新最新初中数学—分式的难题汇编附解析(2)
新最新初中数学—分式的难题汇编及答案
一、选择题1.把分式2n m n +中的m 与n 都扩大3倍,那么这个代数式的值 A .不变 B .扩大3倍 C .扩大6倍 D .缩小到原来的132.计算23x 11x +--的结果是 A .1x 1- B .11x - C .5x 1- D .51x- 3.下列分式约分正确的是( )A .236a a a =B .1-=-+y x y xC .316222=b a abD .m mn m n m 12=++4.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 5.下列各式、、、+1、中分式有( ) A .2个 B .3个 C .4个 D .5个6.在分式ab a b +(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值( )A .扩大为原来的2倍B .缩小为原来的12 C .不变 D .不确定 7.已知,则的值是( )A .B .﹣C .2D .﹣28.化简:(a-2)·22444a a a --+的结果是( ) A .a-2 B .a +2 C .22-+a a D .22+-a a 9.已知+=3,则分式的值为( )A .B .9C .1D .不能确定10.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥3 11.若分式的值为0,则x 的值为( ) A .0B .2C .﹣2D .2或﹣2 12.如果把223y x y-中的x 和y 都扩大5倍,那么分式的值( ) A.扩大5倍 B.不变 C.缩小5倍 D.扩大10倍13.12⎛⎫- ⎪⎝⎭-2的正确结果是( ) A .14 B .14- C .4 D .-414.用科学记数方法表示0.00000601,得( )A .0.601×10-6B .6.01×10-6C .60.1×10-7D .60.1×10-615.若分式的值为0,则x 的值为 A . B . C . D .不存在16.计算222x y x y y x +--的结果是( ) A .1 B .﹣1 C .2x y + D .x y +17.下列各式的约分,正确的是A .1a b a b --=-B .1a b a b--=-- C .22a b a b a b -=-+ D .22a b a b a b-=++ 18.若分式的值为0,则x 的值是( )A .3B -3C .4D .-419.已知115ab a b =+,117bc b c =+,116ca c a =+,则abc ab bc ca ++的值是( ) A .121 B .122 C .123 D .12420.(2015秋•郴州校级期中)下列计算正确的是( ) A .B .•C .x÷y•D .21.在,,中,是分式的有( ) A .0个 B .1个 C .2个 D .3个22.若已知分式22169x x x ---+的值为0,则x ﹣2的值为( ). A .19或﹣1 B .19或1 C .﹣1 D .1 23.计算的结果是( ) A .a+b B .2a+b C .1 D .-124.在函数中,自变量的取值范围是( ) A .>3 B .≥3且≠4 C .>4 D .≥325.若分式211x x -+的值为零,则x 的值为( ) A .0 B .1 C .1- D .±1【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题解析:分式2n m n+中的m 与n 都扩大3倍,得 6233n n m n m n=++, 故选A .2.B解析:B【解析】试题分析:先通分,再根据同分母的分式相加减的法则进行计算伯出判断:2323231x 11x 1x 1x 1x 1x-++=-+==------.故选B . 3.D 解析:D【解析】试题分析:A.约分的结果为a3;B.不能进行约分;C.约分的结果为ab 3。
最新最新初中数学—分式的难题汇编含答案
一、选择题1.下列各式:351,,,,12a b x y a b x a b xπ-+++--中,是分式的共有( ) A .1个 B .2个C .3个D .4个2.0.000002019用科学记数法可表示为( )A .0.2019×10﹣5B .2.019×10﹣6C .20.19×10﹣7 D .2019×10﹣9 3.小张在课外阅读中看到这样一条信息:“肥皂泡的厚度约为0.0000007m ”,请你用科学记数法表示肥皂泡的厚度,下列选项正确的是( ) A .0.7 ⨯10-6 mB .0.7 ⨯10-7mC .7 ⨯10-7mD .7 ⨯10-6m4.若x 2-6xy +9y 2=0,那么x yx y-+的值为( ) A .12yB .12y-C .12D .12-5.已知02125,,0.253a b c --⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭,a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .c >a >bD .c >b >a6.下列计算正确的有(). ①0(1)1-= ②21333-⨯= ③()()33m m x x -=- ④2211224x x x ⎛⎫-=-+ ⎪⎝⎭ ⑤22(3)(3)9a b b a a b ---=-A .4个B .3个C .2个D .1个7.把分式a2a b+中的a 、b 都扩大2倍,则分式的值( ) A .缩小14 B .缩小12C .扩大2倍D .不变8.蜜蜂建造的蜂巢坚固省料,其厚度约为0.000073米,0.000073用科学计数法表示为 A .40.7310-⨯ B .47.310-⨯ C .57.310-⨯ D .67.310-⨯9.下列运算中,正确的是( )A .;B .;C .;D .;10.已知x 2-4xy +4y 2=0,则分式x yx y -+的值为( )A .13-B .13C .13yD .y 31-11.将分式2x x y+中的x 、y 都扩大2倍,则分式值( )A .扩大为原来的2倍B .缩小为原来的2倍C .保持不变D .无法确定12.如果把5xy x y+中的x 和y 都扩大为原来的10倍,那么这个分式的值( )A .不变B .扩大为原来的50倍C .扩大为原来的10倍D .缩小为原来的11013.如果把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍,则分式的值( ) A .不变B .扩大为原来的两倍C .缩小为原来的14D .缩小为原来的1814.(2017河北)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4+446-=B .004+4+4=6C .34+4+4=6D .14446-÷+=15.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是( )A .甲B .乙C .丙D .丁16.1372x x-+-x 的取值范围是( )A .3<x <72B .3≤x <72C .3≤x ≤72D .x ≥317.用小数表示45.610-⨯为( ) A .5.6000B .0.00056C .0.0056D .0.05618.下列变形正确的是( ) A .()23524a a -=- B .22220x y xy -=C .23322b ab a a-÷=- D .()()222222x y x y x y +-=-19.若23a b =≠0,则代数式(2244b aba -+1)2b a a -÷的值为( ) A .2 B .1C .﹣1D .﹣220.若把分式x xy2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变21.下列运算正确的是( ) A .1133a a﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣=22.使分式211x x -+的值为0,这时x 应为( )A .x =±1 B .x =1C .x =1 且 x≠﹣1D .x 的值不确定23.下列计算:①3362a a a ⋅=;②2352m m m +=;③()224-24a a =-;④()21048a a a a ⋅÷=;⑤()-21-510=;⑥22m a mn a n+=+,其中正确的个数为( ) A .4个 B .3个C .2个D .1个24.若代数式21a 4-在实数范围内有意义,则实数a 的取值范围为( ) A .a 4≠ B .a 2>- C .2a 2-<< D .a 2≠± 25.把0.0813写成科学计教法8.13×10n (n 为整数)的形式,则n 为( ) A .2B .-2C .3D .-3【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】 【分析】根据分式的定义逐一进行判断即可. 【详解】31,,1x a b x a b x ++--是分式 故选:C. 【点睛】本题考查分式的定义,熟练掌握定义是关键.2.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000002019=2.019×10﹣6, 故选B . 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000 000 7=7×10-7. 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.C解析:C 【解析】根据完全平方公式求出x 与y 的关系,代入计算即可. 【详解】 x 2-6xy+9y 2=0, (x-3y )2=0, ∴x=3y , 则x y x y -+=3132y y y y -=+, 故选:C . 【点睛】本题考查的是求分式的值,掌握完全平方公式、分式的计算是解题的关键.5.C解析:C 【解析】 【分析】根据负整数指数幂和零指数幂法则计算,比较即可. 【详解】2129==10.25=434a b c --⎛⎫=-== ⎪⎝⎭⎝⎭,,, ∵4>94>1, ∴c >a >b . 故选C . 【点睛】此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.6.C解析:C 【解析】 【分析】直接利用整数指数幂的法则和乘法公式分别计算得出答案. 【详解】解:①0(1)1-=,故①正确;②211333=93-⨯=⨯,故②正确; ③当m 是偶数时,()()333=mm m x x x -=,故③错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,故④错误;⑤22(3)(3)9a b b a b a ----=,故⑤错误. 正确的有①②,共2个. 故选C本题考查了整数指数幂的运算法则和乘法公式,熟练掌握幂的各种性质和法则,乘法公式是解题的基础.7.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式a2a b+中的a、b都扩大2倍,得2a2a a22a2b2(2a b)2a b==⨯+++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.8.C解析:C【解析】【分析】数学术语,a×10的n次幂的形式.将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,这种记数方法叫科学记数法。
最新初中数学方程与不等式之分式方程难题汇编含答案解析(2)
最新初中数学方程与不等式之分式方程难题汇编含答案解析(2)一、选择题1.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y ky ++的解为正数,则符合条件的所有整数k 的积为( )A .2B .0C .﹣3D .﹣6【答案】A 【解析】 【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案. 【详解】解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k ,∵不等式组只有4个整数解, ∴0≤﹣3k<1, 解得:﹣3<k ≤0, 解分式方程1k y -+1=1y k y ++得:y =﹣2k +1,∵分式方程的解为正数, ∴﹣2k +1>0且﹣2k +1≠1, 解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2, 故选A . 【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.2.解分式方程11222x x x-+=--的结果是( ) A .x="2"B .x="3"C .x="4"D .无解【解析】 【分析】 【详解】解:去分母得:1﹣x+2x ﹣4=﹣1, 解得:x=2,经检验x=2是增根,分式方程无解. 故选D .考点:解分式方程.3.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( ) A .4 1.2540800x x ⨯-=B .800800402.25x x-= C .800800401.25x x -= D .800800401.25x x-= 【答案】C 【解析】 【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 【详解】小进跑800米用的时间为8001.25x 秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒,方程是800800401.25x x-=, 故选C . 【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.4.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x 公里,根据题意列出的方程正确的是( ) A .60(125%)6060x x⨯+-=B .6060(125%)60x x⨯+-= C .606060(125%)x x-=+D .606060(125%)x x-=+ 【答案】D【分析】设原计划每天修路x公里,则实际每天的工作效率为(125%)x+公里,根据题意即可列出分式方程.【详解】解:设原计划每天修路x公里,则实际每天的工作效率为(125%)x+公里,依题意得:606060(125%)x x-=+.故选:D.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系进行列方程.5.如果关于x的不等式(a+1)x>2的解集为x<-1,则a的值是().A.a=3 B.a≤-3 C.a=-3 D.a>3【答案】C【解析】【分析】根据不等式的解集得出关于a的方程,解方程即可.【详解】解:因为关于x的不等式(a+1)x>2的解集为x<-1,所以a+1<0,即a<-1,且21a+=-1,解得:a=-3.经检验a=-3是原方程的根故选:C.【点睛】此题主要考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.6.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-【答案】A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.7.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的吋间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间. 设规定时间为x天,则可列方程为().A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯++【答案】A【解析】【分析】设规定时间为x天,得到慢马和快马所需要的时间,根据速度关系即可列出方程.【详解】设规定时间为x天,则慢马的时间为(x+1)天,快马的时间是(x-3)天,∵快马的速度是慢马的2倍,∴900900213 x x⨯=+-,故选:A.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.8.为保证某高速公路在2019年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用30天,如果甲乙两队合作,可比规定时间提前20天完成任务.若设规定的时间为x 天,由题意可以列出的方程是()A.111103020+=--+x x xB.111103020+=++-x x xC.111103020-=++-x x xD.111102030+=-+-x x x【答案】B【解析】【分析】设规定的时间为x天.则甲队单独完成这项工程所需时间是(x+10)天,乙队单独完成这项工程所需时间是(x+30)天.根据甲、乙两队合作,可比规定时间提前20天完成任务,列方程为111103020+=++-x x x.【详解】设规定时间为x天,则甲队单独一天完成这项工程的110 +x,乙队单独一天完成这项工程的130x+,甲、乙两队合作一天完成这项工程的120 x-.则111103020+=++-x x x.故选B.【点睛】此题考查分式方程,解题关键在于由实际问题抽象出分式方程.9.中秋节是我国的传统节日,人们素有吃月饼的习俗.汾阳月饼不仅汾阳人爱吃,而且风靡省城市场.省城某商场在中秋节来临之际购进A、B两种汾阳月饼共1500个,已知购进A种月饼和B种月饼的费用分别为3000元和2000元,且A种月饼的单价比B种月饼单价多1元.求A、B两种月饼的单价各是多少?设A种月饼单价为x元,根据题意,列方程正确的是( )A.3000200015001x x+=+B.2000300015001x x+=+C.3000200015001x x+=-D.2000300015001x x+=-【答案】C【解析】【分析】设A种月饼单价为x元,再分别表示出A种月饼和B种月饼的个数,根据“购进A、B两种汾阳月饼共1500个”,列出方程即可.【详解】设A种月饼单价为x元,则B种月饼单价为(x-1)元,根据题意可列出方程3000200015001x x+=-,故选C.【点睛】本题考查分式方程的应用,读懂题意是解题关键.10.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x=- C .405012x x =+ D .405012x x=+ 【答案】B 【解析】试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .11.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .25301018060(%)x x -=+ B .253010180(%)x x -=+ C .30251018060(%)x x -=+D .302510180(%)x x-=+【答案】A 【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程. 解:设走路线一时的平均速度为x 千米/小时,()253010180%60x x -=+ 故选A .12.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34【答案】B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.13.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.3036101.5x x-=B.3030101.5x x-=C.3630101.5x x-=D.3036101.5x x+=【答案】A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.14.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.15.若关于x的分式方程3222x m mx x++=--有增根,则m的值为()A.1-B.0 C.1 D.2【答案】C【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程,满足即可.【详解】解:方程两边都乘x﹣2,得x+m﹣3m=2(x﹣2),∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,2+m﹣3m=0,∴m=1,故选:C.【点睛】本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行:①让最简公分母为0确定可能的增根;②化分式方程为整式方程;③把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.16.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为( ) A .900900213x x ⨯=+- B .900900213x x =⨯+- C .900900213x x ⨯=-+ D .900900213x x =⨯-+ 【答案】A 【解析】 【分析】设规定时间为x 天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程. 【详解】解:设规定时间为x 天,则慢马需要的时间为(x +1)天,快马的时间为(x -3)天, ∵快马的速度是慢马的2倍∴900900213x x ⨯=+- 故选A . 【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.17.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x =- B .60048040x x =+ C .60048040x x =+ D .60048040x x =- 【答案】B 【解析】 【分析】由题意分别表达出原来生产480台机器所需时间和现在生产600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可. 【详解】解:设原计划每天生产x 台机器,根据题意得:48060040x x =+.故选B . 【点睛】读懂题意,用含x 的代数式表达出原来生产480台机器所需时间为480x天和现在生产600台机器所需时间为60040x +天是解答本题的关键.18.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( )A .12B .14C .16D .18【答案】C 【解析】 【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论. 【详解】解分式方程26344ax x x -+=---得:x=43a -,因为分式方程的解为正数,所以43a ->0且43a -≠4, 解得:a <3且a≠2,解不等式1722x a x x >⎧⎪⎨+≥-⎪⎩,得:x≤a+7,∵不等式组有解, ∴a+7>1, 解得:a >-6,综上,-6<a <3,且a≠2,则满足上述要求的所有整数a 的绝对值的和为: |-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16, 故选:C . 【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a <3且a≠2是解题的关键.19.初二18班为课外体育活动购买了实心球和跳绳.已知跳绳的单价比实心球的单价贵40元,购买实心球总花费为1610元,购买跳绳总花费为1650元,购买实心球的数量比跳绳的数量多8个,求实心球的单价.设实心球单价为x 元,所列方程正确的是( ) A .16501610840x x -=+ B .16501610840x x -=+ C .16101650840x x -=+ D .16101650840x x -=+ 【答案】C【解析】【分析】设实心球单价为x 元,则跳绳单价为()40x +元,根据“购买实心球的数量比跳绳的数量多8个”即可得到方程.【详解】 解:设实心球单价为x 元,则跳绳单价为()40x +元,根据题意得,16101650840x x -=+. 故选:C【点睛】本题考查了分式方程的实际应用,解答本题的关键是审清题意,找到等量关系即可得解.20.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h ,则根据题意可列方程为( )A .15020150 1.52.5x x --=B .15015020 1.52.5x x--= C .15015020 1.52.5x x --= D .15020150 1.52.5x x--= 【答案】C【解析】【分析】根据“走高速用的时间比走国道少花1.5小时”列出方程即可得出答案.【详解】 根据题意可得,走高速所用时间150202.5x -小时,走国道所用时间150x小时 即15015020 1.52.5x x--= 故答案选择C.【点睛】本题考查的是分式方程在实际生活中的应用,根据公式“路程=速度×时间”及其变形列出等式是解决本题的关键.。
(易错题精选)最新初中数学—分式的难题汇编附答案
一、选择题1.当x =_____ 时,分式11xx-+无意义.( ) A .0 B .1C .-1D .22.如果把5xy x y+中的x 和y 都扩大为原来的10倍,那么这个分式的值( )A .不变B .扩大为原来的50倍C .扩大为原来的10倍D .缩小为原来的1103.设2222x 18n x 33x x 9+=+++--,若n 的值为整数,则x 可以取的值得个数是( ) A .5 B .4 C .3 D .2 4.0.000002019用科学记数法可表示为( )A .0.2019×10﹣5B .2.019×10﹣6C .20.19×10﹣7D .2019×10﹣9 5.小张在课外阅读中看到这样一条信息:“肥皂泡的厚度约为0.0000007m ”,请你用科学记数法表示肥皂泡的厚度,下列选项正确的是( ) A .0.7 ⨯10-6 mB .0.7 ⨯10-7mC .7 ⨯10-7mD .7 ⨯10-6m6.已知02125,,0.253a b c --⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭,a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .c >a >b D .c >b >a7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。
2.5微米等于0.0000025米,把0.0000025用科学记数法表示为( ) A .0.25×10–5米B .2.5×10–7米C .2.5×10–6米D .25×10–7米8.纳米是一种长度单位,1纳米810-=米,己知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米B .43.510-⨯米C .33.510-⨯米D .93.510-⨯9.已知:a ,b ,c 三个数满足,则的值为( ) A .B .C .D .10.已知x 2-4xy +4y 2=0,则分式x yx y-+的值为( )A .13-B .13C .13yD .y 31-11.把0.0813写成科学计教法8.13×10n (n 为整数)的形式,则n 为( )A .2B .-2C .3D .-312.若a =﹣0.22,b =﹣2-2,c =(﹣12)-2,d =(﹣12)0,则它们的大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <bD .c <a <d <b13.下列运算正确的是( ) A .393= B .0(2)1-=C .2234a a a +=D .2325a a a ⋅=14.下列各式:2a b -,3x x +,13,a b a b +-,1()x y m -中,是分式的共有( )A .1个B .2个C .3个D .4个15.若02018a =,2201720192018b =⨯- , 2017201845()()54c =-⨯ ,则a ,b ,c 的大小关系式( ) A .a b c << B .b c a << C .c b a << D .a c b <<16.如果把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍,则分式的值( ) A .不变 B .扩大为原来的两倍 C .缩小为原来的14D .缩小为原来的1817.下列各式:351,,,,12a b x y a b x a b xπ-+++--中,是分式的共有( ) A .1个B .2个C .3个D .4个18.下列运算结果最大的是( )A .112-⎛⎫ ⎪⎝⎭B .02C .12-D .()12-19.下列等式从左到右的变形正确的是( )A .22b by x xy= B .2ab b a a =C .22b b a a=D .11b b a a +=+ 20.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确结果为( )A .1B .2C .3D .421.将分式2a bab+中的a 、b 都扩大为原来的2倍,则分式的值( )A .缩小到原来的12倍 B .扩大为原来的2倍 C .扩大为原来的4倍 D .不变22.若m+2n =0,则分式22221m n m m mn m m n +⎛⎫+÷ ⎪--⎝⎭的值为( ) A .32B .﹣3nC .﹣32n D .9223.用小数表示45.610-⨯为( ) A .5.6000B .0.00056C .0.0056D .0.05624.若a=20180,b=2016×2018-20172,c=(23-)2016×(32)2017,则a ,b ,c 的大小关系正确的是( ) A .a<b<c B .a<c<bC .b<a<cD .c<b<a25.与分式()()a b a b ---+相等的是( ) A .a ba b +- B .a ba b-+ C .a ba b+-- D .a ba b--+【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据分式无意义的条件,分母等于0,列不等式求解即可. 【详解】因为分式11xx-+无意义, 所以1+x =0, 解得x =-1. 故选C. 【点睛】本题主要考查分式无意义的条件,解决本题的关键是要熟练掌握分式无意义的条件.2.C解析:C 【解析】 【分析】首先分别判断出x 与y 都扩大为原来的10倍后,分式的分子、分母的变化情况,然后判断出这个代数式的值和原来代数式的值的关系即可. 【详解】解:∵x 与y 都扩大为原来的10倍,∴5xy 扩大为原来的100倍,x+y 扩大为原来的10倍, ∴5xyx y+的值扩大为原来的10倍, 即这个代数式的值扩大为原来的10倍. 故选:C . 【点睛】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,要熟练掌握,解答此题的关键是分别判断出分式的分子、分母的变化情况.3.B解析:B 【解析】 【分析】先通分,再加减,最后化简.根据化简结果为整数,确定x 的取值个数. 【详解】 n=222218339x x x x ++++-- =()()()()()()()()2323218333333x x x x x x x x x -++-++-+-+-=()()262621833x x x x x ---+++-=()()()2333x x x ++-=23x - 当x-3=±1、±2,即x=4、2、1、5时 分式23x -的值为整数. 故选B . 【点睛】本题考查了异分母分式的加减法及分式为整数的相关知识.解决本题的关键是根据化简结果得到分式值为整数的x 的值.4.B解析:B 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000002019=2.019×10﹣6, 故选B . 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000 000 7=7×10-7. 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.C解析:C 【解析】 【分析】根据负整数指数幂和零指数幂法则计算,比较即可. 【详解】2129==10.25=4342a b c --⎛⎛⎫=-== ⎪ ⎝⎭⎝⎭,,, ∵4>94>1, ∴c >a >b . 故选C . 【点睛】此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.7.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.0000025=2.5×10﹣6,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-8米=3.5×10-4米.故选:B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.A解析:A【解析】【分析】由已知可得,,,,则ac+bc=3abc,ab+ac=4abc,bc+ab=5abc,把三式相加,可得2(ab+bc+ca)=12abc,即可求解.【详解】解:由已知可得,,,,则ac+bc=3abc①,ab+ac=4abc②,bc+ab=5abc③,①+②+③得,2(ab+bc+ca)=12abc,即=.故选:A.【点睛】此题考查了分式的化简求值,要特别注意观察已知条件和所求代数式的关系,再进行化简.10.B解析:B【解析】试题解析:∵x2-4xy+4y2=0,∴(x-2y)2=0,∴x=2y,∴133 x y yx y y-== +.故选B.11.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:把0.0813写成a×10n(1≤a<10,n为整数)的形式为8.13×10-2,则n为-2.故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.B解析:B【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a=﹣0.22=﹣0.04;b=﹣2﹣2=﹣14=﹣0.25,c=(﹣12)﹣2=4,d=(﹣12)0=1,∴﹣0.25<﹣0.04<1<4,∴b<a<d<c,故选B.【点睛】本题考查了负整数指数幂,熟练掌握负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.13.B解析:B 【分析】直接利用立方根,零指数幂,合并同类项法则同底数幂的乘法法则化简得出答案. 【详解】3≠,无法计算,故此选项错误; B. 0(2)1-=,故此选项正确; C. 22234a a a +=,故此选项错误; D. 2326a a a ⋅=,故此选项错误; 故选:B. 【点睛】此题考查合并同类项,零指数幂,立方根,解题关键在于掌握运算法则.14.C解析:C 【分析】利用分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式,进行解答即可. 【详解】解:在2a b -,3x x +,13,a b a b +-,1()x y m-中, 3x x +,a b a b +-,1()x y m -是分式,共3个, 故选:C . 【点睛】本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.15.C解析:C 【分析】根据零次幂的性质,平方差公式以及积的乘方法则求出a ,b ,c ,再根据有理数的比较法则判断即可. 【详解】解:020118a ==,2222201720192018(20181)(20181)20182018120181b =⨯-=-+-=--=-,201720182017454555()()()545444c =-⨯=-⨯⨯=-,∵54-<-1<1,∴c <b <a . 故选:C . 【点睛】本题主要考查了零次幂的性质,平方差公式以及积的乘方,熟练掌握相关运算法则是解题关键.16.C解析:C 【分析】用2x 、2y ,2z 去替换原分式中的x 、y 和z ,利用分式的基本性质化简,再与原分式进行比较即可得到答案. 【详解】 ∵把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍, ∴222221222244x y z x y z x y zx y z xyz xyz-⨯+-+-+==⨯⋅⋅.∴分式的值缩小为原来的14. 故选:C. 【点睛】考查了分式的基本性质,解题关键把字母变化后的值代入式子中,然后化简,再与原式比较,得出结论.17.C解析:C 【解析】 【分析】根据分式的定义逐一进行判断即可. 【详解】31,,1x a b x a b x ++--是分式 故选:C. 【点睛】本题考查分式的定义,熟练掌握定义是关键.18.A解析:A 【解析】 【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简得出答案. 【详解】∵11=22-⎛⎫ ⎪⎝⎭;02=1;12-=12;()12=2--, 2>1>12>-2, ∴运算结果最大的是112-⎛⎫ ⎪⎝⎭, 故选A. 【点睛】本题主要考查了负整数指数幂的性质和零指数幂的性质,正确化简各数是解题关键.19.B解析:B 【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项. 【详解】 A 、22b by x xy=,其中y≠0,故选项错误; B 、2ab ba a=,其中左边隐含a≠0,故选项正确; C 、2b ab a a =,故选项错误. D 、根据分式基本性质知道11b b a a ++≠,故选项错误;故选B . 【点睛】此题考查分式的基本性质,解题的关键是熟练掌握分式的基本性质.20.C解析:C 【分析】先将原式通分,可以得到222b a ab ab++,再将分子用完全平方公式进行变形,即可得到()222a b abab +-+,最后代入数值计算即可.【详解】因为2b aa b++()2222222222323233b a ab abb a aba b ab ab=+++=++-=+-⨯=+= 所以选C.【点睛】本题考查的是分式的通分和完全平方公式的变形,能够熟练掌握完全平方公式的变形是解题的关键. 21.A解析:A【分析】用2a ,2b 分别替换掉原分式中的a 、b ,进行计算后与原分式对比即可得出答案.【详解】用2a ,2b 分别替换掉原分式中的a 、b ,可得:()2221=222822+++=⨯⨯⨯a b a b a b a b ab ab ,所以分式缩小到原来的12倍, 故选A.【点睛】本题考查了分式的基本性质,关键是根据条件正确的替换原式中的字母,然后化简计算.22.A解析:A【分析】直接利用分式的混合运算法则进行化简,进而把已知代入求出答案.【详解】 解:原式=2()m n m n m m n ++--•(+)()m n m n m- =3()m m m n -•(+)()m n m n m- =3()m n m+, ∵m+2n =0,∴m =﹣2n , ∴原式=32n n --=32.故选:A .【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.B解析:B【分析】把数据45.610-⨯中5.6的小数点向左移动4位就可以得到.【详解】 解:441=5.6=5.60.0001=0.0005615.6100-⨯⨯⨯. 故选B.【点睛】本题考查写出用科学记数法表示的原数.(1)科学记数法a ×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.若科学记数法表示较小的数a ×10-n ,还原为原来的数,需要把a 的小数点向左移动n 位得到原数.(2)把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.24.C解析:C【分析】首先计算a 、b 、c 的值,再进行比较即可.【详解】a=20180=1,b=2016×2018-20172=222(20171)(20171)20172017120171-+-=--=-,20162017201620162016232332333()()()()()323223222c =-⨯=⨯⨯=⨯⨯=, ∵-1<1<32, ∴b<a<c ,故选:C.【点睛】此题考查零次幂定义,平方差公式,同底数幂乘法的逆运算,积的乘方的逆运算,掌握掌握各计算法则是解题的关键.25.B解析:B【分析】根据分式的基本性质,分式的分子和分母同时乘以和除以一个不为0的整式,分式的值不变.【详解】解:原分式()()()()()()1=1a b a b a ba b a b a b----⨯--=-+-+⨯-+,故选B.【点睛】本题主要考查分式的基本性质,解决本题的关键是要熟练掌握分式的基本的性质.。
最新初中数学—分式的难题汇编及答案解析(2)
一、选择题1.下面是一位同学所做的5道练习题: ①()325a a = ,②236a a a ⋅=,③22144m m -=, ④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道2.把分式2210x y xy+中的x y 、都扩大为原来的5倍,分式的值( )A .不变B .扩大5倍C .缩小为15D .扩大25倍3.分式x 22x 6-- 的值等于0,则x 的取值是 A .x 2=B .x ?2=-C .x 3=D .x ?3=-4.下列式子中,错误的是 A .1a a 1a a --=- B .1a a 1a a ---=- C .1a 1aa a---=- D .1a 1aa a+---= 5.下列分式:24a 5b c ,23c 4a b ,25b2ac中,最简公分母是 A .5abcB .2225a b cC .22220a b cD .22240a b c6.计算: ()332xy ?-一 的结果是A .398x y --B .398x y ---C .391x y 2---D .361x y 2---7.下列运算,正确的是 A .0a 0= B .11a a-=C .22a a b b=D .()222a b a b -=-8.在式子:2x、5x y + 、12a - 、1x π-、21xx +中,分式的个数是( )A .2B .3C .4D .5 9.下列变形正确的是( ).A .1a b b ab b++= B .22x y x y-++=- C .222()x y x y x y x y --=++ D .23193x x x -=--10.已知a <b ,化简222a a ab b a b a-+-的结果是( )A .aB .a -C .a --D .a -11.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( ) A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7 12.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 13.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <c B .a <c <bC .b <a <cD .c <b <a14.使分式224x x +-有意义的取值范围是( ) A .2x =-B .2x ≠-C .2x =D .2x ≠15.(下列化简错误的是( ) A .(2)﹣1=22B .2(2)- =2C .25542=± D .(﹣2)0=116.若,则用u 、v 表示f 的式子应该是( )A .B .C .D .17.下列运算正确的是( ) A .a ﹣3÷a ﹣5=a 2 B .(3a 2)3=9a 5 C .(x ﹣1)(1﹣x)=x 2﹣1D .(a+b)2=a 2+b 218.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为( ) A .3.5×10﹣6米 B .3.5×10﹣5米 C .35×1013米 D .3.5×1013米 19.计算(16)0×3﹣2的结果是( ) A .32 B .9C .19-D .1920.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .236212x x -+D .()2--y x x y21.如果2310a a ++=,那么代数式229263a a a a ⎛⎫++⋅ ⎪+⎝⎭的值为( ) A .1B .1-C .2D .2-22.3--2的倒数是( )A .-9B .9C .19D .-1923.若()3231tt --=,则t 可以取的值有( )A .1个B .2个C .3个D .4个24.计算()22ab ---的结果是( )A .42b a-B .42b aC .24a b -D .24a b25.计算正确的是( )A .(﹣5)0=0B .x 3+x 4=x 7C .(﹣a 2b 3)2=﹣a 4b 6D .2a 2•a ﹣1=2a【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a =() ,故①错误;②235a a a ⋅=,故②错误; ③2244mm -=,故③错误; ④523a a a -÷-=-()(),故④正确; ⑤33327a a -=-().故⑤错误.故选A .点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.2.A解析:A【详解】∵要把分式2210x y xy+中的x y 、都扩大5倍,∴扩大后的分式为:()()()22222225551055251010x y x y xy x yxyxy+++==⨯⨯⨯,∴把分式2210x y xy+中的x y 、都扩大5倍,分式的值不变.故选A.点睛:解这类把分式中的所有字母都扩大n 倍后,判断分式的值的变化情况的题,通常是用分式中每个字母的n 倍去代替原来的字母,然后对新分式进行化简,再把化简结果和原来的分式进行对比就可判断新分式和原分式相比值发生了怎样的变化.3.A解析:A 【解析】由题意得:20260x x -=⎧⎨-≠⎩,解得:2x =. 故选A.点睛:分式值为0需同时满足两个条件:(1)分子的值为0;(2)分母的值不为0.4.B解析:B 【解析】 A 选项中,1(1)1a a a a a a ----==--,所以A 正确; B 选项中,1(1)1a a a a a a -----=-=---,所以B 错误; C 选项中,11a aa a ---=-,所以C 正确; D 选项中,11a aa a+---=,所以D 正确. 故选B.5.C解析:C 【解析】根据最简公分母的定义:“通常取各分母的系数的最小公倍数与各分母中所有字母因数的最高次幂的积作为各分母的公分母,这个公分母叫做这几个分式的最简公分母”可知,分式:24a 5b c ,23c 4a b ,25b 2ac 的最简公分母是:22220a b c . 故选C.6.B解析:B 【解析】3333939(2)=(-2)8xy x y x y -------=-.故选B.7.B解析:B 【解析】A 选项中,因为只有当0a ≠时,01a =,所以A 错误;B 选项中,11=a a-,所以B 正确; C 选项中,22a b的分子与分母没有公因式,不能约分,所以C 错误;D 选项中,222()2a b a ab b -=-+,所以D 错误; 故选B.8.B解析:B 【解析】 解:分式有2x 、12a -、21x x +共3个.故选B . 点睛:此题主要考查了分式的定义,正确把握分式的定义是解题关键.9.C解析:C 【解析】 选项A.a bab+ 不能化简,错误. 选项B.22x y x y-+-=-,错误. 选项C.()222x y x y x y x y --=++ ,正确. 选项D. 23193x x x -=-+,错误. 故选C.10.D解析:D 【解析】因为a-ba a b-=-故选D.,0,0a a a a a ≥⎧==⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.11.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.000 007 7=7.7×10-6, 故选C.12.D解析:D 【解析】A 选项:当x =2时,该分式的分母x -2=0,该分式无意义,故A 选项错误.B 选项:当x =0时,该分式的分母为零,该分式无意义. 显然,x =0满足x ≠3. 由此可见,当x ≠3时,该分式不一定有意义. 故B 选项错误.C 选项:当x =0时,该分式的值为3,即当x =0时该分式的值为整数,故C 选项错误.D 选项:无论x 为何值,该分式的分母x 2+1>0;该分式的分子3>0. 由此可知,无论x 为何值,该分式的值总为正数. 故D 选项正确. 故本题应选D. 点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x 的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.13.C解析:C 【解析】 【详解】解:a =20170=1,b =2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c =(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b <a <c .故选C . 点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.14.D解析:D【解析】【分析】根据分式有意义分母不为零可得2x-4≠0,再解即可.【详解】解:由题意得:2x-4≠0,解得:x≠2,故选:D.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.15.C解析:C【解析】【分析】分别利用负指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案.【详解】A、(2)﹣1=2,正确,不合题意;B、()22- =2,正确,不合题意;C、25542=,故此选项错误,符合题意;D、(﹣2)0=1,正确,不合题意;故选:C.【点睛】此题主要考查了负指数幂的性质以及二次根式的性质、零指数幂的性质,正确掌握相关运算法则是解题关键.16.B解析:B【解析】【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f即可.【详解】,变形得:f=.故选B.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.17.A解析:A【解析】【分析】直接利用同底数幂的除法运算法则、积的乘方运算法则、完全平方公式分别化简得出答案.【详解】A.a﹣3÷a﹣5=a2,故此选项正确;B.(3a2)3=27a6,故此选项错误;C.(x﹣1)(1﹣x)=﹣x2+2x﹣1,故此选项错误;D.(a+b)2=a2+2ab+b2,故此选项错误.故选A.【点睛】本题考查了同底数幂的除法运算法则、积的乘方运算法则、完全平方公式等知识,正确掌握相关运算法则是解题的关键.18.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1米=109纳米,某种植物花粉的直径约为35000纳米,∴35000纳米=35000×10﹣9m=3.5×10﹣5m.故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.19.D解析:D【解析】【分析】根据零指数幂的性质以及负指数幂的性质先进行化简,然后再进行乘法运算即可.【详解】(16)0×3﹣2=11199⨯=,故选D.本题考查了实数的运算,涉及了零指数幂、负指数幂的运算,正确化简各数是解题关键.20.B解析:B 【分析】利用最简分式的定义判断即可. 【详解】A 、原式=()()11 111x x x x +=+--,不合题意;B 、原式为最简分式,符合题意;C 、原式=()()()666262x x x x +--=+,不合题意,D 、原式=()()2x y x y x x y x--=-,不合题意;故选B . 【点睛】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.21.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.解析:A 【解析】 【分析】 首先计算3--2=-19,再根据倒数的定义求解即可. 【详解】 ∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9, 故选A. 【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.23.B解析:B 【解析】 【分析】根据任何非0数的零次幂等于1,1的任何次幂等于1,-1的偶数次幂等于1解答. 【详解】当3-2t=0时,t=32,此时t-3=32-3=-32,(-32)0=1, 当t-3=1时,t=4,此时3-2t=2-3×4=-6,1-6=1, 当t-3=-1时,t=2,此时3-2t=3-2×2=-1,(-1)-1=-1,不符合题意, 综上所述,t 可以取的值有32、4共2个. 故选:B . 【点睛】本题考查了零指数幂,有理数的乘方,要穷举所有乘方等于1的数的情况.24.B解析:B 【解析】 【分析】根据负整数指数幂和幂的乘方和积的乘方解答. 【详解】 原式=(-1)-2a -2b 4 =21a •b 4=42b a.故选B.【点睛】本题主要考查了负整数指数幂,同时要熟悉幂的乘方和积的乘方.25.D解析:D【解析】解:A.原式=1,故A错误;B.x3与x4不是同类项,不能进行合并,故B错误;C.原式=a4b6,故C错误;D.正确.故选D.。
(易错题精选)最新初中数学—分式的难题汇编附答案解析
一、选择题1.在某次数学小测中,老师给出了5个判断题.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是( )A .100分B .80分C .60分D .40分2.若a =﹣0.22,b =﹣2-2,c =(﹣12)-2,d =(﹣12)0,则它们的大小关系是( ) A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b 3.若2220110.2,2,(),.()25a b c d --=-=-=-=-,则( )A .a b c d <<<B .b a d c <<<C .a b d c <<<D .c a d b <<< 4.若代数式()11x --有意义,则x 应满足( )A .x = 0B .x ≠ 0C .x ≠ 1D .x = 1 5.把分式a 2ab +中的a 、b 都扩大2倍,则分式的值( ) A .缩小14 B .缩小12 C .扩大2倍 D .不变6.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。
2.5微米等于0.0000025米,把0.0000025用科学记数法表示为( )A .0.25×10–5米B .2.5×10–7米C .2.5×10–6米D .25×10–7米7.已知x 2-4xy +4y 2=0,则分式x y x y -+的值为( ) A .13-B .13C .13yD .y 31- 8.如果把分式2x y z xyz -+中的正数x ,y ,z 都扩大2倍,则分式的值( ) A .不变B .扩大为原来的两倍C .缩小为原来的14D .缩小为原来的18 9.如果把分式2++a b a b 中的a 和b 都扩大为原来的10倍,那么分式的值( ) A .不变 B .缩小10倍 C .是原来的20倍 D .扩大10倍10.化简22222a ab b a b++-的结果是( ) A .a b a b +- B .b a b - C .a a b + D .b a b+ 11.下列分式运算中,正确的是( )A .111x y x y+=+ B .x a a x b b +=+ C .22x y x y x y -=+- D ..a c ad b d bc = 12.目前,世界上能制造出的小晶体管的长度只有0.00000004m 将0.00000004用科学记数法表示为( )A .3410-⨯B .80.4 10⨯C .8410⨯D .8410-⨯13.函数 y =21x x --的自变量 x 的取值范围是( ) A .x > -1且x ≠ 1B .x ≠ 1且x ≠ 2C .x ≥ -1且x ≠ 1D .x ≥ -1 14.若把分式32ab a b +中的a 、b 都缩小为原来的13,则分式的值( ) A .缩小为原来的13B .扩大为原来的6倍C .缩小为原来的19 D .不变15.+x 的取值范围是( ) A .3<x <72 B .3≤x <72 C .3≤x ≤72 D .x ≥316.若m+2n =0,则分式22221m n m m mn m m n +⎛⎫+÷⎪--⎝⎭的值为( ) A .32 B .﹣3n C .﹣32n D .9217.下列运算错误的是( )A .235a a a ⋅=B .()()422ab ab ab ÷-=C .()222424ab a b -=D .3322a a-= 18.某种病毒变异后的直径为0.000000102米,将这个数写成科学记数法是( ) A .61.0210-⨯ B .60.10210-⨯ C .71.0210-⨯ D .810210-⨯19.下列运算正确的是( )A .1133a a ﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣=20.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( ) A .a b c d <<< B .b a d c <<< C .a d c b <<< D .c a d b <<<21.使分式211x x -+的值为0,这时x 应为( ) A .x =±1 B .x =1 C .x =1 且 x≠﹣1 D .x 的值不确定22.下列等式成立的是( )A .123a b a b +=+ B .212a b a b =++ C .2ab a ab b a b =-- D .a a a b a b=--++ 23.计算下列各式①(a 3)2÷a 5=1;②(-x 4)2÷x 4=x 4;③(x -3)0=1(x ≠3);④(-a 3b )3÷5212a b =-2a 4b 正确的有( )题A .4B .3C .2D .1 24.已知1112a b -=,则ab a b -的值是( ) A .12 B .12- C .2 D .-225.已知11(1,2)a x x x =-≠≠,23121111,,,111n n a a a a a a -==⋯⋯=---,则2017a =( ) A .21x x -- B .12x - C .1x - D .无法确定【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】依据分式的化简,无理数定义,平方根定义,实数的大小比较方法依次判断各小题正确与否即可确定他的得分.【详解】 因为c a c b++是最简分式不能在进行化简,故第1小题错误,他判断正确得20分;因为227是分数属于有理数,不是无理数,所以第2小题错误,他判断正确得20分;因为0.6=-,所以第3小题错误,他判断错误不得分;因为23<<,所以112<<,所以第4小题正确,他判断正确得20分; 数轴上的点可以表示无理数,故第5小题错误,他判断正确得20分.故他应得80分,选择B【点睛】此题考察分式的化简,无理数定义,平方根定义,实数的大小比较方法,熟练掌握才能正确判断.2.B解析:B【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a =﹣0.22=﹣0.04;b =﹣2﹣2=﹣14=﹣0.25,c =(﹣12)﹣2=4,d =(﹣12)0=1, ∴﹣0.25<﹣0.04<1<4,∴b <a <d <c ,故选B .【点睛】本题考查了负整数指数幂,熟练掌握负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键. 3.B解析:B【解析】【分析】分别计算出a 、b 、c 、d 的值,再进行比较即可.【详解】因为20.2a =-=-0.04,b=22--=-14,c=212-⎛⎫- ⎪⎝⎭=4,d=015⎛⎫- ⎪⎝⎭=1, 所以b a d c <<<.故选B.【点睛】本题考查比较有理数的大小,涉及知识有负整数指数幂、0次幂,解题关键是熟记法则.4.C解析:C【解析】代数式中有0指数幂和负整数指数的底数不能为0,再求x的取值范围;【详解】解:根据题意可知,x-1≠0且解得x≠1.故选:C.【点睛】本题考查负整数指数幂和0指数幂的底数不能为0.5.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式a2a b+中的a、b都扩大2倍,得2a2a a22a2b2(2a b)2a b==⨯+++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.6.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.0000025=2.5×10﹣6,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.B解析:B【解析】试题解析:∵x2-4xy+4y2=0,∴(x-2y)2=0,∴133x y y x y y -==+. 故选B .8.C解析:C【分析】用2x 、2y ,2z 去替换原分式中的x 、y 和z ,利用分式的基本性质化简,再与原分式进行比较即可得到答案.【详解】 ∵把分式2x y z xyz-+中的正数x ,y ,z 都扩大2倍, ∴222221222244x y z x y z x y z x y z xyz xyz-⨯+-+-+==⨯⋅⋅. ∴分式的值缩小为原来的14. 故选:C.【点睛】考查了分式的基本性质,解题关键把字母变化后的值代入式子中,然后化简,再与原式比较,得出结论.9.A解析:A【分析】根据分式的基本性质代入化简即可.【详解】 扩大后为:102022=1010)a b a b a b a b a b a b+++=+++10()10( 分式的值还是不变故选:A.【点睛】本题考查分式的基本性质,熟练掌握性质是关键.10.A解析:A【分析】利用完全平方公式和平方差公式化简约分即可.【详解】222222()=()()a ab b a b a b a b a b a b a b++++=-+--.【点睛】此题主要考查了分式的约分,解题的关键是正确地把分子、分母分解因式.11.C解析:C【分析】根据分式的运算法则计算各个选项中的式子,从而可以解答本题.【详解】 解:∵11,x y x y xy++= 故A 错误; (0)x a a x x b b+≠≠+,故B 错误;. 22()()x y x y x y x y x y x y-+-==+--,故C 正确; ∵.a c ac b d bd=,故D 错误. 故选:C【点睛】 本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.12.D解析:D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:0.000 000 04=4×10-8, 故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.C解析:C【分析】根据分母不能为零且被开方数是非负数,可得答案.【详解】解:由题意得:x-1≠0且x+1≥0,解得:x≥-1且x≠1.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零且被开方数是非负数得出不等式是解题关键.14.A解析:A【分析】把分式32aba b+中的a用13a、b用13b代换,利用分式的基本性质计算即可求解.【详解】把分式32aba b+中的a、b都缩小为原来的13,则分式变为1133311233a ba b ⨯⨯⨯+,则:1133311233a ba b⨯⨯⨯+=1332aba b⨯+,所以把分式32aba b+中的a、b都缩小为原来的13时分式的值也缩小为原来的13.故选:A.【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.15.B解析:B【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【详解】由题意,得:x﹣3≥0且7﹣2x>0,解得:3≤x72<.故选B.【点睛】本题考查了二次根式有意义的条件,正确解不等式是解题的关键.16.A解析:A【分析】直接利用分式的混合运算法则进行化简,进而把已知代入求出答案.解:原式=2()m n m n m m n ++--•(+)()m n m n m- =3()m m m n -•(+)()m n m n m- =3()m n m+, ∵m+2n =0,∴m =﹣2n , ∴原式=32n n --=32. 故选:A .【点睛】 此题主要考查分式的运算,解题的关键是熟知分式的运算法则.17.B解析:B【分析】直接运用同底数幂的乘法运算法则、单项式除以单项式运算法则、积的乘方与幂的乘方运算法则以及负整数指数幂的意义分别计算得出答案再进行判断即可.【详解】A . 235a a a ⋅=,计算正确,不符合题意;B . ()()4222ab ab a b ÷-=,原选项计算错误,符合题意;C . ()222424ab a b -=,计算正确,不符合题意; D . 3322a a -=,计算正确,不符合题意. 故选:B .【点睛】此题主要考查了幂的运算,熟练掌握运算法则是解题的关键.18.C解析:C【分析】用科学记数法表示比较小的数时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0.【详解】解:0.000000102=71.0210-⨯.故选:C .【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.D解析:D【分析】直接利用负指数幂的性质以及同底数幂的乘除运算法则计算得出答案.【详解】解:A 、133a a-=,故此选项错误; B 、22a a +,不是同类项无法合并; C 、()325a a a -⋅=-,故此选项错误;D 、()()32a a a -÷-=,正确; 故选:D .【点睛】此题考查负指数幂的性质以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.20.B解析:B【分析】分别求出a 、b 、c 、d 的值,比较大小即可.【详解】20.30.09a =-=-2213139b -=-=-=- 01()3c =-=1 2211=(-3))9(3d -==- 故b a d c <<<故选:B【点睛】本题考查正指数与负指数的计算,注意负指数的运算规则.21.B解析:B【分析】 使分式211x x -+的值为0,则x 2-1=0,且x+1≠0. 【详解】使分式211x x -+的值为0, 则x 2-1=0,且x+1≠0解得x =1故选:B【点睛】考核知识点:考查分式的意义. 要使分式值为0,分子等于0,分母不等于0.22.C解析:C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a ab a +=+,故A 错误; B 、22a b +,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.23.B解析:B【分析】根据整数指数幂的运算法则解答即可.【详解】解:①(a 3)2÷a 5=a 6÷a 5=a ,故原式错误;②(-x 4)2÷x 4=x 8÷x 4=x 4,故原式正确;③因为x ≠3,所以x -3≠0,(x -3)0=1,故原式正确;④(-a 3b )3÷12a 5b 2=-a 9b 3÷12a 5b 2=-2a 4b ,故原式正确. 所以正确的有3个,故选:B .【点睛】本题主要考查了整数指数幂的运算,熟记法则是解决此题的关键.24.D解析:D【分析】先把已知的式子变形为()2ab b a =-,然后整体代入所求式子约分即得答案.【详解】 解:∵1112a b -=, ∴()2ab b a =-, ∴()22b a ab a b a b-==---. 故选:D .【点睛】本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.25.C解析:C【分析】按照规定的运算方法,计算出前几个数的值,进一步找出数字循环的规律,利用规律得出答案即可.【详解】解:∵11(1,2)a x x x =-≠≠, ∴2111111(1)2a a x x ===----,321121111()2x a a xx-===----,34111211()1a x x a x===-----… ∴以x−1,12x -,21x x --为一组,依次循环, ∵2017÷3=672…1,∴2017a 的值与a 1的值相同,∴20171a x =-,故选:C .【点睛】此题考查数字的变化规律以及分式的运算,找出数字之间的运算规律,利用规律解决问题是解答此题的关键.。
最新最新初中数学—分式的难题汇编附答案解析
一、选择题1.下列各分式中,最简分式是( )A .21x x +B .22m n m n-+C .22a ba b+- D .22x yx y xy ++2.把分式中的、的值同时缩小到原来的,则分式的值( )A .扩大为原来的2倍B .不变C .扩大为原来的4倍D .缩小为原来的一半3.已知02125,,0.253a b c --⎛⎫=-== ⎪⎝⎭⎝⎭,a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .c >a >b D .c >b >a4.若代数式1xx +有意义,则实数x 的取值范围是( ) A .0x = B .1x =-C .1x ≠D .1x ≠-5.与分式()()a b a b ---+相等的是( )A .a ba b+- B .a ba b-+ C .a ba b+-- D .a ba b--+ 6.下列各式:351,,,,12a b x y a b x a b xπ-+++--中,是分式的共有( ) A .1个B .2个C .3个D .4个7.下列各分式的值可能为零的是( ).A .2211m m +-B .11m +C .211m m +-D .211m m -+8.下列运算正确的是( )A .623x x x=B .221x a ax b b++=++ C .1122x xx x ---=-- D .0.71070.20.323a b a ba b a b--=++9.下列分式运算中,正确的是( )A .111x y x y+=+ B .x a ax b b+=+ C .22x y x y x y -=+- D ..a c adb d bc= 10.下列等式从左到右的变形正确的是( )A .22b byx xy= B .2ab b a a =C .22b b a a=D .11b b a a +=+11.若a +b =0, 则ba的值为( ) A .-1 B .0C .1D .-1或无意义12.设2222x 18n x 33x x 9+=+++--,若n 的值为整数,则x 可以取的值得个数是( ) A .5 B .4 C .3 D .2 13.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确结果为( )A .1B .2C .3D .414.已知1112a b -=,则ab a b-的值是( ) A .12B .12-C .2D .-215.将分式2a bab+中的a 、b 都扩大为原来的2倍,则分式的值( ) A .缩小到原来的12倍 B .扩大为原来的2倍 C .扩大为原来的4倍 D .不变16.1372x x-+-x 的取值范围是( ) A .3<x <72B .3≤x <72C .3≤x ≤72D .x ≥317.下列命题中:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;②同位角相等,两直线平行;③如果两个角是直角,那么这两个角相等;④如果分式332x x -+无意义,那么x =﹣23;这些命题及其逆命题都是真命题的是( ) A .①② B .③④ C .①③ D .②④ 18.用小数表示45.610-⨯为( )A .5.6000B .0.00056C .0.0056D .0.05619.计算33x yx y x y---的结果是( ) A .1B .0C .3D .620.下列变形正确的是( )A .()23524a a -=- B .22220x y xy -=C .23322b ab a a-÷=- D .()()222222x y x y x y +-=-21.将0.00086用科学记数法表示为( ) A .8.6×104 B .8.60×104 C .8.6×10-4 D .8.6×10-6 22.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .c a d b <<<23.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<<D .c a d b <<<24.使分式211x x -+的值为0,这时x 应为( )A .x =±1 B .x =1C .x =1 且 x≠﹣1D .x 的值不确定25.下列变形中,正确的是( )A .2211x x y y-=-B .22m m n n=C .2()a b a ba b-=-- D .2233x x +=+【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1. 【详解】 解:A.21xx +,分子分母的最大公因式为1; B. 22m n m n-+,分子分母中含有公因式m+n;C.22a ba b +-,分子分母中含有公因式a+b ;D.22x yx y xy ++,分子分母中含有公因式x+y故选:A. 【点睛】最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是不是有公因式,但表面不易判断,应将分子、分母分解因式.2.A解析:A 【解析】 【分析】根据题意可知原来的x 变成,原来的y 变成,在根据分式基本性质可以求得答案.【详解】由题意可知:分式的值扩大为原来的2倍. 故选:A 【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.3.C解析:C 【解析】 【分析】根据负整数指数幂和零指数幂法则计算,比较即可. 【详解】21295==10.25=434a b c --⎛⎫=-== ⎪⎝⎭⎝⎭,,, ∵4>94>1, ∴c >a >b . 故选C . 【点睛】此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.4.D解析:D 【解析】【分析】根据分式有意义的条件即分母不等于零可得x+1≠0,从而得解. 【详解】解:由题意得:x+1≠0, 解得:x≠-1, 故选:D . 【点睛】本题考查分式有意义的条件,解题关键是掌握分式有意义的条件:分母不等于零.5.B解析:B 【分析】根据分式的基本性质,分式的分子和分母同时乘以和除以一个不为0的整式,分式的值不变. 【详解】解:原分式()()()()()()1=1a b a b a ba b a b a b----⨯--=-+-+⨯-+,故选B. 【点睛】本题主要考查分式的基本性质,解决本题的关键是要熟练掌握分式的基本的性质.6.C解析:C 【解析】 【分析】根据分式的定义逐一进行判断即可. 【详解】31,,1x a b x a b x ++--是分式 故选:C. 【点睛】本题考查分式的定义,熟练掌握定义是关键.7.D解析:D 【分析】根据分式为零的条件进行计算即可. 【详解】解:∵分式有意义且它的值为零, ∴分子为0,分母不为0A. 2m +10≠,分式的值不可能为零,不符合题意;B. 10≠,分式的值不可能为零,不符合题意;C. 2m+1=0m -10⎧⎨≠⎩无解,分式的值不可能为零,不符合题意;D.当 2m -1=0m+10⎧⎨≠⎩,即m=1时,分式的值为零,符合题意;故选:D 【点睛】本题主要考查分式为零的条件,(1)分子的值为零;(2)分母的值不为零;两个条件必须同时具备,缺一不可.8.D解析:D 【分析】根据分式的基本性质,将每一个分式的分子与分母的公因式约去,再比较即可. 【详解】A. 633x x x=,故该选项不符合题意; B.221x a ax b b++≠++,故该选项不符合题意; C. 1x 122x x x ---=--,故该选项不符合题意; D.0.71070.20.323a b a ba b a b --=++,故该选项符合题意;故选:D 【点睛】此题考查约分,解题关键在于掌握运算法则.9.C解析:C 【分析】根据分式的运算法则计算各个选项中的式子,从而可以解答本题. 【详解】解:∵11,x yx y xy ++=故A 错误; (0)x a ax x b b+≠≠+,故B 错误;. 22()()x y x y x y x y x y x y -+-==+--,故C 正确; ∵.a c ac b d bd =,故D 错误. 故选:C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.10.B解析:B 【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项. 【详解】A 、22b by x xy=,其中y≠0,故选项错误; B 、2ab ba a=,其中左边隐含a≠0,故选项正确; C 、2b aba a=,故选项错误. D 、根据分式基本性质知道11b b a a ++≠,故选项错误;故选B . 【点睛】此题考查分式的基本性质,解题的关键是熟练掌握分式的基本性质.11.D解析:D 【分析】互为相反数两个数的和为0,同时要考虑到0+0=0,从而进行判断. 【详解】 解:∵a +b =0 ∴a=-b 或a=0,b=0∴ba的值为-1或无意义, 故选:D. 【点睛】掌握互为相反数的两个数的和为0和0+0=0,是本题的解题关键.12.B解析:B 【解析】 【分析】先通分,再加减,最后化简.根据化简结果为整数,确定x 的取值个数. 【详解】n=222218339x x x x ++++-- =()()()()()()()()2323218333333x x x x x x x x x -++-++-+-+-=()()262621833x x x x x ---+++-=()()()2333x x x ++-=23x - 当x-3=±1、±2,即x=4、2、1、5时 分式23x -的值为整数. 故选B . 【点睛】本题考查了异分母分式的加减法及分式为整数的相关知识.解决本题的关键是根据化简结果得到分式值为整数的x 的值.13.C解析:C 【分析】先将原式通分,可以得到222b a ab ab++,再将分子用完全平方公式进行变形,即可得到()222a b abab +-+,最后代入数值计算即可.【详解】因为2b aa b++ ()2222222222323233b a ab ab b a ab a b abab =+++=++-=+-⨯=+=所以选C. 【点睛】本题考查的是分式的通分和完全平方公式的变形,能够熟练掌握完全平方公式的变形是解题的关键.14.D解析:D 【分析】先把已知的式子变形为()2ab b a =-,然后整体代入所求式子约分即得答案. 【详解】 解:∵1112a b -=, ∴()2ab b a =-, ∴()22b a ab a b a b-==---. 故选:D . 【点睛】本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.15.A解析:A 【分析】用2a ,2b 分别替换掉原分式中的a 、b ,进行计算后与原分式对比即可得出答案. 【详解】用2a ,2b 分别替换掉原分式中的a 、b ,可得:()2221=222822+++=⨯⨯⨯a b a ba b a b ab ab,所以分式缩小到原来的12倍, 故选A. 【点睛】本题考查了分式的基本性质,关键是根据条件正确的替换原式中的字母,然后化简计算.16.B解析:B 【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0. 【详解】由题意,得:x ﹣3≥0且7﹣2x >0,解得:3≤x 72<. 故选B . 【点睛】本题考查了二次根式有意义的条件,正确解不等式是解题的关键.17.D解析:D【分析】分别写出四个命题的逆命题,利用反例对①和它的逆命题进行判断;利用平行线的性质和判定对②和它的逆命题进行判断;利用直角的定义对③和它的逆命题进行判断;利用分式有意义的条件对④和它的逆命题进行判断. 【详解】解:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;若a =1,b =﹣2,结论不成立,则命题为假命题,其逆命题为:已知两实数a 、b ,如果a 2>b 2,那么a >b ;若a =﹣2,b =1时,结论不成立,所以逆命题为假命题;②同位角相等,两直线平行;则命题为真命题,其逆命题为:两直线平行,同位角相等,所以逆命题为真命题;③如果两个角是直角,那么这两个角相等;此命题为真命题,其逆命题为:如果两个角相等,那么这两个角是直角,所以逆命题为假命题; ④如果分式332x x -+无意义,那么x =﹣23;此命题为真命题,其逆命题为:如果x =﹣23,那么分式332x x -+无意义,所以逆命题为真命题; 故选:D . 【点睛】此题主要考查命题的判断,解题的关键是熟知实数的性质、平行线的性质、直角的性质及分式的性质.18.B解析:B 【分析】把数据45.610-⨯中5.6的小数点向左移动4位就可以得到. 【详解】解:441=5.6=5.60.0001=0.0005615.6100-⨯⨯⨯. 故选B. 【点睛】本题考查写出用科学记数法表示的原数.(1)科学记数法a ×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.若科学记数法表示较小的数a ×10-n ,还原为原来的数,需要把a 的小数点向左移动n 位得到原数.(2)把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.19.C解析:C 【分析】根据同分母的分式加减的法则进行计算即可.【详解】 解:()333=3x y x y x y x y x y--=--- 故选C.【点睛】本题考查了分式的加减法,掌握分式运算的法则是解题的关键.20.C解析:C【分析】原式各项计算得到结果,即可作出判断.【详解】A 、原式=4a 6,错误;B 、原式不能合并,错误;C 、原式=−232a ,正确; D 、原式=2x 2−4xy +xy−2y 2=2x 2−3xy−2y 2,错误.故选:C .【点睛】此题考查了分式的乘除法,合并同类项,幂的乘方与积的乘方,以及整式的乘法,熟练掌握公式及运算法则是解本题的关键.21.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将8600用科学记数法表示为:8.6×10-4. 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.22.B解析:B【分析】分别求出a 、b 、c 、d 的值,比较大小即可.【详解】20.30.09a =-=-2213139b -=-=-=- 01()3c =-=1 2211=(-3))9(3d -==- 故b a d c <<<故选:B【点睛】本题考查正指数与负指数的计算,注意负指数的运算规则.23.B解析:B【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a=-0.22=-0.04;b=-2-2=-14=-0.25,c=(-12)-2=4,d=(-12)0=1, ∴-0.25<-0.04<1<4,∴b <a <d <c ,故选:B .【点睛】题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键. 24.B解析:B【分析】 使分式211x x -+的值为0,则x 2-1=0,且x+1≠0. 【详解】 使分式211x x -+的值为0, 则x 2-1=0,且x+1≠0解得x =1故选:B【点睛】考核知识点:考查分式的意义. 要使分式值为0,分子等于0,分母不等于0. 25.C解析:C【分析】根据分式的性质分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,进行判断选择即可.【详解】A,B,D均不符合分式分子分母同时乘(或除以)同一个不为零的整式,分式的值不变的性质,选项C可以将分子分母同时除以(a-b)到()2a ba ba b-=--,故答案选择C.【点睛】本题考查的是分式的基本性质,熟知分式中分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,是解题的关键.。
(专题精选)最新初中数学—分式的难题汇编含答案
一、选择题1.若把分式3xyx y-(,x y均不为0)中的x和y都扩大3倍,则原分式的值是()A.扩大3倍B.缩小至原来的13C.不变D.缩小至原来的162.若把分式x yxy+中的x和y都扩大2倍,那么分式的值()A.扩大2倍B.不变C.缩小2倍D.缩小4倍3.小张在课外阅读中看到这样一条信息:“肥皂泡的厚度约为0.0000007m ”,请你用科学记数法表示肥皂泡的厚度,下列选项正确的是()A.0.7 ⨯10-6m B.0.7 ⨯10-7m C.7 ⨯10-7m D.7 ⨯10-6m4.已知2125,,0.253a b c--⎛⎫⎛⎫=-==⎪⎪ ⎪⎝⎭⎝⎭,a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.c>b>a5.把分式a2a b+中的a、b都扩大2倍,则分式的值()A.缩小14B.缩小12C.扩大2倍D.不变6.下列四种说法(1)分式的分子、分母都乘以(或除以),分式的值不变;(2)分式的值能等于零;(3)的最小值为零;其中正确的说法有()A.1个B.2 个C.3 个D.0个7.把分式aba b+中的a、b都扩大为原来的3倍,则分式的值()A.扩大为原来的6倍B.不变C.缩小为原来的13D.扩大为原来的3倍8.与分式11aa-+--相等的式子是()A.11aa+-B.11aa-+C.11aa+--D.11aa--+9.如果把分式2x y zxyz-+中的正数x,y,z都扩大2倍,则分式的值( )A.不变B.扩大为原来的两倍 C.缩小为原来的14D.缩小为原来的1810.如果把分式2++a ba b中的a和b都扩大为原来的10倍,那么分式的值()A .不变B .缩小10倍C .是原来的20倍D .扩大10倍 11.下列运算结果最大的是( ) A .112-⎛⎫ ⎪⎝⎭ B .02 C .12- D .()12- 12.0.000002019用科学记数法可表示为( ) A .0.2019×10﹣5 B .2.019×10﹣6 C .20.19×10﹣7 D .2019×10﹣9 13.下列各分式中,最简分式是( )A .21x x +B .22m n m n-+ C .22a b a b +- D .22x y x y xy ++ 14.下列分式中,属于最简分式的是( ) A .42x B .11x x -- C .211x x +- D .224x x - 15.在某次数学小测中,老师给出了5个判断题.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是( )A .100分B .80分C .60分D .40分 16.将分式2a b ab+中的a 、b 都扩大为原来的2倍,则分式的值( ) A .缩小到原来的12倍 B .扩大为原来的2倍C .扩大为原来的4倍D .不变 17.若m+2n =0,则分式22221m n m m mn m m n +⎛⎫+÷⎪--⎝⎭的值为( ) A .32B .﹣3nC .﹣32nD .92 18.若把分式xx y 2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍 B .缩小6倍 C .缩小3倍 D .保持不变19.下列运算正确的是( )A .1133a a ﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣= 20.小明家到学校m 千米,若步行从家到学校,需要t 小时;若骑自行车,所用时间比步行少用20分钟,则骑自行车的比步行的速度快了( )A .3(1)m t t -千米/时B .(31)m t t - 千米/时C .(31)m t t -+ 千米/时D .13m t - 千米/时 21.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( ) A .a b c d <<< B .b a d c <<< C .a d c b <<< D .c a d b <<< 22.2019年底,我国爆发了新一轮的冠状病毒疫情,冠状病毒直径约80-120纳米,1纳米=1.0×10-9米,用科学记数法表示120纳米,其结果是( ) A .1.2×10-9米 B .1.2×10-8米 C .1.2×10-7米 D .1.2×10-6米 23.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个C .6个D .8个 24.当x 为任意实数时,下列分式中,一定有意义的是( )A .1xB .11x +C .11x -D .211x + 25.下列运算正确的是( )A .623x x x= B .221x a a x b b ++=++ C .1122x x x x ---=-- D .0.71070.20.323a b a b a b a b --=++【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】将原式中x 变成3x ,将y 变成3y ,再进行化简,与原式相比较即可.【详解】 由题意得3332733333()x y xy xy x y x y x y⋅⋅==⋅---,所以原分式的值扩大了3倍 故选择A.【点睛】此题考察分式的化简,注意结果应化为最简分式后与原分式相比较.2.C解析:C【解析】【分析】根据题意,分式中的x 和y 都扩大2倍,则222()2242x y x y x y x y xy xy +++==⋅; 【详解】 解:由题意,分式x yy x +中的x 和y 都扩大2倍, ∴222()2242x y x y x y x y xy xy+++==⋅; 分式的值是原式的12,即缩小2倍; 故选C .【点睛】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变. 3.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 000 7=7×10-7. 故选C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.C解析:C【解析】【分析】根据负整数指数幂和零指数幂法则计算,比较即可.【详解】2129==10.25=434a b c --⎛⎫=-== ⎪⎝⎭⎝⎭,,, ∵4>94>1,∴c>a>b.故选C.【点睛】此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.5.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式a2a b+中的a、b都扩大2倍,得2a2a a22a2b2(2a b)2a b==⨯+++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.6.A解析:A【解析】(1)分式的分子、分母都乘以(或除以)不为零的整式,分式的值不变,故(1)错误;(2)分式的值不能等于零,故②错误;(3)的最小值为零,故(3)正确;故选A.7.D解析:D【解析】试题解析:把分式aba b+中的a、b都扩大为原来的3倍,则33333a b aba b a b⨯=++,故分式的值扩大3倍.故选D.8.B解析:B【分析】根据分式的基本性质即可得出:分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变,据此即可解答.解:原式=1)(1)aa--+-(=11aa-+故选:B.【点睛】本题考查分式的基本性质,解题关键是熟练掌握分式的基本性质.9.C解析:C【分析】用2x、2y,2z去替换原分式中的x、y和z,利用分式的基本性质化简,再与原分式进行比较即可得到答案.【详解】∵把分式2x y zxyz-+中的正数x,y,z都扩大2倍,∴2222212 22244x y z x y z x y zx y z xyz xyz-⨯+-+-+==⨯⋅⋅.∴分式的值缩小为原来的1 4 .故选:C.【点睛】考查了分式的基本性质,解题关键把字母变化后的值代入式子中,然后化简,再与原式比较,得出结论.10.A解析:A【分析】根据分式的基本性质代入化简即可.【详解】扩大后为:102022=1010)a b a b a b a b a b a b+++=+++10()10(分式的值还是不变故选:A.【点睛】本题考查分式的基本性质,熟练掌握性质是关键.11.A解析:A【解析】【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简得出答案.∵11=22-⎛⎫ ⎪⎝⎭;02=1;12-=12;()12=2--, 2>1>12>-2, ∴运算结果最大的是112-⎛⎫ ⎪⎝⎭, 故选A.【点睛】本题主要考查了负整数指数幂的性质和零指数幂的性质,正确化简各数是解题关键.12.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000002019=2.019×10﹣6,故选B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.A解析:A【分析】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.【详解】解:A. 21x x +,分子分母的最大公因式为1; B. 22m n m n-+,分子分母中含有公因式m+n; C.22a b a b +-,分子分母中含有公因式a+b ; D. 22x y x y xy ++,分子分母中含有公因式x+y【点睛】最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是不是有公因式,但表面不易判断,应将分子、分母分解因式.14.D解析:D【分析】根据最简分式的定义即可判断.【详解】 解:42=2x x,故A 选项错误; ()11=111x x x x ---=---,故B 选项错误; ()()2111==1111x x x x x x ++-+--,故C 选项错误; 224x x -,故D 选项正确. 故选:D【点睛】本题主要考查的是最简分式的定义,正确的掌握最简分式的定义是解题的关键.15.B解析:B【分析】依据分式的化简,无理数定义,平方根定义,实数的大小比较方法依次判断各小题正确与否即可确定他的得分.【详解】 因为c a c b ++是最简分式不能在进行化简,故第1小题错误,他判断正确得20分; 因为227是分数属于有理数,不是无理数,所以第2小题错误,他判断正确得20分;因为0.6=-,所以第3小题错误,他判断错误不得分;因为23<<,所以112<<,所以第4小题正确,他判断正确得20分; 数轴上的点可以表示无理数,故第5小题错误,他判断正确得20分.故他应得80分,选择B【点睛】此题考察分式的化简,无理数定义,平方根定义,实数的大小比较方法,熟练掌握才能正确判断.16.A【分析】用2a ,2b 分别替换掉原分式中的a 、b ,进行计算后与原分式对比即可得出答案.【详解】用2a ,2b 分别替换掉原分式中的a 、b ,可得:()2221=222822+++=⨯⨯⨯a b a b a b a b ab ab ,所以分式缩小到原来的12倍, 故选A.【点睛】本题考查了分式的基本性质,关键是根据条件正确的替换原式中的字母,然后化简计算.17.A解析:A【分析】直接利用分式的混合运算法则进行化简,进而把已知代入求出答案.【详解】 解:原式=2()m n m n m m n ++--•(+)()m n m n m- =3()m m m n -•(+)()m n m n m- =3()m n m+, ∵m+2n =0,∴m =﹣2n , ∴原式=32n n --=32. 故选:A .【点睛】 此题主要考查分式的运算,解题的关键是熟知分式的运算法则.18.D解析:D【分析】 根据题意把分式xx y 2中的x 和y 同时扩大为原来的3倍,将其化简后与原分式进行比价即可做出判断.【详解】 解:∵分式xx y 2中的x 和y 同时扩大为原来的3倍∴()23322333x x x x y x y x y⋅⋅==+++ 则分式的值保持不变.故选:D【点睛】本题考查了分式的基本性质,属于基础题型,能够熟练掌握分式的基本性质是解决问题的关键.19.D解析:D【分析】直接利用负指数幂的性质以及同底数幂的乘除运算法则计算得出答案.【详解】解:A 、133a a-=,故此选项错误; B 、22a a +,不是同类项无法合并; C 、()325a a a -⋅=-,故此选项错误;D 、()()32a a a -÷-=,正确; 故选:D .【点睛】此题考查负指数幂的性质以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.20.B解析:B【分析】利用速度=路程÷时间分别求得步行的速度和骑自行车的速度,从而利用分式的运算法则求得两者的速度差.【详解】 解:步行的速度是:m t (km /h ),骑自行车的速度是:31313m m t t =--(km /h ), 则骑自行车的速度与步行的速度差为:331(31)m m m t t t t-=--. 故选:B .【点睛】本题考查了列代数式及分式的加减运用,正确表示出步行和骑自行车的速度是解题的关键. 21.B解析:B【分析】分别求出a 、b 、c 、d 的值,比较大小即可.【详解】20.30.09a =-=-2213139b -=-=-=- 01()3c =-=1 2211=(-3))9(3d -==- 故b a d c <<<故选:B【点睛】本题考查正指数与负指数的计算,注意负指数的运算规则.22.C解析:C【分析】绝对值小于1的正数利用科学记数法表示,一般形式为a ×10-n ,n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:120纳米=120×10-9米=1.2×10-7米,故选:C .【点睛】本题考查用科学记数法表示较小的数(绝对值小于1的正数利用科学记数法表示,一般形式为a ×10-n ,n 由原数左边起第一个不为零的数字前面的0的个数所决定),明确科学记数法的表示方法是解题的关键.23.B解析:B【分析】 首先把分式转化为6321x +-,则原式的值是整数,即可转化为讨论621x -的整数值有几个的问题.【详解】 6363663212121x x x x x +-+==+---, 当216x -=±或3±或2±或1±时,621x -是整数,即原式是整数. 当216x -=±或2±时,x 的值不是整数,当等于3±或1±是满足条件. 故使分式6321x x +-的值为整数的x 值有4个,是2,0和1±.故选B.【点睛】本题主要考查了分式的值是整数的条件,把原式化简为6321x+-的形式是解决本题的关键.24.D解析:D【分析】根据分式有意义分母不为零分别进行分析即可.【详解】A、当0x=时,分式无意义,故此选项错误;B、当1x=-时,分式无意义,故此选项错误;C、当1x=时,分式无意义,故此选项错误;D、当x为任意实数时,分式都有意义,故此选项正确;故选:D.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.25.D解析:D【分析】根据分式的基本性质,将每一个分式的分子与分母的公因式约去,再比较即可.【详解】A.633xxx=,故该选项不符合题意;B. 221x a ax b b++≠++,故该选项不符合题意;C.1x122xx x---=--,故该选项不符合题意;D.0.71070.20.323a b a ba b a b--=++,故该选项符合题意;故选:D【点睛】此题考查约分,解题关键在于掌握运算法则.。
新初中数学因式分解真题汇编附答案(2)
新初中数学因式分解真题汇编附答案(2)一、选择题1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.2.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a ,比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.3.下列式子从左到右变形是因式分解的是( )A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.下列各式从左到右的变形中,是因式分解的为( ).A .()x a b ax bx -=-B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A 、是整式的乘法运算,故选项错误;B 、右边不是积的形式,故选项错误;C 、x 2-1=(x+1)(x-1),正确;D 、等式不成立,故选项错误.故选:C .【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.5.下列各式中,由等式的左边到右边的变形是因式分解的是( )A .(x +3)(x -3)=x 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab(a +b)D .x 2+1=x 1()x x+ 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没有把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成了几个整式积的形式,故C 正确;D 、没有把一个多项式转化成几个整式积的形式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.6.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣2xy+y 2=(x ﹣y )2C .x 2y ﹣xy 2=xy (x ﹣y )D .x 2﹣y 2=(x ﹣y )(x+y )【答案】A【解析】A. 提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;B. 是完全平方公式,已经彻底,正确;C. 是提公因式法,已经彻底,正确;D. 是平方差公式,已经彻底,正确.故选A.7.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。
最新初中数学—分式的难题汇编附答案解析
一、选择题1.若分式的值为0,则x 的值为A .B .C .D.不存在2.如图,设k=甲图中阴影部分面积乙图中阴影部分面积(a>b>0),则有()甲乙甲(A )k >2 (B )1<k <2 (C )121<<k (D )210<<k 3.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .B .C .D .4.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 5.下列分式变形中,正确的是( ).A . b a b a b a +=++22B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 6.已知:分式的值为零,分式无意义,则的值是( )乙甲A .-5或-2B .-1或-4C .1或4D .5或27.把分式22x y x y -+中的x 、y 都扩大到原来的4倍,则分式的值( )A .扩大到原来的8倍B .扩大到原来的4倍C .缩小到原来的14 D .不变8.若分式的值为零,则x 的值为( )A .0B .﹣2C .2D .﹣2或29.用科学记数方法表示0.0000907,得( )A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯ 10.计算4-(-4)0的结果是( )A .3B .0C .8D .4 11.下列各式从左到右的变形正确的是 ( )A .220.220.33a a a a a a --=-- B .11x x x y x y +--=-- C .116321623a a a a --=++ D .22b a a b a b-=-+ 12.计算23x 11x+--的结果是 A .1x 1- B .11x - C .5x 1- D .51x- 13.若分式的值为0,则x 的值为( ) A .0 B .2 C .﹣2 D .2或﹣214.下列变形正确的是( )A .x y y x x y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+= D .0.250.25a b a b a b a b ++=++ 15.已知空气的单位体积质量是0.001239g /cm 3,则用科学记数法表示该数为( )g /cm 3.A .1.239×10﹣3B .1.2×10﹣3C .1.239×10﹣2D .1.239×10﹣4 16.若式子212x x m -+不论x 取任何数总有意义,则m 的取值范围是( ) A .m≥1 B .m>1 C .m≤1 D .m<117.已知115ab a b =+,117bc b c =+,116ca c a =+,则abc ab bc ca ++的值是( ) A .121 B .122 C .123 D .12418.在,,中,是分式的有( ) A .0个 B .1个 C .2个 D .3个19.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有 A .1个 B .2个 C .3个 D .4个20.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( ) A .0.21×10-5 B .2.1×10-5C .2.1×10-6D .21×10-621.若02(1)2(2)x x ----无意义,则x 的取值范围是( ) A .1x ≠且2x ≠B .1x ≠或2x ≠C .1x =且2x =D .1x =或2x = 22.化简-的结果是( ) A . B . C . D .23.若a >-1,则下列各式中错误..的是( ) A .6a >-6B .2a >-12C .a +1>0D .-5a <-5 24.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有( )A .1个B .2个C .3个D .4个25.下列算式,计算正确的有( )①10-3=0.0001; ②(0.0001)0=1; ③3a -2=213a; ④(-2)3÷(-2)5=-2-2. A .1个 B .2个 C .3个 D .4个【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】 ∵分式的值为0, ∴,解得:,故选B.点睛:求使分式值为0的字母的取值时,要注意需同时满足两点:(1)分子的值为0;(2)分母的值不为0. 2.C解析:C【解析】试题分析:甲图中阴影部分的面积=22a b -,乙图中阴影部分的面积= ()a a b -,22()1a a b a b k a b a b a b -===--++,∵a >b >0∴0<b a b +<12,∴ 121<<k . 考点:分式的约分. 3.A解析:A【解析】试题分析:因为轮船在静水中的最大航速为30千米/时,江水的流速为x 千米/时,所以轮船在顺流航行中的航速为(30+x )千米/时,轮船在逆流航行的航速为(30-x )千米/时,根据以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可得:,故选A .考点:列分式方程. 4.C解析:C .【解析】试题分析:先把2222-21a a a a a ++++进行化简得222(1)a a a -+,再把012=-+a a 化简为:2-a 2=a+1,21a a +=,代入即可求值. 试题解析:2222222(2)21(1)a a a a a a a a a a ++-+-=++++ =222(1)a a a -+ ∵012=-+a a∴2-a 2=a+1,21a a +=原式=2211111(1)(1)1a a a a a a a +====+++ 故选C .考点:分式的值. 5.C解析:C【解析】试题分析:分式的约分首先将分子和分母进行因式分解,然后约去公共的因式.A 、B 无法进行约分,C 正确;D 需要保证m 不能为零.考点:分式的约分6.A解析:A【分析】当分式的分子为零,且分母不为零时,则分式的值为零;当分式的分母为零时,则分式无意义.【详解】根据题意可得:,=0,解得:x=-3,y=1或-2,则x+y=-2或-5.【点睛】考核知识点:分式的性质. 7.D解析:D .【解析】试题解析:根据题意得:844(2)2844(2y)2x y x y x y x y x x y ---==+++,即和原式的值相等,故选D .考点:分式的基本性质.8.B解析:B【解析】试题分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0.解:由分子x 2﹣4=0解得:x=±2. 当x=2时分母x 2﹣2x=4﹣4=0,分式没有意义; 当x=﹣2时分母x 2﹣2x=4+4=8≠0. 所以x=﹣2.故选B .9.B解析:B【详解】解:根据科学记数法的表示—较小的数为10n a ⨯,可知a=9.07,n=-5,即可求解. 故选B【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.10.A解析:A【解析】试题分析:根据零指数幂的性质和有理数的加减法,可求解为:4-(-4)0=4-1=3. 故选A.11.C解析:C【详解】解:A. 220.21020.3103a a a a a a --=--,故原选项错误; B. 11x x x y x y+--=--,故原选项错误; C. 116321623a a a a --=++ ,故此选项正确; D.22b a b a a b-=-+,故原选项错误, 故选C .12.B解析:B【解析】试题分析:先通分,再根据同分母的分式相加减的法则进行计算伯出判断:2323231x 11x 1x 1x 1x 1x-++=-+==------.故选B . 13.B解析:B【解析】根据分式的值为0,分子为0,分母不为0可得 且x+2≠0,解得x=2,故选B.14.D解析:D【解析】A选项错误,x yx y-+=-y xy x-+;B选项错误,x yy x+-=x y y xy x y x+---()()()()=()222y xx y--;C选项错误,2a aab+=1a aab+()=1ab+;D选项正确.故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变. 15.A解析:A【解析】根据绝对值小于1的正数也可以利用科学记数法表示方法(一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定)可得:0.001239 =1.239×0.001=1.239×10﹣3,故选A.16.B解析:B【解析】试题解析:分式21 2x x m-+不论x取何值总有意义,则其分母必不等于0,即把分母整理成(a+b)2+k(k>0)的形式为(x2-2x+1)+m-1=(x-1)2+(m-1),因为论x取何值(x2-2x+1)+m-1=(x-1)2+(m-1)都不等于0,所以m-1>0,即m>1.故选B.17.D解析:D【解析】试题解析:由已知得:1115a b+=,1117b c+=,1116c a+=,∴11124 a b c++=,∴原式=11 11124a b c=++,故选D.考点:分式的运算.18.C【解析】解:的分母中不含有字母,因此它们是整式,而不是分式.,的中分母中含有字母,因此是分式.故选:C . 19.C解析:C【解析】试题分析:分式是指分母含有字母的代数式.考点:分式的定义20.C解析:C【解析】0.0000021=2.1×10-6,故选C .21.C解析:C【解析】∵()()02x 12x 2----无意义,∴x −1=0或x −2=0,∴x=1或x=2.故选C. 22.D解析:D【解析】 试题分析:根据分式的加减运算,先确定最简公分母,再通分,然后计算即可,即22(1)(1)(1)111a a a a a a a a +--+=----221111a a a a -+==--. 故选:D23.D解析:D【解析】根据不等式的基本性质可知,A. 6a >−6,正确;B. 2a >12- , 正确; C. a +1>0,正确;D. 根据性质3可知,a >−1两边同乘以−5时,不等式为−5a <5,故D 错误;故选D.24.C【解析】改正:①任何非0数的零次方都等于1;②如果两条平行的直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行(或共线)且相等;④正确.故选C.25.A解析:A【解析】分析:本题考查的是负指数幂的运算.解析:①10-3=0.00001,故①错误;②(0.0001)0=1正确;③3a -2=23a,故③错误;④(-2)3÷(-2)5=2-2,故④错误. 故选A.。
最新最新初中数学—分式的难题汇编附答案解析(2)
一、选择题1.下列结论正确的是( ) A .当23x ≠时,分式132x x +-有意义 B .当x y ≠时,分式222xyx y -有意义C .当0x =时,分式22+xx x的值为0D .当1x =-时,分式211x x --没有意义2.下列计算正确的有(). ①0(1)1-= ②21333-⨯= ③()()33m m x x -=- ④2211224x x x ⎛⎫-=-+ ⎪⎝⎭ ⑤22(3)(3)9a b b a a b ---=-A .4个B .3个C .2个D .1个3.将分式2x x y+中的x 、y 都扩大2倍,则分式值( )A .扩大为原来的2倍B .缩小为原来的2倍C .保持不变D .无法确定4.与分式11a a -+--相等的式子是( ) A .11a a +- B .11a a -+ C .11a a +-- D .11a a --+ 5.若02018a =,2201720192018b =⨯- , 2017201845()()54c =-⨯ ,则a ,b ,c 的大小关系式( ) A .a b c << B .b c a <<C .c b a <<D .a c b <<6.如果把分式2++a ba b中的a 和b 都扩大为原来的10倍,那么分式的值( ) A .不变 B .缩小10倍C .是原来的20倍D .扩大10倍7.若a +b =0, 则ba的值为( ) A .-1B .0C .1D .-1或无意义8.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是( )A .甲B .乙C .丙D .丁9.若把分式3xyx y-(,x y 均不为0)中的x 和y 都扩大3倍,则原分式的值是( )A .扩大3倍B .缩小至原来的13C .不变D .缩小至原来的1610.1372x x-+-x 的取值范围是( ) A .3<x <72B .3≤x <72C .3≤x ≤72D .x ≥311.若分式21x -有意义,则( ) A .1x ≠B .1x =C .0x ≠D .0x =12.目前,世界上能制造出的小晶体管的长度只有0.00000004m 将0.00000004用科学记数法表示为( ) A .3410-⨯B .80.4 10⨯C .8410⨯D .8410-⨯13.若23a b =≠0,则代数式(2244b aba -+1)2b a a -÷的值为( ) A .2B .1C .﹣1D .﹣214.下列各式:2a b -,3x x +,13,a b a b +-,1()x y m-中,是分式的共有( )A .1个B .2个C .3个D .4个15.新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为( ) A .71.5510⨯只 B .81.5510⨯只C .90.15510⨯只D .6510⨯只16.若把分式x xy2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变17.下列运算正确的是( ) A .1133a a﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣=18.小明家到学校m 千米,若步行从家到学校,需要t 小时;若骑自行车,所用时间比步行少用20分钟,则骑自行车的比步行的速度快了( )A .3(1)m t t -千米/时B .(31)m t t - 千米/时 C .(31)mt t-+ 千米/时 D .13mt - 千米/时 19.使分式211x x -+的值为0,这时x 应为( )A .x =±1 B .x =1C .x =1 且 x≠﹣1D .x 的值不确定20.若分式242x x --的值为0,则x 等于( )A .±2 B .±4 C .-2D .221.下列等式成立的是( ) A .123a b a b+=+ B .212a b a b=++ C .2ab aab b a b=--D .a aa b a b=--++ 22.计算下列各式①(a 3)2÷a 5=1;②(-x 4)2÷x 4=x 4;③(x -3)0=1(x ≠3);④(-a 3b )3÷5212a b =-2a 4b 正确的有( )题 A .4 B .3C .2D .123.若代数式21a 4-在实数范围内有意义,则实数a 的取值范围为( ) A .a 4≠B .a 2>-C .2a 2-<<D .a 2≠±24.下列运算正确的是( ) A .()32622xx -=-B .22133xx -=C .()2x x y x xy --=-+D .()2222x y x xy y --=-+25.计算33x yx y x y---的结果是( ) A .1B .0C .3D .6【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据分式有意义,分母不等于0;分式的值等于0,分子等于0,分母不等于0对各选项分析判断后利用排除法求解. 【详解】A 、分式有意义,3x-2≠0,解得23x ≠,故本选项正确; B 、分式有意义,x 2-y 2≠0,解得x≠±y ,故本选项错误;C 、分式的值等于0,x=0且x 2+2x≠0,解得x=0且x≠0或-2,所以,x=0时分式无意义,故本选项错误;D 、分式没有意义,x-1=0,x=1,故本选项错误. 故选:A . 【点睛】此题考查分式有意义以及分式的值为零的条件,解题关键在于掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.C解析:C 【解析】 【分析】直接利用整数指数幂的法则和乘法公式分别计算得出答案. 【详解】解:①0(1)1-=,故①正确;②211333=93-⨯=⨯,故②正确; ③当m 是偶数时,()()333=mm mx x x -=,故③错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,故④错误;⑤22(3)(3)9a b b a b a ----=,故⑤错误. 正确的有①②,共2个. 故选C 【点睛】本题考查了整数指数幂的运算法则和乘法公式,熟练掌握幂的各种性质和法则,乘法公式是解题的基础.3.A解析:A 【分析】分别用2x 和2y 去代换原分式中的x 和y ,利用分式的基本性质化简与原分式比较即可得答案. 【详解】∵将分式2x x y+中的x 、y 都扩大2倍,∴原式变为2(2)22x x y +=242()x x y +=2×2x x y +,∴扩大为原来的2倍, 故选A. 【点睛】此题考查的是对分式的性质的理解和运用,分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,熟练掌握分式的基本性质是解题关键.4.B解析:B 【分析】根据分式的基本性质即可得出:分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变,据此即可解答. 【详解】解:原式= 1)(1)a a --+-( =11a a -+故选:B . 【点睛】本题考查分式的基本性质,解题关键是熟练掌握分式的基本性质.5.C解析:C 【分析】根据零次幂的性质,平方差公式以及积的乘方法则求出a ,b ,c ,再根据有理数的比较法则判断即可. 【详解】解:020118a ==,2222201720192018(20181)(20181)20182018120181b =⨯-=-+-=--=-,201720182017454555()()()545444c =-⨯=-⨯⨯=-,∵54-<-1<1, ∴c <b <a . 故选:C . 【点睛】本题主要考查了零次幂的性质,平方差公式以及积的乘方,熟练掌握相关运算法则是解题关键.6.A解析:A 【分析】根据分式的基本性质代入化简即可.【详解】扩大后为:102022=1010)a b a b a ba b a b a b+++=+++10()10(分式的值还是不变 故选:A. 【点睛】本题考查分式的基本性质,熟练掌握性质是关键.7.D解析:D 【分析】互为相反数两个数的和为0,同时要考虑到0+0=0,从而进行判断. 【详解】 解:∵a +b =0 ∴a=-b 或a=0,b=0∴ba的值为-1或无意义, 故选:D. 【点睛】掌握互为相反数的两个数的和为0和0+0=0,是本题的解题关键.8.B解析:B 【分析】找出题中出错的地方即可. 【详解】乙同学的过程有误,应为()()22a ab ab b a b a b +-++-,故选B . 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.9.A解析:A 【分析】将原式中x 变成3x ,将y 变成3y ,再进行化简,与原式相比较即可. 【详解】 由题意得3332733333()x y xy xyx y x y x y⋅⋅==⋅---,所以原分式的值扩大了3倍故选择A. 【点睛】此题考察分式的化简,注意结果应化为最简分式后与原分式相比较. 10.B解析:B【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【详解】由题意,得:x﹣3≥0且7﹣2x>0,解得:3≤x72<.故选B.【点睛】本题考查了二次根式有意义的条件,正确解不等式是解题的关键.11.A解析:A【解析】【分析】根据分式有意义的条件是分母不等于零求解即可.【详解】解:∵要使分式21x-有意义∴10x-≠1x∴≠故选A.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是分母不等于零是解题的关键.12.D解析:D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:0.000 000 04=4×10-8,故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.A解析:A 【分析】由23a b=≠0,得2b =3a ,把根据分式运算法则进行化简,再代入已知值计算即可. 【详解】解:(2244b ab a -+1)2b a a -÷ 222442b ab a a a b a -+=•- 22(2)2a b aa b a -=•- 2b a a-=, ∵23a b=≠0, ∴2b =3a ,∴原式32a a aa a-===2, 故选:A . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.14.C解析:C 【分析】利用分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式,进行解答即可. 【详解】 解:在2a b -,3x x +,13,a b a b +-,1()x y m-中, 3x x +,a b a b +-,1()x y m -是分式,共3个, 故选:C . 【点睛】本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.15.B解析:B 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】500万×31=5000000×31=155000000=1.55×108(只), 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.D解析:D 【分析】 根据题意把分式x xy2中的x 和y 同时扩大为原来的3倍,将其化简后与原分式进行比价即可做出判断. 【详解】 解:∵分式x xy2中的x 和y 同时扩大为原来的3倍∴()23322333x x xx y x y x y⋅⋅==+++则分式的值保持不变. 故选:D 【点睛】本题考查了分式的基本性质,属于基础题型,能够熟练掌握分式的基本性质是解决问题的关键.17.D解析:D 【分析】直接利用负指数幂的性质以及同底数幂的乘除运算法则计算得出答案. 【详解】 解:A 、133aa-=,故此选项错误; B 、22a a +,不是同类项无法合并;C 、()325aa a -⋅=-,故此选项错误; D 、()()32a a a -÷-=,正确;故选:D . 【点睛】此题考查负指数幂的性质以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.18.B解析:B【分析】利用速度=路程÷时间分别求得步行的速度和骑自行车的速度,从而利用分式的运算法则求得两者的速度差.【详解】解:步行的速度是:mt(km/h),骑自行车的速度是:31313m mtt=--(km/h),则骑自行车的速度与步行的速度差为:331(31)m m mt t t t-=--.故选:B.【点睛】本题考查了列代数式及分式的加减运用,正确表示出步行和骑自行车的速度是解题的关键.19.B解析:B【分析】使分式211xx-+的值为0,则x2-1=0,且x+1≠0.【详解】使分式211xx-+的值为0,则x2-1=0,且x+1≠0解得x=1故选:B【点睛】考核知识点:考查分式的意义. 要使分式值为0,分子等于0,分母不等于0.20.C解析:C【分析】根据分式为零的条件得到x2-4=0且x-2≠0,然后分别解方程和不等式即可得到x的值.【详解】∵分式242xx--的值为0,∴x2-4=0且x-2≠0,∴x=-2.故选:C.【点睛】本题考查了分式为零的条件:当分式的分子为零且分母不为零时,分式的值为零.21.C解析:C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a ab a +=+,故A 错误; B 、22a b +,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.22.B解析:B【分析】根据整数指数幂的运算法则解答即可.【详解】解:①(a 3)2÷a 5=a 6÷a 5=a ,故原式错误;②(-x 4)2÷x 4=x 8÷x 4=x 4,故原式正确;③因为x ≠3,所以x -3≠0,(x -3)0=1,故原式正确;④(-a 3b )3÷12a 5b 2=-a 9b 3÷12a 5b 2=-2a 4b ,故原式正确. 所以正确的有3个,故选:B .【点睛】本题主要考查了整数指数幂的运算,熟记法则是解决此题的关键.23.D解析:D【分析】分式有意义时,分母a 2-4≠0.【详解】依题意得:a 2-4≠0,解得a≠±2.故选D .【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零24.C解析:C【分析】根据积的乘方、负整数指数幂、整式的乘法、完全平方公式逐项判断即可得.【详解】A 、()32628x x -=-,此项错误; B 、2233x x -=,此项错误; C 、()2x x y x xy --=-+,此项正确; D 、()()22222x y x y x xy y --=+=++,此项错误;故选:C .【点睛】本题考查了积的乘方、负整数指数幂、整式的乘法、完全平方公式,熟练掌握各运算法则和公式是解题关键.25.C解析:C【分析】根据同分母的分式加减的法则进行计算即可.【详解】 解:()333=3x y x y x y x y x y--=--- 故选C.【点睛】本题考查了分式的加减法,掌握分式运算的法则是解题的关键.。
最新最新初中数学—分式的难题汇编含答案(2)
一、选择题1.下列约分结果正确的是( ) A .2mgRBLB .a m ab m b+=+ C .22x y x y x y-=-- D .22111m m m m -+-=-+-2.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 3.把分式2210x y xy+中的x y 、都扩大为原来的5倍,分式的值( )A .不变B .扩大5倍C .缩小为15D .扩大25倍4.计算22193x x x+--的结果是( ) A .13x - B .13x + C .13x- D .2339x x +- 5.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 6.下列各式中,正确的是( ). A .1122b a b a +=++B .22142a a a -=-- C .22111(1)a a a a +-=-- D .11b ba a ---=- 7.计算32-的结果是( ) A .-6B .-8C .18-D .188.下列变形正确的是( ).A .11a ab b +=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 9.如果112111S t t =+,212111S t t =-,则12S S =( ) A .1221t t t t +- B .2121t t t t -+ C .1221t t t t -+ D .1212t t t t +- 10.下列变形正确的是( ). A .1a b bab b++= B .22x y x y-++=- C .222()x y x y x y x y --=++ D .23193x x x -=-- 11.已知有理式:4x 、4a 、1x y -、34x 、12x 2、1a +4,其中分式有 ( )A .2个B .3个C .4个D .5个12.若代数式2x -在实数范围内有意义,则x 的取值范围为( ) A .x<-3B .x ≥-3C .x>2D .x ≥-3,且x ≠213.下列分式中,最简分式是( )A .x y y x--B .211x x +-C .2211x x -+D .2424x x -+14.如果a =(﹣99)0,b =(-3)﹣1,c =(﹣2)﹣2,那么a ,b ,c 三数的大小为( ) A .a >b >c B .c >a >b C .c <b <a D .a >c >b15.2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA 纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”.中国科学家团队研发出的这种可编程、基于 DNA 折纸技术的纳米机器人大小只有90×60×2nm ,nm 是长度计量单位,1nm=0.000000001米,则2nm 用科学记数法表示为( )A .2×109米B .20×10-8米C .2×10-9米D .2×10-8米 16.在实数范围内有意义,则a 的取值范围是( ) A .4a ≠-B .4a ≥-C .4a >-D .4a >-且0a ≠17.将分式2x x y+中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A .扩大3倍B .缩小3倍C .保持不变D .无法确定18.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米 B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米19.若0x y y z z xabc a b c---===<,则点P(ab ,bc)不可能在第( )象限A .一B .二C .三D .四20.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事12a =--,则12a ≥-; 22a ba b -+是最简分式;其中正确的有()个.A .1个B .2个C .3个D .4个21.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d22.分式212xy 和214x y的最简公分母是( )A .2xyB .2x 2y 2C .4x 2y 2D .4x 3y 323.如果2310a a ++=,那么代数式229263a aa a ⎛⎫++⋅ ⎪+⎝⎭的值为( )A .1B .1-C .2D .2-24.函数y =的取值范围是( ) A .x >2B .x ≥3C .x ≥3,且x ≠2D .x ≥-3,且x ≠225.下列变形正确的是( ).A .1x yx y-+=-- B .x m mx n n+=+ C .22x y x y x y +=++ D .632x x x=【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 A.282123x x y xy = ,故A 选项错误;B. a mb m++已是最简分式,故B 选项错误;C.22x y x y x y -=+-,故C 选项错误;D. 22111m m m m -+-=-+-,正确, 故选D.2.D解析:D【解析】A 选项:当x =2时,该分式的分母x -2=0,该分式无意义,故A 选项错误.B 选项:当x =0时,该分式的分母为零,该分式无意义. 显然,x =0满足x ≠3. 由此可见,当x ≠3时,该分式不一定有意义. 故B 选项错误.C 选项:当x =0时,该分式的值为3,即当x =0时该分式的值为整数,故C 选项错误.D 选项:无论x 为何值,该分式的分母x 2+1>0;该分式的分子3>0. 由此可知,无论x 为何值,该分式的值总为正数. 故D 选项正确. 故本题应选D. 点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x 的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.3.A解析:A 【详解】∵要把分式2210x y xy+中的x y 、都扩大5倍,∴扩大后的分式为:()()()22222225551055251010x y x y xy x yxyxy+++==⨯⨯⨯,∴把分式2210x y xy+中的x y 、都扩大5倍,分式的值不变.故选A.点睛:解这类把分式中的所有字母都扩大n 倍后,判断分式的值的变化情况的题,通常是用分式中每个字母的n 倍去代替原来的字母,然后对新分式进行化简,再把化简结果和原来的分式进行对比就可判断新分式和原分式相比值发生了怎样的变化.4.B解析:B 【解析】原式=()()2x x 3x 3+-−1 x 3-=()()()2x x 3x 3x 3-++-=()()x 3x 3x 3-+-=1x 3+.故选:B.5.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误;B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.6.C解析:C 【解析】解;A .分式的分子分母都乘或除以同一个不为零的整式,故A 错误; B .分子除以(a ﹣2),分母除以(a +2),故B 错误;C .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C 正确;D .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D 错误; 故选C .7.D解析:D 【解析】3311228-==. 故选D. 8.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.9.B解析:B 【解析】 ∵112111S t t =+,212111S t t =-,∴S 1=1212t t t t +,S 2=1221t t t t -, ∴12112211221221t t s t t t t t t s t t t t +-==+-, 故选B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.10.C解析:C 【解析】 选项A.a bab+ 不能化简,错误. 选项B.22x y x y-+-=-,错误. 选项C.()222x y x y x y x y --=++ ,正确. 选项D. 23193x x x -=-+,错误. 故选C.11.B解析:B 【解析】4a 、、34x 、12x 2的分母中均不含有字母,因此它们是整式,而不是分式. 4x、、1x y -、1a +4的分母中含有字母,因此是分式.所以B 选项是正确的.点睛:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.12.D解析:D 【分析】根据二次根式有意义的条件和分式有意义的条件得到x+3≥0且x-2≠0,然后求出两个不等式的公共部分即可. 【详解】根据题意得x+3≥0且x−2≠0, 所以x 的取值范围为x ≥−3且x≠2. 故答案选D.本题考查的知识点是二次根式有意义的条件,分式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件,分式有意义的条件.13.C解析:C 【解析】 试题分析:A 、x yy x--=-1,不是最简分式; B 、21111(1)(1)1x x x x x x ++==-+--,不是最简分式; C 、2211x x -+分子、分母不含公因式,是最简分式;D 、24(2)(2)2242(2)2x x x x x x -+--==++,不是最简分式. 故选C .点睛:本题考查最简分式,解题的关键是明确最简分式的定义,即分子、分母不含公因式的分式.14.D解析:D 【解析】 【分析】根据0指数幂、负整数指数幂的运算法则分别求出a 、b 、c 的值即可求得答案. 【详解】a =(﹣99)0=1,b =(-3)﹣1=13-,c =(﹣2)﹣2=()21142=-, 11143>>-, 所以a >c >b , 故选D. 【点睛】本题考查了实数大小的比较,涉及了0指数幂、负整数指数幂,求出a 、b 、c 的值是解题的关键.15.C解析:C【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 详解:0.000000001×2=2×10﹣9.点睛:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.C解析:C【解析】分析:根据二次根式与分式有意义的条件和分式有意义的条件即可求出a的范围.详解:由题意可知:a+4>0∴a>-4故选C.点睛:解题的关键是正确理解二次根式有意义的条件和分式有意义的条件,本题属于基础题型.17.A解析:A【解析】试题分析:==;故选A.考点:分式的基本性质.18.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.19.A解析:A【解析】【分析】根据有理数的乘法判断出a,b,c中至少有一个是负数,另两个同号,然后求出三个数都是负数时x、y、z的大小关系,得出矛盾,从而判断出a、b、c不能同时是负数,确定出点P 不可能在第一象限. 【详解】 解:∵abc <0,∴a ,b ,c 中至少有一个是负数,另两个同号, 可知三个都是负数或两正数,一个是负数, 当三个都是负数时:若x yabc a-=, 则20x y a bc -=>,即x >y ,同理可得:y >z ,z >x 这三个式子不能同时成立, 即a ,b ,c 不能同时是负数, 所以,P (ab ,bc )不可能在第一象限. 故选:A. 【点睛】本题主要考查分式的基本性质和点的坐标的知识,熟悉点的坐标的基本知识是本题的解题关键,确定一个点所在象限,就是确定点的坐标的符号.20.C解析:C 【解析】 【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断. 【详解】①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②12a =--,则12a ≤-,错误;4== ④分式22a ba b -+是最简分式,正确;故选:C . 【点睛】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.21.B解析:B 【解析】 【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a 、b 、c 、d 的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可. 【详解】∵2221110.30.09,3,9,1933a b c d --⎛⎫⎛⎫=-=-=-=-=-==-= ⎪ ⎪⎝⎭⎝⎭, ∴10.09199-<-<<, ∴b <a <d <c . 故选:B . 【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a -p =1p a(a≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a≠0);②00≠1.22.C解析:C 【解析】 【分析】确定最简公分母的方法是: (1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】分式212xy 和214x y的最简公分母是4x 2y 2. 故选C. 【点睛】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.23.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅ ⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3)=2(a 2+3a ),∵a 2+3a+1=0,∴a 2+3a=-1,∴原式=2×(-1)=-2,故选D .【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 24.D解析:D【解析】【分析】根据二次根式的性质和分式有意义的条件,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:3020x x +≥⎧⎨-≠⎩,解得:x ≥﹣3且x ≠2. 故选D .【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.25.A解析:A【解析】 试题解析:()1x y x y x y x y -+--==---. 故选A.。
最新最新初中数学—分式的难题汇编含答案解析
一、选择题1.若,则用u 、v 表示f 的式子应该是( )A .B .C .D .2.下列式子中,错误的是 A .1a a 1a a --=- B .1a a 1a a ---=- C .1a 1aa a---=- D .1a 1aa a+---= 3.计算: ()332xy ?-一 的结果是A .398x y --B .398x y ---C .391x y 2---D .361x y 2---4.下列变形正确的是( ).A .11a ab b +=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 5.如果112111S t t =+,212111S t t =-,则12S S =( ) A .1221t t t t +-B .2121t t t t -+C .1221t t t t -+D .1212t t t t +-6.下列等式成立的是( ) A .|﹣2|=2B 2﹣1)0=0C .(﹣12)﹣1=2 D .﹣(﹣2)=﹣27.下列分式中,最简分式是( )A .x y y x--B .211x x +-C .2211x x -+D .2424x x -+8.将分式()0,0xyx y x y≠≠-中的x .y 扩大为原来的3倍,则分式的值为:( ) A .不变;B .扩大为原来的3倍C .扩大为原来的9倍;D .减小为原来的139.下列约分结果正确的是( ) A .2mgRBLB .a m ab m b+=+ C .22x y x y x y-=-- D .22111m m m m -+-=-+-10.下列各式计算正确的是( )A .a x ab x b+=+ B .112a b a b+=+C .22()a a b b=D .11x y x y-=-+- 11.下面是一位同学所做的5道练习题: ①()325aa = ,②236a a a ⋅=,③22144m m -=, ④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道12.下列各式中,正确的是( ) A .a m ab m b+=+ B .a b0a b+=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+13.已知12x y-=3,分式4322x xy y x xy y +-+-的值为( )A .32 B .0C .23D .9414.如果把分式2mnm n-中的m.n 都扩大3倍,那么分式的值( ) A .扩大9倍 B .扩大3倍C .扩大6倍D .不变15.下列运算正确的是( ) A .a ﹣3÷a ﹣5=a 2 B .(3a 2)3=9a 5 C .(x ﹣1)(1﹣x)=x 2﹣1D .(a+b)2=a 2+b 216.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为( ) A .3.5×10﹣6米 B .3.5×10﹣5米 C .35×1013米 D .3.5×1013米 17.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事12a =--,则12a ≥-; 22a ba b -+是最简分式;其中正确的有()个.A .1个B .2个C .3个D .4个 18.若(x -2016)x =1,则x 的值是( )A .2017B .2015C .0D .2017或019.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d20.如果把分式232x x y+中的x 和y 都扩大为原来的5倍,那么分式的值( )A .扩大为原来的5倍B .扩大为原来的10倍C .不变D .缩小为原来的1521.如果2310a a ++=,那么代数式229263a aa a ⎛⎫++⋅ ⎪+⎝⎭的值为( )A .1B .1-C .2D .2-22.下列分式从左到右的变形正确的是( )A .2=2x xy yB .22=x x y yC .22=x x xx D .515(2)2xx23.计算21424m m ++-的结果是( ) A .2m +B .2m -C .12m + D .12m - 24.下列分式是最简分式的是( ) A .2426a a -+B .1b ab a++C .22a ba b +-D .22a ba b ++25.如果把分式2xx y-中的x 与y 都扩大2倍,那么分式的值( ) A .不变B .扩大2倍C .缩小2倍D .扩大4倍【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f 即可. 【详解】,变形得:f=.故选B . 【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.2.B解析:B 【解析】 A 选项中,1(1)1a a a a a a ----==--,所以A 正确; B 选项中,1(1)1a a a a a a -----=-=---,所以B 错误; C 选项中,11a aa a ---=-,所以C 正确; D 选项中,11a aa a+---=,所以D 正确. 故选B.3.B解析:B 【解析】3333939(2)=(-2)8xy x y x y -------=-.故选B.4.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.5.B解析:B 【解析】∵112111S t t =+,212111S t t =-, ∴S 1=1212t t t t +,S 2=1221t t t t -,∴12112211221221t t s t t t t t t s t t t t +-==+-, 故选B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.6.A解析:A 【解析】根据绝对值、零指数幂及负整数指数幂的运算法则,可得: A 、|﹣2|=2,计算正确,故本选项正确;B﹣1)0=1,原式计算错误,故本选项错误;C 、(﹣12)﹣1=﹣2,原式计算错误,故本选项错误; D 、﹣(﹣2)=2,原式计算错误,故本选项错误; 故选:A .点睛:此题主要考查了绝对值、零指数幂及负整数指数幂的运算法则,灵活运用绝对值、零指数幂及负整数指数幂的运算法则进行计算是解决此类题目的关键.7.C解析:C 【解析】 试题分析:A 、x yy x--=-1,不是最简分式; B 、21111(1)(1)1x x x x x x ++==-+--,不是最简分式; C 、2211x x -+分子、分母不含公因式,是最简分式;D 、24(2)(2)2242(2)2x x x x x x -+--==++,不是最简分式. 故选C .点睛:本题考查最简分式,解题的关键是明确最简分式的定义,即分子、分母不含公因式的分式.8.B解析:B 【解析】解:把分式xy x y +中的x 、y 扩大为原来的3倍后为3333x y x y ⋅+=3xyx y+,即将分式00xyx y x y≠≠-(,)中的x 、y 扩大为原来的3倍后分式的值为原来的分式的值的3倍.故选B .9.D解析:D 【解析】 A.282123x x y xy = ,故A 选项错误;B. a mb m++已是最简分式,故B 选项错误;C. 22x y x y x y -=+-,故C 选项错误;D. 22111m m m m -+-=-+-,正确, 故选D.10.D解析:D 【解析】根据分式的基本性质,可知A 不正确;根据异分母的分式相加,可知11a b +=b a a b ab ab ab ++=,故不正确;根据分式的乘方,可知2a b ⎛⎫= ⎪⎝⎭22a b ,故不正确;根据分式的性质,可知11x y x y-=-+-,故正确. 故选:D.11.A解析:A 【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a =() ,故①错误;②235a a a ⋅=,故②错误; ③2244mm -=,故③错误; ④523a a a -÷-=-()(),故④正确; ⑤33327a a -=-().故⑤错误.故选A .点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.12.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误; D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确.故选D.13.A解析:A 【解析】 【分析】先根据题意得出2x-y=-3xy ,再代入原式进行计算即可. 【详解】解:∵12x y-=3,∴2x-y=-3xy , ∴原式=()()2232x y xyx y xy-+-+,=633xy xy xy xy -+-+, =32xy xy--, =32, 故选A . 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.14.B解析:B 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 原式=1862333mn mn mnm n m n m n==⨯---故选B . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质.15.A解析:A【解析】【分析】直接利用同底数幂的除法运算法则、积的乘方运算法则、完全平方公式分别化简得出答案.【详解】A.a﹣3÷a﹣5=a2,故此选项正确;B.(3a2)3=27a6,故此选项错误;C.(x﹣1)(1﹣x)=﹣x2+2x﹣1,故此选项错误;D.(a+b)2=a2+2ab+b2,故此选项错误.故选A.【点睛】本题考查了同底数幂的除法运算法则、积的乘方运算法则、完全平方公式等知识,正确掌握相关运算法则是解题的关键.16.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1米=109纳米,某种植物花粉的直径约为35000纳米,∴35000纳米=35000×10﹣9m=3.5×10﹣5m.故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.C解析:C【解析】【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断.【详解】①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②12a =--,则12a ≤-,错误;== ④分式22a ba b -+是最简分式,正确;故选:C . 【点睛】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.18.D解析:D 【解析】 【分析】根据零指数幂:a 0=1(a≠0)和1的任何次幂都是1可得x=0或x-2016=1,再解即可. 【详解】由题意得:x=0或x-2016=1, 解得:x=0或2017. 故选:D . 【点睛】此题主要考查了零次幂和乘方,关键是掌握零指数幂:a 0=1(a≠0).19.B解析:B 【解析】 【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a 、b 、c 、d 的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可. 【详解】∵2221110.30.09,3,9,1933a b c d --⎛⎫⎛⎫=-=-=-=-=-==-= ⎪ ⎪⎝⎭⎝⎭, ∴10.09199-<-<<, ∴b <a <d <c . 故选:B . 【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a -p =1pa (a≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a≠0);②00≠1.20.A解析:A 【解析】 【分析】x ,y 都扩大为原来的5倍就是分别变成原来的5倍,变成5x 和5y .用5x 和5y 代替式子中的x 和y ,看得到的式子与原来的式子的关系. 【详解】用5x 和5y 代替式子中的x 和y 得:()2255,151032x x x y x y=++则扩大为原来的5倍. 故选:A. 【点睛】考查分式的基本性质,掌握分式的基本性质是解题的关键.21.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.解析:D【分析】根据分式的基本性质逐项判断.【详解】解:A 、当y=-2时,该等式不成立,故本选项错误;B 、当x=-1,y=1时,该等式不成立,故本选项错误; C.22=x x x x--+-,故本选项错误; D 、正确.故选D.【点睛】 本题考查分式的基本性质,属于基础题型,分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.23.D解析:D【解析】【分析】先通分,再加减.注意化简.【详解】21424124(2)(2)2m m m m m m -++==+-+-- 故选:D【点睛】考核知识点:异分母分式加减法.通分是关键.24.D解析:D【解析】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】A 、该分式的分子、分母中含有公因数2,则它不是最简分式.故本选项错误;B 、分母为a (b+1),所以该分式的分子、分母中含有公因式(b+1),则它不是最简分式.故本选项错误;C 、分母为(a+b )(a-b ),所以该分式的分子、分母中含有公因式(a+b ),则它不是最简分式.故本选项错误;D 、该分式符合最简分式的定义.故本选项正确.【点睛】本题考查了对最简分式,约分的应用,关键是理解最简分式的定义.25.A解析:A【解析】分析:解答此题时,可将分式中的x,y用2x,2y代替,然后计算即可得出结论.详解:依题意得:2222xx y⨯-=222xx y⋅⋅-()=原式.故选A.点睛:本题考查的是对分式的性质的理解和运用,扩大或缩小n倍,就将原来的数乘以n 或除以n.。
新最新初中数学—分式的难题汇编及答案解析(2)
一、选择题1.(2015秋•郴州校级期中)下列计算正确的是( ) A .B .•C .x÷y•D .2.下列各式、、、+1、中分式有( )A .2个B .3个C .4个D .5个3.已知(x ﹣y )(2x ﹣y )=0(xy ≠0),则+的值是( ) A .2 B .﹣2 C .﹣2或﹣2 D .2或2 4.下列分式变形中,正确的是( ).A . b a b a b a +=++22B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 5.化简:(a-2)·22444a a a --+的结果是( )A .a-2B .a +2C .22-+a a D .22+-a a 6.使代数式7x-有意义的x 的取值范围是( ) A .x≠3 B .x <7且x≠3 C .x≤7且x≠2 D .x≤7且x≠37.函数中自变量x 的取值范围是( )A .x≠2B .x≥2C .x≤2D .x >28.在物理并联电路里,支路电阻1R 、2R 与总电阻R 之间的关系式为12111R R R =+,若1R R ≠,用R 、1R 表示2R 正确的是A .121RR R R R =- B .121RR R R R=- C .121R RR RR -=D .121R R R RR -=9.已知空气的单位体积质量是0.001239g /cm 3,则用科学记数法表示该数为( )g /cm 3.A .1.239×10﹣3B .1.2×10﹣3C .1.239×10﹣2D .1.239×10﹣410.下列各式的约分,正确的是 A .1a b a b --=- B .1a ba b--=-- C .22a b a b a b -=-+ D .22a b a b a b-=++ 11.下列式子:22222213,,,,,x y a x x a b a xy yπ----其中是分式的个数( ). A .2 B .3C .4D .512.如果把223yx y-中的x 和y 都扩大5倍,那么分式的值( )A.扩大5倍B.不变C.缩小5倍D.扩大10倍 13.已知实数a ,b ,c均不为零,且满足a +b +c=0,则222222222111b c a c a b a b c +++-+-+-的值是( ) A .为正 B .为负 C .为0 D .与a ,b ,c 的取值有关 14.如果为整数,那么使分式22221m m m +++的值为整数的的值有( )A .2个B .3个C .4个D .5个15.式子①,②,③,④中,是分式的是( )A .①② B.③④ C.①③ D.①②③④ 16.下列分式中,最简分式是( ) A .B .C .D .17.若已知分式22169x x x ---+的值为0,则x ﹣2的值为( ).A .19或﹣1 B .19或1 C .﹣1 D .1 18.在标准大气压下氢气的密度为0.00009g/cm 3 ,用科学记数法表示0.00009正确的是( )A .5910⨯ B .5910-⨯ C .4910-⨯ D .40.910⨯ 19.化简-的结果是( ) A .B .C .D .20.已知:a=()﹣3,b=(﹣2)2,c=(π﹣2015)0,则a ,b ,c 大小关系是( ) A .b <a <cB .b <c <aC .c <b <aD .a <c <b21.用科学记数方法表示0.00000601,得( )A.0.601×10-6 B.6.01×10-6 C.60.1×10-7 D.60.1×10-622.雾霾已经成为现在生活中不得不面对的重要问题,PM2.5是大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为()A.2.5×10﹣6B.0.25×10﹣6C.2.5×10﹣5D.0.25×10﹣523.把分式2210x yxy+中的x y,都扩大为原来的3倍,分式的值()A.不变B.扩大3倍C.缩小为原来的13D.扩大9倍24.下列变形正确的是()A.x y y xx y y x--=++B.222()x y x yy x x y+-=--C.2a a aab b+=D.0.250.25a b a ba b a b++=++25.化简﹣的结果是()m+3 B.m-3 C. D.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:原式各项计算得到结果,即可做出判断.解:A、原式=•=,错误;B、原式=,正确;C、原式=,错误;D、原式==,错误,故选B.考点:分式的乘除法.解析:A 【解析】试题分析:根据分式的定义进行解答即可. 试题解析:这一组数数中,与是分式,共2个.故选A.考点:分式的定义.3.D解析:D 【解析】试题分析:根据题意可得:x-y=0或2x-y=0,则x=y 或2x=y ,当x=y 时,原式=1+1=2;当2x=y 时,原式=21+2=221. 考点:(1)、分式的计算;(2)、分类讨论思想4.C解析:C 【解析】试题分析:分式的约分首先将分子和分母进行因式分解,然后约去公共的因式.A 、B 无法进行约分,C 正确;D 需要保证m 不能为零. 考点:分式的约分5.B解析:B . 【解析】试题解析:原式=(a-2)•2(2)(2)(2)a a a +--=a+2, 故选B .考点:分式的乘除法.6.D解析:D 【解析】7x-有意义, ∴7-x≥0,且2x-6≠0, 解得:x≤7且x≠3, 故选D .7.A解析:A试题解析:根据题意得:2﹣x≠0, 解得:x≠2. 故函数中自变量x 的取值范围是x≠2.故选A .考点:函数自变量的取值范围.8.B解析:B 【解析】试题解析:12111R R R =+, 21111R R R =- 1211R R R RR -= 得R 2═11RR R R-.故选B .9.A解析:A 【解析】根据绝对值小于1的正数也可以利用科学记数法表示方法(一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定)可得:0.001239 =1.239×0.001=1.239×10﹣3,故选A .10.C解析:C . 【解析】试题分析:根据分式的基本性质作答. 试题解析:A .()1a b a b a b a b---+=≠--,故该选项错误; B .()1a b a b a b a b---+=≠---,故该选项错误; C .22()()a b a b a b a b a b a b -+-==-++,故该选项正确; D .22()()a b a b a b a b a b a b a b -+-==-≠+++,故该选项错误. 故选C .考点:约分.11.B解析:B【解析】试题分析:根据分式的概念,分母中含有字母的式子,因此可知2a,22x yxy-,21xy-是分式,共三个.故选B考点:分式的概念12.B解析:B【解析】试题分析:如果把223yx y-中的x和y都扩大5倍,则变为()()()252253523y yx y x y=--,分式的值没改变,所以选B考点:分式点评:本题考查分式,本题的关键是掌握分式的性质,本题难度不大,属基础题13.C解析:C.【解析】试题解析:∵a+b+c=0,∴a=-(b+c),∴a2=(b+c)2,同理b2=(a+c)2,c2=(a+b)2.∴原式=11111()0 22a b cbc ac ab abc++-++=-⨯=,故选C.考点:分式的运算.14.C解析:C【解析】原式=()()()2111mm m+++=21m+,当m=-3时,原式=-1;当m=-2时,原式=-2;当m=0时,原式=2;当m=1时,原式=1.m的值有4个.故选C.15.C解析:C【解析】试题分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:①,③是分式,②,④是整式,故选:C .【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.16.B解析:B 【解析】试题分析:选项A ,原式=,所以A 选项错误;选项B ,是最简分式,所以B 选项正确;选项C ,原式=,所以C 选项错误;选项D ,原式=,所以D 选项错误.故选B . 考点:最简分式.17.D解析:D . 【解析】试题分析:根据分式值为零的条件可得:|x ﹣2|﹣1=0,且269x x -+≠0,再解即可.由题意得:|x ﹣2|﹣1=0,且269x x -+≠0,解得:x=1. 故选:D .考点:分式的值为零的条件;负整数指数幂.18.B解析:B【解析】根据科学记数法的书写规则,易得B.19.D解析:D 【解析】试题分析:根据分式的加减运算,先确定最简公分母,再通分,然后计算即可,即22(1)(1)(1)111a a a a a a a a +--+=----221111a a a a -+==--. 故选:D20.C解析:C 【解析】 a =31()2-=8, b =(−2) ² =4,c=(π−2015) º =1,∵1<4<8,∴c<b<a,故选C.21.B解析:B【解析】试题分析:根据科学记数法表示较小的数,可知a=6.01,n=-6,所以用科学记数法表示为6.01×10-6.故选:B点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.22.A解析:A【解析】由科学记数法知0.0000025=2.5×10−6,故选A.23.A解析:A【解析】将2210x yxy+中的x、y都扩大为原来的3倍得到:22331033x yx y+()()()()=229990x yxy+=2210x yxy+.故选A.点睛:用3x、3y代换原式中的x、y,然后用分式性质化简即可. 24.D解析:D【解析】A选项错误,x yx y-+=-y xy x-+;B选项错误,x yy x+-=x y y xy x y x+---()()()()=()222y xx y--;C选项错误,2a aab+=1a aab+()=1ab+;D选项正确.故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变. 25.A解析:A【解析】试题分析:因为2299(3)(3)33333m m m mmm m m m-+--===+----,所以选:A.考点:分式的减法.。
(专题精选)最新初中数学—分式的难题汇编附答案解析
一、选择题1.若分式21x -有意义,则( )A .1x ≠B .1x =C .0x ≠D .0x =2.若(x 2﹣ax ﹣b )(x +2)的积不含x 的一次项和二次项,则a b =( ) A .116B .-116C .16D .﹣163.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。
2.5微米等于0.0000025米,把0.0000025用科学记数法表示为( ) A .0.25×10–5米B .2.5×10–7米C .2.5×10–6米D .25×10–7米4.下列变形正确的是( )A .y x =22y xB .a acb bc= C .ac a bc b= D .x m xy m y+=+ 5.把分式aba b+中的a 、b 都扩大为原来的3倍,则分式的值( ) A .扩大为原来的6倍 B .不变C .缩小为原来的13D .扩大为原来的3倍6.将分式2x x y+中的x 、y 都扩大2倍,则分式值( )A .扩大为原来的2倍B .缩小为原来的2倍C .保持不变D .无法确定7.若代数式1xx +有意义,则实数x 的取值范围是( ) A .0x = B .1x =-C .1x ≠D .1x ≠-8.与分式11a a -+--相等的式子是( ) A .11a a +- B .11a a -+ C .11a a +-- D .11a a --+ 9.若02018a =,2201720192018b =⨯- , 2017201845()()54c =-⨯ ,则a ,b ,c 的大小关系式( ) A .a b c << B .b c a <<C .c b a <<D .a c b <<10.如果把分式2++a ba b中的a 和b 都扩大为原来的10倍,那么分式的值( ) A .不变B .缩小10倍C .是原来的20倍D .扩大10倍11.使式子x有意义的实数x 的取值范围是( ) A .x ≤3B .x ≤3且x ≠0C .x <3D .x <3且x ≠012.目前,世界上能制造出的小晶体管的长度只有0.00000004m 将0.00000004用科学记数法表示为( ) A .3410-⨯ B .80.4 10⨯C .8410⨯D .8410-⨯13.函数 y =21x x --的自变量 x 的取值范围是( ) A .x > -1且x ≠ 1 B .x ≠ 1且x ≠ 2C .x ≥ -1且x ≠ 1D .x ≥ -114.下列各式:2a b -,3x x +,13,a b a b +-,1()x y m-中,是分式的共有( )A .1个B .2个C .3个D .4个15.若a=20180,b=2016×2018-20172,c=(23-)2016×(32)2017,则a ,b ,c 的大小关系正确的是( ) A .a<b<c B .a<c<b C .b<a<c D .c<b<a16.某种病毒变异后的直径为0.000000102米,将这个数写成科学记数法是( )A .61.0210-⨯B .60.10210-⨯C .71.0210-⨯D .810210-⨯17.下列运算正确的是( ) A .1133a a﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣=18.下列计算中错误的是( )A .020181=B .224-=C 2=D .1133-=19.若分式242x x --的值为0,则x 等于( )A .±2B .±4 C .-2D .220.222142x x x÷--的计算结果为( ) A .2x x + B .22xx + C .22xx - D .2(2)x x +21.下列等式成立的是( ) A .123a b a b +=+ B .212a b a b =++ C .2ab aab b a b=--D .a aa b a b=--++ 22.(2017河北)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4+446=B .004+4+4=6C .34+4=6D .14446-=23.当x 为任意实数时,下列分式中,一定有意义的是( ) A .1xB .11x + C .11x - D .211x + 24.下列各式中,正确的是( )A .22x y x y -++=-B .()222x y x y x y x y --=++ C .1a b b ab b++= D .23193x x x -=-- 25.函数3y x =+的自变量x 的取值范围是( ) A .3x >-B .3x ≥-C .3x ≠-D .3x ≤-【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据分式有意义的条件是分母不等于零求解即可. 【详解】 解:∵要使分式21x -有意义 ∴10x -≠1x ∴≠【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是分母不等于零是解题的关键.2.A解析:A 【解析】 【分析】先把原式展开,再根据题意2()(2)x ax b x --+的积不含x 的一次项和二次项,得知20a -=,20a b +=,然后求解即可. 【详解】2322()(2)222x ax b x x x ax ax bx b --+=+---- 32(2)(2)2x a x a b x b =+--+-,2()(2)x ax b x --+的积不含x 的一次项和二次项, ∴2020a a b -=⎧⎨+=⎩,2a ∴=,4b =-,41216b a -∴==. 故选A . 【点睛】本题考查了多项式乘多项式,解题的关键是明确积不含x 的一次项和二次项,即它们的系数为零.3.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答. 【详解】0.0000025=2.5×10﹣6, 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.C【解析】试题解析:A、分式的乘方不等于原分式,故A错误;B、当c=0时,结果不成立,故B错误;C、分式的分子分母都乘或除以同一个不为零的整式,故C正确;D、分式的分子分母都加同一个不为零的数,结果发生变化,故D错误.故选C.5.D解析:D【解析】试题解析:把分式aba b+中的a、b都扩大为原来的3倍,则33333a b aba b a b⨯=++,故分式的值扩大3倍.故选D.6.A解析:A【分析】分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简与原分式比较即可得答案.【详解】∵将分式2xx y+中的x、y都扩大2倍,∴原式变为2(2)22xx y+=242()xx y+=2×2xx y+,∴扩大为原来的2倍,故选A.【点睛】此题考查的是对分式的性质的理解和运用,分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,熟练掌握分式的基本性质是解题关键.7.D解析:D【解析】【分析】根据分式有意义的条件即分母不等于零可得x+1≠0,从而得解.【详解】解:由题意得:x+1≠0,解得:x≠-1,故选:D.【点睛】本题考查分式有意义的条件,解题关键是掌握分式有意义的条件:分母不等于零.8.B解析:B 【分析】根据分式的基本性质即可得出:分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变,据此即可解答. 【详解】 解:原式= 1)(1)a a --+-( =11a a -+故选:B . 【点睛】本题考查分式的基本性质,解题关键是熟练掌握分式的基本性质.9.C解析:C 【分析】根据零次幂的性质,平方差公式以及积的乘方法则求出a ,b ,c ,再根据有理数的比较法则判断即可. 【详解】解:020118a ==,2222201720192018(20181)(20181)20182018120181b =⨯-=-+-=--=-,201720182017454555()()()545444c =-⨯=-⨯⨯=-,∵54-<-1<1, ∴c <b <a . 故选:C . 【点睛】本题主要考查了零次幂的性质,平方差公式以及积的乘方,熟练掌握相关运算法则是解题关键.10.A解析:A 【分析】根据分式的基本性质代入化简即可. 【详解】 扩大后为:102022=1010)a b a b a ba b a b a b+++=+++10()10(分式的值还是不变 故选:A.本题考查分式的基本性质,熟练掌握性质是关键.11.B解析:B【分析】直接利用二次根式有意义的条件得出答案.【详解】有意义的实数x的取值范围是:3﹣x≥0,且x≠0,使式子x解得:x≤3且x≠0.故选B.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.12.D解析:D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:0.000 000 04=4×10-8,故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.C解析:C【分析】根据分母不能为零且被开方数是非负数,可得答案.【详解】解:由题意得:x-1≠0且x+1≥0,解得:x≥-1且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零且被开方数是非负数得出不等式是解题关键.14.C【分析】利用分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式,进行解答即可. 【详解】解:在2a b -,3x x +,13,a b a b +-,1()x y m-中, 3x x +,a b a b +-,1()x y m -是分式,共3个, 故选:C . 【点睛】本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.15.C解析:C 【分析】首先计算a 、b 、c 的值,再进行比较即可. 【详解】 a=20180=1,b=2016×2018-20172=222(20171)(20171)20172017120171-+-=--=-,20162017201620162016232332333()()()()()323223222c =-⨯=⨯⨯=⨯⨯=,∵-1<1<32, ∴b<a<c , 故选:C. 【点睛】此题考查零次幂定义,平方差公式,同底数幂乘法的逆运算,积的乘方的逆运算,掌握掌握各计算法则是解题的关键.16.C解析:C 【分析】用科学记数法表示比较小的数时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0. 【详解】解:0.000000102=71.0210-⨯. 故选:C . 【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.D解析:D 【分析】直接利用负指数幂的性质以及同底数幂的乘除运算法则计算得出答案. 【详解】 解:A 、133aa-=,故此选项错误; B 、22a a +,不是同类项无法合并;C 、()325aa a -⋅=-,故此选项错误; D 、()()32a a a -÷-=,正确;故选:D . 【点睛】此题考查负指数幂的性质以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.18.B解析:B 【分析】根据零指数幂、指数幂、平方根、负整数指数幂的定义分别验证四个选项即可得到答案. 【详解】解:A 、020181=,任何非零数的零次方都等于1,故A 不是答案; B 、224-=-,故B 是答案;C 2=,故C 不是答案;D 、1133-=,故D 不是答案; 故选:B . 【点睛】本题主要考查了零指数幂、指数幂、平方根、负整数指数幂的定义,熟练掌握各知识点是解题的关键.19.C解析:C 【分析】根据分式为零的条件得到x 2-4=0且x-2≠0,然后分别解方程和不等式即可得到x 的值. 【详解】∵分式242x x --的值为0,∴x 2-4=0且x-2≠0, ∴x=-2.故选:C . 【点睛】本题考查了分式为零的条件:当分式的分子为零且分母不为零时,分式的值为零.20.B解析:B 【分析】先把分母因式分解,再把除法转换为乘法,约分化简得到结果. 【详解】222142x x x÷-- =21(2)(2)(2)x x x x ÷+--=()()()2·222x x x x -+-=22xx +. 故选:B . 【点睛】本题主要考查了分式的除法,约分是解答的关键.21.C解析:C 【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断. 【详解】 A 、221b b a aba +=+,故A 错误; B 、22a b+,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab aab b b a b a b==---,故C 正确; D 、a aa b a b =--+-,故D 错误; 故选C . 【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.22.D解析:D 【详解】∵4+46=,∴选项A 不符合题意;∵4+40+40=6,∴选项B 不符合题意;∵,∴选项C 不符合题意;∵144-=1486≠,∴选项D 符合题意, 故选D . 23.D解析:D【分析】根据分式有意义分母不为零分别进行分析即可.【详解】A 、当0x =时,分式无意义,故此选项错误;B 、当1x =-时,分式无意义,故此选项错误;C 、当1x =时,分式无意义,故此选项错误;D 、当x 为任意实数时,分式都有意义,故此选项正确;故选:D .【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.24.B解析:B【分析】根据分式的性质,对每个选项的式子一一判断正误即可.【详解】22x y x y -+-=-,故A 选项错误; ()222()()()()x y x y x y x y x y x y x y x y --+-==++++,故B 选项正确; 1b a b a ab b++=,故C 选项错误;23319(3)(3)3x x x x x x --==-+-+,故D 选项错误. 故选:B .【点睛】本题主要考查分式的化简,熟记分式的性质是解题关键. 25.A解析:A【分析】根据根式和分母有意义进行判断即可.【详解】要使得该函数有意义分母不能为0且根号内不能为负x+>∴30x>-解得:3故选:A.【点睛】本题主要考查根式和分式的意义,熟练掌握判断有意义的条件是关键.。
新最新初中数学—分式的难题汇编附解析
一、选择题1.生物学家发现一种病毒的长度约为0.00 004mm ,0.00 004用科学记数法表示是( ) A .40.410-⨯ B .5410-⨯C .54010-⨯D .5410⨯2.下列分式:24a 5b c ,23c 4a b ,25b2ac中,最简公分母是 A .5abc B .2225a b cC .22220a b cD .22240a b c3.分式:22x 4- ,x 42x- 中,最简公分母是 A .()()2x 4?42x --B .()()x 2x ?2+C .()()22x 2x 2-+- D .()()2x 2?x 2+-4.计算: ()332xy ?-一 的结果是A .398x y --B .398x y ---C .391x y 2---D .361x y 2---5.在式子:2x、5x y + 、12a - 、1x π-、21x x +中,分式的个数是( ) A .2 B .3 C .4 D .5 6.下列各式从左到右的变形正确的是( )A .221188a a a a ---=-++ B .()()221a b a b -+=-C .22x y x y x y+=++ D .052520.11y yx x ++=-++7.下列各式中,正确的是( ). A .1122b a b a +=++B .22142a a a -=-- C .22111(1)a a a a +-=-- D .11b ba a---=- 8.下列等式成立的是( ) A .|﹣2|=2 B﹣1)0=0C .(﹣12)﹣1=2 D .﹣(﹣2)=﹣29.已知有理式:4x 、4a 、1x y -、34x 、12x 2、1a +4,其中分式有 ( )A .2个B .3个C .4个D .5个10.下列各式中的计算正确的是( )A .22b b a a=B .a ba b++=0 C .a c ab c b+=+ D .a ba b-+-=-111.下列变形正确的是( ).A .1x yx y-+=-- B .x m mx n n+=+ C .22x y x y x y +=++ D .632x x x= 12.下列判断错误..的是( ) A .当23x ≠时,分式132x x +-有意义 B .当a b 时,分式22aba b -有意义 C .当12x =-时,分式214x x+值为0D .当x y ≠时,分式22x yy x--有意义13.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( ) A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7 14.如果把分式232x x y+中的x 和y 都扩大为原来的5倍,那么分式的值( )A .扩大为原来的5倍B .扩大为原来的10倍C .不变D .缩小为原来的1515.2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA 纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”.中国科学家团队研发出的这种可编程、基于 DNA 折纸技术的纳米机器人大小只有90×60×2nm ,nm 是长度计量单位,1nm=0.000000001米,则2nm 用科学记数法表示为( )A .2×109米B .20×10-8米C .2×10-9米D .2×10-8米 16.已知分式32x x +-有意义,则x 的取值范围是( ) A .x ≠-3B .x≠0C .x≠2D .x=217.化简:32322012220122010201220122013-⨯-+-,结果是( )A .20102013B .20102012C .20122013D .2011201318.若0x y y z z xabc a b c---===<,则点P(ab ,bc)不可能在第( )象限 A .一B .二C .三D .四19.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .51.0510⨯ B .51.0510-⨯C .50.10510-⨯D .410.510-⨯20.已知12x y-=3,分式4322x xy y x xy y +-+-的值为( )A .32 B .0C .23D .9421.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( ) A .甲合算 B .乙合算C .甲、乙一样D .要看两次的价格情况22.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为( ) A .3.5×10﹣6米 B .3.5×10﹣5米 C .35×1013米 D .3.5×1013米 23.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<d B .b<a<d<cC .a<b<d<cD .b<a<c<d24.如果把分式2+mm n中的m 和n 都扩大2倍,那么分式的值 ( ) A .扩大4倍B .缩小2倍C .不变D .扩大2倍25.已知a <b ( )A B C .D .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】解:0.00 004=5410-⨯.故选B .2.C解析:C 【解析】根据最简公分母的定义:“通常取各分母的系数的最小公倍数与各分母中所有字母因数的最高次幂的积作为各分母的公分母,这个公分母叫做这几个分式的最简公分母”可知,分式:24a 5b c ,23c 4a b ,25b2ac 的最简公分母是:22220a b c . 故选C.3.D解析:D 【解析】∵2224(2)(2)x x x =-+-,422(2)x xx x =---, ∴分式22 442xx x --、的最简公分母是:2(2)(2)x x +-. 故选D.4.B解析:B 【解析】3333939(2)=(-2)8xy x y x y -------=-.故选B.5.B解析:B 【解析】 解:分式有2x 、12a -、21x x +共3个.故选B . 点睛:此题主要考查了分式的定义,正确把握分式的定义是解题关键.6.B解析:B 【解析】 解:A .原式=22(1)1(8)8a a a a -++=--- ,错误;B .原式=1,正确;C .原式为最简结果,错误;D .原式=520110yx+-+,错误.故选B .点睛:此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.7.C解析:C 【解析】解;A .分式的分子分母都乘或除以同一个不为零的整式,故A 错误; B .分子除以(a ﹣2),分母除以(a +2),故B 错误;C .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C 正确;D .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D 错误; 故选C .8.A解析:A 【解析】根据绝对值、零指数幂及负整数指数幂的运算法则,可得: A 、|﹣2|=2,计算正确,故本选项正确;B ﹣1)0=1,原式计算错误,故本选项错误;C 、(﹣12)﹣1=﹣2,原式计算错误,故本选项错误; D 、﹣(﹣2)=2,原式计算错误,故本选项错误; 故选:A .点睛:此题主要考查了绝对值、零指数幂及负整数指数幂的运算法则,灵活运用绝对值、零指数幂及负整数指数幂的运算法则进行计算是解决此类题目的关键.9.B解析:B 【解析】4a 、、34x 、12x 2的分母中均不含有字母,因此它们是整式,而不是分式. 4x、、1x y -、1a +4的分母中含有字母,因此是分式.所以B 选项是正确的.点睛:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.10.D解析:D 【解析】解:A . 22b b a a≠,故A 错误;B . a ba b++=1,故B 错误; C . a c ab c b+≠+,故C 错误; D .a ba b -+-=-1,正确. 故选D .11.A解析:A 【解析】 试题解析:()1x y x y x y x y-+--==---. 故选A.12.B解析:B【解析】A 、当分母3x-2≠0,即当x≠23时,分式x 13x 2+-有意义.故本选项正确; B 、当分母a 2-b 2≠0,即a≠±b 时,分式22aba b-有意义.故本选项错误; C 、当分子2x+1=0,即x =−12时,分式2x 14x+值为0.故本选项正确; D 、当分母y-x≠0,即x≠y 时,分式22x y y x--有意义.故本选项正确;故选:B .13.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.000 007 7=7.7×10-6, 故选C.14.A解析:A 【解析】 【分析】x ,y 都扩大为原来的5倍就是分别变成原来的5倍,变成5x 和5y .用5x 和5y 代替式子中的x 和y ,看得到的式子与原来的式子的关系. 【详解】用5x 和5y 代替式子中的x 和y 得:()2255,151032x x x y x y=++则扩大为原来的5倍. 故选:A. 【点睛】考查分式的基本性质,掌握分式的基本性质是解题的关键.15.C解析:C【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 详解:0.000000001×2=2×10﹣9. 故选C .点睛:本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.C解析:C 【解析】分析:根据分式有意义的条件:分母不等于0即可求解. 详解:根据题意得:x-2≠0, 解得:x≠2. 故选C..点睛:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.17.A解析:A 【分析】将所求式子的分子分母前两项提取20122,整理后分子提取2010,分母提取2013,约分后即可得到结果,选出答案. 【详解】原式=32322012220122010201220122013-⨯-+-=2220122012220102012201212013--⨯+-()()=22201220102010201220132013⨯-⨯-=22201020121201320121--()()=20102013,故答案选A. 【点睛】本题主要考查了因式分解的应用,是一道技巧性较强的题,熟练掌握因式分解的方法是解本题的关键.18.A解析:A 【解析】 【分析】根据有理数的乘法判断出a ,b ,c 中至少有一个是负数,另两个同号,然后求出三个数都是负数时x 、y 、z 的大小关系,得出矛盾,从而判断出a 、b 、c 不能同时是负数,确定出点P 不可能在第一象限. 【详解】 解:∵abc <0,∴a ,b ,c 中至少有一个是负数,另两个同号, 可知三个都是负数或两正数,一个是负数, 当三个都是负数时:若x yabc a-=, 则20x y a bc -=>,即x >y ,同理可得:y >z ,z >x 这三个式子不能同时成立,即a,b,c不能同时是负数,所以,P(ab,bc)不可能在第一象限.故选:A.【点睛】本题主要考查分式的基本性质和点的坐标的知识,熟悉点的坐标的基本知识是本题的解题关键,确定一个点所在象限,就是确定点的坐标的符号.19.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000105=1.05×10-5,故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.20.A解析:A【解析】【分析】先根据题意得出2x-y=-3xy,再代入原式进行计算即可.【详解】解:∵12x y-=3,∴2x-y=-3xy,∴原式=()()2232x y xyx y xy-+-+,=633xy xyxy xy-+-+,=32xyxy --,=32,故选A.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.B解析:B【解析】【分析】分别算出两次购粮的平均单价,用做差法比较即可.【详解】解:设第一次购粮时的单价是x元/千克,第二次购粮时的单价是y元/千克,甲两次购粮共花费:100x+100y,一共购买了粮食:100+100=200千克,甲购粮的平均单价是:1001002002x y x y++=;乙两次购粮共花费:100+100=200元,一共购买粮食:()100100100x yx y xy++=(千克),乙购粮的平均单价是:2xyx y+;甲乙购粮的平均单价的差是:()()()()22420 222x y xy x yx y xyx y x y x y>+--+-==+++,即22x y xyx y ++>,所以甲购粮的平均单价高于乙购粮的平均单价,乙的购粮方式更合算,故选B.【点睛】本题考查的知识点是做差法,解题关键是注意一个数的平方为非负数.22.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1米=109纳米,某种植物花粉的直径约为35000纳米,∴35000纳米=35000×10﹣9m=3.5×10﹣5m.故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.23.B解析:B【解析】 【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a 、b 、c 、d 的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可. 【详解】∵2221110.30.09,3,9,1933a b c d --⎛⎫⎛⎫=-=-=-=-=-==-= ⎪ ⎪⎝⎭⎝⎭, ∴10.09199-<-<<, ∴b <a <d <c . 故选:B . 【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a -p =1pa (a≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a≠0);②00≠1.24.C解析:C 【解析】 【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变,可得答案. 【详解】 分式2+m m n 中的m 和n 都扩大2倍,得4222m mm n m n=++,∴分式的值不变, 故选A . 【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变.25.D解析:D 【解析】因为a-ba a b-=-故选D.,0,0a aaa a≥⎧==⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.。
新最新初中数学—分式的难题汇编附答案(2)
一、选择题1.下列分式中,最简分式是( )A .x y y x--B .211x x +-C .2211x x -+D .2424x x -+2.下列判断错误..的是( ) A .当23x ≠时,分式132x x +-有意义 B .当a b 时,分式22aba b-有意义 C .当12x =-时,分式214x x+值为0D .当x y ≠时,分式22x yy x--有意义3.分式x 5x 6-+ 的值不存在,则x 的取值是 A .x ?6=-B .x 6=C .x 5≠D .x 5=4.下列式子中,错误的是 A .1a a 1a a --=- B .1a a 1a a ---=- C .1a 1aa a---=- D .1a 1aa a+---= 5.分式:22x 4- ,x42x- 中,最简公分母是 A .()()2x 4?42x --B .()()x 2x ?2+C .()()22x 2x 2-+- D .()()2x 2?x 2+-6.计算: ()332xy ?-一 的结果是A .398x y --B .398x y ---C .391x y 2---D .361x y 2---7.在式子:2x、5x y + 、12a - 、1x π-、21x x +中,分式的个数是( )A .2B .3C .4D .58.若a = (-0.4)2,b = -4-2,c =214-⎛⎫- ⎪⎝⎭,d =014⎛⎫- ⎪⎝⎭, 则 a 、b 、c 、d 的大小关系为( ) A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b9.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 10.下列各式从左到右的变形正确的是( ) A .221188a a a a ---=-++ B .()()221a b a b -+=-C .22x y x y x y+=++ D .052520.11y yx x ++=-++11.计算32-的结果是( ) A .-6B .-8C .18-D .1812.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 13.已知a <b( )ABC.D.14.下列关于分式的判断正确的是 ( ) A .无论x 为何值,231x +的值总为正数 B .无论x 为何值,31x +不可能是整数值 C .当x =2时,12x x +-的值为零 D .当x ≠3时3x x-,有意义 15.将分式()0,0xyx y x y≠≠-中的x .y 扩大为原来的3倍,则分式的值为:( ) A .不变;B .扩大为原来的3倍C .扩大为原来的9倍;D .减小为原来的1316.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( ) A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7 17.下面是一位同学所做的5道练习题: ①()325a a = ,②236a a a ⋅=,③22144m m -=, ④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道18.氢原子的半径约为0.000 000 000 05m ,用科学记数法表示为( )A .5×10﹣10m B .5×10﹣11m C .0.5×10﹣10m D .﹣5×10﹣11m 19.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( ) A .甲合算 B .乙合算C .甲、乙一样D .要看两次的价格情况20.下列运算正确的是( ) A .a ﹣3÷a ﹣5=a 2 B .(3a 2)3=9a 5 C .(x ﹣1)(1﹣x)=x 2﹣1D .(a+b)2=a 2+b 2 21.若(x -2016)x =1,则x 的值是( ) A .2017B .2015C .0D .2017或022.在12 ,2x y x - ,212x + ,m +13 ,-2x y - 中分式的个数有( ) A .2个B .3个C .4个D .5个23.如果2310a a ++=,那么代数式229263a a a a ⎛⎫++⋅ ⎪+⎝⎭的值为( ) A .1 B .1-C .2D .2-24.下列分式从左到右的变形正确的是( )A .2=2x xy yB .22=x x y yC .22=x x xx D .515(2)2xx25.下列变形正确的是( ).A .11a ab b +=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 试题分析:A 、x yy x--=-1,不是最简分式; B 、21111(1)(1)1x x x x x x ++==-+--,不是最简分式;C 、2211x x -+分子、分母不含公因式,是最简分式;D 、24(2)(2)2242(2)2x x x x x x -+--==++,不是最简分式. 故选C .点睛:本题考查最简分式,解题的关键是明确最简分式的定义,即分子、分母不含公因式的分式.2.B解析:B 【解析】A 、当分母3x-2≠0,即当x≠23时,分式x 13x 2+-有意义.故本选项正确; B 、当分母a 2-b 2≠0,即a≠±b 时,分式22aba b-有意义.故本选项错误; C 、当分子2x+1=0,即x =−12时,分式2x 14x+值为0.故本选项正确; D 、当分母y-x≠0,即x≠y 时,分式22x y y x--有意义.故本选项正确;故选:B .3.A解析:A 【解析】 ∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.4.B解析:B 【解析】 A 选项中,1(1)1a a a a a a----==--,所以A 正确; B 选项中,1(1)1a a a a a a -----=-=---,所以B 错误; C 选项中,11a aa a ---=-,所以C 正确; D 选项中,11a aa a+---=,所以D 正确.5.D解析:D 【解析】∵2224(2)(2)x x x =-+-,422(2)x xx x =---, ∴分式22 442xx x --、的最简公分母是:2(2)(2)x x +-. 故选D.6.B解析:B 【解析】3333939(2)=(-2)8xy x y x y -------=-.故选B.7.B解析:B 【解析】 解:分式有2x 、12a-、21x x +共3个.故选B .点睛:此题主要考查了分式的定义,正确把握分式的定义是解题关键.8.B解析:B 【解析】∵a=0.16;b=-214=-116;c =(211()4-)=16;d =1;故:b<a<d<c9.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误; B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误;10.B解析:B 【解析】 解:A .原式=22(1)1(8)8a a a a -++=--- ,错误;B .原式=1,正确;C .原式为最简结果,错误;D .原式=520110yx+-+,错误.故选B .点睛:此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.11.D解析:D 【解析】3311228-==. 故选D. 12.D解析:D 【解析】A 选项:当x =2时,该分式的分母x -2=0,该分式无意义,故A 选项错误.B 选项:当x =0时,该分式的分母为零,该分式无意义. 显然,x =0满足x ≠3. 由此可见,当x ≠3时,该分式不一定有意义. 故B 选项错误.C 选项:当x =0时,该分式的值为3,即当x =0时该分式的值为整数,故C 选项错误.D 选项:无论x 为何值,该分式的分母x 2+1>0;该分式的分子3>0. 由此可知,无论x 为何值,该分式的值总为正数. 故D 选项正确. 故本题应选D. 点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x 的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.13.D解析:D 【解析】因为a-ba a b-=-故选D.,0,0a aaa a≥⎧==⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.14.A解析:A【解析】【分析】根据分式有意义的条件、分式值为0的条件、分式值是正负等逐一进行分析即可得.【详解】A、分母中x2+1≥1,因而23x1+的值总为正数,故A选项正确;B、当x+1=1或-1时,3x1+的值是整数,故B选项错误;C、当x=2时,分母x-2=0,分式无意义,故C选项错误;D、当x=0时,分母x=0,分式无意义,故D选项错误,故选A.【点睛】本题考查了分式的值为零的条件,分式的定义,分式有意义的条件,注意分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.15.B解析:B【解析】解:把分式xyx y+中的x、y扩大为原来的3倍后为3333x yx y⋅+=3xyx y+,即将分式00xyx yx y≠≠-(,)中的x、y扩大为原来的3倍后分式的值为原来的分式的值的3倍.故选B.16.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.000 007 7=7.7×10-6,故选C.17.A解析:A【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a =() ,故①错误;②235a a a ⋅=,故②错误; ③2244mm -=,故③错误; ④523a a a -÷-=-()(),故④正确; ⑤33327a a -=-().故⑤错误.故选A .点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.18.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.00000000005=5×10﹣11. 故选B . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.B解析:B 【解析】 【分析】分别算出两次购粮的平均单价,用做差法比较即可. 【详解】解:设第一次购粮时的单价是x 元/千克,第二次购粮时的单价是y 元/千克,甲两次购粮共花费:100x+100y ,一共购买了粮食:100+100=200千克,甲购粮的平均单价是:1001002002x y x y++=;乙两次购粮共花费:100+100=200元,一共购买粮食:()100100100x y x y xy++=(千克),乙购粮的平均单价是:2xyx y+;甲乙购粮的平均单价的差是:()()()()22420 222x y xy x yx y xyx y x y x y>+--+-==+++,即22x y xyx y ++>,所以甲购粮的平均单价高于乙购粮的平均单价,乙的购粮方式更合算,故选B.【点睛】本题考查的知识点是做差法,解题关键是注意一个数的平方为非负数.20.A解析:A【解析】【分析】直接利用同底数幂的除法运算法则、积的乘方运算法则、完全平方公式分别化简得出答案.【详解】A.a﹣3÷a﹣5=a2,故此选项正确;B.(3a2)3=27a6,故此选项错误;C.(x﹣1)(1﹣x)=﹣x2+2x﹣1,故此选项错误;D.(a+b)2=a2+2ab+b2,故此选项错误.故选A.【点睛】本题考查了同底数幂的除法运算法则、积的乘方运算法则、完全平方公式等知识,正确掌握相关运算法则是解题的关键.21.D解析:D【解析】【分析】根据零指数幂:a0=1(a≠0)和1的任何次幂都是1可得x=0或x-2016=1,再解即可.【详解】由题意得:x=0或x-2016=1,解得:x=0或2017.故选:D.【点睛】此题主要考查了零次幂和乘方,关键是掌握零指数幂:a0=1(a≠0).22.A解析:A【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,找到分母中含有字母的式子的个数即可. 【详解】 解:式子2x yx- ,-2x y -中都含有字母是分式.故选:A . 【点睛】本题考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.23.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅ ⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.D解析:D 【分析】根据分式的基本性质逐项判断. 【详解】解:A 、当y=-2时,该等式不成立,故本选项错误; B 、当x=-1,y=1时,该等式不成立,故本选项错误;C.22=x x x x --+-,故本选项错误; D 、正确. 故选D.【点睛】本题考查分式的基本性质,属于基础题型,分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.25.B解析:B【解析】A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a a b b --=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误; D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.。
新最新初中数学—分式的易错题汇编附答案解析(2)
一、选择题1.把分式2nm n+中的m 与n 都扩大3倍,那么这个代数式的值A .不变B .扩大3倍C .扩大6倍D .缩小到原来的132.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( ) A . B . C . D .3.分式的值为0,则x 的值为A .4B .-4C .D .任意实数4.下列各式、、、+1、中分式有( )A .2个B .3个C .4个D .5个 5.已知:分式的值为零,分式无意义,则的值是( ) A .-5或-2 B .-1或-4C .1或4D .5或26.若分式12+-x x 的值为0,则x 的值为( ) A .2或-1 B .0 C .-1 D . 2 7.用科学记数方法表示0.0000907,得( ) A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯8.下列各式从左到右的变形正确的是 ( )A .220.220.33a a a a a a--=-- B .11x x x y x y+--=-- C .116321623a a a a --=++D .22b a a b a b-=-+9.若分式211x x -+的值为零,则x 的值为( ) A .0B .1C .1-D .±110.使代数式726xx --有意义的x 的取值范围是( ) A .x≠3B .x <7且x≠3C .x≤7且x≠2D .x≤7且x≠311.下列各式变形正确的是( ) A .B .C .D .12.如图,设k=甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有 ( )甲 乙甲(A )k >2 (B )1<k <2 (C )121<<k (D )210<<k 13.PM 2.5是指大气中直径小于或等于2.5μm (1μm =0.000001m )的颗粒物,也称为可入肺颗粒物,它们还有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm 用科学记数法可表示为( ) A .23×10﹣5mB .2.3×10﹣5mC .2.3×10﹣6mD .0.23×10﹣7m14.若a >-1,则下列各式中错误..的是( ) A .6a >-6 B .2a >-12C .a +1>0D .-5a <-515.分式中,最简分式个数为( )个. A .1 B .2 C .3D .416.已知空气的单位体积质量是0.001239g /cm 3,则用科学记数法表示该数为( )g /cm 3. A .1.239×10﹣3B .1.2×10﹣3C .1.239×10﹣2D .1.239×10﹣417.已知0≠-b a ,且032=-b a ,则ba ba -+2的值是( ) A .12- B . 0 C .8 D .128或 18.已知实数a ,b ,c均不为零,且满足a +b +c=0,则222222222111b c a c a b a b c+++-+-+-的值是( ) A .为正 B .为负 C .为0 D .与a ,b ,c 的取值有关 19.(2015秋•郴州校级期中)当x=3,y=2时,代数式乙甲的值是()A.﹣8 B.8 C. D.20.(2015秋•郴州校级期中)下列计算正确的是()A.B.•C.x÷y•D.21.在,,中,是分式的有()A.0个 B.1个 C.2个 D.3个22.下列分式中是最简分式的是()A.B.C.D.23.下列运算错误的是A.B.C.D.24.下列4个分式:①;②;③;④中最简分式有()A.1个 B.2个 C.3个 D.4个25.分式(a,b均为正数),字母的值都扩大为原来的2倍,则分式的值()A.扩大为原来2倍B.缩小为原来倍C.不变D.缩小为原来的【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】 试题解析:分式2nm n+中的m 与n 都扩大3倍,得 6233n nm n m n =++,故选A .2.A解析:A 【解析】试题分析:原有的同学每人分担的车费应该为元,而实际每人分担的车费为元,方程应该表示为:.故选A .考点:由实际问题抽象出分式方程.3.A解析:A 【解析】试题分析:根据分式的值为零的条件可以求出x 的值. 试题解析:若分式的值为0,则|x|-4=0且x+4≠0.得x 1=4,x 2=-4.当x=-4时,分母为0,不合题意,舍去. 故x 的值为4. 故选A .考点:分式的值为零的条件.4.A解析:A 【解析】试题分析:根据分式的定义进行解答即可. 试题解析:这一组数数中,与是分式,共2个.故选A.考点:分式的定义.5.A【分析】当分式的分子为零,且分母不为零时,则分式的值为零;当分式的分母为零时,则分式无意义. 【详解】 根据题意可得:,=0,解得:x=-3,y=1或-2,则x+y=-2或-5.【点睛】考核知识点:分式的性质.6.D解析:D 【解析】试题分析:当分式的分子为零,分母不为零时,则分式的值为零,根据题意可得:x-2=0,解得:x=2. 考点:分式的意义7.B解析:B 【详解】解:根据科学记数法的表示—较小的数为10n a ⨯,可知a=9.07,n=-5,即可求解. 故选B 【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.8.C解析:C 【详解】 解:A. 220.21020.3103a a a a a a --=--,故原选项错误;B. 11x xx y x y+--=--,故原选项错误; C.116321623aa a a --=++,故此选项正确; D.22b a b a a b-=-+,故原选项错误,故选C .解析:B 【解析】由题意得:101x x -=⇒= ,故选B.10.D解析:D 【解析】试题解析:∵代数式7x-有意义, ∴7-x≥0,且2x-6≠0, 解得:x≤7且x≠3, 故选D .11.D解析:D 【解析】 试题分析:因为x y x y x y x y -+-=--+,所以A 错误;因为2a bc d-+不能再化简,所以B 错误;因为0.20.032030.40.05405a b a b c d c d--=++,所以C 错误;因为,所以D 正确;故选:D.考点:分式的性质.12.C解析:C 【解析】试题分析:甲图中阴影部分的面积=22a b -,乙图中阴影部分的面积= ()a a b -,22()1a a b a b k a b a b a b -===--++,∵a >b >0∴0<b a b +<12,∴ 121<<k .考点:分式的约分. 13.C解析:C 【详解】解:2.3μm=2.3×0.000001m=2.3×10﹣6m , 故选C . 【点睛】本题考查科学记数法—表示较小的数.14.D解析:D 【解析】根据不等式的基本性质可知, A. 6a >−6,正确; B.2a>12- , 正确; C. a +1>0,正确;D. 根据性质3可知,a >−1两边同乘以−5时,不等式为−5a <5,故D 错误; 故选D.15.C解析:C 【解析】根据最简分式的定义——分子和分母没有公因式的分式.易得共3个是最简分式:,,故选C.16.A解析:A 【解析】根据绝对值小于1的正数也可以利用科学记数法表示方法(一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定)可得:0.001239 =1.239×0.001=1.239×10﹣3,故选A .17.C解析:C 【解析】试题分析:因为032=-b a ,所以3a=b 2,所以234=83122a b b b ba b b b b ++==--,故选:C .考点:分式的化简求值.18.C解析:C . 【解析】试题解析:∵a +b +c=0,∴a=-(b +c ),∴a 2=(b +c )2,同理b 2=(a +c )2,c 2=(a +b )2.∴原式=11111()022a b cbc ac ab abc++-++=-⨯=, 故选C .考点:分式的运算.19.C解析:C 【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x=3,y=2代入进行计算即可.解:原式=•=﹣,当x=3,y=2时,原式=﹣=﹣.故选C.考点:分式的化简求值.20.B解析:B【解析】试题分析:原式各项计算得到结果,即可做出判断.解:A、原式=•=,错误;B、原式=,正确;C、原式=,错误;D、原式==,错误,故选B.考点:分式的乘除法.21.C解析:C【解析】解:的分母中不含有字母,因此它们是整式,而不是分式.,的中分母中含有字母,因此是分式.故选:C.22.A解析:A【解析】选项A,的分子、分母都不能再分解,且不能约分,是最简分式;选项B,原式=2x;选项C,原式=11x;选项D,原式=-1.故选A.23.D解析:D【解析】根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案.解:A、==1,故本选项正确;B、==﹣1,故本选项正确;C、,故本选项正确;D、,故本选项错误;故选D.24.B解析:B【解析】①是最简分式;②,不是最简分式;③=,不是最简分式;④是最简分式;最简分式有①④,共2个;故选:B.25.B解析:B【解析】试题分析:当a和b都扩大2倍时,原式=,即分式的值缩小为原来的.考点:分式的值。
新初中数学分式单元汇编含答案解析(2)
新初中数学分式单元汇编含答案解析(2)一、选择题1.12×10−3=0.00612,故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.乐乐所在的四人小组做了下列运算,其中正确的是( )A .2193-⎛⎫-=- ⎪⎝⎭B .()23624a a -=C .623a a a ÷=D .236236a a a ? 【答案】B【解析】【分析】 根据负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则依次判断.【详解】A 、2913-⎛⎫- ⎪⎭=⎝,故错误; B 、()23624a a -=正确;C 、624a a a ÷=,故错误;D 、235236a a a =⋅,故选:B.【点睛】此题考查整式的计算,正确掌握负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则是解题的关键.3.在等式[]209()a a a ⋅-⋅=中,“[]”内的代数式为( )A .6aB .()7a -C .6a -D .7a【答案】D【解析】【分析】 首先利用零指数幂性质将原式化简为[]29a a ⋅=,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案.【详解】()01a -=Q ,则原式化简为:[]29a a ⋅=,∴[]927a a -==,故选:D .【点睛】本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键.4.若x 满足2220x x --=,则分式231211x x x ⎛⎫--÷ ⎪--⎝⎭的值是( ) A .1B .12C .1-D .32- 【答案】A【解析】【分析】 首先将式子231211x x x ⎛⎫--÷ ⎪--⎝⎭按照分式的运算法则进一步化简,然后通过2220x x --=得出222x x -=,最后将其代入之前化简所得的式子中进一步计算即可.【详解】 由题意得:2223132212211111x x x x x x x x x ⎛⎫---+--÷=⋅=-- ⎪---⎝⎭, 又∵2220x x --=,∴222x x -=,∴原式211=-=,故选:A .【点睛】本题主要考查了分式的化简求值,熟练掌握相关运算法则是解题关键.5.化简21644m m m+--的结果是( ) A .4m -B .4m +C .44m m +-D .44m m -+ 【答案】B【解析】【分析】根据分式的加减运算法则计算,再化简为最简分式即可.【详解】 21644m m m+--=2164m m -- =(4)(4)4m m m +-- =m+4.故选B.【点睛】 本题考查分式的加减.同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.熟练掌握运算法则是解题关键.6.若a =-0.22,b =-2-2,c =(-12)-2,d =(-12)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d 【答案】B【解析】【分析】根据正整数指数幂、负整数指数幂以及零次幂的意义分别计算出a ,b ,c ,d 的值,再比较大小即可.【详解】∵a =-0.22=-0.04,b =-2-2=14-,c =(-12)-2=4,d =(-12)0=1, -0.25<-0.04<1<4∴b <a <d <c故选B.【点睛】此题主要考查了负整数指数幂,正整数指数幂、零次幂,熟练掌握它们的运算意义是解题的关键.7.要使分式81x -有意义,x 应满足的条件是( ) A .1x ≠-B .0x ≠C .1x ≠D .2x ≠ 【答案】C【解析】【分析】直接利用分式有意义的条件得出答案.【详解】 要使分式81x -有意义, 则x-1≠0,解得:x≠1.故选:C .【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.8.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-7【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,这里1<a <10,指数n 是由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 0.00000432=4.32×10-6,故选B .【点睛】本题考查科学记数法.9.当式子2||323x x x ---的值为零时,x 等于( ) A .4B .﹣3C .﹣1或3D .3或﹣3【答案】B【解析】【分析】根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.【详解】 解:根据题意得,30x -=,解得3x =或3-.又2230x x --≠解得121,3x x ≠-≠,所以,3x =-.故选:B.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10.如果30x y -= ,那么代数式()2223x y x x y y ⎛⎫+-÷- ⎪⎝⎭的值为( ) A .23 B .2 C .-2 D .32【答案】A【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x =3y 代入化简可得.【详解】 解:()2223x y x x y y ⎛⎫+-÷- ⎪⎝⎭=()22213xy x y y x y -+-g =()2()13x y y x y --g =3x y y- ∵30x y -=,∴x=3y , ∴32333x y y y y y --==, 故选:A .【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.11.计算2111x x x x -+-+的结果为( ) A .-1B .1C .11x +D .11x - 【答案】B【解析】【分析】先通分再计算加法,最后化简.【详解】2111x x x x -+-+ =221(1)11x x x x x --+--=2211x x -- =1,故选:B.【点睛】此题考查分式的加法运算,正确掌握分式的通分,加法法则是解题的关键.12.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .612000【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】13.化简(a ﹣1)÷(1a ﹣1)•a 的结果是( ) A .﹣a 2B .1C .a 2D .﹣1 【答案】A【解析】分析:根据分式的混合运算顺序和运算法则计算可得.详解:原式=(a ﹣1)÷1a a -•a =(a ﹣1)•()1a a --•a =﹣a 2,故选:A .点睛:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.14.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.15.某种病毒变异后的直径为0.000000102米,将这个数写成科学记数法是( ) A .61.0210-⨯B .60.10210-⨯C .71.0210-⨯D .810210-⨯【答案】C【解析】【分析】用科学记数法表示比较小的数时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0.【详解】解:0.000000102=71.0210-⨯.故选:C .【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.计算11-+x x x 的结果是( ) A .2x x + B .2x C .12 D .1【答案】D【解析】原式=11x x-+=x x =1, 故选D . 【点睛】本题考查了同分母分式的加减法,熟记法则是解题的关键.17.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣1【答案】B【解析】【详解】18.下列各式:①2193-⎛⎫= ⎪⎝⎭;②031-=;③()232639-=-ab a b ;④()2221243x y xy x y -÷=-; ⑤()2018201920182232--=⨯;其中运算正确的个数有( )个. A .1B .2C .3D .4 【答案】B【解析】【分析】分别利用负整数指数幂、零指数幂、积的乘方、同底数幂的除法等对各式进行运算,即可做出判断.【详解】解:①22111913193-⎛⎫=== ⎪⎝⎭⎛⎫ ⎪⎝⎭,故①正确; ②031-=-,故②错误;③()232232263(3)()9-=-=ab a b a b ,故③错误; ④()21243-÷=-x y xy x ,故④错误;⑤()2018201920182019201820182018222222232--=+=+⨯=⨯,故⑤正确;∴运算正确的个数有2个,故选:B .【点睛】本题主要考查了负整数指数幂、零指数幂、积的乘方和同底数幂的除法,熟练掌握相关的运算法则是解题的关键.19.下列各式中,正确的是( )A .1a b b ab b++= B .()222x y x y x y x y --=++ C .23193x x x -=--D .22x y x y -++=- 【答案】B【解析】【分析】 根据分式的基本性质分别进行化简即可.【详解】解:A 、1b a+ab =b ab+ ,错误; B 、222x y x y =x y (x y )--++ ,正确; C 、2x 31=x 3x 9-+- ,错误; D 、x y x y =22-+-- ,错误. 故选:B .【点睛】本题主要考察了分式的基本性质,分式运算时要同时乘除和熟练应用约分是解题的关键.20.若分式12x x +-在实数范围内有意义,则x 的取值范围是( ) A .2x >B .2x <C .1x ≠-D .2x ≠【答案】D【解析】【分析】根据分式有意义的条件即可求出答案.【详解】由题意可知:x-2≠0,x≠2,故选:D .【点睛】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.。
新初中数学分式难题汇编含答案(2)
新初中数学分式难题汇编含答案(2)一、选择题1.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.2.若2250(0)a ab b ab ++=≠,则b a a b +=( ) A .5B .-5C .5±D .2± 【答案】B【解析】【分析】根据题意,先得到225a b ab +=-,代入计算即可.【详解】解:∵2250(0)a ab b ab ++=≠,∴225a b ab +=-, ∴2255b a a b ab a b ab ab+-+===-; 故选:B.【点睛】本题考查了分式的化简求值,解题的关键是正确得到225a b ab +=-.3.化简21644m m m+--的结果是( )A .4m -B .4m +C .44m m +-D .44m m -+ 【答案】B【解析】【分析】 根据分式的加减运算法则计算,再化简为最简分式即可.【详解】21644m m m+-- =2164m m -- =(4)(4)4m m m +-- =m+4.故选B.【点睛】 本题考查分式的加减.同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.熟练掌握运算法则是解题关键.4.人的头发直径约为0.00007m ,这个数据用科学记数法表示( )A .0.7×10﹣4B .7×10﹣5C .0.7×104D .7×105【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m ,这个数据用科学记数法表示7×10﹣5.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.计算的结果是( ) A .a-bB .a+bC .a 2-b 2D .1【答案】B【解析】【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【详解】 =.故选:B.【点睛】考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.把0.0813写成a ×10n (1≤a <10,n 为整数)的形式,则a 为( )A .1B .﹣2C .0.813D .8.13【答案】D【解析】把0.0813写成a ×10n (1≤a <10,n 为整数)的形式,则a 为8.13,故选D .7.0000005=5×10-7故答案为:B.【点睛】本题考查的知识点是科学计数法,解题的关键是熟练的掌握科学计数法.8.下列运算中正确的是( )A .62652()a a a a a== B .624282()()a a a a == C .62121022()a a a a a== D .6212622()a a a a a == 【答案】C【解析】【分析】根据幂的乘方法则、分式的基本性质及同底数幂除法法则计算即可得答案.【详解】 6212122102222()a a a a a a a a a÷===÷, 故选:C .【点睛】本题考查幂的乘方及分式的基本性质,幂的乘方,底数不变,指数相乘;分式的分子、分母同时乘以(或除以)一个不为0的整式,分式的值不变;同底数幂相除,底数不变,指数相减;熟练掌握分式的基本性质是解题关键.9.下列计算正确的是( ).A 2=-B .2(3)9--=C .0( 3.14)0x -=D .2019(1)|4|5---=- 【答案】D【解析】【分析】直接利用二次根式的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案.【详解】A 2=,故此选项错误;B 、(-3)-2=19,故此选项错误; C 、(x-3.14)0=1,故此选项错误;D 、(-1)2019-|-4|=-5,正确.故选:D .【点睛】此题考查二次根式的性质以及负指数幂的性质、零指数幂的性质,正确化简各数是解题关键.10.生物学家发现某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法可表示为( )A .63.610-⨯B .50.3610-⨯C .73610-⨯D .60.3610-⨯【答案】A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】11.已知23x y =,那么下列式子中一定成立的是 ( ) A .5x y +=B .23x y =C .32x y =D .23x y = 【答案】D【解析】【分析】 根据比例的性质对各个选项进行判断即可.【详解】A. ∵23x y =,∴3x =2y ,∴ 5x y += 不成立,故A 不正确; B. ∵23x y =,∴3x =2y ,∴ 23x y =不成立,故B 不正确; C. ∵23x y =,∴23x y =y ,∴ 32x y =不成立,故C 不正确; D. ∵23x y =,∴23x y =,∴ 23x y =成立,故D 正确; 故选D.【点睛】本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键. 更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a ,b ,c ,d ,且有b ≠0,d ≠0,如果a c b d=,则有a b c d =.12.若代数式1y x =-有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】 根据题意得:010x x ≥⎧⎨-≠⎩ , 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.13.式子()()()()()()a b b c c a b c c a a b c a a b b c ---++------的值不可能等于( ) A .﹣2B .﹣1C .0D .1【答案】C【解析】根据分式的加减运算,对式子进行化简,然后根据分式有意义,即可得出答案.【详解】 解:()()()()()()-------a b b c c a ++b c c-a a-b b c a b b c=()()()()()()+-+----222a-b b c c a a b b c c a ,分式的值不能为0,因为只有a =b =c 时,分母才为0,此时分式没意义,故选:C .【点睛】本题主要考察了分式的加减运算以及分式有意义的定义,解题的关键是分式的加减运算要正确进行通分,以及注意分式的分母不能为零.14.化简(1)b b a a a ⎛⎫-÷ ⎪-⎝⎭的结果是() A .-a-1B .–a+1C .-ab+1D .-ab+b 【答案】B【解析】【分析】将除法转换为乘法,然后约分即可.【详解】解:(1)(1)1(1)b b b a a a a a a a a b -⎛⎫⎛⎫-÷=-⨯=--=- ⎪ ⎪-⎝⎭⎝⎭, 故选B.【点睛】本题考查分式的化简,熟练掌握分式的运算法则是解题关键.15.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁【答案】D【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断. 【详解】∵22211x x x x x-÷-- =2221·1x x x x x--- =()2212·1x x x x x---- =()()221·1x x x x x ---- =()2x x -- =2x x -, ∴出现错误是在乙和丁,故选D .【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.16.化简2x xy y x y x---=( ) A .﹣xB .y ﹣xC .x ﹣yD .﹣x ﹣y【答案】A【解析】【分析】根据分式的运算法则即可求出答案.【详解】 原式=()2x x y x xy x y x y x--==---, 故选A .【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】 本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.18.00519=5.19×10-3.故选B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1||10a ≤<,n 由原数左边起第一个不为零的数字前面的0的个数所决定.19.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣ 【答案】D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.20.下列各式从左到右变形正确的是()A.13(1)223x yx y++=++B.0.20.03230.40.0545a b a dc d c d--=++C.a b b ab c c b--=--D.22a b a bc d c d--=++【答案】C【解析】【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【详解】A、该式子不是方程,不能去分母,故A错误;B、分式中的分子、分母的各项没有同时扩大相同的倍数,故B错误;C、a-b b-a=d-c c-d故C正确;D、分式中的分子、分母的各项没有同时除以2,故D错误.故选C.【点睛】本题考查了分式的基本性质,解题的关键是熟练运用性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.若代数式34a +在实数范围内有意义,则a 的取值范围是( )A .4a ≠-B .4a ≥-C .4a >-D .4a >-且0a ≠2.分式x 5x 6-+ 的值不存在,则x 的取值是 A .x ?6=-B .x 6=C .x 5≠D .x 5=3.下列式子中,错误的是 A .1a a 1a a --=- B .1a a 1a a ---=- C .1a 1aa a---=- D .1a 1aa a+---= 4.如果分式242x x --的值等于0,那么( )A .2x =±B .2x =C .2x =-D .2x ≠5.下列变形正确的是( ).A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 6.如果112111S t t =+,212111S t t =-,则12S S =( ) A .1221t t t t +- B .2121t t t t -+ C .1221t t t t -+ D .1212t t t t +- 7.已知有理式:4x 、4a 、1x y -、34x 、12x 2、1a +4,其中分式有 ( )A .2个B .3个C .4个D .5个8.分式a x ,22x y x y +-,2121a a a --+,+-x y x y中,最简分式有( ). A .1个B .2个C .3个D .4个9.已知a <b ,化简222a a ab b a b a-+-的结果是( )A .aB .a -C .a --D .a -10.下列选项中,使根式有意义的a 的取值范围为a <1的是( ) A .a 1-B .1a -C .()21a - D .11a- 11.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <c B .a <c <bC .b <a <cD .c <b <a12.计算22193x x x+--的结果是( ) A .13x - B .13x + C .13x- D .2339x x +- 13.下面是一位同学所做的5道练习题: ①()325a a = ,②236a a a ⋅=,③22144m m -=, ④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道14.下列关于分式的判断正确的是 ( ) A .无论x 为何值,231x +的值总为正数 B .无论x 为何值,31x +不可能是整数值 C .当x =2时,12x x +-的值为零 D .当x ≠3时3x x-,有意义 15.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( ) A .0.65×10﹣5 B .65×10﹣7 C .6.5×10﹣6 D .6.5×10﹣5 16.氢原子的半径约为0.000 000 000 05m ,用科学记数法表示为( ) A .5×10﹣10m B .5×10﹣11m C .0.5×10﹣10m D .﹣5×10﹣11m 17.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( ) A .甲合算 B .乙合算C .甲、乙一样D .要看两次的价格情况18.已知m ﹣1m ,则1m+m 的值为( )A .B C .D .1119.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d20.在12 ,2x y x - ,212x + ,m +13 ,-2x y - 中分式的个数有( ) A .2个 B .3个C .4个D .5个21.如果把分式2+mm n中的m 和n 都扩大2倍,那么分式的值 ( ) A .扩大4倍B .缩小2倍C .不变D .扩大2倍22.如果2310a a ++=,那么代数式229263a aa a ⎛⎫++⋅ ⎪+⎝⎭的值为( ) A .1B .1-C .2D .2-23.3--2的倒数是( )A .-9B .9C .19D .-1924.如果a =(﹣99)0,b =(-3)﹣1,c =(﹣2)﹣2,那么a ,b ,c 三数的大小为( ) A .a >b >c B .c >a >b C .c <b <a D .a >c >b25.若 ()1311xx --=,则 x 的取值有 ()A .0 个B .1 个C .2 个D .3 个【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:根据二次根式与分式有意义的条件和分式有意义的条件即可求出a 的范围. 详解:由题意可知:a+4>0 ∴a >-4 故选C .点睛:解题的关键是正确理解二次根式有意义的条件和分式有意义的条件,本题属于基础题型.2.A解析:A 【解析】 ∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.3.B解析:B 【解析】A 选项中,1(1)1a a a a a a ----==--,所以A 正确; B 选项中,1(1)1a a a a a a-----=-=---,所以B 错误; C 选项中,11a aa a ---=-,所以C 正确; D 选项中,11a aa a+---=,所以D 正确. 故选B.4.C解析:C 【解析】根据题意得:24020x x ⎧-=⎨-≠⎩,解得:x=−2. 故选C. 5.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.6.B解析:B 【解析】∵112111S t t =+,212111S t t =-, ∴S 1=1212t t t t +,S 2=1221t t t t -,∴12112211221221t t s t t t t t t s t t t t +-==+-, 故选B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.7.B解析:B 【解析】4a 、、34x 、12x 2的分母中均不含有字母,因此它们是整式,而不是分式. 4x、、1x y -、1a +4的分母中含有字母,因此是分式.所以B 选项是正确的.点睛:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.8.B解析:B 【解析】试题解析:a x ,+-x yx y是最简分式,221()()x y x y x y x y x y x y ++==-+--,2211121(1)1a a a a a a --==-+--.故选B.9.D解析:D 【解析】因为a-ba a b-=-故选D. ,0,0a a a a a ≥⎧==⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.10.D解析:D 【解析】解:A .当a ≥1时,根式有意义.B .当a ≤1时,根式有意义.C .a 取任何值根式都有意义.D .要使根式有意义,则a ≤1,且分母不为零,故a <1. 故选D .点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.11.C解析:C 【解析】 【详解】解:a =20170=1,b =2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c =(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b <a <c .故选C . 点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.12.B解析:B 【解析】原式=()()2x x 3x 3+-−1 x 3-=()()()2x x 3x 3x 3-++-=()()x 3x 3x 3-+-=1x 3+.故选:B.13.A解析:A 【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a =() ,故①错误;②235a a a ⋅=,故②错误; ③2244mm -=,故③错误; ④523a a a -÷-=-()(),故④正确; ⑤33327a a -=-().故⑤错误.故选A .点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.14.A解析:A【解析】 【分析】根据分式有意义的条件、分式值为0的条件、分式值是正负等逐一进行分析即可得. 【详解】A 、分母中x 2+1≥1,因而23x 1+的值总为正数,故A 选项正确; B 、当x+1=1或-1时,3x 1+的值是整数,故B 选项错误; C 、当x=2时,分母x-2=0,分式无意义,故C 选项错误; D 、当x=0时,分母x=0,分式无意义,故D 选项错误, 故选A . 【点睛】本题考查了分式的值为零的条件,分式的定义,分式有意义的条件,注意分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.15.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.0000065的小数点向右移动6位得到6.5, 所以数字0.0000065用科学记数法表示为6.5×10﹣6, 故选C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.00000000005=5×10﹣11. 故选B . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.B解析:B 【解析】 【分析】分别算出两次购粮的平均单价,用做差法比较即可. 【详解】解:设第一次购粮时的单价是x 元/千克,第二次购粮时的单价是y 元/千克,甲两次购粮共花费:100x+100y ,一共购买了粮食:100+100=200千克,甲购粮的平均单价是:1001002002x y x y++=;乙两次购粮共花费:100+100=200元,一共购买粮食:()100100100x y x y xy++=(千克),乙购粮的平均单价是:2xyx y+; 甲乙购粮的平均单价的差是:()()()()22420222x y xy x y x y xy x y x y x y >+--+-==+++, 即22x y xyx y++>, 所以甲购粮的平均单价高于乙购粮的平均单价,乙的购粮方式更合算,故选B . 【点睛】本题考查的知识点是做差法,解题关键是注意一个数的平方为非负数.18.A解析:A 【分析】根据完全平方公式即可得到结果. 【详解】1m-=m21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m∴=.故选A.【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.19.B解析:B【解析】【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a、b、c、d的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可.【详解】∵20 221110.30.09,3,9,1933a b c d--⎛⎫⎛⎫=-=-=-=-=-==-=⎪ ⎪⎝⎭⎝⎭,∴10.0919 9-<-<<,∴b<a<d<c.故选:B.【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a-p=1pa(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.20.A解析:A【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,找到分母中含有字母的式子的个数即可.【详解】解:式子2x yx-,-2x y-中都含有字母是分式.故选:A.【点睛】本题考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.21.C解析:C【解析】 【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变,可得答案. 【详解】分式2+m m n 中的m 和n 都扩大2倍,得4222m mm n m n =++,∴分式的值不变, 故选A . 【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变.22.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.23.A解析:A 【解析】 【分析】 首先计算3--2=-19,再根据倒数的定义求解即可.【详解】∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9,故选A.【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.24.D解析:D【解析】【分析】根据0指数幂、负整数指数幂的运算法则分别求出a 、b 、c 的值即可求得答案.【详解】a =(﹣99)0=1,b =(-3)﹣1=13-,c =(﹣2)﹣2=()21142=-, 11143>>-, 所以a >c >b ,故选D.【点睛】 本题考查了实数大小的比较,涉及了0指数幂、负整数指数幂,求出a 、b 、c 的值是解题的关键.25.C解析:C【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案.【详解】解:∵(1-x )1-3x =1,∴当1-3x=0时,原式=1,当x=0时,原式=1,故x 的取值有2个.故选C .【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.。