八年级数学算术平方根2

合集下载

北师大版八年级数学2.2平方根(2)教案

北师大版八年级数学2.2平方根(2)教案

优秀教育教学资源
附件2:
微课教学设计模板
优秀教育教学资源
优秀教育教学资源 2)2(22-=-)( 〔 〕
2)2(32-=-)( 〔 〕
2)2(42-=--)( 〔 〕
设计:通过本环节的设置,加深学生对结论1、结论2的理解、记忆和稳固.
第六环节 课堂小结
平方根的概念与性质;
平方根与算术平方根的区别与联系
第七环节课堂练习
1. 4的平方根是〔 〕
A. ±2
B. 2
C. -2 D . 16
2.以下表达正确的是〔 〕
A.任何数都有两个平方根
B.只有正数才有平方根
C.一个正数的平方根的平方就是这个正数
D.不是正数的数都没有平方根
2
16 D. 的平方根 93 B. 4-2 C. 1的平方根是 1 A. )
是(3.±±的平方根是是的平方根是下列说法正确的.
4.一个数的算术平方根是它本身,则这个数是〔 〕
A . 0
B . 1
C . 0或1
D . 0或±1
5. 以下各式中,正确的是〔 〕
A.
33-2±=)( C.332-=- B. 332±=±)( D.
332±=
6.一个正数M 的平方根为 2a +1 和 3-a ,则M =________.
7. 实数a 在数轴上的位置如下图,则化简
22(1)a a -+-的结果是________.
8. ()363132=-x ,求x 的值.。

八年级数学上册《第二章2 平方根》讲解与例题

八年级数学上册《第二章2 平方根》讲解与例题

《第二章2 平方根》讲解与例题1.平方根(1)平方根的概念:若是一个数x 的平方等于a ,即x 2=a ,那么那个数x 就叫做a 的平方根(也叫做二次方根).32=9,因此3是9的平方根.(-3)2=9,因此-3也是9的平方根,因此9的平方根是3和-3.(2)平方根的表示方式:正数a 的平方根可记作“±a ”,读作“正、负根号a ”.“ ”读作“根号”,“a ”是被开方数.例如:2的平方根可表示为± 2. (3)平方根的性质:假设x 2=a ,那么有(-x )2=a ,即-x 也是a 的平方根,因此正数a 的平方根有两个,它们互为相反数;只有02=0,故0的平方根为0;由于同号的两个数相乘得正,因此任何数的平方都可不能是负数,故负数没有平方根.综合上述:一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.如:4的平方根有两个:2和-2,-4没有平方根.我明白了,一个数a 的平方根能够表示成±a .你可要警惕哦!(1)不是任何数都有平方根,负数可没有平方根,(2)式子a 只有当a ≥0时才成心义,因为负数没有平方根.【例1-1】 求以下各数的平方根:(1)81;(2)(-7)2;(3)11549. 分析:依照平方根的概念,求一个数a 的平方根可转化为求一个数的平方等于a 的运算,更具体地说,确实是找出平方后等于a 的数.解:(1)∵(±9)2=81,∴81的平方根是±9,即±81=±9.(2)∵(-7)2=72=49,∴(-7)2的平方根是±7,即±49=±7. (3)∵11549=6449,又⎝ ⎛⎭⎪⎫±872=6449, ∴11549的平方根是±87, 即±11549=±87. 【例1-2】 以下各数有平方根吗?若是有,求出它的平方根;假设没有,请说明理由.(1)94;(2)0;(3)-9;(4)|-0.81|;(5)-22. 分析:序号存在情况 原因 (1)有2个 正数有两个平方根 (4)有2个 (3)无 负数没有平方根 (5)无 (2) 有1个 0的平方根是它本身解:(1)∵94是正数,∴94有两个平方根. 又∵⎝ ⎛⎭⎪⎫±322=94,∴94的平方根是±32. (2)0只有一个平方根,是它本身.(3)∵-9是负数,∴-9没有平方根.(4)∵|-0.81|=(±0.9)2,是正数,∴|-0.81|的平方根是±0.9.(5)∵-22=-4,是负数,∴-22没有平方根.2.算术平方根(1)算术平方根的概念:若是一个正数x 的平方等于a ,即x 2=a ,那么那个正数x 就叫做a 的算术平方根.(2)算术平方根的表示方式:正数a 的算术平方根记作“a ”,读作“根号a ”.(3)算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0;负数没有平方根,固然也没有算术平方根.淡重点 算术平方根的性质(1)只有正数和0(即非负数)才有算术平方根,且算术平方根也是非负数;(2)一个正数a 的正的平方根确实是它的算术平方根.若是明白一个数的算术平方根,就能够够写出它的负的平方根.【例2】 求以下各数的算术平方根:(1)0.09;(2)121169. 分析:依照算术平方根的意义,求一个非负数a 的算术平方根,第一要找出平方等于a 的数,写出平方式;从平方式中确信a 的算术平方根的值.解:(1)∵0.32=0.09,∴0.09的算术平方根是0.3,即0.09=0.3;(2)∵⎝ ⎛⎭⎪⎫11132=121169, ∴121169的算术平方根是1113. 析规律 如何确信一个数的算术平方根 求一个数的算术平方根与求一个数的平方根类似,先找到一个平方等于所求数的数,再求算术平方根,应专门注意数的符号.3.开平方求一个数a (a ≥0)的平方根的运算,叫做开平方,其中a 叫做被开方数.开平方运算是已知指数和幂求底数.(1)因为平方和开平方互逆,故可通过平方来寻觅一个数的平方根,也能够利用平方验算所求平方根是不是正确.(2)开平方与平方互为逆运算,正数、负数、0能够进行“平方”运算,且“平方”的结果只有一个;但“开平方”只有正数和0才能够,负数不能开平方,且正数开平方时有两个结果.(3)关于生活和生产中的已知面积求长度的问题,一样可用开平方加以解决.【例3】 小明家打算用80块正方形的地板砖铺设面积是20 m 2的客厅,试问小明家需要购买边长是多少的地板砖?解:设正方形的地板砖的边长为x m ,由题意,得80x 2=20,那么x 2=0.25.故x =±0.5.∵地板砖的边长不能为负数,∴x =0.5.∴小明家应购买边长为0.5 m 的地板砖.4.a 2与(a )2的关系a 表示a 的算术平方根,依据算术平方根的概念,(a )2=a (a ≥0).a 2表示a 2的算术平方根,依据算术平方根的概念,假设a ≥0,那么a 2的算术平方根为a ;假设a <0,那么a 2的算术平方根为-a ,即a 2=|a |=⎩⎪⎨⎪⎧ a ,a ≥0,-a ,a <0. (1)区别:①意义不同:(a )2表示非负数a 的算术平方根的平方;a 2表示实数a 的平方的算术平方根.②取值范围不同:(a )2中的a 为非负数,即a ≥0;a 2中的a 为任意数.③运算顺序不同:(a )2是先求a 的算术平方根,再求它的算术平方根的平方;a 2是先求a 的平方,再求平方后的算术平方根.④写法不同.在(a )2中,幂指数2在根号的外面;而在a 2中,幂指数2在根号的里面.⑤运算结果不同:(a )2=a ;a 2=|a |=⎩⎪⎨⎪⎧ a ,a ≥0,-a ,a <0.(2)联系:①在运算时,都有平方和开平方的运算.②两式运算的结果都是非负数,即(a )2≥0,a 2≥0.③仅当a ≥0时,有(a )2=a 2. 点技术 巧用(a )2=a 将(a )2=a 反过来确实是a =(a )2,利用此式可使某些运算更为简便.【例4】 化简:(6)2=__________;(-7)2=__________. 解析:(-7)2=|-7|=7.答案:6 75.平方根与算术平方根的关系(1)区别:①概念不同平方根的概念:若是一个数x 的平方等于a ,即x 2=a ,那么那个数x 叫做a 的平方根.算术平方根的概念:若是一个正数x 的平方等于a ,即x 2=a ,那么那个正数x 叫做a 的算术平方根. ②表示方式不同平方根:正数a 的平方根用符号±a 表示.算术平方根:正数a 的算术平方根用符号a 表示,正数a 的负的平方根-a 能够看成是正数a 的算术平方根的相反数.③读法不同a读作“根号a”;±a读作“正、负根号a”.④结果和个数不同一个正数的算术平方根只有一个且必然为正数,而一个正数的平方根有两个,它们一正一负且互为相反数.(2)联系:①平方根中包括了算术平方根,确实是说算术平方根是平方根中的一个,即一个正数的平方根有一正一负两个,其中正的那一个确实是它的算术平方根,如此要求一个正数a的平方根,只要先求出那个正数的算术平方根a,就能够够直接写出那个正数的平方根±a了.②在平方根±a和算术平方根a中,被开方数都是非负数,即a≥0.严格地讲,正数和0既有平方根,又有算术平方根,负数既没有平方根,又没有算术平方根.③0的平方根和算术平方根都是0.【例5-1】(1)求(-3)2的平方根;(2)计算144;(3)求(π-3.142)2的算术平方根;(4)求16的平方根.错解(1)因为(-3)2=9,故(-3)2的平方根是-3;(2)因为(±12)2=144,所以144=±12;(3)(π-3.142)2的算术平方根是(π-3.142)2=π-3.142;〔或±(π-3.142)〕(4)16的平方根是±4.剖析(1)一个正数的平方根是互为相反数的两个数,而这里(-3)2的平方根只有一个数,只表明两个平方根中的一个负的平方根,漏掉了一个正的平方根;(2)混淆了平方根与算术平方根的概念,144表示144的算术平方根,它是一个非负数,错解中出现了增解-12;(3)错在忽视了π<3.142,即π-3.142<0;或混淆了平方根与算术平方根的概念;(4)这里错误地将16的平方根当成16的平方根,其实这里是求16的算术平方根的平方根,该题将两个相近概念“算术平方根”和“平方根”含在一个小题中.正解(1)±(-3)2=±9=±3;【例(1)±81;(2)-16;(3)925;(4)(-4)2.分析:±81表示81的平方根,故其结果是一对相反数;-16表示16的负平方根,故其结果是负数;925表示925的算术平方根,故其结果是正数;(-4)2表示(-4)2的算术平方根,故其结果必为正数. 解:(1)∵92=81,∴±81=±9. (2)∵42=16,∴-16=-4.(3)∵⎝ ⎛⎭⎪⎫352=925,∴925=35. (4)∵42=(-4)2,∴(-4)2=4. 释疑点 与平方根相关的三种符号 弄清与平方根有关的三种符号±a ,a ,-a 的意义是解决这种问题的关键.±a 表示非负数a 的平方根,a 表示非负数a 的算术平方根,-a 表示非负数a 的负平方根.注意a ≠±a .在具体解题时,“ ”的前面是什么符号,其计算结果确实是什么符号,既不能漏掉,也不能多添.6.巧用算术平方根的两个“非负性”众所周知,算术平方根a 具有双重非负性:(1)被开方数具有非负性,即a ≥0. (2)a 本身具有非负性,即a ≥0.这两个非负性形象、全面地反映了算术平方根的本质属性.在解决与此相关的问题时,假设能认真观看、认真地分析题目中的已知条件,并挖掘出题目中隐含的这两个非负性,就可幸免用常规方式造成的繁杂运算或误解,从而收到事半功倍的成效.由于初中时期学习的非负数有三类,即一个数的绝对值,一个数的平方(偶次方)和非负数的算术平方根.关于算术平方根和平方数的非负性相关的求值问题,一样情形下都是它们的和等于0的形式.此类问题能够分成以下几种形式:(1)算术平方根、平方数、绝对值三种中的任意两种组成一题〔| |+( )2=0,| |+ =0,( )2+=0〕,乃至同一道题目中同时显现这三个内容〔| |+( )2+=0〕.(2)题目中没有直接给出平方数,而是需要先利用完全平方公式把题目中的某些内容进行变形,然后再利用非负数的性质进行计算.【例6-1】假设-x2+y=6,那么x=__________,y=__________.解析:由-x2成心义得x=0,故y=6.答案:0 6【例6-2】假设|m-1|+n-5=0,那么m=__________,n=__________.解析:依照题意,得m-1=0,n-5=0,因此m=1,n=5.答案:1 5注:假设几个非负数的和为0,那么每一个数都为0.【例6-3】若是y=x2-4+4-x2x+2+2 013成立,求x2+y-3的值.分析:由算术平方根被开方数的非负性知,x2-4≥0,4-x2≥0,因此,x2-4=0,即x=±2;又x+2≠0,即x≠-2,因此x=2,y=2 013,于是得解.解:由题可知x2-4≥0,且4-x2≥0,∴x2-4=0,即x=±2.又∵x+2≠0,即x≠-2,∴x=2.将x=2代入y=x2-4+4-x2x+2+2 013,可得y=2 013.∴x2+y-3=22+2 013-3=2 014.点评:解答这种问题时,先确信题目中非负数的类型,然后依照类型“对症下药”.不要误以为x=±2.。

苏科版八年级上册数学第4章 算术平方根

苏科版八年级上册数学第4章 算术平方根

3 a2的算术平方根是2,则a的值为( A ) A.±2B.2C.4D.±4
【点拨】∵a2的算术平方根是2,∴a2=4, 则a=±2.
4 【2020·湖州】数 4 的算术平方根是( A ) A.2 B.-2 C.±2 D. 2
5 计算 36的值为( B ) A.-6 B.6 C.±6 D.18
解:12 cm 长的彩纸不够. 理由如下:∵ 10>3,∴4 10>12,即大正方形的 周长大于 12 cm,∴12 cm 长的彩纸不够.
9 【2020·桂林】若 x-1=0,则 x 的值是( C ) A.-1 B.0 C.1 D.2
【点拨】∵ x-1=0,∴x-1=0,解得 x=1.
10 【2020·雅安】已知 a-2+|b-2a|=0,则 a+2b 的 值是( D ) A.4 B.6 C.8 D.10
17 已知 3a+4+b2-12b+36=0,求 ab 的值.
解:∵ 3a+4+b2-12b+36=0, ∴ 3a+4+(b-6)2=0, ∴3a+4=0,b-6=0, ∴a=-43,b=6, ∴ab=-43×6=-8.
18 有如下按规律排列的数表,将这些数计算出来,并 按原数表中的顺序排列得到一串数列:1, 2, 5, 5, 8, 13, 10, 13, 18,5,……
(4) 65是这串数列中的第__3_2_或__3_7_个数.
13 4的算术平方根是___2_____.
【点拨】 4=2,∴ 4的算术平方根是 2.注意 4本 身包含一次运算,等于 2,本题实质上是求 2 的算 术平方根.
14 求下列各数的算术平方根:
(1)0.64;
(2)(-3)2.
解:∵0.82=0.64, ∴ 0.64 的 算 术 平 方根是0.8;

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

初中数学_平方根第二课时教学设计学情分析教材分析课后反思

初中数学_平方根第二课时教学设计学情分析教材分析课后反思

6.1平方根教学设计(第二课时)【教学目标】知识与能力:1.会用平方法比较两个数的大小。

2.了解用夹逼法估无理数的值。

3.会用估值法比较两个数的大小。

过程与方法:1.通过拼图活动发展学生的形象思维。

2.在探究活动中,让学生经历发现无理数的过程,认识到无理数的存在。

情感、态度与价值观:通过教学激发学生的参与性和求知欲,使学生体验小组合作学习的快乐,充分认识到社会生活与数学的密切联系,感受生活处处皆数学。

【教学重点】利用平方法和估值法比较数的大小。

【教学难点】 探究的大小【教学过程】课前交流:模拟购物街:一台笔记本价值在4000~5000元之间,给你三次机会你来估一下它的实际售价。

如果你猜中的价格与实际价格差距在50元范围内,这台电脑就送给你。

学生活动设计:学生估价,一名学生负责提示估价是高了还是低了。

教师活动设计:引导学生分析估价的方法,关注学生不要只顾活动,而忽略了情境里面蕴含的数学问题。

设计意图:从现实生活中提出估值的技巧,让学生在活动中体会夹逼法(二分法)在生活中的应用,同时唤起学生的生活经验,为后面利用夹逼法估的值作迁移准备。

本着从学生的生活经验出发,在做中学的理念,让学生在轻松的氛围中积极参与对数学问题的讨论,使学生感受到生活处处皆数学。

一、复习导入1、 什么叫算术平方根?2、 算术平方根的大小与被开方数的关系3、 判断下列各数有没有算术平方根,如果有请求出它们。

100,1, ,0,—0.0025,4, 师: 的算术平方根是多少?生:。

师:你是怎么想的。

师:你发现与我们前面求出的平方根有什么不一样的地方? 师:那么对于这样的数你有什么疑问吗?1211644二、 新课师:是呀,这样的数到底存不存在呢?如果存在到底有多大呢?今天我们就来研究这样的数。

板书:《平方根》1、拼一拼:首先我们来研究一下能否用两个面积为1的小正方形拼成一个面积为2的大正方形? 师:直接拼行不行?为什么?那面积符合吗?那看来要通过拼剪的方法。

八年级上册数学第二章算术平方根PPT

八年级上册数学第二章算术平方根PPT

③ ( 2)2 的算术平方根是
3
2 3

④若 m 2 2 ,则 (m 2)2 16 .
2.求下列各数的算术平方根
(1)25; (2)4891 ;(3)0.36 ;(4) 16.
解:(1)因为52 25 ,所以25的算术平方根是5,即 25 5.
(2)因为 (7) 2 49 ,所以 49 的算术平方根是 7 ,
0.0009 0.0009 表示0.0009的算术平方根, 0.0009=0.03
典例精析
例1:求下列各数的算术平方根: (1) 900; (2) 1; (3) 49; (4) 14.
64
解: (1)因为302=900, 所以900的算术平方根是30,
即 900 30 ;
(2)因为12=1, 所以1的算术平方根是1,即 1 1 ;
非负数
a 0 (a≥0)
算术平方根具有双重非负性
例2 若|m-1| + n 3 =0,求m+n的值. 解: 因为|m-1| ≥0, n 3 ≥0,又|m-1| + n 3 =0,
所以 |m-1| =0, n 3 =0,所以m=1,n=-3, 所以m+n=1+(-3)=-2.
归纳 几个非负数的和为0,则每个数均为0,初中 阶段学过的非负数有绝对值、偶次幂及一个数的算 术平方根.
5 dm 因为 52=25
讲授新课
一 算术平方根的概念
填一填(1)
已知正方形的面积,求出其边长: 正方形 的面积 1 9 16 36 0.25
边长 1 3 4 6 0.5
填一填(2)
请大家根据勾股定理,结合图形完成填空:
x2 y2 z2 w2
2,

《平方根第2课时》示范公开课教学设计【北师大版八年级数学上册】

《平方根第2课时》示范公开课教学设计【北师大版八年级数学上册】

第二章 实数2. 2 平方根第 2 课时 教学设计平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,引导学生建立清晰的概念系统,有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.1. 能说出平方根和算术平方根的概念,会用根号表示一个数的平方根;知道开平方与平方表示的是非负数a 的平方根.2. 通过对比体会平方根、算术平方根的联系和区别;在学习开平方运算求一个数的平方根、算术平方根的过程中,体会开平方运算与平方运算之间的互逆关系.3. 进一步感受到所学数学知识之间的内在联系. 【教学重点】 平方根和算术平方根的概念和求法.【教学难点】弄清平方根与算术平方根的意义有两个边长为1的正方形,剪刀.一、复习回顾1. 什么叫算术平方根?2. 我们已经学习过哪些运算?它们中互为逆运算的是什么?思考:乘方有没有逆运算?二、合作交流,探究新知(一)平方根的概念及性质(1) 3 的平方等于9,那么9 的算术平方根就是_____.(2)25的平方等于425,那么425的算术平方根就是____.(3) 展厅地面为正方形,其面积49 m2,则边长为___m.问题:平方等于9,425,49 的数还有吗?平方根的定义:一般地,如果一个数x 的平方等于a,即x2=a,那么这个数x 就叫做a 的平方根(或二次方根).平方根的表示方法、读法试一试:1. 144 的平方根是什么?2. 0 的平方根是什么?3. 425平方根是什么? 4. -4 有没有平方根?为什么?平方根的性质:1. 正数有两个平方根,两个平方根互为相反数.2. 0 的平方根还是 0.3. 负数没有平方根.平方根与算术平方根的联系与区别:开平方的定义:求一个数 a 的平方根的运算,叫做开平方,a 叫做被开方数.平方与开平方有什么关系?可以看出,平方与开平方互为逆运算,根据这种关系可以求出一个数的平方根.(二) 2(0)a ≥与 (0)a ≥的性质思考1:根据前面得出的性质填一填,并说明理由.2(0)a≥的性质:一般地,2=a(a ≥0).思考2:根据前面得出的性质填一填,并说明理由.(0)a≥的性质:=a(a ≥0).思考:当a<0=?三、运用新知例1 求下列各数的平方根:(1)64 ;(2)49121(3)0.0004;(4)(- 25)2(5) 11.例2 计算:(1(2)2(例3:化简(1(2四、巩固新知1. 下列说法正确的是_________.①-3是9的平方根; ②25的平方根是5; ③-36的平方根是-6; ④平方根等于0的数是0; ⑤64的算术平方根是8.2. 下列说法不正确的是______.A. 0 的平方根是0B. 22-的平方根是2C. 非负数的平方根互为相反数D. 一个正数的算术平方根一定大于这个数的相反数五、归纳小结略.第二章实数2. 2 算术平方根第 1 课时学生对数的认识由有理数扩展到实数范围,而本课是学习无理数的前提,是学习实数的衔接与过度,通过学习算术平方根,建立初步的数感和符号感,发展抽象思维,算术平方根的学习为后面的平方根学习以及立方根的学习奠定坚实的基础.1.了解算术平方根的概念,会用根号表示一个正数的算术平方根;了解一个正数的算术平方根与平方是互逆的运算,会利用这个互逆关系求某些非负数的算术平方根;了解算术平方根的性质.2.加强概念形成的教学,提高学生的思维水平;鼓励学生进行探索和交流,培养他们的创新意识和合作精神.3.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲;训练学生动脑,动口和动手的能力.【教学重点】算术平方根的概念,性质,会用根号表示一个正数的算术平方根.【教学难点】算术平方根的概念,性质.多媒体课件,白板.一. 情境导入从身边小事儿说起,请同学们欣赏本课导图,并回答问题.学校为了趣味接力比赛,要在运动场上圈出一个面积为100平方米的正方形场地,这个正方形场地的边长应为多少?1.学校要举行美术作品比赛,小鸥很高兴,她想裁出一块面积为25分米2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?(谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?)二.合作探究1.完成下表:这个实例中的问题、填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题.(通过解决这个问题,我们就引出了算术平方根的概念.)正数3的平方等于9,我们把正数3叫做9的算术平方根.正数4的平方等于16,我们把正数4叫做16的算术平方根.说说6和36这两个数?……(多让几位同学说,学生说得不正确的地方教师随即纠正)说说1和1这两个数?(师让学生拿出提前准备好这样的10张卡片,一面写1-10,另一面写1-10的平方.生任意抽一张卡片,让其他学生回答平方或算术平方根.)说了这么多,同学们大概已经知道了算术平方根的意思.那么什么是算术平方根呢?揭示课题.2.什么是算术平方根呢?(出示算术平方根的定义)请大家把算术平方根概念理解着读两遍.(生读)3.讲解算术平方根的双重非负性.探究a:(1)a可以取任何数吗?(2)a是什么数?目的:进一步明确a在什么情况下有意义,什么情况下无意义,理解算术平方根的双重非负性.4.练一练(1)下列各式中哪些有意义?哪些无意义?为什么?(2)如果3b-6没有算术平方根,则b; (3)下列各式有意义的条件是什么?();3;3;3;52---5.小结 以上我们学习了算术平方根,会用跟号表示出算术平方根,并且能求出一个非负数 的算术平方根.接下来我们做一些习题.三.巩固提高1.小游戏,记忆1—20的平方.2.能力提升(1)判断题①41的算术平方根是21± . ( ) ②5是 ()25-的算术平方根. ( )③一个正数的算术平方根总小于它本身. ( )④-64的算术平方根是8. ( )(2)填空题① 正数的算术平方根是( )数,0的算术平方根是( ),算术平方根等于它 本身的数是( ).② ( -4 )2的算术平方根是( ). ③ 491的算术平方根的相反数的绝对值是( ). (3)回答下列各数的算术平方根0.000 0013.强化练习(1)若x ²=16,则5-x 的算术平方根是_______ .(2)若4a +1的算术平方根是5,则a ²的算术平方根是______.(3)的算术平方根等于______ .4.综合运用已知(x -2)2+3-y +4-z =0,求2x -3y +z 的值.5.能力提高36(1)64 -36的算术平方根是 .(2)若9-a +41-b =0,则a =_____,b =_____. (3)已知y =x -2+2-x +3=0,求xy 的算术平方根.四.总结同学们,这节课你学会了什么?(学生总结,进一步梳理知识)五.布置作业略.。

2.2算术平方根(教案)

2.2算术平方根(教案)
-算术平方根的应用:能够将算术平方根应用于解决实际问题的情境中,如计算面积、体积等。
2.教学难点
-无理数算术平方根的理解:解释无理数算术平方根的存在,如√2、√3等,并理解它们不能表示为两个整数的比。
-估算无理数算术平方根的精确度:如何通过近似计算得到一个无理数算术平方根的近似值,并理解误差的概念。
1.讨论主题:学生将围绕“算术平方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
首先,算术平方根的定义对于一些学生来说可能还是有点抽象。虽然通过正方形边长的例子帮助他们理解了算术平方根的实际意义,但在抽象出数学概念的过程中,部分学生仍然感到困惑。在今后的教学中,我需要更多地借助直观模型和实际例子,让学生更好地理解算术平方根的定义。
其次,无理数算术平方根这一部分是学生们的一个明显难点。他们对无理数的概念本身就感到陌生,更不用说理解无理数算术平方根了。在讲解这一部分时,我意识到需要更耐心地引导学生们去感受无理数的无限不循环小数特性,以及如何估算无理数算术平方根的精确度。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了算术平方根的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对算术平方根的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对算术平方根的概念和计算方法掌握得还不错,但确实存在一些难点需要我们去关注和解决。

北师版八年级数学上册第二章 实数2 平方根

北师版八年级数学上册第二章 实数2 平方根
所以 x=(2a-3)2=[2×(-2)-3]2=49,
所以 x+32= 49+32= 81=9,
所以 x+32的算术平方根是 3.
平方根
算术平方根



正数有两个互为
相反数的平方根
性质
0的平方根是0
负数没有平方根
1.负数没有算术平方根.
2.算术平方根需要化简,如:4的算术平方根表
示为 4 , 4 =2.
3.初中阶段的三类非负数:
①绝对值 |a|≥ 0;
②偶次方a2n≥0(n为正整数);
③算术平方根 a ≥ 0.
知1-讲
知1-练
例1
[母题 教材P26例1 ]求下列各数的算术平方根.
1
(1)64;(2)2 ;(3)0;(4) 81;(5)7.
感悟新知
例4 [母题 教材P27习题T1 ] 求下列各式的值:
9
(1)± 1 ;(2)( 3 ) 2;(3) (- 3) 2;
16
(4) 0.81 - 0.04 ;(5) 4 2+3 2.
知3-练
感悟新知
知3-练
解题秘方:首先观察式子的结构特点,然后将被
开方数化成 a 2,再利用 a 2 =|a| 或
的算术平方根.
解题秘方:根据算术平方根与被开方数的关系求出a,
b 的值,然后求a+b的算术平方根.
知1-练
解:因为a的算术平方根是3,所以a=32=9.
因为b的算术平方根是4,所以b=42=16.
所以a+b=9+16=25,因为52=25.
所以25 的算术平方根是5,即a+b的算术平方根是5.
知1-练
不能写成有理数的平方的形式,则可
以将 a 的平方根表示成 ± a 的形式 .

北师大版初中数学八年级上册第二章2.2《平方根》 教案

北师大版初中数学八年级上册第二章2.2《平方根》 教案

2.2《平方根》第一课时教学设计(一)创设情境,引入新知活动一:复习旧知问题1:老师手中有一正方形图片,若已知边长是3时,同学们说其面积是多少呢?生:32=9 并在黑板上写出.问题2:以上算式属于我们学过的什么运算?在此算式中存在几个量?分别是什么?生:乘方运算;存在三个量;底数、指数和幂.问题3:乘方运算是知道了哪些量求哪个量的运算?生:底数、指数求幂的运算.活动二:探究新知问题4:若正方形的面积是9时,同学们说其边长是多少呢?师:同学们我们比较这两种运算,有什么区别?生:第一种运算,是知道了底数、指数求幂的运算即乘方运算;第二种运算,是知道了幂、指数求底数的运算.师:很好,第二种运算就是今天我们要学习的一种新运算---求一个正数的算术平方根的运算.(板书1)§2.2算术平方根设计意图:通过利用旧知,引入新知.学生乐于去做,敢于发言,同时,让学生感受到,通过自己的探究,“玩”出了很多意想不到的收获,使数学课不再枯燥.注重了用数学的方法去研究问题,从数学的角度去思考问题,使数学课更具有数学味,同时,也揭示了本节课的教学重点.问题5:若正方形的面积是3时,同学们说其边长m又是多少呢?师:通过上节课的学习我们知道它的范围是多少?它具体是多少,你知道吗?生:1.7<m<1.8,1.73<m<1.74,…;是无限不循环小数.师:同学们,这是我们在小学遇到过“π”的基础上,又一次遇到不能准确,读作“根号”.m,这就好比小学中我们学过的圆周率3.1415926…,它就是一个无限不循环小数,为了能表示它,就用一个符号“π”来表示一样的道理.设计意图:通过自主探索,让学生亲身体验概念的形成过程, 感受到概念引入的必要性,充分体现了学生的主体作用.结论:像以上算式m2=3中,我们就把正数m叫做3的算术平方根.记作:”,即问题6:请仿照上面表示“若m2=3,则”的办法,试着分别表示出下列正数x.(1)x2=3 (2) x2=5 (3) x2=7 (4) x2=a(a>0)设计意图:算术平方根的概念是由具体到抽象、由特殊到一般而形成的.通过问题6的尝试,培养学生抽象概括的能力.(二)多方联动、理解新知师:现在我们一起来概括算术平方根的定义:(板书2):一般的,一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为“a”读作“根号a”.(板书3):0的算术平方根是0,即0=0.问题1:用含根号的式子表示下列各数的算术平方根.(多媒体出示)(1) 16 (2) 25 (3) 7 (4) 14(学生独立完成后交流,并不失时机地追问)师:通过此问题,你会有什么新的发现?生:象16=4,25=5一样,这些正数可以写成有理数平方的形式,其算术平方根就可以用一个非负有理数表示,而有些正数写不成有理数平方的形式,其算术平方根只能用根号表示,如上面的7和14,它们的算术平方根只能分别写成7、14.设计意图:强化对算术平方根概念的认识,当细则细,为求出数的算术平方根搭建引桥,目的在于慢中求进,扎实有效.师:根据同学们的认识,我们一起来完成例题1.例题1:求下列各数的算术平方根:(多媒体出示)(1)1 (2)900解:(2)(老师板演第2题的解题过程)∵302=900∴900的算术平方根是30900即=30设计意图:规范学生解题的格式,让学生明确解题的思路.49(3)106 (4)64解:(4) (老师板演第4题)∴的算术平方根是即(5)10设计意图:体验求一个正数的算术平方根的过程,摸索利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如:10的算术平方根是10.同时,突出了本节课的教学重点.思考:通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?(多媒体出示)设计意图:让学生感知平方运算和求正数的算术平方根是互逆的关系.问题2:仿照“例题1”,请同学们自己编写两道类似的题目,供其他同学解答.设计意图:要把所学的新知识,融入到自己已有的知识结构中来,通过编题,增进学生对概念的理解,力求做到学以致用,举一反三.师:同学们,我们都能编题了,真了不得!看来下面的实际问题已不在话下.(出示例题2)例题2:自由下落的物体的高度h(米)与下落时间t(秒)的关系为h= 4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?(多媒体出示) (多媒体演示解题过程)解:将h=19.6代入公式h=4.9t2得t2=4,所以t=4=2(秒),即铁球到达地面需要2秒.设计意图:用算术平方根的知识解决实际问题,把数学与生活实施了链接,以增进学生对数学价值的体悟.问题3:7-有意义吗? 为什么? (多媒体出示)分析:7-无意义,因为任何数的平方都是非负数,即a2≥0,故7-无意义.(板书4):性质算术平方根是非负数,负数没有算术平方根.用式子表示为a(a≥0)为非负数,这是算术平方根的一条很重要的性质.设计意图:让学生认识到算术平方根定义中的两层含义:a中的a是一个非负数,a的算术平方根a也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.师:现在,同学们对算术平方根的认识可以说已经较为全面,事实到底如何呢?小试牛刀,看看自己的身手吧!(三)自主运用、强化新知1.填空:(多媒体出示)4的算术平方根是_________.(1)9(2)719的算术平方根为_________. (3)81的算术平方根为_________.设计意图:通过三个递进式的填空题,检测学生对算术平方根概念的把握情况,并通过(3)小题突出审题意识、优化学生的思维习惯.2.若一个正方形的边长为3时,当面积扩大原来的4倍后,其大正方形的边长b 变为原来的多少倍?(多媒体出示)解:∵b 2 = 4×32 =362倍.3.请同学们写出一些数的算术平方根,使它分别是整数、分数、无限不循环小数.(多媒体出示)设计意图:通过这样的开放式训练,使学生对算术平方根概念的认识和理解得到升华,让学生再一次品尝到成功的喜悦.在师生互动的过程中,将课堂推向了高潮,把难以理解的知识,像剥竹笋一样一层一层的剥开,使学生眼前豁然一亮.同时,也突破了本节课的教学难点.师:同学们说的都很好,看来我们通过今天的学习,有了很多的收获.(四)合作交流、归纳总结同学们,通过本节课的共同学习,请你从知识、方法与情感等方面谈一谈自己的认识.师:这节课主要就平方根中的算术平方根进行讨论,•求一个正数的算术平方根与求一个正数的平方正好是互逆的过程,因此,求正数的算术平方根实际上可以转化为求一个数的平方运算. 只不过,只有正数和0才有算术平方根,负数没有算术平方根.设计意图:通过回顾、梳理、反思,使学生对所学知识得到充分的消化和吸收,理顺了各知识点间的关系.老师重点从以下几个方面进行强调:1.算术平方根概念引入的重要性,尤其是让学生经历概念的形成过程以及里6b ∴==面所蕴含的数学思想;2.算术平方根概念应用的广泛性;3.倡导学生善于发现、勇于探索、敢于创新.(五)布置作业,自我巩固1.必做题:P40习题1、2、3.2.选做题:(1)一个正方形的面积为原来的100倍时,它的边长变为原来的多少倍?(2)一个正方形的面积变为原来的n倍时,它的边长变为原来的多少倍?设计意图:设置分层作业,兼顾不同水平的学生,关注差异,使学生获得各自的发展,加深学生对“公式”的进一步理解的同时,扩展学生的思维,让优秀生有舒展的舞台.附课外阅读材料:“根号的由来”现在,我们都习以为常地使用根号(如等等),并感到它使用起来既简明又方便,那么,根号是怎样产生和演变成现在这种样子的呢?古时候,埃及人用记号“┌”表示平方根;印度人在开平方时,在被开方数的前面写上ka;阿拉伯人用表示;1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、 (3)就分别表示3的平方根、4次方根、立方根。

北师大数学八年级上册第二章2.2平方根讲义

北师大数学八年级上册第二章2.2平方根讲义

2.2平方根(解析)知识点定义如果一个数的平方等于a,那么这个数叫做a的平方根.表示若2x a=,则x就叫做a的平方根,例:25=25±(),25的平方根就是5±.一个非负数a的平方根可用符号表示为“a±”.特征1.正数有两个平方根,且互为相反数,和为0;2.0的平方根只有一个,是它本身;3.负数没有平方根.概念如果一个非负数x的平方等于a,即2x a=,那么非负数x是a的算术平方根.表示a的算术平方根用a表示.a叫做被开方数(0a≥).例:9=3,9叫做被开方数,3是9的算术平方根.性质双重非负性,在x a=中有0x≥,0a≥.概念求一个非负数的平方根的运算,叫做开平方.意义开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.性质1.当被开方数扩大(或缩小)2n倍,它的算术平方根相应地扩大(或缩小)n 倍(0n≥).例:1扩大100倍为100,它的平方根相应的变为10. 2.平方根和算术平方根与被开方数之间的关系:若0a≥,则2()a a=;不管a为何值,总有2(0)||(0)a aa aa a≥⎧==⎨-<⎩注意二者之间的区别及联系.四.易错点:1.只有非负数才有平方根,负数没有平方根;2.正数的平方根有两个,且互为相反数;3.0的平方根和算术平方根都是0;4.计算.例如,求164,应该是2;5.求一个带分数的平方根时,必须把带分数化为假分数.重点、难点一.考点:算术平方根、平方根.二.重难点:算术平方根的双重非负性,常见平方数.三.易错点:只有非负数才有平方根;正数的平方根有两个,且互为相反数;0的平方根和算术平方根都是0.平方根例题1、16________.【答案】±2【解析】16±2.例题2、若|x|=2,y2=9,且xy<0,则x-y等于()A.1或-1B.5或-5C.1或5D.-1或-5【答案】B【解析】因为|x|=2,y2=9,所以x=±2,y=±3,因为xy<0,所以x=2,y=-3,所以x-y=2+3=5;所以x=-2,y=3,所以x-y=-2-3=-5.例题3、一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A.1B.-1C.2D.-2【答案】B【解析】由题意得:2a-1-a+2=0,解得:a=-1.随练1、5x-与(y+4)2互为相反数,则x+y的平方根为________.【答案】±1【解析】5x-与(y+4)2互为相反数,25(4)0x y-+=,∴x-5=0,y+4=0,解得x=5,y=-4,∴x+y=5+(-4)=1,∴x+y的平方根为±1.随练2、()28-的平方根为()A.8-B.8C.8±D.8±【答案】D【解析】该题考查的是平方根的概念和根式的性质.一个正数有两个平方根.()288-=,8的平方根有两个,8.所以本题的答案是D.算术平方根例题1、4的算术平方根是()A.2B.±22 D.2【答案】C【解析】4,而2242,例题2、一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()1a+ B.a+1 C.a2+121a+【答案】D【解析】设这个自然数为x,∵x 平方根为a ,∴x=a 2,∴与之相邻的下一个自然数为a 2+121a +例题3、 下列各组数,互为相反数的是( )A.-238-B.|2-2C.-2与2(2)D.22(2)-【答案】 C【解析】 -2与2(2)-互为相反数.例题4、 下列各式计算正确的是( ) A.282-- B.2(2)4-= 2(3)3-- 164= 【答案】 D【解析】 A 、28-B 、2(2)2=,故此选项不合题意;C 2(3)3-=,故此选项不合题意;D 164=,正确,符合题意.随练1、 我们可以利用计算器求一个正数a 的算术平方根,其操作方法是按顺序进行按键输入:.小明按键输入显示结果为4,则他按键输入显示结果应为________. 【答案】 40【解析】 164, 16001610040⨯=.随练2、 8 )A.8 826= 822± D.8最接近的整数是3 【答案】 D【解析】 A 8B 826≠,故选项错误;C 822=D 8最接近的整数是3,故选项正确.开平方例题1、 4x =,则x =________.【答案】 16【解析】 两边平方,得:x =16.例题2、 7【答案】 2和3之间【解析】 479,即273<<例题3、 1.718721 1.311,17.197609 4.147,那么0.0001718721-, 1719760900.【答案】 0.01311-,41470【解析】 被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥).随练1、 16________.【答案】 ±2【解析】 16±2.随练2、 已知x 10y 101(10)x y -的平方根为________.【答案】 ±3【解析】 由题意可得:3910=∴x =3,103y =, 则12(10)39x y --==,而9的平方根为±3.课后习题1、 下列说法正确的是( )A.1的立方根是±1 4C.0.09的平方根是±0.3D.0没有平方根【答案】 C【解析】 A .1的立方根是1,故A 错误;B 4=2,故B 错误,C .0.09的平方根是±0.3,故C 正确.D .0的平方根是0,故D 错误.2、 54.037.35=,则0.005403的算术平方根是( )A. 0.735B. 0.0735C. 0.000735D. 0.0000735【答案】 B【解析】 0.0735.3、 已知21a -的平方根是3±,4是31a b +-的算术平方根,求2a b +的值.【答案】 9【解析】 该题考查的是平方根的定义及代数式求值.∵21a -的平方根是3±,∴2213a -=,∴5a =,∵4是31a b +-的算术平方根,∴2314a b +-=,将5a =代入等式中,得,23514b ⨯+-=,∴2b =,∴25229a b +=+⨯=.4、 10 )A.2B.3C.4D.5【答案】 B【解析】 10 3.16, 103.5、 已知a ,b 21(1)0a b +-=,求a 2015-b 2016=________.【答案】 -2【解析】 21(1)0a b +-=,∴1+a =0、1-b =0,解得:a =-1、b =1,则原式=(-1)2015-12016=-1-1=-2.6、 2的平方根是________25的绝对值是________.【答案】 252【解析】 2的平方根是:2±25的绝对值是:52-.7、在下列各式中正确的是()A.2= B.3=2=8=±【答案】A【解析】A2,正确;B、3=±,故本选项错误;C4=,故本选项错误;D2=,故本选项错误.。

北师大版八年级数学上册 第二章 实数 平方根(第2课时)

北师大版八年级数学上册 第二章 实数 平方根(第2课时)

例 求下列各式的值:
(1) 36 ; (2) 0.81 ; (3) 解:(1) 36 6 ;
49 . 9
(2) 0.81 0.9 ;
(3) 49 7 .
93
巩固练习
变式训练 求下列各式的值.
169 13 100 _1__0__
(3)2 ____3_;
62 82 __1_0
探究新知
解: (1) 因为(±8)2=64 ,64的平方根为±8, 即 64 8.
(2)因为( 7 )2 = 49,所以 49的平方根是
11 121
121
7 11.71
(3)因为(±0.02)2=0.0004 ,所以0.0004的平方根 是±0.02,即 0.0004= 0.02
的数.我们抽象出下述概念: 一般地,如果有一个数x的平方等于a,即x2=a,那么这个
数x叫做a的平方根(也叫作二次方根).
例如: (±1)2=1,1的平方根为±1.
探究新知
1. 121的平方根是什么? ±11
2. 0的平方根是什么?
0
4. -9有没有平方根?为什么? 没有,因为一个数的平方不可能是负数.
探究新知
想一想
2
1.
64
2
等于多少? 64
49 121
等于多少?
49
2. 7.2 等2 于多少?
121
7.2
2
3.对于正数a, a 等于多少?
a
2 a a(a 0)
探究新知 做一做,想一想
(2)2 __2_,
(3)2 _3__,
(0.5)2 _0__.5_,
(
52 )
5 __6__
探究新知
开平方与平方的对比填空

2022年八年级数学上册第十四章实数14.1平方根2教案新版冀教版

2022年八年级数学上册第十四章实数14.1平方根2教案新版冀教版

14.1平方根(2)教学目标【知识与能力】1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.理解算术平方根与平方根的联系与区别.【过程与方法】1.通过教学过程中学生的参与,培养学生学习的主动性,提高数学表达和运算能力.2.通过举例使学生明确平方根与算术平方根的区别和联系.【情感态度价值观】1.学生通过积极参与教学活动获取新知,通过小组活动发展独立思考和竞争意识.2.通过主动参与使学生勇于面对困难并能够解决困难,发展合作交流意识.教学重难点【教学重点】算术平方根的概念和性质.【教学难点】对算术平方根意义的理解.课前准备多媒体课件教学过程一、新课导入:导入一:【课件1】学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为25dm2的正方形画布,画上他自己的得意之作参加比赛,这块正方形画布的边长应取多少?师:怎样算出画布的边长为5dm的呢?(思考1分钟)【课件2】填表:,本质上就是已知一个正数的平方,求这个正数的问题.那么这个正数与这个正数的平方是什么关系呢?下面我们来共同探讨这个问题.[设计意图]从正方形的面积,引出求一个正数的正的平方根,让学生初步认识算术平方根,为下面的学习做好铺垫.导入二:同学们,2003年10月15日是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么你们知道宇宙飞船离开地球进入轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度v1(米/秒)而小于第二宇宙速度v2(米/秒).v1,v2的大小满足v12=gR,v2=2gR,怎样求v1,v2呢?这就要用到算术平方根的概念,也就是本节要学习的内容.[设计意图]“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知幂和指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路. 导入三:【课件3】1.(1)625的平方根是多少?这两个平方根的和是多少? (2)-7和7是哪个数的平方根? (3)正数m 的平方根怎样表示? (4)求下列各数的平方根.①64; ②0; ③(-0.4)2; ④(-123)2; ⑤16; ⑥(-4)3. 2.已知正方形的面积等于a ,那么它的边长等于多少?解:设正方形的边长为x ,则x 2=a ,根据平方根的定义,得x =±√a .因为正方形的边长是正数,所以正方形的边长是√a .[设计意图] 复习巩固平方根的知识,进一步掌握平方根的计算方法,为学习算术平方根做准备.二、新知构建:活动一:感知——算术平方根的定义思路一方根.一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为√a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式x 2=a (x ≥0)中,规定x =√a .思考:这里的数a 应该是怎样的数呢?试一试:你能根据等式112=121说出121的算术平方根吗?并用等式表示出来. 解:121的算术平方根是11,用等式表示为√121=11. [知识拓展] 平方根与算术平方根的区别和联系.区别:(1)概念不同:如果一个数的平方等于a ,那么这个数就叫做a 的平方根;非负数a 的非负平方根叫做a 的算术平方根.(2)表示方法不同:正数a 的平方根表示为±√a ;正数a 的算术平方根表示为√a .(3)个数及取值不同:一个正数的算术平方根只有一个,是正数;一个正数的平方根有两个,一正一负且互为相反数.联系:(1)具有包含关系:平方根包含算术平方根,一个数的算术平方根是一个数的平方根中的一个.(2)存在条件相同:平方根和算术平方根都只有非负数才有. (3)0的平方根、算术平方根都是0.(4)求算术平方根、平方根都可看成是平方的逆运算. 思路二说明:正数a 有两个平方根(表示为±√a ),我们把其中正的平方根,叫做a 的算术平方根,表示为√a .0的平方根也叫做0的算术平方根,因此0的算术平方根是0,即√0=0.几何图形可以直观地表示算术平方根的意义,面积为a (a >0)、边长为√a 的正方形,边长√a就表示a的算术平方根.“√”是算术平方根的符号,√a就表示a的算术平方根.思考:√a的被开方数是什么样的数?它的结果又是怎样的数?√a的意义有两点:(1)被开方数a表示非负数,即a≥0;(2)√a也表示非负数,即√a≥0.也就是说,非负数的算术平方根是非负数,负数不存在算术平方根,即a<0时,√a无意义.如:√9=3,8是64的算术平方根,√-6无意义.强调:这里需要说明的是,算术平方根的符号“√”不仅是一个运算符号,如a≥0时,√a 表示非负数a进行开平方运算,也是一个性质符号,即表示非负数a的非负平方根.例如,√9表示对9进行开平方运算,也表示9的正的平方根.[设计意图]让学生在小组间进行必要的合作与交流,以加深学生对平方根及算术平方根意义的理解.活动二:强化——算术平方根的计算【课件4】(教材第63页做一做)求下列各数的算术平方根(1)144;(2)0.01;(3)449;(4)132;(5)(-16)2.1.引导学生正确应用算术平方根的表示方法计算.2.学生口述过程.解:(1)12. (2)0.1. (3)27. (4)13. (5)16.观察“做一做”中(4)和(5)的结果,你有什么发现?小组讨论得出:√a2=|a|={a(a>0), 0(a=0), -a(a<0).语言表述:一个数的平方的算术平方根等于这个数的绝对值.说明:首先让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的符号来表示,在此基础上再求出结果.在开始阶段,宜让学生适当模仿,熟练后直接写出结果.【课件5】计算下列各式.(1)√1.69;(2)-√225;(3)±√949;(4)-√(-17)2.说明:要让学生明白各式所表示的意义;根据平方关系和算术平方根的概念进行求解,注意解题格式.解:(1)√1.69=√1.32=1.3.(2)-√225=-√152=-15.(3)±√949=±√(37)2=±37.(4)-√(-17)2=-√172=-17.【课件6】某小区有一块长方形草坪,为了加强保护,小区管理人员准备用篱笆沿草坪边缘将其围起来.已知该长方形草坪的长是宽的4倍,草坪的面积是900m2,求所需篱笆的总长度.〔解析〕(1)如果设所需篱笆的宽为x m,它的长是多少?怎样列方程?(2)怎样求出x的值?解:设这块长方形草坪的宽为x m,则长为4x m.因为长方形草坪的面积是900m2,所以4x·x=900,即x2=225.所以x=±√225=±√152=±15.x=-15不合题意,舍去.所以x=15,2×(15+4×15)=150(m).答:所需篱笆的总长度是150m.[设计意图]体会平方根和算术平方根的实际意义,理解实际情境中值的取舍;规范步骤,让学生养成良好的书写习惯.三、课堂小结:。

初中数学_平方根第二课算术平方根教学设计学情分析教材分析课后反思

初中数学_平方根第二课算术平方根教学设计学情分析教材分析课后反思

教学设计一、指导思想:依据学生已有的基础及教材所处的地位和作用,在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成。

二、关于教法和学法采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,激发学生兴趣,调节学习情绪,让学生在乘方和算术平方根的性质法则的比较中发现问题;在练习训练中提高解题能力,培养良好学习习惯。

同时,采用媒体辅助教学,增大教学密度,提高教学效率。

三、关于教学程序的设计在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:①面向全体学生,启发式与探究式教学。

②注重学生参与知识的形成过程,增强学习数学的信心。

③让学生在获取知识的同时,掌握方法,灵活运用。

学情分析1、学生现有基础:学生在上学期时已学过了乘方的运算,有助于本节的学习活动。

2、学习的现状:此阶段的学生对新鲜事物或新内容特别感兴趣,但缺乏学习的方法。

效果分析本节课的主要内容是让学生理解算术平方根的含义,会求正数的算术平方根并会用符号表示;了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

本节内容基本能按照事先设计上下来,学生的反应良好,能较好地掌握所学地新知识,本节课的内容不是很多,这是学好算术平方根的关键,也为后面学习立方根及运用平方根进行基本运算和解决实际问题打下基础,但在教学过程中也存在以下主要问题:1、忽视平方根表示的规范化由于我忽视了在课堂上的平方根表示的示范,使得有不少学生能够知道一个数的平方根,但是表示不规范。

2.没有对概念进行总结在实际操作时,由于临近下课,时间较仓促,所以无论是学生的总结还是教师的总结都显得比较贫乏,没有抓住实质。

在今后的总结中,应注意引导学生从知识方面,数学思想方法等不同方面进行有效的小结,而不要只流于形式。

总之,对于这样一节概念课,如果学生对概念的理解只停留在死记硬背,机械模仿的阶段,那绝对不是数学概念课所要提倡的教学方法。

八年级数学上册《平方根》(第2课时) 教案 湘教版

八年级数学上册《平方根》(第2课时) 教案 湘教版

【教学目标】1、了解算术平方根的概念,会用根号表示数的算术平方根。

2、了解开方与乘方互为逆运算,会用平方根运算求某些非负数的算术平方根。

3、能运用算术平方根解决一些简单的实际问题。

【教学重点难点】理解算术平方根的意义,能运用算术平方根解决一些简单的实际问题【教学方法】观察、比较、合作、交流、探索.【设计思路】本节课通过问题情景使学生在计算、探索、交流的过程中能感悟到算术平方根的意义,并且能运用算术平方根解决一些简单的实际问题。

在教学中要让每个学生都参与到活动中去,感受学习的乐趣,提高学习数学的兴趣,教学千万不能在走老路,先告诉规律,然后讲例题,在做练习。

【教学过程】(一)创设情景,感悟新知情景一:小明家装修新居,计划用100块地板砖来铺设面积为25平方米的客厅地面,请帮他计算:每块正方形地板砖的边长为多少时,才正好合适(不浪费)?情景二:求4个直角边长为10厘米的等腰直角三角形纸片拼合成的正方形的边长?【设计说明:将生活实际与数学联系起来,更能激发学生的兴趣,便于学生主动发现一个数的算术平方根——正的平方根,为解决问题提供方便】教师讲解:正数有个平方根,其中正数的正的平方根,叫的算术平方根.例如,4的平方根是2±,2叫做4的算术平方根,记作4=2;2的平方根是2±,2叫做2的算术平方根,记作22=。

(二)探索规律,揭示新知例题讲解: 例2求下列各数的算术平方根:(1)625;(2)0.0081;(3)6;(4)0。

【设计说明:在书写时仍采用结合文字语言叙述是写法,以利于学生加深对开平方与平方互为逆运算关系的理解。

此题虽然比较简单但也考查了学生对算术平方根的理解情况,我们从学生的角度尤其学习有困难的学生来思考的话也许讲解起来学生更容易理解了】(三)尝试反馈,领悟新知完成下列习题,做题后思考讨论交流。

(1)=01.0 (2)()=25 (3)241⎪⎪⎭⎫ ⎝⎛= (4) 216= , (5) ()=-216 , (6)()25-= 。

八年级数学上册 平方根(2) 人教版

八年级数学上册   平方根(2)  人教版

自从那一天,我衣着脚,挑着行李,沿着崎岖曲折的田埂,离开故乡,走向了城市;从此,我便漂泊在喧嚣和浮躁的钢筋水泥丛林中,穿行于 中国文化三大支柱的儒释道,其内容相当丰富。以浩如海洋来比喻,都不之为过! 近日,我在“儒风大家”上,看到一篇文章,仅用---三句话、九个字。说出了儒释道,其实并不高高在上,而是与我们的人生和日常生活密切相关!
平方有没有逆运算? 平方与算术平方根之间是什么关系?
3的平方等于9,那么9的算术平方根就是3.
2 5
4
4
的平方等于 25
,那么 25
2
根就是 .
5
的算术平方
展厅的地面为正方形,其面积为49平方 米,则其边长为7米.
正方形ABCD的面积为1,则边长为 1 . 将它扩
展,若其面积变为原来的2倍,则边长为 ;若2
当你已经承受不住外界所带来的种种压力时,母亲为你顶起一片天空,抵挡所有风雨;当你心无慰籍时,她开导你、教育你,教导你“退一步海阔天空”的哲理;当你遇到困难与挫折或因情绪不好而对她大发脾气时,她默默承受但仍坚强地开导;当你因学习而疲劳、心烦时,她会送上一杯热茶,不需任何语言,一切感情均化为泪水落于掌心,一切尽在不言中…… 当你遇到危险时,她不顾一切地救助你,即使失去生命也毫无怨言;当你感到伤痛绝望时,她比你更加痛心悲伤,却必须要坚强地劝慰你,让你安心;当你欢心愉悦时,她会陪你一起分享心中的喜悦,但是却绝对不会多霸占一点,让你的心变得空虚无物……
如何才能想得开?哲学大师冯友兰曾提出“人生四重境界”说,其中最高那层境界正是道家境界,所以正是路径所在。 一是自然境界。有些人做事,可能只是顺着他的本能或者社会的风俗习惯,而对所做的事并不明白或者不太明白。这种“自然”并非道家那个自然,而是指混沌、盲目、原始,那些人云亦云、随波逐流的人就是这种人。

2019-2020学年八年级数学上册《平方根(2)》教案-北师大版

2019-2020学年八年级数学上册《平方根(2)》教案-北师大版

2019-2020学年八年级数学上册《平方根(2)》教案 北师大版总课时:11课时第4课时:2、2平方根(2)教学目标知识与技能1.了解平方根、 开平方的概念.2.明确算术平方根与平方根的区别和联系.3.进一步明确平方与开平方是互逆的运算关系.过程与方法1.经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.2.培养学生求同与求异的思维,通过比较提高思考问题、辨析问题的能力.情感态度与价值观1.在学习中互相帮助、交流、合作、培养团队的精神.2.在学习的过程中,培养学生严谨的科学态度.教学重点:1.了解平方根开、平方根的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.教学难点:1平方根与算术平方根的区别和联系.2负数没有平方根,即负数不能进行平方根的运算.教学准备ppt 和flash教学过程第一环节:复习旧知 引入新知(3分钟,学生回顾思考,回答问题)(一)复习1.什么叫算术平方根?3的平方等于9,那么9的算术平方根就是____3______. 52的平方等于 254 ,那么254 的算术平方根就是_____52_________.展厅的地面为正方形,其面积49平方米,则边长___7_____米. 2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何?乘方有没有逆运算? 平方与算术平方根之间的关系?已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,面 积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____. (二)复习引入 问题:平方等于9,254,49的数还有吗?第二环节 : 新课学习(15分钟,学生理解内化,掌握知识点)(一)探究新知填空:32=(9 )(-3)2=(9 ) ( )2=9 02=0(12)2=(14) ()214= (不存在)2=-4(12-)2=(14) (二)形成概念一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.而把正的平方根叫算术平方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)0.01是0.1的算术平方根;( × ) (5)-5是-25的算术平方根。 ( ×)
思考:
1.下列各式哪些有意义,哪些没 有意义? (1)- 4 (2) 4 (3) 3 (4) 32
2
3 1、9的算术平方根等于_____
1 1 2、 的算术平方根等于 ____ 10 100
因为
5
2
=25,
所以这个正方形画布的边长应取5dm.
小欧还要准备一些面积如下的正方形画布, 请你帮他把这些正方形的边长都算出来: 面积 x 2 =a 1 边长x
4 25
1.96 2.25 9
16
36
2
1
1.4
1.5
3
4
6
2 5
?
上面的问题,实际上是已知一个正数的平方, 求这个正数的问题.
1.一般地,如果一个 自学提纲 正数 ______ 的平方等于 . x a 2 正数 x 即 x a ,那么这个____ 算术平方根 叫做 a的___________. a的算术平方根 2. a 表示的意思是___________. 2 算术平方根 3. 3 =9, 则3是9的__________, 表示为 9 3 . 0 4.0的算术平方根是_______, 表示 为________. 0 0
小欧同学准备了一些正方形的画 布, 画上他的得意之作, 参加学校举 行的美术作品比赛.告诉你正方形的边 长,你能帮他算出面积吗?
边长x 面积 x =a
2
1 1
1.4 1.5 1.96 2.25
3 9
4 16
6 36
2 5
4 25
想一想
试一试, 你一定行!
小欧同学准备参加学校举行的美术作品 2 比赛.他想裁出一块面积为25 dm 的正方形 画布,画上自己的得意之作参加比赛,请你 帮他计算一下这块正方形画布的边长应取多 少?
2 1、 16的算术平方根等于____
2、
3 3 的值等于___
2
探索 & 交流 探究:
怎样用两个面积为1的小正方形拼 成一个面积为2的大正方形?
如图,把两个小正方形沿对角线剪开, 将所得的4个直角三角形拼在一起,就 得到一个面积为2的大正方形。你知道 这个大正方形的边长是多少吗? 小正方形 设大正方形的边长为x,则 2 的对角线 x =2. 的长是多 由算术平方根的意义可知 少呢? x= 2
你知道 2有多大吗?
想一想
它有什么特征呢?你能给它取个名字吗?
2 1.4142135623730950488016887242097 无限不循环
无限不循环小数
财富大统计
本节课你有什么收获?
1.了解了算术平方根的概念,能利 用正方形的面积与边长的关系求正数的算 术方根并会用符号表示; 2.了解了无限不循环小数的 特点.
求下列各数的算术平方根:
(1)100
49 (2) 64
(3)0.0001
你能根据等式:12 =144说出 144的算术平方根是多少吗? 并用等式表示出来。
2
下列式子表示什么意思?你 能求出它们的值吗?
25
0.81
0
试一试, 你一根;( √ ) (2)-6是 36 的算术平方根; ( ×) (3)0的算术平方根是0; ( √ )
; vi设计 品牌设计 宣传设计 企业标识设计 品牌画册设计 品牌咨询 品牌 策划网 ;
候再次重走先祖の路/只确定/这壹次又确定谁胜利呢?钟薇认识滴子/知道这佫人何其恐怖/滴府の无数秘法/它都见识过/它几乎确定含着滴府这把金钥匙成长起来の/而睡古却不同/它远离滴府/没有滴府底蕴の支撑/它又岂能和滴子交锋?只不过滴子这佫层次の人物交手/根本不确定她能左右の /在滴子の眼中/她也不过就确定壹件物品而已/它の眼中只有自己/即使她特殊/它也不会被她左右/要不确定因为她の舞姿对其有大用/它甚至都不会关注她/它就确定这样壹佫傲然の人/觉得滴下の壹切都确定它の陪衬/这样壹佫人/没有人能影响它/"那就试试当年の狗能不能翻身/"睡古说话之 间/壹步步の向着对方走去/众人没有感觉到它の壹丝壹毫の气息/但睡古壹步步走出间/脚下纹理闪现/道理无限/光华璀璨/如同神灵壹样/每走壹步都承载着它の道/这壹步步の走向它/滴子の面容也凝重咯起来/睡古走向它/给它也有莫大压力/身上の力量在四肢百骸中流转/压制住这股压力/直 直の盯着睡古/尽管睡古让它凝重/但它并没有因此而惧怕/当时之中/年轻壹辈中又有谁确定自己の对手?自己当为这壹代の第壹人/当为这壹代の至尊/没有人能阻拦它の脚步/它定然要执掌滴府/⑨滴拾地唯我独尊/证得神位/长生不死/这确定它の信念/坚定和偏执の信念/没有人能阻拦它の路/ 面前の这佫人也壹样/睡古缓缓走过去/没有出手/但身上却壹道道残影从身体中迸发出来/残影出现/都走向滴子/滴子着走向它の残影/眼中那双眸子射出光芒/光芒展现出来/化作它の虚影/影响咯这些残影/虚影和残影交锋/直接撞击在壹起/"轰///轰///"就仅仅确定残影和虚影の交锋/惊雷般 の巨响响起来/滴地摇晃起来/两人の中间/壹条巨大の裂缝出现/这条巨大の裂缝深不可测/不断の蔓延/配合着轰隆隆の巨响/让人心惊肉跳/残影和虚影交锋之间/地上の裂缝越来越多/滴地直接崩裂/马开和钟薇等人大骇/欧奕力量护住几人/挡住卷动而来の恐怖飓风/带着壹群人连连后退/"仅 仅确定残影和虚影の交锋/其余劲都能不玄古境咯/"欧奕心惊/这些年/睡古实力到底成长到何其地步/无心峰数人之中/睡古来の最早/当年它上无心峰の时候/睡古实力就逆滴咯/而这么多年过去咯/欧奕原本以为自己实力能追上壹点睡古/但现在才明白/自己和它相距甚远/马开等人此刻也异常 の震撼/淡淡残影和虚影就能暴动出玄古境の力量/这两人震の有惊世之力/想到睡古当年灭杀过不落山壹佫千年前の老壹辈人物/马开又不觉得奇怪/"要追上它们/还需要多久啊/"马开深吸壹口气/但马上又紧紧の握咯握拳头/在年轻壹辈中/自己属于最年轻の哪壹佫/能走到这壹步已经相当不易 /只要给它时间/它有信心能追上睡古等人/即使它们每壹佫底蕴惊人/马开依旧有信心能追上它们/将来の世上俊才交锋中/壹定有它壹席之位/睡古身上の残影不断の涌出/滴子身上の虚影也不断の出现/虚影和残影弥漫空间/不断の交锋旮旯/大地无数の裂缝出现/宛如玻璃碎片壹样/只确定这块 玻璃确定大地/辽阔无边/这壹道道裂缝横七竖八到处都确定/让人心惊肉跳/"轰///轰///"壹声声震动/引得马开等人心跳加速/刚刚众人站立の地方/无壹完好之处/到处都确定裂缝/空间都崩裂咯数次/两人の残影和虚影不断/睡古和滴子终于相对而站立/距离五米不到/"真确定让本滴子意外/不 在滴府中の你/居然还有这样の实力/无心峰传言确定情域最不能招惹の地方之壹/果然有几分本事/"滴子着睡古说道/"但本滴子也听说/无心峰确定疯子聚集营/""不要妄想以话语破我心境/无心峰不管确定疯还确定癫/起码比狗好壹些不确定吗/睡古不屑の说道/收集阅读本部分::为咯方便下 次阅读/你可以点击下方の记录本次(正文第八百五拾四部分绝世之战)阅读记录/下次打开书架即可看到/请向你の朋友第八百五拾五部分弱水境界卡槽滴子和睡古交手/两人出手如同闪电般/直冲杀对方而去/快如闪电/滔滴の力量从它们手中震动而出/直杀对方の要害而去/以众人の眼力/根 本不清两人确定如何出手の/只见它们交手间/各种残影舞动不断/虚空不断の崩裂/四方の山丘被夷为平地/当真如同末世壹样/各种妙术不断/七彩璀璨の光华不断の迸发出来/马开等人早已经远远の离着滴子和睡古/它们所爆发の劲气根本不确定两人能抵挡の/"轰隆隆///"壹声声巨响炸裂/两 人从大地打上云霄/在云霄之上/暴动の力量把云霄卷碎/滴地空间/不断の被崩裂/各种力量卷杀而下/劲气如同狂啸の飓风/把底下の壹切都给卷起来/两人の打斗太过恐怖咯/让人头皮发麻/每壹次舞动/都如同带着灭世之威壹般/打の四周壹切被破坏/各种力量不断の卷杀而下/谁能相信这确定 两佫人所能涌动出来の力量/大海の海涛/奔腾の河水和它们相比又算得咯什么?两人の力量/已经无法用言语来形容其强悍咯/惊世の力量轰の四方分崩离析/马开和欧奕远远の离着两人打斗の现场/着两人舞动之间/把滴地都给打穿/每壹佫人心中壹-本-读-都震动/很旧很慢比较/)那璀璨の滴空 让马开呆滞在原地/这样の力量太过恐怖/真の有神人之威/在这样の力量下/马开心想自己只要靠近壹点/都足以被磨灭咯/这样の打斗/也惊动咯不少人/不少人遥望这壹边/着虚空交锋之间爆发の璀璨光芒/不少人为此震动/特别确定感受到这壹片滴空/有着法则笼罩/它们更确定心惊胆颤/"这确 定两位法则级强者在交手/不少人为这佫消息而震动/当今世间/法则级人物鲜少出世/玄古境就能称王称霸/只确定没有想到/此刻却有着两位法则级の恐怖人物出手/"难道/强者都要开始出世咯吗/众人心中骇然/呆呆の着滴空之上打斗の两人/这两人所舞动の力量不确定它们能想象の/舞动之间 真の有灭世之威/两人越打越激烈/各种妙术不断/战の漫滴虚空都确定它们の身影/这种打斗已经不确定马开等人能清楚咯/只知道两人出手凌厉无比/远不确定它们能比拟の/钟薇和七大战将也早已经呆滞咯/它们无法相信还有人可以和滴子交锋/滴子确定何其人物/在红尘域中自诩年轻壹辈第 壹人/自认将来可以问鼎至尊位の恐怖人物/可确定/就确定这样の人物/居然还有人能挡住它/对抗滴子丝毫不落下风/简直匪夷所思/"死/"滴地の怒吼惊滴动地/如同雷霆震动云霄/其中带着毋容置疑之色/话语刚落之间/漫滴の雷霆声响起/滔滴の力量从四面八方涌向它/在虚空有着壹头金光闪 闪の神龙/神龙闪现/缠绕在它の长枪四周/长枪直射而出/在虚空只剩下壹条金光/长虹贯日般の射向睡古/"神龙贯日而已/妄想这壹招就灭杀我/未免太得起自己咯/"睡古嗤笑/"这壹招当年还确定先祖留给滴府の/今日就让你明白/滴府の绝学在壹睡千古下/不值得壹提/绵绵睡意/"睡古说话之间 /全身变の恍恍惚惚/整佫人宛如荡漾の春水/虚无缥缈/它闭眼躺在那里/如同镜花水月
相关文档
最新文档