数化为1,得:x=40,检验:当x=40时x,x+20均不为零,. ∵x=40是分式方程的根.答:甲队每天修路的长度为40米.选庆庆所列的方程:去分母,得:600-400=20y,将y的系数化为1,得y=10,检验:当y=10时,分母y不为0, ∵y=10是分式方程的根,:答:甲队每天修路的长度为40米.。
初三数学中考模拟试卷,附详细答案【解析版】PDF.pdf
初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7-16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k 的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2B.4+C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53.5°方求:建筑物B到公路ON的距离.向上.(参考数据:sin53.5°=0.8,cos53.5°=0.6,tan53.5°≈1.35)23.(11分)(2015•南宁校级一模)(2015•邢台一模)中国是世界上13个贫水国家之一.某校有800名在校学生,学校为鼓励学生节约用水,展开“珍惜水资源,节约每一滴水”系列教育活动.为响应学校号召,数学小组做了如下调查:小亮为了解一个拧不紧的水龙头的滴水情况,记录了滴水时间和烧杯中的水面高度,如图1.小明设计了调查问卷,在学校随机抽取一部分学生进行了问卷调查,并制作出统计图.如图2和图3.经结合图2和图3回答下列问题:(1)参加问卷调查的学生人数为人,其中选C的人数占调查人数的百分比为.(2)在这所学校中选“比较注意,偶尔水龙头滴水”的大概有人.若在该校随机抽取一名学生,这名学生选B的概率为.请结合图1解答下列问题(3)在“水龙头滴水情况”图中,水龙头滴水量(毫升)与时间(分)可以用我们学过的哪种函数表示?请求出函数关系式.(4)为了维持生命,每人每天需要约2400毫升水,该校选C的学生因没有拧紧水龙头,2小时浪费的水可维持多少人一天的生命需要?24.(10分)(2015•邢台一模)如图,直线y=kx﹣4与x轴,y轴分别交于B、C两点.且∠OBC=.(1)求点B的坐标及k的值;(2)若点A时第一象限内直线y=kx﹣4上一动点.则当△AOB的面积为6时,求点A的坐标;(3)在(2)成立的条件下.在坐标轴上找一点P,使得∠APC=90°,直接写出P点坐标.25.(13分)(2015•邢台一模)如图,足球上守门员在O处开出一高球.球从离地面1米的A处飞出(A在y轴上),把球看成点.其运行的高度y(单位:m)与运行的水平距离x(单位:m)满足关系式y=a(x﹣6)2+h.(1)①当此球开出后.飞行的最高点距离地面4米时.求y与x满足的关系式.②在①的情况下,足球落地点C距守门员多少米?(取4≈7)③如图所示,若在①的情况下,求落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求:站在距O 带你6米的B处的球员甲要抢到第二个落点D处的求.他应再向前跑多少米?(取2=5)(2)球员乙升高为1.75米.在距O点11米的H处.试图原地跃起用头拦截.守门员调整开球高度.若保证足球下落至H正上方时低于球员乙的身高.同时落地点在距O点15米之内.求h的取值范围.26.(14分)(2015•南宁校级一模)已知矩形ABCD中,AB=10cm,AD=4cm,作如下折叠操作.如图1和图2所示,在边AB上取点M,在边AD或边DC上取点P.连接MP.将△AMP或四边形AMPD沿着直线MP折叠得到△A′MP或四边形A′MPD′,点A的落点为点A′,点D的落点为点D′.探究:(1)如图1,若AM=8cm,点P在AD上,点A′落在DC上,则∠MA′C的度数为;(2)如图2,若AM=5cm,点P在DC上,点A′落在DC上,①求证:△MA′P是等腰三角形;②直接写出线段DP的长.(3)若点M固定为AB中点,点P由A开始,沿A﹣D﹣C方向.在AD,DC边上运动.设点P的运动速度为1cm/s,运动时间为ts,按操作要求折叠.①求:当MA′与线段DC有交点时,t的取值范围;②直接写出当点A′到边AB的距离最大时,t的值;发现:若点M在线段AB上移动,点P仍为线段AD或DC上的任意点.随着点M位置的不同.按操作要求折叠后.点A的落点A′的位置会出现以下三种不同的情况:不会落在线段DC上,只有一次落在线段DC上,会有两次落在线段DC上.请直接写出点A′由两次落在线段DC上时,AM的取值范围是.初三数学中考模拟试卷参考答案与试题解析一、选择题(共16小题,1-6小题,每小题2分,7-16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于2考点:实数与数轴;实数的性质.分析:根据数轴确定a的取值范围,选择正确的选项.解答:解:由数轴可知,a<﹣2,a的相反数>2,所以A不正确,a的绝对值>2,所以B不正确,a的倒数不等于2,所以C不正确,D正确.故选:D.点评:本题考查的是数轴和实数的性质,属于基础题,灵活运用数形结合思想是解题的关键.2.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.点评:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的运算法则进行计算即可.解答:解:A、原式=2x3,故本选项错误;B、原式=x6,故本选项正确;C、原式=x9,故本选项错误;D、原式=x12﹣2=x10,故本选项错误.故选:B.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.4.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+6考点:平方差公式的几何背景.分析:由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答:解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.点评:本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.5.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是7考点:方差;算术平均数;中位数;众数.分析:分别求出这组数据的平均数、众数、中位数、方差,再对每一项分析即可.解答:解:A、把1,﹣2,4,2,5从小到大排列为:﹣2,1,2,4,5,最中间的数是2,则中位数是2,故本选项错误;B、1,﹣2,4,2,5都各出现了1次,则众数是1,﹣2,4,2,5,故本选项错误;C、平均数=×(1﹣2+4+2+5)=2,故本选项正确;D、方差S2=[(1﹣2)2+(﹣2﹣2)2+(4﹣2)2+(2﹣2)2+(5﹣2)2]=8,故本选项错误;故选C.点评:本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.6.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>2考点:根的判别式;一元二次方程的定义.分析:根据一元二次方程的定义和根的判别式△的意义得到k≠0且△>0,即(﹣4)2﹣4×k×2>0,然后解不等式即可得到k的取值范围.解答:解:∵关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,∴k≠0且△>0,即(﹣4)2﹣4×k×2>0,解得k<2且k≠0.∴k的取值范围为k<2且k≠0.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.18考点:位似变换.分析:利用位似图形的定义得出四边形EFGH与四边形ABCD是位似图形,再利用位似图形的性质得出答案.解答:解:∵E,F,G,H分别是OA,OB,OC,OD的中点,∴四边形EFGH与四边形ABCD是位似图形,且位似比为:1:2,∴四边形EFGH与四边形ABCD的面积比为:1:4,∵四边形EFGH的面积是3,∴四边形ABCD的面积是12.故选:C.点评:此题主要考查了位似变换,根据题意得出位似比是解题关键.8.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°考点:旋转的性质.分析:如图,首先由旋转变换的性质得到∠PAQ=∠BAC;由平行线的性质得到解答:解:如图,由旋转变换的性质得:∠PAQ=∠D=40°,即可解决问题.∠PAQ=∠BAC;∵AP∥BD,∴∠PAQ=∠D=40°,∴∠BAC=40°.故选B.点评:该题主要考查了旋转变换的性质、平行线的性质等几何知识点及其应用问题,灵活运用旋转变换的性质来分析、判断、推理或解答是解题的关键.9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.考点:列表法与树状图法;专题:正方体相对两个面上的文字.分析:由数字3与4相对,数字1与5相对,数字2与6相对,直接利用概率公式求解即可求得答案.解答:解:∵数字3与4相对,数字1与5相对,数字2与6相对,∴任意掷这个玩具,上表面与底面之和为偶数的概率为:.故选D.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个考点:作图—基本作图.分析:根据角平分线的做法可得①正确,再根据直角三角形的高的定义可得②正确,然后计算出∠CAD=∠DAB=29°,可得AD≠BD,根据到线段两端点距离相等的点在线段的垂直平分线上,因此③错误,根据三角形内角和可得④正确.解答:解:根据作法可得AD是∠BAC的平分线,故①正确;∵∠C=90°,∴CD是△ADC的高,故②正确;∵∠C=90°,∠B=32°,∴∠CAB=58°,∵AD是∠BAC的平分线,∴∠CAD=∠DAB=29°,∴AD≠BD,∴点D不在AB的垂直平分线上,故③错误;∵∠CAD=29°,∠C=90°,∴∠CDA=61°,故④正确;共有3个正确,故选:C.点评:此题主要考查了基本作图,关键是掌握角平分线的做法和线段垂直平分线的判定定理.11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°考点:多边形内角与外角;等边三角形的性质.分析:根据图1先求出正三角形ABC内大钝角的度数是120°,则两锐角的和等于60°,正五边形的内角和是540°,求出每一个内角的度数,然后解答即可.解答:解:如图,图1先求出正三角形ABC内大钝角的度数是180°﹣30°×2=120°,180°﹣120°=60°,60°÷2=30°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴图3中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.点评:本题主要考查了多边形的内角与外角的性质,仔细观察图形是解题的关键,难度中等.12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k 的值为()A.1 B. 2 C.D.无法确定考点:反比例函数图象上点的坐标特征.分析:过点D作DE⊥x轴于点E,由点D为斜边OA的中点可知DE是△AOB的中位线,设A(x,),则D(,),再求出k的值即可.解答:解:过点D作DE⊥x轴于点E,∵点D为斜边OA的中点,点A在反比例函数y=上,∴DE是△AOB的中位线,设A(x,),则D(,),∴k=•=1.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤5考点:直线与圆的位置关系;平行四边形的性质.分析:过A作AM⊥BC于N,CN⊥AD于N,根据平行四边形的性质求出AD∥BC,AB=CD=5,求出AM、CN、AC、CD的长,即可得出符合条件的两种情况.解答:解:过A作AM⊥BC于N,CN⊥AD于N,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=5,∴AM=CN,∵AB=5,cosB==,∴BM=4,∵BC=8,∴CM=4=BC,∵AM⊥BC,∴AC=AB=5,由勾股定理得:AM=CN==3,∴当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是0<CE<3或5<CE≤8,故选C.点评:本题考查了直线和圆的位置关系,勾股定理,平行四边形的性质的应用,能求出符合条件的所有情况是解此题的关键,此题综合性比较强,有一定的难度.14.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)考点:二次函数图象与几何变换.分析:根据抛物线m的解析式求得点P、C的坐标,然后由点P′在y轴上,点C′在x轴上得到平移规律,由此可以确定点P′、C′的坐标.解答:解:∵y=﹣2x2﹣2x=﹣2x(x+1)或y=﹣2(x+)2+,∴P(﹣1,0),O(0,0),C(﹣,).又∵将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在y轴上,∴该抛物线向下平移了个单位,向右平移了1个单位,∴C′(,0),P′(0,﹣).综上所述,选项B符合题意.故选:B.点评:主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 6考点:估算无理数的大小.专题:新定义.分析:根据[a]表示不超过a的最大整数计算,可得答案.解答:解:900→第一次[]=30→第二次[]=5→第三次[]=2→第四次[]=1,即对数字900进行了4次操作后变为1.故选:B.点评:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.16.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2B.4+C.6 D.4考点:轴对称-最短路线问题;一次函数图象上点的坐标特征.分析:在y轴的正半轴上截取OF=OE=3,连接EF,证得F是E关于直线y=x的对称点,连接BF交OA于P,此时△BEP周长最小,最小值为BF+EB,根据勾股定理求得BF,因为BE=1,所以△BEP周长最小值为BF+EB=5+1=6.解答:解:在y轴的正半轴上截取OF=OE=3,连接EF,∵A点为直线y=x上一点,∴OA垂直平分EF,∴E、F是直线y=x的对称点,连接BF交OA于P,根据两点之间线段最短可知此时△BEP周长最小,最小值为BF+EB;∵OF=3,OB=4,∴BF==5,∵EB=4﹣3=1,△BEP周长最小值为BF+EB=5+1=6.故选C.点评:本题考查了轴对称的判定和性质,轴对称﹣最短路线问题,勾股定理的应用等,作出P点是解题的关键.二、填空题(共4小题,每小题3分,满分12分)17.计算:=.考点:二次根式的加减法.分析:先将二次根式化为最简,然后合并同类二次根式即可得出答案.解答:解:=3﹣=2.故答案为:2.点评:本题考查二次根式的减法运算,难度不大,注意先将二次根式化为最简是关键.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为0.考点:一元二次方程的解.分析:把x=1代入已知方程,可得:a+b﹣1=0,然后适当整理变形即可.解答:解:∵x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,∴a+b﹣1=0,∴a+b=1,∴1﹣a﹣b=1﹣(a+b)=1﹣1=0.故答案是:0.点评:本题考查了一元二次方程的解的定义.把根代入方程得到的代数式巧妙变形来解题是一种不错的解题方法.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=360°﹣2α.(用含α的式子表示)考点:圆周角定理.分析:在优弧AB上取点D,连接AD、BD,根据圆内接四边形的性质求出∠D的度数,解答:解:在优弧AB上取点D,连接AD、BD,再根据圆周角定理求出∠AOB的度数.∵∠ACB=α,∴∠D=180°﹣α,根据圆周角定理,∠AOB=2(180°﹣α)=360°﹣2α.故答案为:360°﹣2α.点评:本题考查的是圆周角定理及圆内接四边形的性质,解答此题的关键是熟知以下概念:圆周角定理:同弧所对的圆周角等于它所对圆心角的一半;圆内接四边形的性质:圆内接四边形对角互补.20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是①②③④(填写序号).考点:动点问题的函数图象.分析:(1)当x=0时,y的值即是AB的长度;(2)图乙函数图象的最低点的y值是AH的值;(3)在直角△ACH中,由勾股定理来求AC的长度;(3)当点P运动到点H时,此时BP(H)=1,AH=,在Rt△ABH中,可得出∠B=60°,则判定△ABP是等边三角形,故BP=AB=2,即x=2(5)分两种情况进行讨论,①∠APB为钝角,②∠BAP为钝角,分别确定x的范围即可.解答:解:(1)当x=0时,y的值即是AB的长度,故AB=2,故①正确;(2)图乙函数图象的最低点的y值是AH的值,故AH=,故②正确;(3)如图乙所示:BC=6,BH=1,则CH=5.又AH=,∴直角△ACH中,由勾股定理得:AC===2,故③正确;(4)在Rt△ABH中,AH=,BH=1,tan∠B=,则∠B=60°.又△ABP是等腰三角形,∴△ABP是等边三角形,∴BP=AB=2,即x=2.故④正确;(5)①当∠APB为钝角时,此时可得0<x<1;②当∠BAP为钝角时,过点A作AP⊥AB,则BP==4,即当4<x≤6时,∠BAP为钝角.综上可得0<x<1或4<x≤6时△ABP为钝角三角形,故⑤错误.故答案为:①②③④.点评:此题考查了动点问题的函数图象,有一定难度,解答本题的关键是结合图象及函数图象得出AB、AH的长度,第三问推知△ABP是等边三角形是解题的难点.三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM 和ON ,其中OM 为东西走向,ON 为南北走向,A 、B 是两条公路所围区域内的两个标志性建筑.已知A 、B 关于∠MON 的平分线OQ 对称.OA=1000米,测得建筑物A 在公路交叉口O 的北偏东53.5°方向上. 求:建筑物B 到公路ON 的距离.(参考数据:sin53.5°=0.8,cos53.5°=0.6,tan53.5°≈1.35)考点: 解直角三角形的应用-方向角问题.分析: 连结OB ,作BD ⊥ON 于D ,AC ⊥OM 于C ,则∠CAO=∠NOA=53.5°,解Rt △AOC ,求出AC=OA •cos53.5°=600米,再根据AAS 证明△AOC ≌△BOD ,得出AC=BD=600米,即建筑物B 到公路ON 的距离为600米. 解答: 解:如图,连结OB ,作BD ⊥ON 于D ,AC ⊥OM 于C ,则∠CAO=∠NOA=53.5°, 在Rt △AOC 中,∵∠ACO=90°,∴AC=OA •cos53.5°=1000×0.6=600(米), OC=OA •sin53.5°=1000×0.8=800(米).∵A 、B 关于∠MON 的平分线OQ 对称,∴∠QOM=∠QON=45°,∴OQ 垂直平分AB ,∴OB=OA ,∴∠AOQ=∠BOQ ,∴∠AOC=∠BOD . 在△AOC 与△BOD 中,,∴△AOC ≌△BOD (AAS ),∴AC=BD=600米. 即建筑物B 到公路ON 的距离为600米.点评: 本题考查了解直角三角形的应用﹣方向角问题,轴对称的性质,全等三角形的判定与性质,准确作出辅助线证明△AOC ≌△BOD 是解题的关键.23.(11分)(2015•南宁校级一模)(2015•邢台一模)中国是世界上13个贫水国家之一.某校有800名在校学生,学校为鼓励学生节约用水,展开“珍惜水资源,节约每一滴水”系列教育活动.为响应学校号召,数学小组做了如下调查:小亮为了解一个拧不紧的水龙头的滴水情况,记录了滴水时间和烧杯中的水面高度,如图1.小明设计了调查问卷,在学校随机抽取一部分学生进行了问卷调查,并制作出统计图.如图2和图3.经结合图2和图3回答下列问题:(1)参加问卷调查的学生人数为60人,其中选C的人数占调查人数的百分比为10%.(2)在这所学校中选“比较注意,偶尔水龙头滴水”的大概有440人.若在该校随机抽取一名学生,这名学生选B的概率为.请结合图1解答下列问题(3)在“水龙头滴水情况”图中,水龙头滴水量(毫升)与时间(分)可以用我们学过的哪种函数表示?请求出函数关系式.(4)为了维持生命,每人每天需要约2400毫升水,该校选C的学生因没有拧紧水龙头,2小时浪费的水可维持多少人一天的生命需要?考点:一次函数的应用;用样本估计总体;扇形统计图;条形统计图;概率公式.分析:(1)根据A的人数除以占的百分比求出调查总人数;求出C占的百分比即可;(2)求出B占的百分比,乘以800得到结果;找出总人数中B的人数,即可求出所求概率;(3)水龙头滴水量(毫升)与时间(分)可以近似看做一次函数,设为y=kx+b,把两点坐标代入求出k与b的值,即可确定出函数解析式;(4)设可维持x人一天的生命需要,根据题意列出方程,求出方程的解即可得到结果.解答:解:(1)根据题意得:21÷35%=60(人),选C的人数占调查人数的百分比为×100%=10%;(2)根据题意得:选“比较注意,偶尔水龙头滴水”的大概有800×(1﹣35%﹣10%)=440(人);若在该校随机抽取一名学生,这名学生选B的概率为=;(3)水龙头滴水量(毫升)与时间(分)可以近似地用一次函数表示,设水龙头滴水量y(毫升)与时间t(分)满足关系式y=kt+b,依题意得:,解得:,∴y=6t,经检验其余各点也在函数图象上,∴水龙头滴水量y(毫升)与时间t(分)满足关系式为y=6t;(4)设可维持x人一天的生命需要,依题意得:800×10%×2×60×6=2400x,解得:x=24.则可维持24人一天的生命需要.故答案为:(1)60;10%;(2)440;.点评:此题考查了一次函数的应用,扇形统计图,条形统计图,以及用样本估计总体,熟练掌握运算法则是解本题的关键.24.(10分)(2015•邢台一模)如图,直线y=kx﹣4与x轴,y轴分别交于B、C两点.且∠OBC=.(1)求点B的坐标及k的值;(2)若点A时第一象限内直线y=kx﹣4上一动点.则当△AOB的面积为6时,求点A的坐标;(3)在(2)成立的条件下.在坐标轴上找一点P,使得∠APC=90°,直接写出P点坐标.考点:一次函数综合题.分析:(1)由y=kx﹣4可知C(0,﹣4),即OC=4,根据tan∠OBC=,得出OB=3,即可求得B的坐标为(3,0);(2)根据题意可知直线为y=x﹣4,根据三角形的面积求得A的纵坐标,把A的纵坐标代入直线的解析式即可求得A的坐标;(3)分两种情况分别讨论即可求得.。
2020-2021学年某校九年级(下)定时练习数学试卷(八)
2019-2020学年某校九年级(下)定时练习数学试卷(八)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 14的相反数为()A.1 4B.−14C.4D.−42. 下面四张扑克中,是中心对称图形的是()A. B. C. D.3. 一个多边形的内角和是900∘,则这个多边形的边数是( )A.6B.7C.8D.94. 下列说法正确的是()A.四边都相等的四边形是正方形B.有一组邻边相等的平行四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线相等的平行四边形四边形是菱形5. 当x=1时,代数式ax2+bx+3的值为1,当x=−1时,代数式ax2−bx−3的值为()A.1B.−1C.5D.−56. 如图,AB是⊙O直径,若∠AOC=130∘,则∠D的度数是()×(3√5+2√15)的值应在()7. 估计√15A.5和6之间B.6和7之间C.7和8之间D.8和9之间8. 按如图所示的运算程序,能使输出的y值为5的是()A.x=3B.x=4C.x=5D.x=69. 小明同学想要测量如图所示的仙女峰的高度,他利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶B的仰角∠BAC为38.7∘,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1:0.6,那么仙女峰的高度为()(参考数据:tan38.7∘≈0.8)A.650米B.580米C.540米D.520米10. 如图,已知线段BC平行于x轴,AB⊥x轴于点A,过点C的双曲线y=k交OB于D,x,则k的值为()且OD=2DB,若△OBC的面积等于52D.−2A.4B.3C.5211. 能使分式方程k1−x +2=3x−1有非负实数解且使二次函数y=x2+2x−k−1的图象与x轴无交点的所有整数k的积为()A.−20B.20C.−60D.6012. 如图,△ABC中,∠BAC=90∘,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连结CE,则线段CE的长等于()A.2B.54C.53D.75二、填空题:(本题共5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡中对应的横线上.计算(π−3)0−(−12)−2+2cos30∘=________.分解因式:x3y−xy3=________.小强同学从−1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是________.如图,在Rt△ABC中,∠C=90∘,CA=CB=4,分别以A、B、C为圆心,以12AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是________.已知甲乙两车分别从A、B两地出发,相向匀速行驶,已知乙车先出发,1小时后甲车再出发.一段时间后,甲乙两车在休息站C地相遇:到达C地后,乙车不休息继续按原速前往A地,甲车休息半小时后再按原速前往B地,甲车到达B地停止运动;乙车到A地后立刻原速返回B地,已知两车间的距离y(km)随乙车运动的时间x(ℎ)变化如图,则当甲车到达B地时,乙车距离B地的距离为________(km).三、解答题:(本题共7小题,18题8分,其余每小题8分,共68分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.化简:(1)(a+b)(a−b)+(a+b)2−2a2(2)x−3x−1÷(2−x+2x−1)如图,A、D、B、E四点在同一条直线上,AD=BE,BC // EF,BC=EF.(1)求证:AC=DF;(2)若CD为∠ACB的平分线,∠A=25∘,∠E=71∘,求∠CDF的度数.近代统计学的发展起源于二十世纪初,它是在概率论的基础上发展起来的,但统计性质的工作可以追溯到远古的“结绳记事”和《二十四史》中大量的关于我国人口、钱粮、水文、天文、地震等资料的记录.现代数理统计的莫基人是英国数学家和生物学家费希尔,毕业于剑桥大学,长期在农业试验站做生物实验.费尔希在高等植物基因性状研究实验中,从若干紫花与白花中各随机抽取20株测量高度(植株正常高度ℎ的取值范围为35≤ℎ≤43),过程如下:收集数据(单位:cm):紫花:42,42,28,54,29,52,44,36,39,49,33,40,35,52,29,32,51,55,42,38白花植株高度为35≤ℎ≤43的数据有:35,37,37,38,39,40,42,42整理数据:数据分为六组:25≤ℎ<30,30≤ℎ<35,35≤ℎ<40,40≤ℎ<45,45≤ℎ< 50,50≤ℎ≤55白花高度频数分布直方图分析数据:应用数据:(1)请写出表中m=________,n=________;(2)估计500株紫花中高度正常的有多少株?(3)结合上述数据信息,请判断哪种花长势更均匀,并说明理由(一条理由即可).对任意一个正整数m,如果m=n(n+1),其中n是正整数,则称m为“优数”,n为m的最优拆分点,例如:72=8×(8+1),则72是一个“优数”,8为72的最优拆分点.(1)请写出一个大于40小于50的“优数”________,它的最优拆分点是________.(2)把“优数”p的2倍与“优数”q的3倍的差记为D(p, q),例如:20=4×5,6=2×3,则D(20, 6)=2×20−3×6=22.若“优数”p的最优拆分点为t+4,“优数”q的最优拆分点为t,当D(p, q)=76时,求t的值并判断它是否为“优数”.重庆八中某数学兴趣小组同学探究函数y1={x+5(x≤−1)4x+2(x>−1)的图象与性质,根据学习函数的经验,该小组进行了系列探究.5(1)补全表格:a=________,b=________;(2)在如图所示的平面直角坐标系中,补全函数的图象并写出该函数的一条性质:________.x+2,直接写出不等式y1≥y2的解集.(3)若函数y2=−12温润有度,为爱加温.近年来设计精巧、物美价廉的暖风机逐渐成为人们冬天必备的“取暖神器”,今年11月下旬某商场计划购进A、B两种型号的暖风机共900台,每台A型号暖风机售价为600元,每台B型号暖风机售价为900元.(1)若要使得A、B两种型号暖风机的销售额不低于69万元,则至多购进多少台A型号暖风机?(2)由于质量超群、品质卓越,11月下旬购进的A、B两种型号的暖风机全部售完.该商场在12上旬又购进了A、B两种型号的暖风机若干台,并且进行“双12”促销活a%,A型号暖风机12月上旬的动,每台A型号暖风机的售价比其11月下旬的售价优惠12a%,每台B型号暖风机的售价比其11销售量比其在(1)问条件下的最高购进量增加14a%,B型号暖风机12月上旬的销售量比其在(1)问条件下的最低月下旬的售价优惠15购进量增加a%,A、B两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额a%,求a的值.增加了1946在△ABC与△ADF中,∠BAC=∠DAF=90∘,AB=AC,AD=AF,DF的延长线交BC于点E,连接DB、CF.(1)如图1,当点C、A、D三点在同一直线上,且AC=√3AF,AF=√2时,求CE的长;(2)如图2,当∠AFC=90∘时,求证:E是BC的中点;(3)如图3,若CF平分∠ACB,且CF的延长线与DB交于点G,请直接写出BG、DG、FG之间的数量关系.参考答案与试题解析2019-2020学年某校九年级(下)定时练习数学试卷(八)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.【答案】 B【考点】 相反数 【解析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可. 【解答】14的相反数为−14, 2.【答案】 D【考点】 中心对称图形 【解析】根据中心对称图形的概念求解. 【解答】A 、不是中心对称图形,故本选项不合题意;B 、不是中心对称图形,故本选项不合题意;C 、不是中心对称图形,故本选项不合题意;D 、是中心对称图形,故本选项符合题意. 3.【答案】 B【考点】多边形内角与外角 【解析】本题根据多边形的内角和定理和多边形的内角和等于900∘,列出方程,解出即可. 【解答】解:设这个多边形的边数为n , 则有(n −2)180∘=900∘, 解得:n =7,∴ 这个多边形的边数为7. 故选B . 4. 【答案】 C线段垂直平分线的性质正方形的判定矩形的判定菱形的判定平行四边形的性质【解析】根据正方形、矩形、菱形的判定定理判断即可.【解答】A、四边都相等的四边形是菱形,故不符合题意;B、有一组邻边相等的平行四边形是菱形;故不符合题意;C、对角线互相垂直平分的四边形是菱形;故符合题意;D、对角线相等的平行四边形四边形是矩形,故不符合题意.5.【答案】D【考点】列代数式求值【解析】将x=1代入代数式求出a+b的值,再将x=−1及a+b的值代入代数式即可求出值.【解答】当x=1时,代数式为a+b+3=1,即a+b=−2,则当x=−1时,代数式为a+b−3=−2−3=−5.6.【答案】B【考点】圆周角定理【解析】根据题意作出合适的辅助线,然后根据题意和图形即可求得∠BDC的度数,本题得以解决.【解答】连接AD,∵AB是⊙O直径,∠AOC=130∘,∴∠BDA=90∘,∠CDA=65∘,∴∠BDC=25∘,7.【答案】B【考点】估算无理数的大小二次根式的混合运算【解析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.原式=3+2√3,∵3<2√3<4,∴6<3+2√3<7,8.【答案】A【考点】列代数式求值有理数的混合运算【解析】根据输出的数y的值为5,是奇数,可知x一定是奇数,又y=x+2,可求出x的值.【解答】由输出y的值为5,是奇数,可知x一定是奇数,于是满足y=x+2,当y=5时,即5=x+2,解得,x=3,9.【答案】B【考点】解直角三角形的应用-仰角俯角问题解直角三角形的应用-坡度坡角问题【解析】如图,过点B作BD⊥AC于点D,通过解直角△ABD和坡度的定义来求BD的长度即可.【解答】如图,过点B作BD⊥AC于点D,∵山坡BC的坡度为1:0.6,∴BDCD =10.6,则CD=0.6BD.∵∠BAC为38.7∘,∴tan38.7∘=BDAD =BDAC+CD.∵AC=377米,tan38.7∘≈0.8,∴BD377+0.6BD≈0.8,解得BD=580(米).答:仙女峰的高度约为580米,故选:B.10.【考点】反比例函数系数k的几何意义【解析】先设出B点坐标,即可表示出C点坐标,根据三角形的面积公式和反比例函数的几何意义即可解答.【解答】延长BC交y轴于E,过D作x轴的垂线,垂足为F.∵OD=2DB,∴ODOB =23,∵DF // AB,∴△ODF∽△OBA,∴S△ODFS△OBA =(ODOB)2=49,∴S△OBA=94S△ODF,则S四边形ABDF=54S△ODF,又∵S△OAB=S△OBE,S△ODF=S△OCE=12k,∴S四边形ABDF =S△OBC=58k=52,∴k=4.11.【答案】B【考点】分式方程的解【解析】①解分式方程,使x≥0且x≠1,求出k的取值;②因为二次函数y=x2+2x−k−1的图象与x轴无交点,所以△<0,列不等式,求出k的取值;③综合①②求公共解并求其整数解,再相乘.【解答】k 1−x +2=3x−1,去分母,方程两边同时乘以x−1,−k+2(x−1)=3,x=5+k2≥0,∴k≥−5①,∵x≠1,∴k≠−3②,由y=x2+2x−k−1的图象与x轴无交点,则4−4(−k−1)<0,k<−2③,由①②③得:−5≤k<−2且k≠−3,∴k的整数解为:−5、−4,乘积是20;12.【答案】D【考点】直角三角形斜边上的中线勾股定理翻折变换(折叠问题)【解析】如图连接BE 交AD 于O ,作AH ⊥BC 于H .首先证明AD 垂直平分线段BE ,△BCE 是直角三角形,求出BC 、BE ,在Rt △BCE 中,利用勾股定理即可解决问题.【解答】解:如图连结BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵ AC =4,AB =3,∴ BC =√32+42=5,∵ CD =DB ,∴ AD =DC =DB =52, ∵ 12⋅BC ⋅AH =12⋅AB ⋅AC ,∴ AH =125,∵ AE =AB ,∴ 点A 在BE 的垂直平分线上.∵ DE =DB =DC ,∴ 点D 在BE 的垂直平分线上,△BCE 是直角三角形.∴ AD 垂直平分线段BE .∵ 12⋅AD ⋅BO =12⋅BD ⋅AH ,∴ OB =125.∴ BE =2OB =245.在Rt △BCE 中,EC =√BC 2−BE 2=√52−(245)2=75.故选D .二、填空题:(本题共5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡中对应的横线上.【答案】 √3−3【考点】负整数指数幂特殊角的三角函数值零指数幂实数的运算【解析】直接利用零指数幂的性质以及负整数指数幂的性质和特殊角的三角函数值进而化简得【解答】原式=1−4+2×√32=1−4+√3=√3−3.【答案】xy(x +y)(x −y)【考点】提公因式法与公式法的综合运用【解析】首先提取公因式xy ,再对余下的多项式运用平方差公式继续分解.【解答】解:x 3y −xy 3=xy(x 2−y 2)=xy(x +y)(x −y).故答案为:xy(x +y)(x −y).【答案】13【考点】概率公式解一元一次不等式【解析】找到满足不等式x +1<2的结果数,再根据概率公式计算可得.【解答】在−1,0,1,2,3,4这六个数中,满足不等式x +1<2的有−1、0这两个, 所以满足不等式x +1<2的概率是26=13,【答案】8−2π【考点】扇形面积的计算【解析】由于三条弧所对的圆心角的和为180∘,根据扇形的面积公式可计算出三个扇形的面积和,而三条弧与边AB 所围成的阴影部分的面积=S △ABC −三个扇形的面积和,再利用三角形的面积公式计算出S △ABC =12⋅4⋅4=8,然后代入即可得到答案.【解答】∵ ∠C =90∘,CA =CB =4,∴ 12AC =2,S △ABC =12⋅4⋅4=8,∵ 三条弧所对的圆心角的和为180∘,三个扇形的面积和=180⋅π⋅22360=2π,∴ 三条弧与边AB 所围成的阴影部分的面积=S △ABC −三个扇形的面积和=8−2π.360【考点】一次函数的应用【解析】由图象可知,A、B两地相距990千米,而乙车来回用时22小时,因此乙车的速度为:990÷(22÷2)=90千米/小时,甲乙两车在C地相遇后,甲休息0.5小时,乙继续走,可知在乙车出发7小时相遇,此时乙车行7小时,而甲车行7−1=6小时,行完全程,因此甲的速度为:(990−90×7)÷6=60千米/小时,甲从A到B地的时间为:990÷60=16.5小时,此时乙车已经行驶16.5+0.5+1=18小时,因此乙车距B地还剩22−18=4小时的路程,即90×4=360千米.【解答】乙车的速度:990÷(22÷2)=90千米/小时,甲车速度为:(990−90×7)÷(7−1)=60千米/小时,甲车行完全程的时间为:990÷60=16.5小时,此时乙车已经行驶16.5+0.5+1=18小时,因此乙车距B地还剩22−18=4小时的路程,所以当甲车到达B地时,乙车距离B地的距离为90×4=360千米,三、解答题:(本题共7小题,18题8分,其余每小题8分,共68分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.【答案】原式=a2−b2+a2+2ab+b2−2a2=2ab;原式=x−3x−1÷(−x2+3x−2x−1+2x−1)=x−3x−1÷−x2+3xx−1=x−3x−1⋅x−1−x(x−3)=−1x.【考点】完全平方公式平方差公式分式的混合运算【解析】(1)原式先去括号,再合并同类项即可得;(2)先计算括号内分式的加法,再将除法转化为乘法,因式分解、约分即可得.【解答】原式=a2−b2+a2+2ab+b2−2a2=2ab;原式=x−3x−1÷(−x2+3x−2x−1+2x−1)=x−3x−1÷−x2+3xx−1=x−3x−1⋅x−1−x(x−3)=−1.x【答案】∵AD=BE∴AB=DE∵BC // EF∴∠ABC=∠DEF,且AB=BE,BC=EF∴△ABC≅△DEF(SAS)∴AC=DF∵△ABC≅△DEF∴∠ABC=∠E=71∘,∠A=∠FDE=25∘∴∠ACB=180∘−∠A−∠ABC=84∘∵CD为∠ACB的平分线∴∠ACD=42∘=∠BCD∵∠CDB=∠A+∠ACD=∠CDF+∠EDF∴∠CDF=42∘【考点】全等三角形的性质与判定【解析】(1)由“SAS”可证△ABC≅△DEF,可得AC=DF;(2)由全等三角形的性质可得∠ABC=∠E=71∘,∠A=∠FDE=25∘,由三角形内角和定理可求∠ACB=84∘,由角平分线的性质和外角的性质可求∠CDF的度数.【解答】∵AD=BE∴AB=DE∵BC // EF∴∠ABC=∠DEF,且AB=BE,BC=EF∴△ABC≅△DEF(SAS)∴AC=DF∵△ABC≅△DEF∴∠ABC=∠E=71∘,∠A=∠FDE=25∘∴∠ACB=180∘−∠A−∠ABC=84∘∵CD为∠ACB的平分线∴∠ACD=42∘=∠BCD∵∠CDB=∠A+∠ACD=∠CDF+∠EDF∴∠CDF=42∘【答案】4,41=200,500×820所以估计500株紫花中高度正常的有200株;白花长势更均匀.理由如下:白花的方差较小,长势更均匀.【考点】用样本估计总体频数(率)分布表方差频数(率)分布直方图加权平均数中位数众数数学常识利用频率估计概率【解析】(1)用20减去其它5组的频数得到m的值;利用白花高度频数分布直方图得到前面两组的频数和为4,而白花植株高度为35≤ℎ≤43的数据有:35,37,37,38,39,40,42,42,这样可得到第10和第11个数据,从而得到n的值;(2)用500乘以样本紫花中高度正常的百分比即可;(3)利用方差的意义进行判断.【解答】m=20−3−2−5−1−5=4;白花的中位数为40≤ℎ<45之间,所以第10个数为40,第11个数为42,=41;所以n=40+422故答案为4;41;=200,500×820所以估计500株紫花中高度正常的有200株;白花长势更均匀.理由如下:白花的方差较小,长势更均匀.【答案】42,6由题意知,p=(t+4)(t+5),q=t(t+1),∵D(p, q)=2p−3q,∴2(t+4)(t+5)−3t(t+1)=76,∴t=3或t=12∵3不能写成n(n+1)的形式,12=3×(3+1),∴3不是“优数”,12是“优数”.【考点】因式分解的应用【解析】(1)6×7=42,根据优数和最优拆分点定义即可得出;(2)先根据p,q为优数和D(p, q)=76建立方程,再解方程求出t的值,最后根据优数定义判断t是否为“优数”.【解答】∵6×7=42,∴ “优数”为42,它的最优拆分点是6,故答案为42;6由题意知,p=(t+4)(t+5),q=t(t+1),∵D(p, q)=2p−3q,∴2(t+4)(t+5)−3t(t+1)=76,∴t=3或t=12∵3不能写成n(n+1)的形式,12=3×(3+1),∴3不是“优数”,12是“优数”.【答案】2,43当x<−1时,y随x的增大而增大由图象可得,不等式y1≥y2的解集是−2≤x≤0或x≥2.【考点】一次函数的性质反比例函数的性质一次函数与一元一次不等式【解析】(1)根据题目中的函数解析式可以求得a、b的值;(2)根据表格中的数据可以画出相应的函数图象,写出其中的一条性质,注意答案不唯一;(3)根据函数图象,可以直接写出不等式y1≥y2的解集.【解答】a=40+2=2,b=41+2=43,故答案为:2,43;当x<−1时,y随x的增大而增大,故答案为:当x<−1时,y随x的增大而增大;由图象可得,不等式y1≥y2的解集是−2≤x≤0或x≥2.【答案】至多购进400台A型号暖风机a的值为12.5【考点】一元二次方程的应用一元一次不等式的实际应用【解析】(1)设购进x台A型号暖风机,则购进(900−x)台B型号暖风机,根据总价=单价×数量结合销售额不低于69万元,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;(2)根据总价=单价×数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【解答】设购进x台A型号暖风机,则购进(900−x)台B型号暖风机,依题意,得:600x+900(900−x)≥690000,解得:x≤400.答:至多购进400台A型号暖风机.依题意,得:600(1−12a%)×400(1+14a%)+900(1−15a%)×(900−400)(1+a%)=690000(1+1946a%),整理,得:150a−12a2=0,解得:a1=12.5,a2=0(不合题意,舍去).答:a的值为12.5.【答案】如图1中,∵AC=√3AF,AF=√2,∴AF=AD=√2,AC=AB=√6,DC=√2+√6,∵∠DAF=90∘,∴DF=√2AD=2,∵∠C=∠ADF=45∘,∴∠DEC=90∘,∴ED=EC=√22DC=1+√3.证明:如图2中,连接AM、AE、ME,延长CF交BD于M.∵AD=AF,AB=AC,∠DAE=∠BAC=90∘,∴∠DAB=∠FAC,在△BDA和△CFA中,{AD=AF∠DAB=∠FACAB=AC,∴△BDA≅△CFA,∴AF=AD,∠BDA=∠AFC=90∘,∴四边形ADMF是矩形,∵AD=AF,∴四边形ADMF是正方形,∴DE垂直平分AM,∵∠BAC=∠BMC=90∘,∴A、M、B、C四点共圆,∵DE垂直平分AM,∴DE过圆心,∵∠BAC=90∘,∴圆心在直线BC上,∴点E就是圆心,∴BE=EC.或:过点B作BD的垂线和DE延长线相交于点G,证三角形CEF和BEG全等.结论:GD+GF=√2BG.理由如下:如图3中,作AM⊥BD于M,AN⊥CG于N,AB与CG交于点O.∵△BDA≅△CFA,∴∠GBO=∠AOC,∵∠GOB=∠AOC,∴∠BGO=∠CAO=90∘,∴∠M=∠MGN=∠ANG=90∘,∴四边形AMGN是矩形,∵∠BGC=∠BAC=90∘,∴A、G、B、C四点共圆,∴∠AGO=∠ABC=45∘,∠GBA=∠ACG,∠GAB=∠BCG,∵∠BCG=∠ACG,∴∠GBA=∠GAB,∴BG=AG,∵∠AGM=∠AGN,AM⊥GM,AN⊥GN,∴AM=AN,∴四边形AMGN是正方形,在Rt△AMD和Rt△ANF中,,{AD=AFAM=AN∴△AMD≅△ANF,∴DM=FN,∴GD+GF=MG−DM+GN=FN=2GM=2×√2AG=√2BG,2∴GD+GF=√2BG.【考点】三角形综合题四点共圆【解析】(1)在Rt△ADF中,求出DF,在Rt△EDC中求出DE即可解决问题.(2)如图2中,连接AM、AE、ME,延长CF交BD于M.首先证明四边形ADMF是正方形,再证明A、M、B、C四点共圆,根据垂径定理推论,即可证明.(3)结论:GD+GF=√2BG.首先证明四边形AMGN是矩形,由A、G、B、C四点共圆,推出∠AGO=∠ABC=45∘,∠GBA=∠ACG,∠GAB=∠BCG,由∠BCG=∠ACG,推出∠GBA=∠GAB,推出BG=AG,由△AMD≅△ANF,推出DM=FN,可得GD+GFAG=√2BG,即可证明.=MG−DM+GN=FN=2GM=2×√22【解答】如图1中,∵AC=√3AF,AF=√2,∴AF=AD=√2,AC=AB=√6,DC=√2+√6,∵∠DAF=90∘,∴DF=√2AD=2,∵∠C=∠ADF=45∘,∴∠DEC=90∘,∴ED=EC=√22DC=1+√3.证明:如图2中,连接AM、AE、ME,延长CF交BD于M.∵AD=AF,AB=AC,∠DAE=∠BAC=90∘,∴∠DAB=∠FAC,在△BDA和△CFA中,{AD=AF∠DAB=∠FACAB=AC,∴△BDA≅△CFA,∴AF=AD,∠BDA=∠AFC=90∘,∴四边形ADMF是矩形,∵AD=AF,∴四边形ADMF是正方形,∴DE垂直平分AM,∵∠BAC=∠BMC=90∘,∴A、M、B、C四点共圆,∵DE垂直平分AM,∴DE过圆心,∵∠BAC=90∘,∴圆心在直线BC上,∴点E就是圆心,∴BE=EC.或:过点B作BD的垂线和DE延长线相交于点G,证三角形CEF和BEG全等.结论:GD+GF=√2BG.理由如下:如图3中,作AM⊥BD于M,AN⊥CG于N,AB与CG交于点O.∵△BDA≅△CFA,∴∠GBO=∠AOC,∵∠GOB=∠AOC,∴∠BGO=∠CAO=90∘,∴∠M=∠MGN=∠ANG=90∘,∴四边形AMGN是矩形,∵∠BGC=∠BAC=90∘,∴A、G、B、C四点共圆,∴∠AGO=∠ABC=45∘,∠GBA=∠ACG,∠GAB=∠BCG,∵∠BCG=∠ACG,∴∠GBA=∠GAB,∴BG=AG,∵∠AGM=∠AGN,AM⊥GM,AN⊥GN,∴AM=AN,∴四边形AMGN是正方形,在Rt△AMD和Rt△ANF中,,{AD=AFAM=AN∴△AMD≅△ANF,∴DM=FN,∴GD+GF=MG−DM+GN=FN=2GM=2×√2AG=√2BG,2∴GD+GF=√2BG.。
九年级数学限时8
A. 1
B.
C.
D.
5.如图,线段 AB 是⊙O 的直径,弦 CD 丄 AB,如果∠BOC=70°, 那么∠BAD
等于
A. 20°
B. 30°
C. 35°
D.70°
6.在平面直角坐标系 xOy 中,第一象限内的点 P 在反比例函数的图象上,如果点 P 的纵坐标是 3,
OP=5,那么该函数的表达式为
A. y= 12 x
2019—2020 学年度第二学期九年级数学练习 8
班级:
姓名:
学号:
得分:___________________
一、选择题(本题共 24 分,每小题 3 分)
1.据市烟花办相关负责人介绍,2015 年除夕零时至正月十五 24 时,全市共销售烟花爆竹 约 196 000 箱,
同比下降了 32%.将 196 000 用科学记数法表示应为
23.已知二次函数 y1 x2 bx c 的图象 C1 经过(−1,0),(0,−3) 两
点.
(1)求 C1 对应的函数表达式; (2)将 C1 先向左平移 1 个单位,再向上平移 4 个单位, 得到抛物线 C2,将 C2 对应的函数表达式记为 y2 = x2 +mx+ n,求 C2 对应
22.如图,AB 为⊙O 的直径,M 为⊙O 外一点,连接 MA 与⊙O 交于点 C,连接 MB 并延长交⊙O 于点 D,经过点 M 的直线 l 与 MA 所在直线关于直线 MD 对称.作 BE⊥l 于点 E,连接 AD,DE. (1)依题意补全图形; (2)在不添加新的线段的条件下,写出图中与∠BED 相等 的角,并加以证明.
B. y= 12 x
C. y= 15 x
D. y= 15 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
18.先化简,再求值:
x x2 1
(1
1 ) ,其中 x x1
2 1.
19.某商店将成本为每件 60 元的某商品标价 100 元出售,为了促销,该商品经过两次降低后每件售 价为 81 元,若两次降价的百分率相同,求每次降价的百分率;
3
四、 解答题:(每小题 7 分,共 14 分)
20. (6 分 )如图,己知等腰△ ABC的顶角∠ A = 36 °
1
A、
B、
C、
D、
10.二次函数 y=ax2+bx+c 图象如图,下列正确的个数为(
)
① bc>0; ② 2a﹣3c< 0; ③ 2a+b>0; ④ 当 x>1 时, y 随 x 增大而减小
⑤ ax2+bx+c=0 有两个解 x1, x2,x1> 0,x2<0;
⑥ a+b+c> 0
A.2
B.3
C. 4
年“快的打车 ”账户流水总金额达到 47.3 亿元, 47.3 亿用科学记数法表示为(
)
A .4.73× 108
B.4.73× 109
C. 4.73×1010
D.4.73×1011
4.由几个大小不同的正方形组成的几何图形如图,则它的俯视图是(
)
A.
B.
C.
D.
5.在﹣ 2,1,2,1,4,6 中正确的是(
4
8.如图, △ ABC 和△DEF 中, AB=DE 、角∠ B=∠DEF,添加下列哪一个条件无法证明
△ABC ≌△ DEF(
)
A .AC ∥ DF B.∠ A= ∠D
C. AC=DF D.∠ ACB= ∠F
9.袋子里有 4 个球,标有 2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所
抽取的两个球数字之和大于 6 的概率是( )
(1)作线段 AB 的垂直平分线 MN ,交 AC 于点 D
(用尺规作图,保留作图痕迹,不要求写作法
);
(2)在 (1)的条件下,连结 BD,求∠ DBC的度数。
21、为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查。已知抽取的 样本中,男生、女生的人数相同,利用所得数据绘制 如下统计图表: [来
班级
初三数学限时训练测试 **
姓名
(限时 45 分钟,共 86 分)
考号
一、选择题(每小题 3 分,共 30 分)
1. 9 的相反数是(
)
A 、﹣ 9
B、9
C、±9
D、
2.下列图形中是轴对称图形但不是中心对称图形的是(
A.
B.
C.
) D.
3.支付宝与 “快的打车 ”联合推出优惠, “快的打车 ”一夜之间红遍大江南北. 据统计,2014
)
A.平均数 3
B. 众数是﹣ 2
C.中位数是 1 D.极差为 8
6.已知函数 y=ax+b 经过( 1,3),( 0,﹣ 2),则 a﹣b=(
)
A .﹣ 1
B.﹣ 3
C.3
D.7
7.下列方程没有实数根的是(
)
A .x2+4x=10 B.3x2+8x﹣3=0 C. x2﹣2x+3=0 D.( x﹣ 2)(x﹣3)=12
根据图表提供的信息,回答下列问题: (1)样本中,男生的身高众数在 __________ 组,中位数在 __________ 组; (2)样本中,女生身高在 E 组的人数有 __________ 人;
(3 )已知该校共有男生 400 人,女生 380 人,请估计身高在 160≤ x <170 之间的学生约有多少人?
.
15.如图,双曲线 y= 经过 Rt△BOC 斜边上的点 A ,且满足 = ,与 BC 交于点 D,
S△BOD =21,求 k= .
16.如图,下列图形是将正三角形按一定规律排列,则第
数有
.
5 个图形中所有正三角形的个
第 15 题图
第 16 题图
2
三、 解答题:(每小题 6 分,共 18 分)
17. 计算:(﹣ 1) 2017+π0﹣
D.5
第 8 题图
第 10 题图
第 14 题图
ห้องสมุดไป่ตู้
二、填空题(每小题 4 分,共 24 分)
11.分解因式: 2x2﹣ 8=
.
12、一个正多边形的每个外角为 60°,那么这个正多边形的内角和是
13、不等式组
的解集是
.
14.如图,在 Rt△ABC 中,∠ C=90°,AD 平分∠ CAB ,AC=6, BC=8,CD=