专题训练(六) 与三角形有关的角度计算
八年级数学三角形求度数解答题15道题专题难点训练
八年级数学三角形求度数解答题15道题专题难点训练 学校:___________姓名:___________班级:___________考号:___________一、解答题1.如图,在ABC ∆中,70,30,CD A ACD ∠=︒∠=︒平分ACB ∠.求(1)BDC ∠的度数.(2)B 的度数.2.如图,,AB CD CB ∥平分,40ABD C ∠∠=︒.求:(1)CBD ∠的度数;(2)D ∠的度数.3.如图,AD 、AE 分别是△ABC 的高和角平分线,∠B =30°,∠C =70°,分别求:(1)∠BAC 的度数;(2)∠AED 的度数;(3)∠EAD 的度数.4.已知,在△ABC ,三个内角的度数满足::5:6:7ABC C A ∠∠∠=,BD 是△ABC 的角平分线,DE 是△DBC 的高,D 是垂足点.⑴.求△ABC 各内角的度数;⑵.求图中1∠的度数.5.如图,在ABC ,AD BC ⊥于点D ,AE 平分BAC ∠.(1)若70C ∠=︒,40B ∠=︒,求DAE ∠的度数;(2)若20C B ∠-∠=︒,求DAE ∠的度数.6.如图,在ABC 中,AD BC ⊥,AE 平分BAC ∠,72B ︒∠=,30C ︒∠=.(1)求BAE ∠的度数;(2)求DAE ∠的度数。
7.如图,已知CD 是ACB ∠的平分线,48,82,//ACB BDC DE BC ∠=∠=.(1)求EDC ∠的度数;(2)求B 的度数.8.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数;(2)求证://AB CD .(3)求C ∠的度数.9.如图,ABC ∆中,BE ,CD 为角平分线且交点为点O .(1)若60ABC ∠=,80ACB ∠=,求BOC ∠的度数;(2)若120BOC ∠=,求A ∠的度数;(3)若A α∠=时,求BOC ∠的度数.10.已知ABC ∆中,BE 平分ABC ∠,点P 在射线BE 上.(1)如图1,若40ABC ︒∠=,//CP AB ,求BPC ∠的度数;(2)如图2,若100BAC ︒∠=,PBC PCA ∠=∠,求BPC ∠的度数;(3)若40ABC ︒∠=,30ACB ︒∠=,直线CP 与ABC ∆的一条边垂直,求BPC ∠的度数.11.如图,点A ,O ,E 在同一直线上,42AOB ︒∠=,29COD ︒∠=,OD 平分COE ∠.(1)求AOD ∠的度数;(2)求COB ∠的度数.12.已知ABC ∆中,B C ∠=∠,D 为边BC 上一点(不与,B C 重合),点E 为边AC 上一点,ADE AED ∠=∠,44BAC ∠=︒.(1)求C ∠的度数;(2)若75ADE ∠=︒,求CDE ∠的度数.13.已知如图,∠BCD =92°;∠A =27°,∠BED =44°.求:(1)∠B 的度数.(2)∠BFD 的度数.14.如图,在△ABC 中,∠ACB =∠ABC=2∠A ,BD 是AC 边上的高,(1)求∠A 的度数 (2)求∠DBC 的度数.15.在△ABC 中,如果∠A 、∠B 、∠C 的外角的度数之比是4:3:2,求∠A 的度数.参考答案1.(1)100°;(2)50°【解析】【分析】(1)根据外角的性质可得∠BDC=∠A+∠ACD ;(2)根据CD 平分∠ACB ,可以得到∠ACB ,根据三角形内角和定理就可以求出∠B .【详解】解:(1)∵∠A=70°,∠ACD=30°,∴∠BDC=∠A+∠ACD=70°+30°=100°;(2)∵CD 平分∠ACB ,∠ACD=30°,∴∠ACB=2∠ACD=60°,∴∠B=180°-∠A-∠ACB =180°-70°-60°=50°.【点睛】本题考查了外角的性质,角平分线的定义,三角形的内角和定理,解题的关键是熟记三角形内角和定理.2.(1)40°;(2)100°.【解析】【分析】(1)根据平行的性质先求出∠ABC ,再根据角平分线的性质求出答案即可;(2)由三角形的内角和可直接求出答案.【详解】解:(1)∵,40AB CD C ∠=︒∥,∴40ABC C ∠=∠=︒.∵CB 平分ABD ∠,∴40CBD ABC ∠=∠=︒.(2)在BCD 中,180∠+∠+∠=︒CBD BCD D ,∴1804040100∠=︒-︒-︒=︒D ,故∠D=100°.【点睛】本题考查的主要是角平分线、平行、三角形的内角和,掌握几何部分的基础知识是解题的关键.3.(1)80°;(2)70°;(3)20°. 【解析】【分析】(1)根据三角形的内角和即可得到结论;(2)根据角平分线的定义和三角形的内角和即可得到结论;(3)根据极品飞车的定义和三角形的内角和即可得到结论.【详解】(1)∵∠B =30°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =80°, (2)∵AD 为高,∴∠ADC =90°, ∴∠CAD =90°﹣∠C =90°﹣70°=20°, 而AE 为角平分线,∴∠CAE =12∠BAC =40°, ∴∠AED =90°﹣(∠CAE ﹣∠CAD )=90°﹣(40°﹣20°)=70°; (3)∵AE 是△ABC 的角平分线,∴∠BAE =12∠BAC =40°, 又∵AD ⊥BC ,∴∠BAD =90°﹣∠B =60°, ∴∠EAD =∠BAD ﹣∠BAE =60°﹣40°=20°. 【点睛】本题考查了三角形内角和定理,角平分线的定义.关键是利用内角和定理求∠BAC ,根据角平分线的定义求∠BAE ,利用高得出互余关系求∠BAD ,利用角的和差关系求解. 4.⑴.50,60,70ABC C A ∠=∠=∠= ⑵.165∠=.【解析】【分析】第一问根据三角形内角和等于180度设未知数解方程,再求出△ABC 各内角的度数;第二问先根据题干中角平分线的条件求出∠DBE ,再求出其余角1∠.【详解】⑴设∠ABC=5x ,∠C=6x ,∠A=7x ,则有5x+6x+7x=180︒∴x=10︒,∴∠ABC=50︒,∠C=60︒,∠A=70︒.⑵∵BD 平分AC ,∴∠DBE=12∠ABC=25︒, ∵DE 是△DBC 的高,D 是垂足点∴∠DEB=90︒,∴1∠=9025︒-︒=65︒.【点睛】熟练掌握角平分线的定义和三角形内角和定理是解题的关键.5.(1)15︒;(2)10︒【解析】【分析】(1)根据角平分线的定义和互余进行计算;(2)根据三角形内角和定理和角平分线定义得出∠DAE 的度数等于∠B 与∠C 差的一半解答即可.【详解】解:(1)70C ∠=︒,40B ∠=︒,180407070BAC ∴∠=︒-︒-︒=︒,AE ∵平分BAC ∠,35EAC ∴∠=︒.AD BC ⊥,90ADC ∴∠=︒,907020CAD ∴∠=︒-︒=︒,352015DAE EAC CAD ∴∠=∠-∠=︒-︒=︒;(2)∵∠B +∠C +∠BAC =180°,∴∠BAC =180°−∠B−∠C ,∵AE 平分∠BAC ,∴∠BAE =12∠BAC =12(180°−∠B−∠C )=90°−12(∠B +∠C ), ∵AD ⊥BC ,∴∠ADE =90°,而∠ADE =∠B +∠BAD ,∴∠BAD =90°−∠B ,∴∠DAE =∠BAD−∠BAE =90°−∠B )−[90°−12(∠B +∠C )]=12(∠C−∠B ), ∵∠C−∠B =20°,∴∠DAE =12×20°=10°. 【点睛】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质解答. 6.(1)39BAE ︒∠=;(2)21DAE ︒∠=.【解析】【分析】(1)先根据三角形内角和定理计算出∠BAC=78°,然后根据角平分线定义得到∠BAE=12∠BAC=39°;(2)根据垂直定义得到∠ADB=90°,则利用互余可计算出∠BAD=90°-∠B=18°,然后利用∠DAE=∠BAE-∠BAD 进行计算即可;【详解】解:(1)180B C BAC ︒∠+∠+∠=,78BAC ︒∴∠=,AE ∵平分BAC ∠,1392BAE BAC ︒∴∠=∠=; (2)AD BC ⊥,90ADB ︒∴∠=,9018BAD B ︒∴∠=-∠=,21DAE BAE BAD ︒∴∠=∠-∠=.【点睛】此题考查三角形内角和定理,解题关键在于掌握三角形内角和是180°.掌握角平分线和高的定义,熟练进行角度的运算.7.(1)24EDC ︒∠=;(2)74B ︒∠=【解析】分析:(1)由CD 是∠ACB 的平分线,∠ACB =48°,根据角平分线的性质,即可求得∠DCB 的度数,又由DE ∥BC ,根据两直线平行,内错角相等,即可求得∠EDC 的度数;(2)根据三角形的内角和定理即可求得∠B 的度数.详解:(1)∵CD 是∠ACB 的平分线,∠ACB =48°,∴∠BCD =12∠ACB =24°. ∵DE ∥BC ,∴∠EDC =∠DCB =24°.(2)∵∠BDC =82°,∠EDC =24°,∴∠B =180°﹣∠EDC ﹣∠BDC =180°﹣24°﹣82°=74°.点睛:本题考查了平行线的性质与角平分线的定义.解答此题的关键是掌握两直线平行,内错角相等与三角形内角和定理的应用.8.(1)α∠和β∠的度数分别为70︒和110︒;(2)见解析;(3)40C ∠=︒【解析】【分析】 根据2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,解二元一次方程组,求出α∠和β∠的度数;根据平行线判定定理,判定//AB CD ;由“AE 是CAB ∠的平分线”:2CAB α∴∠=∠,再根据平行线判定定理,求出C ∠的度数.【详解】解:(1)①+②,得5350α∠=︒,70α∴∠=︒,代入①得110β∠=︒α∴∠和β∠的度数分别为70︒和110︒.(2)180αβ∠+∠=︒//AB EF ∴//CD EF ,//AB CD ∴(3)AE ∵是CAB ∠的平分线2140CAB α∴∠=∠=︒//AB CD ,180C CAB ∴∠+∠=︒40C ∴∠=︒【点睛】本题运用二元一次方程组给出已知条件,熟练掌握二元一次方程组的解法以及平行线相关定理是解题的关键.9.(1)110°;(2)60°;(3)90°+12α .【解析】【分析】(1)在△ABC 中利用三角形内角和定理和角平分线的定义可求得∠OBC+∠OCB,在△BOC 中利用三角形内角和定理可求得∠BOC;(2)方法同(1);(3)方法同(1).【详解】解:(1)∵BE,CD 为角平分线, ∴∠OBC=12∠ABC,∠OCB=12∠ACB, ∵∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°-∠A, ∴12∠ABC+12∠ACB=12(180°-∠A)=90°-12∠A, ∴∠OBC+∠OCB=90°-12∠A, 又∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°-(∠OBC+∠OCB)=180°-(90°-12∠A)=90°+12∠A,∵60ABC ∠=,80ACB ∠=,∴∠A=180°-60°-80°=40°,∴∠BOC=90°+20°=110°.(2)当∠BOC=120°时,∠A=2∠BOC -90°×2=60°;°(3)当∠A=α°时,∠BOC=90°+12α°. 【点睛】本题考查了三角形内角和定理及角平分线的定义,掌握三角形内角和为180°是解题的关键. 10.(1)20°;(2)100°;(3)BPC ∠的度数为70︒或40︒或110︒.【解析】【分析】(1)根据角平分线的定义和平行线的性质可得结论;(2)根据三角形的外角性质得:∠PCD=∠PBC+∠BPC=100+x ,可得结论;(3)直线CP 与△ABC 的一条边垂直,分三种情况:分别和三边垂直,根据三角内角和列式可得结论.【详解】(1)∵BE 平分ABC ∠,40ABC ︒∠=, ∴11402022ABP ABC ︒︒∠=∠=⨯=, ∵CP AB ,∴20BPC ABP ︒∠=∠=;(2)设ABP x ∠=,则PBC ACP x ∠=∠=,ABC ∆中,ACD A ABC ∠=∠+∠,1002x PCD x ︒+∠=+,∴100PCD x ∠=+,BCP ∆中,PCD PBC BPC ∠=∠+∠,∴100x x BPC +=+∠,∴100BPC ︒∠=;(3)①当CP BC ⊥时,如图3,则90BCP ︒∠=,∵20PBC ︒∠=,∴70BPC ︒∠=;②当CP AC ⊥时,如图4,则90ACP ︒∠=,BCP ∆中,180********BPC ︒︒︒︒︒∠=---=;③当CP AB ⊥时,延长CP 交直线AB 于G ,如图5,则90BGC ︒∠=,∵40ABC ︒∠=,∴50BCG ︒∠=BPC ∆中,1805020110BPC ︒︒︒︒∠=--=;综上,BPC ∠的度数为70︒或40︒或110︒.【点睛】本题考查了平行线的性质和三角形的内角和定理、外角的性质,熟练掌握三角形的内角和定理是关键,是一道综合运用三角形内角和与外角性质的好题.11.(1)151°;(2)80°.【解析】【分析】(1)先根据OD 平分∠COE 得出∠DOE=∠COD ,再根据∠AOD=180°-∠DOE 即可得出答案.(2)先根据OD 平分∠COE 得出∠DOE=∠COD ,再根据平角的性质即可得出∠COB 的度数;【详解】解:(1)∵OD 平分∠COE ,∴∠DOE=∠COD ,∵∠COD=29°,∴∠DOE=29°,∠AOD=180°-∠DOE , =180°-29°,=151°;(2)由(1)可得∠DOE=∠COD=29°,∵∠AOB+∠BOC+∠COD+∠DOE=180°,∴∠BOC=180°-(∠AOB+∠COD+∠DOE ),=180°-(42°+29°+29°),=80°.【点睛】本题考查的是角平分线的定义及补角的性质,解答此题的关键是熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.12.(1)68C ∠=︒;(2)7CDE ∠=︒.【解析】【分析】(1)根据已知及三角形的内角和定理进行计算即可得解;(2)根据三角形的内角和定理进行角度的计算即可得解.【详解】(1)∵44BAC ∠=︒,180BAC B C ∠+∠+∠=︒,∴18044136B C ∠+∠=︒-︒=︒,∵B C ∠=∠,∴2136C ∠=︒,∴68C ∠=︒;(2)∵ADE AED ∠=∠,75ADE ∠=︒,∴75AED ∠=︒,∵180AED CED ∠+∠=︒,∴18075105CED ∠=︒-︒=︒,∵180CDE CED C ∠+∠+∠=︒,∴180105687CDE ∠=︒-︒-︒=︒.【点睛】本题主要考查了三角形的内角和定理,熟练掌握角度的和差计算是解决本题的关键. 13.(1)∠B =65°;(2)∠BFD =109°.【解析】【分析】(1)依据三角形外角性质,即可得到∠BCD =∠A +∠B ,即可得出∠B 的度数.(2)依据三角形外角性质,即可得到∠BFD =∠B +∠BED ,即可得出∠BFD 的度数.【详解】(1)在△ABC 中,∵∠BCD =∠A +∠B ,∠BCD =92°,∠A =27°,∴∠B =∠BCD ﹣∠A =92°﹣27°=65°.(2)在△BEF 中,∵∠BFD =∠B +∠BED ,∠BED =44°,∠B =65°,∴∠BFD =44°+65°=109°.【点睛】本题主要考查了三角形外角性质,三角形的一个外角等于和它不相邻的两个内角的和.14.(1)∠A=36°;(2)18°.【解析】【分析】(1)根据∠ACB=∠ABC=2∠A,∠ACB+∠ABC+∠A=180°求出∠A的度数即可.(2)根据∠A的度数求出∠ACB的度数,由BD是AC边上的高,可知△BDC是直角三角形,根据三角形内角和求出∠DBC的度数即可.【详解】在△ABC中得:∠ACB+∠ABC+∠A=180°∵∠ACB=∠ABC=2∠A∴2∠A+2∠A+∠A=180°解得:∠A=36°∠ACB=36° 2=72°∵BD是AC边上的高∴∠BDC=90°∴∠DBC=180°-∠BDC-∠ACB=180°-90°-72°=18°【点睛】本题考查三角形内角和定理,三角形三个内角的和是180°,熟练掌握三角形内角和定理是解题关键.15.∠A=20°.【解析】试题分析:三角形的外角和为360°,可先求出与∠A,∠B,∠C相邻的三个外角的度数,则可求出∠A的度数.试题解析:设∠A、∠B、∠C的外角分别为∠1=4x°、∠2=3x°、∠3=2x°∵∠1、∠2、∠3是△ABC的三个外角,∴4x+3x+2x=360,解得x=40,∴∠1=160°、∠2=120°、∠3=80°,∵∠A+∠1=180°,∴∠A=20°.考点:多边形内角与外角.。
专题训练:直角三角形
课题:直角三角形1.了解直角三角形两个锐角的关系.2.掌握直角三角形的判定.重点:直角三角形两个锐角的关系及直角三角形的判定.一、情景导入,感受新知内角三兄弟之争在一个直角三角形里往着三个内角,平时,它们三兄弟非常团结,可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?二、自学互研,生成新知【自主探究】(一)阅读教材P13,完成下面的内容:1.直角三角形的两个锐角有什么关系?2.直角三角形如何表示?如图,∠C=∠D=90°,AD,BC相交于点E,∠CAE与∠DBE有什么关系?为什么?解:在Rt△ACE中,∠CAE=90°-∠AEC.在Rt△BDE中,∠DBE=90°-∠BED.∵∠AEC=∠BED,∴∠CAE=∠DBE.(二)阅读教材P14,完成下面的内容:1.在一个三角形中,若有两个角互余,则这两个角之和为90°,由三角形内角和定理,第三个角的度数为:180°-90°=90°,所以该三角形为直角三角形.2.如图,∠C=90°,∠1=∠2,△ADE是直角三角形吗?为什么?解:△ADE是直角三角形.证明:略.师生活动①明了学情:学生自主探究,教师巡视全班,了解学生的困惑.②差异指导:根据学情,对学生的困惑,适时点拨.③生生互助:小组或同桌交流,相互释疑解惑.三、典例剖析,运用新知 【合作探究】例1:如图,将两个完全相同的直角三角形叠放,使一个三角形的锐角顶点与另一个三角形的直角顶点重合,另外B ,C ,D 三点在一条直线上.请问:重叠部分的三角形是直角三角形吗?为什么?解:是直角三角形. 理由如下:根据题意可知,∠A =∠EBD ,∠A +∠ACB =90°, ∴∠EBD +∠ACB =90°. ∴∠BFC =90°. ∴△BFC 是直角三角形.例2:根据下列条件,判断△ABC 是锐角三角形、直角三角形还是钝角三角形? (1)∠A =∠B ,∠C =40°; (2)∠B =∠C =30°; (3)∠A =75°,∠B =15°.解:(1)∵∠A +∠B +∠C =180°(三角形内角和定理),∠C =40°,∠A =∠B ,∴∠A =∠B =180°-∠C2=180°-40°2=70°,∴△ABC 中的最大角为70°.∴△ABC 是锐角三角形. (2)在△ABC 中,∠A =180°-∠B -∠C =180°-30°-30°=120°,∴△ABC 中最大角是120°,∴△ABC 是钝角三角形.(3)在△ABC 中,∠C =180°-∠A -∠B =180°-75°-15°=90°,∴△ABC 中最大角为90°.∴△ABC 是直角三角形.师生活动①明了学情:学生自主探究,教师巡视全班,了解学生的困惑. ②差异指导:根据学情,对学生的困惑,适时点拨. ③生生互助:小组或同桌交流,相互释疑解惑. 四、课堂小结,回顾新知1.直角三角形两锐角的关系:__互余__.2.直角三角形的判定方法:__证明有一个内角为90°__. 五、检测反馈,落实新知1.如图,直线a ⊥直线c ,若∠1=70°,则∠2=( C ) A .70° B .110° C .20° D .30°第1题图第2题图2.如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是( B ) A .40° B .50° C .60° D .140°3.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC ,∠B =70°,∠C =30°. (1)求∠BAE 和∠DAE 的度数.(2)若∠C -∠B =α(∠C >∠B),求∠DAE 的度数.(用含α的代数式表示)解:(1)如图,∵在△ABC 中,∠B =70°,∠C =30°,∴∠BAC =180°-∠B -∠C =180°-70°-30°=80°,∵AE 平分∠BAC ,∴∠BAE =12∠BAC =12×80°=40°;∵AD ⊥BC ,∠B =70°,∴∠BAD =90°-∠B =90°-70°=20°,∵∠BAE =40°,∴∠DAE =∠BAE -∠BAD =40°-20°=20°.(2)∵AE 平分∠BAC ,∴∠BAE =12(180°-∠B -∠C),∵AD ⊥BC ,∴∠BAD =90°-∠B ,∴∠DAE =∠BAD -∠BAE =(90°-∠B)-12(180°-∠B -∠C)=12(∠C -∠B)=12α.六、课后作业:巩固新知 (见学生用书)。
经典初中数学三角形专题训练及例题解析
经典《三角形》专题训练知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类. ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质定理:三角形的内角和等于180°.推论1:直角三角形的两个锐角互补。
推论2:三角形的一个外角等于不相邻的两个内角的和。
推论3:三角形的一个外角大于与它不相邻的任何一个内角。
7、多边形的外角和恒为360°8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。
③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
B.n 边形共有2)3(-n n 条对角线。
9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。
②多边形的外角和等于360°。
三角形 (按角分) 三角形 (按边分)10、平面镶嵌及平面镶嵌的条件。
①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。
②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。
中考数学复习 专题训练(六) 锐角三角函数求值的六种方法
专题训练(六) 锐角三角函数求值的六种方法►方法一运用定义求锐角三角函数值1.在下列网格中,每个小正方形的边长均为1,点A,B,O都在格点上,则∠O的正弦值是________.图ZT-6-12.如图ZT-6-2所示,在Rt△ABC中,∠C=90°,AC=12,BC=5.(1)求AB的长;(2)求两个锐角的三角函数值.图ZT-6-2►方法二巧设参数求锐角三角函数值3.在Rt△ABC中,∠C=90°,若sin A=513,则cos A的值是()A.512B.813C.23D.12134.2017·铜仁如图ZT -6-3,在Rt △ABC 中,∠C =90°,D 是AB 的中点,ED ⊥AB 交AC 于点E.设∠A =α,且tan α=13,则tan 2α=________.图ZT -6-35.已知:如图ZT -6-4,在Rt △ABC 中,∠C =90°,tan A =12,求∠B 的正弦值、余弦值.图ZT -6-46.如图ZT -6-5,∠C =90°,∠DBC =30°,AB =BD ,根据此图求tan 15°的值.图ZT -6-5► 方法三 利用边角关系求锐角三角函数值7.如图ZT -6-6所示,在四边形ABCD 中,E ,F 分别是AB ,AD 的中点,若EF =2,BC =5,CD =3,则tan C 的值是( )图ZT -6-6A.34B.43C.35D.458.如图ZT -6-7所示,在△ABC 中,点D 在AC 上,DE ⊥BC ,垂足为E ,若AD =2DC ,AB =4DE ,则sin B 的值是( )图ZT -6-7A.12B.73C.3 77D.349.已知锐角三角形ABC 中,点D 在BC 的延长线上,连结AD ,若∠DAB =90°,∠ACB =2∠D ,AD =2,AC =32,根据题意画出示意图,并求出tan D 的值.►方法四利用等角求锐角三角函数值10.如图ZT-6-8所示,∠ACB=90°,DE⊥AB,垂足为E,AB=10,BC=6,求∠BDE的正弦值、余弦值、正切值.图ZT-6-811.如图ZT-6-9所示,在矩形ABCD中,AB=10,BC=8,E为AD边上一点,沿CE将△CDE折叠后,点D正好落在AB边上的点F处,求tan∠AFE的值.图ZT -6-9► 方法五 利用同角三角函数的关系求锐角三角函数值同角三角函数之间有如下关系:对于锐角α,有sin 2α+cos 2α=1,tan α=sin αcos α. 12.已知在Rt △ABC 中,∠C =90°,cos B =23,则sin B 的值为( )A.2 53B.53C.2 55D.5513.已知α为锐角,且cos α=13,求tan α+cos α1+sin α的值.► 方法六 利用互余两角三角函数的关系求锐角三角函数值 若∠A +∠B =90°,则sin A =cos B ,cos A =sin B.对于锐角α,sin α随α的增大而增大,cos α随α的增大而减小,tan α随α的增大而增大.14.已知0°<∠A <90°,那么cos (90°-∠A)等于( ) A .cos A B .sin (90°+∠A) C .sin A D .sin (90°-∠A)15.在△ABC 中,∠C =90°,tan A =3,求cos B 的值.16.在△ABC 中,(1)若∠C =90°,cos A =1213,求sin B 的值;(2)若∠A=35°,∠B=65°,试比较cos A与sin B的大小,并说明理由.教师详解详析1.[答案]10 10[解析] 如图,过点C作CD⊥OB于点D,根据正方形的性质可知点D为小正方形对角线的中点,∴CD=22,由勾股定理得OC=22+12=5,∴在Rt△OCD中,sin O=CDOC=225=1010.2.解:(1)AB=AC2+BC2=13.(2)sin A=BCAB=513,cos A=ACAB=1213,tan A=BCAC=512;sin B=ACAB=1213,cos B=BCAB=513,tan B=ACBC=125.3.D4.[答案]34[解析] 连结BE.∵D是AB的中点,ED⊥AB,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA =∠A =α,∴∠BEC =2α.∵tan α=13,设DE =a ,则AD =3a ,∴AE =10a ,AB =6a ,∴BC =3 10a 5,AC =9 10a 5,∴CE =9 10a 5-10a =4 10a 5,∴tan2α=BCCE =3 10a 54 10a5=34. 5.解:∵∠C =90°,tan A =BC AC =12, ∴设BC =x ,AC =2x , ∴AB =5x ,∴sin B =AC AB =2x 5x =2 55,cos B =BC AB =x 5x =55.6.解:设AB =BD =2x . ∵AB =BD ,∠DBC =30°, ∴∠A =12∠DBC =15°.∵∠DBC =30°,∠C =90°, ∴CD =x ,由勾股定理可求出BC =3x , ∴AC =AB +BC =2x +3x , ∴tan15°=CDAC =2- 3.7.[解析] B 连结BD .∵E ,F 分别是AB ,AD 的中点, ∴BD =2EF =4.∵BC =5,CD =3,BD =4, ∴BD 2+CD 2=BC 2,∴△BCD 是直角三角形,且∠BDC =90°, ∴tan C =BD CD =43.8.[解析] D 如图,过点A 作AF ⊥BC 于点F ,则有DE ∥AF . ∵AD =2DC ,∴DC ∶AC =1∶3=DE ∶AF , ∴AF =3DE . ∵AB =4DE , ∴sin B =AF AB =3DE 4DE =34.9.解:示意图如图所示.∵∠ACB =∠D +∠CAD ,∠ACB =2∠D , ∴∠CAD =∠D , ∴AC =DC .∵∠BAD =90°,∴∠B +∠D =90°.∵∠BAC +∠CAD =90°,∴∠B =∠BAC ,∴BC =AC ,∴BD =2AC .∵AC =32, ∴BD =3.在Rt △BAD 中,∵AD =2,BD =3,∴AB =5,∴tan D =AB AD =52. 10.解:∵在Rt △ABC 中,AB =10,BC =6, ∴AC =AB 2-BC 2=8.∵∠C =∠DEB =90°,∠B =∠B ,∴△ACB ∽△DEB ,∴∠A =∠BDE ,∴sin ∠BDE =sin A =35, cos ∠BDE =cos A =45, tan ∠BDE =tan A =34.11.解:根据图形得∠AFE +∠EFC +∠BFC =180°. 根据折叠的性质,得∠EFC =∠EDC =90°,∴∠AFE +∠BFC =90°.在Rt △BCF 中,∠BCF +∠BFC =90°,∴∠AFE =∠BCF .又根据折叠的性质,得CF =CD =10.在Rt △BCF 中,BC =8,CF =10,由勾股定理,得BF =CF 2-BC 2=6,∴tan ∠BCF =34, ∴tan ∠AFE =tan ∠BCF =34. 12.[解析] B ∵在Rt △ABC 中,∠C =90°,cos B =23, ∴sin B =1-(23)2=53. 故选B.13.解:∵cos α=13, ∴sin α=1-(13)2=2 23, tan α=sin αcos α=2 2313=2 2, ∴tan α+cos α1+sin α=2 2+131+2 23=2 2+3-2 2=3.14.C15.解:∵tan A =3,∴∠A =60°,sin A =32. 又∵∠A +∠B =90°,∴cos B =sin A =32. 16.解:(1)在Rt △ABC 中,∵∠A +∠B =90°,∴sin B =cos A =1213. (2)cos A <sin B .理由:∵cos A =cos35°=sin55°<sin65°, ∴cos A <sin B .。
专题06 利用等腰三角形的性质求角的度数(解析版)
专题06 利用等腰三角形的性质求角的度数知识对接考点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点补充:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.考点二、角1.对顶角(1)定义:如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.(2)性质:对顶角相等.2.邻补角(1)定义:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.(2)性质:邻补角互补.3.同位角、内错角、同旁内角(1)基本概念:两条直线(如a、b)被第三条直线(如c)所截,构成八个角,简称三线八角,如图所示:∠1和∠8、∠2和∠7、∠3和∠6、∠4和∠5是同位角;∠1和∠6、∠2和∠5是内错角;∠1和∠5、∠2和∠6是同旁内角.(2)特点:同位角、内错角、同旁内角都是由三条直线相交构成的两个角.两个角的一条边在同一直线(截线)上,另一条边分别在两条直线(被截线)上.专项训练1一、单选题1.(2021·江苏九年级专题练习)等腰三角形的一个外角是130°,则它的底角的度数为( ) A .65° B .80°或50° C .50° D .65°或50°【答案】D 【分析】分该外角是底角的外角还是顶角的外角两种情况解答即可. 【详解】解:①当该外角是底角的外角时,底角为:180°-130°=50°; ①当该外角是顶角的外角时,则底角为:130°×12=65°所以底角为65°或50°. 故选D . 【点睛】本题主要考查了等腰三角形的定义,掌握分类讨论思想是解答本题的关键.2.(2021·湖北黄冈·九年级模拟预测)如图,有一块含有45︒角的直角三角板的两个顶点放在直尺的对边上.如果120∠=︒,那么2∠的度数是( )A .20︒B .25︒C .30D .45︒【答案】B 【分析】依题意,由直尺边是相互平行、三角形为等腰直角三角形,可得+2=45DAC ∠∠︒,即可; 【详解】由题知,如图,ABC 为等腰直角三角形,① 45BAC BCA ∠=∠=︒; 直尺边相互平行,120∠=︒① ADCE ,①120DAC ∠=∠=︒;又+245DAC ∠∠=︒,① 225∠=︒; 故选:B ;【点睛】本题考查平行线、等腰直角三角形的性质,关键在熟练应用等腰直角三角形的角的关系; 3.(2021·福建省福州咨询有限公司九年级模拟预测)如图,在①ABC 中,①B=40°,将①ABC 绕点A 逆时针旋转,得到①ADE ,点D 恰好落在直线BC 上,则旋转角的度数为( )3A .70°B .80°C .90°D .100°【答案】D 【分析】利用旋转的性质得到①ABC①①ADE ,根据全等三角形的性质可知AB=AD ,进而得到①ADB=①B=40°,再利用三角形内角和定理即可解答. 【详解】①将①ABC 绕点A 逆时针旋转,得到①ADE ①①ABC①①ADE ①AB=AD ①①ADB=①B=40° ①①ADB+①B+①BAD=180° ①①BAD=180°-40°-40°=100° 故选D 【点睛】本题考点涉及旋转的性质、全等三角形的性质、等腰三角形的性质以及三角形内角和定理,熟练掌握相关性质定理是解题关键.4.(2021·湖北黄石八中九年级三模)如图,在①ABC 中,①BAC =116°,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点D ,E ,作直线DE ,交BC 于点M ;分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点P 、Q ,作直线PQ ,交BC 于点N ;连接AM 、AN .则①MAN 的度数为( )A .52°B .50°C .58°D .64°【答案】A 【分析】先根据作图可知DE 和FG 分别垂直平分AB 和AC ,再利用线段的垂直平分线的性质得到①B =①BAM ,①C =①CAN ,即可得到①MAN 的度数. 【详解】解:由作图可知,DE 和FG 分别垂直平分AB 和AC ,①MB =MA ,NA =NC ,①①B =①MAB ,①C =①NAC =116°, 在①ABC 中,BAC ∠=, ①①B +①C =180°−①BAC =64°, 即①MAB +①NAC =64°,则①MAN =①BAC −(①MAB +①NAC )=52°. 故选A . 【点睛】此题主要考查线段的垂直平分线的性质以及三角形内角和定理.解题时注意:线段的垂直平分线上的点到线段的两个端点的距离相等.5.(2021·陕西西安·交大附中分校)如图,①ABC 是①O 的内接三角形,AB =AC .BO 的延长线交AC 于点D .若①ABD =23°.则①A 的度数为( )A .23°B .32°C .46°D .60°【答案】C 【分析】延长BD 交O 于点E ,连接AE ,由圆周角定理可得90BAE ∠=︒,继而解得67AEB ∠=︒,根据等腰三角形的性质和三角形内角和定理解题即可. 【详解】解:延长BD 交O 于点E ,连接AE ,则90BAE ∠=︒23ABD ∠=︒9067AEB ABD ∴∠=︒-∠=︒67ACB AEB ∴∠=∠=︒AB AC =567ABC ACB ∴∠=∠=︒18046BAC ABC ACB ∴∠=︒-∠-∠=︒ 故选:C . 【点睛】本题考查三角形的外接圆与圆心、圆周角定理、直径所对的圆周角是90°、等腰三角形、三角形的内角和定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.6.(2021·浙江)如图,直线////a b c ,等腰直角ABC 的三个顶点分别在直线a ,b ,c 上(A 为直角顶点),若120∠=︒,则①2的度数为( )A .15°B .20°C .25°D .30°【答案】C 【分析】利用平行线的性质可以得到1320∠=∠=︒,由ABC 是等腰直角三角形可得到45ABC ∠=︒,再利用角的等量关系列式计算即可. 【详解】解:如图所示建立3∠①////a b c ①1320∠=∠=︒①ABC 是等腰直角三角形 ①45ABC ∠=︒①23452025ABC =-=︒-︒=︒∠∠∠ 故答案选:C 【点睛】本题主要考查了平行线的性质,等腰直角三角形的性质,利用平行线的性质进行角度等量代换是解题的关键.7.(2021·湖北随州·九年级一模)如图,PA、PB分别是①O的切线,A、B为切点,AC是①O的直径,已知①BAC=35°,①P的度数为()A.35°B.45°C.65°D.70°【答案】D【分析】由PA与PB都为圆的切线,根据切线的性质得到OA与AP垂直,OB与BP垂直,可得出①OAP与①OBP都为直角,又OA=OB,根据等边对等角可得①ABO与①BAC相等,由①BAC 的度数求出①ABO的度数,进而利用三角形的内角和定理求出①AOB的度数,在四边形APBO中,利用四边形的内角和定理即可求出①P的度数;【详解】①PA,PB分别是圆的切线①OA①AP,OB①BP,①①OAP=①OBP=90°,① OA=OB,①BAC=35°,① ①ABO=①BAC=35°,①①AOB=180°-35°-35°=110°,在四边形APBO中,①OAP=①OBP=90°,①AOB=110°,则① P=360°-(①OAP+①OBP+①AOB)=70°,故选:D.【点睛】此题考查了切线的性质,等腰三角形的性质,三角形及四边形的内角和定理,熟练掌握切线的性质是解本题的关键;∠=︒,则①2 8.(2021·全国)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若120的度数是()A.15°B.20°C.25°D.40°【答案】C【分析】利用平行线的性质求得①3的度数,即可求得①2的度数.【详解】①AD①BC,①①3=①1=20︒,①①DEF是等腰直角三角形,①①EDF=45︒,①①2=45︒-①3=25︒,故选:C.【点睛】本题考查了平行线的性质,等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题.9.(2021·沙坪坝区·重庆八中九年级)如图,已知AB①CD,AD=CD,①1=40°,则①2的度数为()A.60°B.65°C.70°D.75°【答案】C【分析】由等腰三角形的性质可求①ACD=70°,由平行线的性质可求解.【详解】①AD=CD,①1=40°,①①ACD=70°,①AB①CD,①①2=①ACD=70°,故选:C.7【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题.10.(2021·河南九年级二模)如图,在①ABC中,AB=AC,AE平分①BAC,DE垂直平分AB,连接CE,①B=70°.则①BCE的度数为()A.55°B.50°C.40°D.35°【答案】B【分析】连接BE,根据等腰三角形性质求出EB=EC,根据线段垂直平分线性质求出AE=BE,根据等边对等角求出①BAE=①EBA、①BCE=①EBC,即可求出答案.【详解】解:如图,连接BE,①AB=AC,AE平分①BAC,①EB=EC,①①EBC=①ECB,①①ABC=70°,AC=AB,①①ACB=①ABC=70°,①①BAC=180°﹣①ABC﹣①ACB=40°,①AE平分①BAC,①①BAE=20°,①DE垂直平分AB,①AE=EB,①①ABE=①BAE=20°,①①BCE=①EBC=①ABC﹣①ABE=70°﹣20°=50°,故选B.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质和三角形内角和定理等知识点,能求出①BAE=①EBA和①BCE=①EBC是解此题的关键.二、填空题11.(2021·辽宁九年级)AD是等腰三角形ABC的高,BC=2AD,则①BAC的度数是_____.【答案】90°或75°或15°【分析】可以分别从若BC是底边,即AB=AC,与若BC是腰,即BC=BA,①点D在BC边上,①若点D在CB的延长线上去分析,根据等腰三角形的性质与直角三角形的性质,即可求得答案.【详解】解:①AD是BC边上的高线,若BC是底边,即AB=AC,如图(1)所示,①BD=DC,AD①BC,①BAD=①CAD①AD=BD①①B=①BAD=45°①①BAC=2①BAD=90°若BC是腰BC=BA,①若点D在BC边上,如图(2)所示,则在Rt①BAD中,①BA=2AD,①①B=30°,①①BAC=75°;①若点D在CB的延长线上,如图(3)所示,类似地,得:①DBA=30°,则:①ABC=150°,①①BAC=15°.综上:①BAC的度数为90°,75°,15°.912.(2021·华中科技大学附属中学)如图,将Rt ABC ∆绕直角顶点C 逆时针旋转50︒,使顶点A 的对应点D 落在边AB 上,点B 的对应点E 与点D 的连线交BC 于点F ,则CFE ∠的度数为_______︒.【答案】105. 【分析】将Rt ABC ∆绕直角顶点C 逆时针旋转50︒得到Rt DEC ∆,可得旋转角=50DCA ECB ∠=∠︒,由CA =CD ,可求65A CDA ∠=∠=︒,由旋转性质①EDC =①A=65°,可求①FCD =90°-①ACD =90°-50°=40°,由外角性质=105CFE FCD CDF ∠∠+∠=︒. 【详解】解:将Rt ABC ∆绕直角顶点C 逆时针旋转50︒得到Rt DEC ∆, ①旋转角=50DCA ECB ∠=∠︒, ①CA =CD , ①()1180652A CDA DCA ∠=∠=︒-∠=︒, ①①EDC =①A=65°,①①FCD =90°-①ACD =90°-50°=40°,①=4065105CFE FCD CDF ∠∠+∠=︒+︒=︒, 故答案为:105.【点睛】本题考查旋转变换,旋转角,等腰三角形的性质,三角形内角和,互余角计算,三角形外角性质,掌握旋转变换性质,等腰三角形的性质,三角形内角和,互余角计算,三角形外角性11质,能从图中找到旋转角是解题关键.13.(2021·苏州高新区第二中学九年级二模)如图,在ABC ∆中,90,BAC ∠=︒点D 在BC 上,BD BA =,点E 在BC 的延长线上,CA CE =,连接AE ,则DAE ∠的度数为_____________.【答案】45 【分析】利用余角、等腰三角形和三角形外角的性质即可求出. 【详解】①BDA DAE AEC ∠=∠+∠,DAE DAC EAC ∠=∠+∠, ①BDA DAC EAC AEC ∠=∠+∠+∠. ①90DAC BAC BAD BAD ∠=∠-∠=︒-∠, ①90BDA BAD EAC AEC ∠=︒-∠+∠+∠. 根据题意可知=BDA BAD EAC AEC ∠=∠∠∠,. ①45BDA AEC ∠-∠=︒, ①=45DAE ∠︒. 故答案为:45. 【点睛】本题考查等腰三角形和三角形外角的性质以及余角.找出图形中角的等量关系是解答本题的关键.14.(2021·辽宁九年级)如图,在ABC 中,AB AC =,40B ∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E ,在点D 从B 向C 运动过程中,如果ADE 是等腰三角形,则BDA ∠的度数是____________【答案】110°或80° 【分析】根据等腰三角形的性质,先求出①BAC 的度数,然后分3种情况:①AD =AE 时,①AD=ED时,①当AE=DE时,分别求解,即可.【详解】①在①ABC中,AB=AC,①B=40°,①①B=①C=40°①①BAC=100°,①AD=AE时,①AED=①ADE=40°,①①DAE=100°,此时,点D与点B重合,不符合题意舍去,①AD=ED时,①DAE=①DEA,①①DAE=12(180°−40°)=70°,①①BAD=①BAC−①DAE=100°−70°=30°,①①BDA=180°−①B−①BAD=110°,①当AE=DE时,①DAE=①ADE=40°,①①BAD=100°−40°=60°,①①BDA=180°−40°−60°=80°,综上所述:①BDA的度数为110°或80°时,①ADE的形状是等腰三角形,故答案是:110°或80°【点睛】此题主要考查学生对等腰三角形的性质,三角形内角和定理的理解和掌握,解本题的关键是分类讨论,是一道基础题目.15.(2021·四川广安市·)规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“雅系特征值”,记作k,若2k3,则该等腰三角形的顶角为_____.【答案】45°.【分析】根据等腰三角形的性质得出①B=①C,根据三角形内角和定理和已知得出5①A=180°,求出即可.【详解】解:①①ABC中,AB=AC,①①B=①C,13①等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k=2k 3=, ①①A :①B :①C =2:3:3, 即①A=180°×22+3+3=45°, ①①A=45°. 故答案为:45°. 【点睛】本题考查三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出①A=180°×22+3+3是解题关键. 三、解答题16.(2021·厦门市松柏中学九年级)如图,在Rt ABC △中,①BAC =90°,将Rt ABC △绕直角顶点A 逆时针旋转一定角度后得到Rt ADE △,当点D 在边BC 上时,连接CE . (1)若旋转角为60°,求①ACB 的度数; (2)若AB =3,AC =4,求sin①DAC 的值.【答案】(1)30°;(2)725【分析】(1)由旋转的性质得出AD AB =,60BAD ∠=︒,进而由等腰三角形的性质及三角形的内角和得出60B ADB ∠=∠=︒,最后再由直角三角形的两个锐角互余即可求得答案;(2)由勾股定理求出5BC =,过点A 作AF BC ⊥于点F ,由三角形的面积求出AF 的长,进而可求出CD ,DE 的长,则可得出答案. 【详解】解:(1)将Rt ABC △绕直角顶点A 旋转一定角度后得到Rt ADE △,旋转角为60°,AD AB ∴=,60BAD ∠=︒,60B ADB ∴∠=∠=︒,90BAC ∠=︒,9030ACB B ∴∠=︒-∠=︒,①①ACB 的度数为30°;(2)90BAC ∠=︒,3AB =,4AC =,5BC ∴==,如图,过点A 作AF BC ⊥于点F ,∴1122ABCSAB AC BC AF =⋅=⋅, 341255AB AC AF BC ⋅⨯∴===,95BF ∴,=AD AB ,AF BC ⊥,95DF BF ∴==, 75CD BC BD ∴=-=, 设AC 与DE 相交于点K ,①将Rt ABC △绕直角顶点A 旋转一定角度后得到Rt ADE △,AD AB ∴=,AE AC =,90BAC DAE ∠=∠=︒,B ADB ∴∠=∠,ACE AEC ∠=∠,90BAC DAE ∠=∠=︒,①90BAD DAC CAE DAC ∠+∠=∠+∠=︒,BAD CAE ∴∠=∠,又1902B BAD ∠=︒-∠,1902ECA CAE ∠=︒-∠,ECA B ∴∠=∠,又①旋转,15①B ADE ∠=∠,5DE BC ==,ECA B ADE ∠=∠=∠,AKD EKC ∠=∠,DAC CED ∴∠=∠,90ACB B ∠+∠=︒,ECA B ∠=∠,90ACB ECA ∴∠+∠=︒,775sin sin 525CD DAC CED DE ∴∠=∠===.【点睛】本题考查了旋转的性质,勾股定理,等腰三角形的性质,锐角三角函数的定义,熟练掌握旋转的性质是解题的关键.17.(2021·湖北九年级)如图,ABC 中,点D 在BC 边上,且1902ADB CAD ∠=+∠°.(1)求证:AD AC =;(2)点E 在AB 边上,连接CE 交AD 于点F ,且CFD CAB ∠=∠,AE BD =, ①求ABC ∠的度数;①若8AB =,2DF AF =,直接写出EF 的长. 【答案】(1)见解析;(2)①60°;①23EF =. 【分析】(1)根据ADB ACB CAD ∠=∠+∠,1902ADB CAD ∠=+∠°可得C ADC ∠=∠,进而可得结论;(2)①过点D 作//DG CE 交AB 于点G ,根据“AAS”证出AEC ①DGA △,进而可得BDG 为等边三角形,可得答案;①过点D 作//DH AB 交CE 于点H ,可得FAE ①ACE ,根据比例式可得答案. 【详解】解:(1)①ADB ACB CAD ∠=∠+∠,1902ADB CAD ∠=+∠°,①1902ACB ADB CAD CAD ∠=∠-∠=-∠°,①180ADB CDA ∠+∠=°,①11180180909022CDA ADB CAD CAD ⎛⎫∠=-∠=-+∠=-∠ ⎪⎝⎭°°°°,①ACB ADC ∠=∠, ①AD AC =;(2)①过点D 作//DG CE 交AB 于点G ,①CFD CAB ∠=∠,CFD CAD ACE ∠=∠+∠,CAB CAD DAB ∠=∠+∠, ①ACE DAB ∠=∠,又①ACD ADC ∠=∠,ECB ACD ACE ∠=∠-∠,B ADC DAB ∠=∠-∠, ①ECB B ∠=∠, ①CE BE =, ①//DG CE , ①ECB B ∠=∠, ①DG BG =,①AEC DGA ∠=∠,AC DA =,ACE DAG ∠=∠, ①AEC ①DGA △(AAS), ①DG AE =, 又①AE BD =, ①DG BD BG ==, ①BDG 为等边三角形, ①60ABC ∠=︒; ①23EF =. 过点D 作//DH AB 交CE 于点H ,由①知EBC 和HDC △均为等边三角形,17设AE BD x ==,则8BE BC x ==-, ①82DH CD x ==-, ①//DH AB , ①AE AF DH FD =,即182x x =-, ①2x =,①ACE DAB ∠=∠, ①FAE ①ACE , ①EF AFAE AC=, ①3AC AD AF ==, ①13EF AE =,1233EF AE ==.【点睛】本题考查等腰三角形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,正确作出辅助线是解题关键,题目难度较大,综合性较强.18.(2021·江苏南通田家炳中学九年级)如图,已知点D 、E 在ABC 的边BC 上,AB AC =,AD AE =.(1)求证:BD CE =;(2)若AD BD DE CE ===,求BAE ∠的度数.【答案】(1)证明见解析;(2)90. 【分析】(1)作AF BC ⊥于点F ,利用等腰三角形三线合一的性质得到BF CF =,DF EF =,相减后即可得到正确的结论;(2)根据等边三角形的判定得到ADE 是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解. 【详解】(1)证明:如图,过点A 作AF BC ⊥于F .AB AC =,AD AE =,∴BF CF =,DF EF =, ∴BF DF CF EF -=-, ∴BD CE =.(2)AD DE AE ==,∴ADE 是等边三角形, ∴60DAE ADE ∠=∠=,AD BD =,∴DAB DBA ∠=∠, ∴1302DAB ADE ∠=∠=, ∴603090BAE DAB DAE ∠=∠+∠=+=.答:BAE ∠的度数为:90. 【点睛】本题考查了等腰三角形和等边三角形的性质,熟练掌握等腰三角形三线合一的性质是本题的关键.19.(2021·福建九年级)如图,已知等腰三角形ABC 的顶角108A ∠=︒.(1)在BC 上作一点D ,使AD CD =(要求:尺规作图,保留作图痕迹,不必写作法和证明).(2)直接写出BAD ∠的度数. 【答案】(1)见解析;(2)72° 【分析】(1)根据线段垂直平分线的性质即可在BC 上作一点D ,使AD=CD ; (2)结合(1)根据三角形内角和及等腰三角形的性质求出C ∠及DAC ∠,所以BAD BAC DAC ∠=∠-∠问题得解.【详解】19解:(1)如图,点D 即为所求;(2)连接AD ,①AB AC =,108A ∠=︒, ①36B C ∠==︒, 由(1)得:AD CD =, ①36DAC C ∠=∠=︒,1083672BAD BAC DAC ∠=∠-∠=︒-︒=︒.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理,根据图形正确找到角之间的关系是解题的关键.20.(2021·湖南湘西·)如图,在ABC ∆中,点D 在AB 边上,CB CD =,将边CA 绕点C 旋转到CE 的位置,使得ECA DCB ∠=∠,连接DE 与AC 交于点F ,且70B ∠=︒,10A ∠=︒. (1)求证:AB ED =; (2)求AFE ∠的度数.【答案】(1)见详解;(2)50AFE ∠=︒ 【分析】(1)由题意易得ECD ACB ∠=∠,AC EC =,则有≌ACB ECD △△,然后问题可求证; (2)由(1)可得10E A ∠=∠=︒,然后可得40ECA DCB ∠=∠=︒,进而根据三角形外角的性质可进行求解. 【详解】(1)证明:①ECA DCB ∠=∠,①ECA ACD DCB ACD ∠+∠=∠+∠,即ECD ACB ∠=∠,①AC EC =,CB CD =, ①()ACB ECD SAS ≌, ①AB ED =;(2)解:①CB CD =,70B ∠=︒, ①70CDB B ∠=∠=︒,①根据三角形内角和可得180240BCD B ∠=︒-∠=︒, ①40ECA DCB ∠=∠=︒,由(1)可得≌ACB ECD △△, ①10A ∠=︒, ①10E A ∠=∠=︒,①50AFE E ACE ∠=∠+∠=︒. 【点睛】本题主要考查等腰三角形的性质及全等三角形的性质与判定,熟练掌握等腰三角形的性质及全等三角形的性质与判定是解题的关键.21.(2021·江苏九年级)如图,在四边形ABCD 中,①B =90°,AC 平分①DAB ,DE ①AC ,垂足为E ,且AE =AB . (1)求证:BC =DE ;(2)若①DAC =40°,求①CDE 的度数.【答案】(1)见解析;(2)20° 【分析】(1)根据ASA 证明①ABC ①①AED ,由全等三角形的性质即可求证;(2)根据①ABC ①①AED 可得AC =AD ,根据等腰三角形的性质即可解决问题. 【详解】证明:①DE ①AC ,①B =90°, ①①B =①AED =90°, ①AC 平分①DAB , ①①BAC =①EAD ,21 在①ABC 和①AED 中,BAC EADAB AE B AED∠∠⎧⎪⎨⎪∠∠⎩===,①①ABC ①①AED (ASA ),①BC =DE ;(2)①①ABC ①①AED ,①AC =AD ,①①ACD =①ADC ,①①DAC =40°,DE ①AC ,①①ACD =①ADC =70°,①ADE =50°,①①CDE =20°.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质,等腰三角形的判定与性质.22.(2021·浙江九年级二模)已知:如图,在五边形ABCDE 中,AB AE =,B E ∠=∠,BC ED =.(1)求证:ABC AED ≌△△.(2)当//AC DE ,40ADE ∠=︒时,求ACD ∠的度数.【答案】(1)见解析;(2)70︒【分析】(1)利用SAS 即可证明结论;(2)结合(1)可得AC =AD ,根据等腰三角形的性质即可求出①ACD 的度数.【详解】(1)证明:①AB AE =①B E ∠=∠①BC ED =①()ABC AED SAS ≌△△(2)①//AC DE ,40ADE ∠=︒①40CAD ADE ∠=∠=︒①ABC AED ≌△△①AC AD = ①()1180702ACD CAD ∠=︒-∠=︒ 【点睛】本题考查了全等三角形的判定与性质,解决本题的关键是利用边角边证明①ABC ①①AED . 23.(2021·温州市第十二中学九年级)已知:如图,点A 、B 、C 、D 在一条直线上,//FB EA 交EC 于H 点,EA FB =,AB CD =.(1)求证:ACE BDF ≌;(2)若CH BC =,50A ∠=︒,求D ∠的度数.【答案】(1)见解析;(2)80°【分析】(1)由//EA FB ,利用同位角相等可得EAC FBD ∠=∠.由AB CD =,利用等式性质可得AC BD =,可证()ACE BDF SAS ≌;(2)由//FB EA 可得=50EAC FBD ∠=∠︒,由CH BC =利用等角对等边,可求50HBC BHC ∠=∠=︒.利用三角形内角和可得80ECA ∠=︒.利用ACE BDF ≌性质,可得80ECA D ∠=∠=︒.【详解】(1)证明:①//EA FB ,①EAC FBD ∠=∠.①AB CD =,①AB BC CD BC +=+,即AC BD =,在ACE 和BDF 中,①AC BD EAC FBD EA FB =⎧⎪∠=∠⎨⎪=⎩,①()ACE BDF SAS ≌.23 (2)解://FB EA ,①=50EAC FBD ∠=∠︒,①CH BC =,①50HBC BHC ∠=∠=︒.①180505080ECA ∠=︒-︒-︒=︒.①ACE BDF ≌,①80ECA D ∠=∠=︒.【点睛】本题考查平行线性质,等腰三角形性质,三角形全等判定与性质,三角形内角和,掌握平行线性质,等腰三角形性质,三角形全等判定与性质,三角形内角和是解题关键.。
2022年中考数学几何模型之全等三角形的五种模型(讲+练)(解析版)
专题06 全等三角形的五种模型全等三角形的模型种类多,其中有关中点的模型与垂直模型在前面的专题已经很详细的讲解,这里就不再重复。
模型一、截长补短模型①截长:在较长的线段上截取另外两条较短的线段。
如图所示,在BF 上截取BM=DF ,易证△BMC△△DFC (SAS ),则MC=FC=FG ,△BCM=△DCF , 可得△MCF 为等腰直角三角形,又可证△CFE=45°,△CFG=90°,△CFG=△MCF ,FG△CM ,可得四边形CGFM 为平行四边形,则CG=MF ,于是BF=BM+MF=DF+CG.②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。
如图所示,延长GC 至N ,使CN=DF ,易证△CDF△△BCN (SAS ), 可得CF=FG=BN ,△DFC=△BNC=135°,又知△FGC=45°,可证BN△FG ,于是四边形BFGN 为平行四边形,得BF=NG , 所以BF=NG=NC+CG=DF+CG.例1.如图,△ABC 中,△B =2△A ,△ACB 的平分线CD 交AB 于点D ,已知AC =16,BC =9,则BD 的长为( )A .6B .7C .8D .9【答案】.B 【详解】解:如图,在CA 上截取,CN CB = 连接,DN CD 平分,ACB ∠ ,BCD NCD ∴∠=∠,CD CD = (),CBD CND SAS ∴≌ ,,,BD ND B CND CB CN ∴=∠=∠=9,16,BC AC == 9,7,CN AN AC CN ∴==-=,CND NDA A ∠=∠+∠ ,B NDA A ∴∠=∠+∠2,B A ∠=∠ ,A NDA ∴∠=∠,ND NA ∴= 7.BD AN ∴== 故选:.B【变式训练1】如图,在△ABC 中,AB =BC ,△ABC =60°,线段AC 与AD 关于直线AP 对称,E 是线段BD 与直线AP 的交点.(1)若△DAE =15°,求证:△ABD 是等腰直角三角形;(2)连CE ,求证:BE =AE +CE .【答案】(1)见解析;(2)见解析【详解】证明:(1)△在△ABC 中,AB =BC ,△ABC =60°,△△ABC 是等边三角形, △AC =AB =BC ,△BAC =△ABC =△ACB =60°,△线段AC 与AD 关于直线AP 对称,△△CAE =△DAE =15°,AD =AC ,△△BAE =△BAC +△CAE =75°,△△BAD =90°,△AB =AC =AD ,△△ABD 是等腰直角三角形; (2)在BE 上取点F ,使BF =CE ,连接AF ,△线段AC 与AD 关于直线AP 对称,△△ACE =△ADE ,AD =AC ,△AD =AC =AB ,△△ADB =△ABD=∠ACE ,在△ABF 与△ACE 中,AC AB ACE ABF CE BF =⎧⎪∠=∠⎨⎪=⎩,△△ABF △△ACE (SAS ),△AF =AE ,△AD =AB ,△△D =△ABD ,又△CAE =△DAE , △()()111806022AEB D DAE D ABD DAC BAC ∠=∠+∠=∠+∠+∠=︒-∠=︒, △在△AFE 中,AF =AE ,△AEF =60°,△△AFE 是等边三角形,△AF =FE ,△BE =BF +FE =CE +AE .【变式训练2】如图,在△ABC 中,△ACB=△ABC=40o ,BD 是△ABC 的角平分线,延长BD 至点E ,使得DE=DA ,则△ECA=________.【答案】40°【详解】解:在BC 上截取BF=AB ,连接DF ,△ACB=△ABC=40°,BD 是△ABC 的角平分线,∴△A=100°,△ABD=△DBC=20°,∴△ADB=60°,△BDC=120°,BD=BD ,∴△ABD△△FBD ,DE=DA ,∴ DF=AD=DE ,△BDF=△FDC=△EDC=60°,△A=△DFB=100°,DC=DC ,∴△DEC△△DFC ,∴1006040DCB DCE DFC FDC ∠=∠=∠-∠=︒-︒=︒;故答案为40°.【变式训练3】已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,△四边形ABCD 是正方形,△AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB ADABG ADN BG DN=⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒,90BAD ∠=︒,△45DAN BAM BAD MAN ∠+∠=∠-∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN 与AMG 中,AM AMGAM NAM AN AG=⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又△BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,△四边形ABCD 是正方形,△AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,△GAB GAD DAN GAD ∠+∠=∠+∠,△90GAN BAD ∠=∠=︒, 又45MAN ∠=︒,45GAM GAN MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又△BM BG GM -=,BG DN =,△BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,△四边形ABCD 是正方形,△AB AD BC CD ===,90ABM ADG BAD ∠=∠=∠=︒,//AB CD ,在ABM 与ADG 中,AB AD ABM ADG BM DG =⎧⎪∠=∠⎨⎪=⎩, ()ABM ADG SAS ∴△≌△,AM AG ∴=,MAB GAD ∠=∠,△MAB BAG GAD BAG ∠+∠=∠+∠,△90MAG BAD ∠=∠=︒,又45MAN ∠=︒,45GAN MAG MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AGN 中,AM AG MAN GAN AN AN =⎧⎪∠=∠⎨⎪=⎩, ()AMN AGN SAS ∴△≌△,10MN GN ∴==,设DG BM x ==,△6CN =,8MC =,△1064DC DG GN CN x x =+-=+-=+,8BC MC BM x =-=-,△DC BC =,△48x x +=-,解得:2x =,△6AB BC CD CN ====,△//AB CD ,△BAP CNP ∠=∠,在ABP △与NCP 中,APB NPC BAP CNP AB CN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABP NCP AAS ∴△≌△,132CP BP BC ∴===,△CP 的长为3.模型二、平移全等模型例.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB // DE ,AB = DE ,△A = △D .(1)求证:ABC DEF ≌;(2)若BF = 11,EC = 5,求BE 的长.【答案】(1)见解析;(2)BE =3.【详解】(1)证明:△AB△DE ,△△ABC =△DEF ,在△ABC 和△DEF 中A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩△△ABC△△DEF (ASA ); (2)解:△△ABC△△DEF ,△BC =EF ,△BC -EC =EF -EC ,即BE =CF ,△BF =11,EC =5,△BF -EC =6.△BE +CF =6.△BE =3.【变式训练1】如图,AB//CD ,AB=CD 点E 、F 在BC 上,且BF=CE .(1)求证:△ABE△△DCF (2)求证:AE//DF .【答案】(1)见详解;(2)见详解【详解】证明:(1)△AB △CD ,△B C ∠=∠,△BF =CE ,△CF EF BE EF +=+,△BE CF =,△AB =CD ,△ABE DCF △≌△(SAS );(2)由(1)可得:ABE DCF △≌△,△DFC AEB ∠=∠,△180,180DFC EFD AEF AEB ∠+∠=︒∠+∠=︒,△EFD AEF ∠=∠,△//AE DF .【变式训练2】如图,已知点C 是AB 的中点,CD △BE ,且CD BE =.(1)求证:△ACD△△CBE .(2)若87,32A D ∠=︒∠=︒,求△B 的度数.【答案】(1)见解析;(2)61【分析】(1)根据SAS 证明△ACD△△CBE ;(2)根据三角形内角和定理求得△ACD ,再根据三角形全等的性质得到△B=△ACD .【详解】(1)△C 是AB 的中点,△AC =CB ,△CD//BE ,△ACD CBE ∠=∠,在△ACD 和△CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,△ACD CBE ∆≅∆;(2)△8732A D ︒︒∠=∠=,,△180180873261ACD A D ︒︒︒︒︒∠=-∠-∠=--=,又△ACD CBE ∆≅∆,△61B ACD ︒∠=∠=.模型三、对称全等模型例.如图,已知△C =△F =90°,AC =DF ,AE =DB ,BC 与EF 交于点O ,(1)求证:Rt△ABC△Rt△DEF ;(2)若△A =51°,求△BOF 的度数.【答案】(1)见解析;(2)78°【详解】(1)证明:△AE =DB ,△AE +EB =DB +EB ,即AB =DE .又△△C=△F=90°,AC=DF,△Rt△ABC△Rt△DEF.(2)△△C=90°,△A=51°,△△ABC=△C-△A=90°-51°=39°.由(1)知Rt△ABC△Rt△DEF,△△ABC=△DEF.△△DEF=39°.△△BOF=△ABC+△BEF=39°+39°=78°.【变式训练1】如图,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90º,∠B =∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有()A.4个B.3个C.2个D.1个【解答】B【解析】∵∠E=∠F=90º,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴BE=CF,∵∠BAE=∠CAF,∠BAE-∠BAC=∠CAF-∠BAC,∴∠1=∠2,∴△ABE≌△ACF,∴∠B=∠C,AB=AC,又∵∠BAC=∠CAB,∴△ACN≌△ABM,④CD=DN不能证明成立,∴共有3个结论正确.【变式训练2】如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③【解答】D【解析】∵BE⊥AC于E,CF⊥AB于F,∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(第一个正确),∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(第二个正确),∴DF=DE,连接AD,∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD =∠EAD ,即点D 在∠BAC 的平分线上(第三个正确).模型四、旋转全等模型例.如图,△ABC 和△ADE 中,AB =AC ,AD =AE ,△BAC =△DAE ,且点B ,D ,E 在同一条直线上,若△CAE +△ACE +△ADE =130°,则△ADE 的度数为( )A .50°B .65°C .70°D .75°【答案】B【详解】BAC DAE ∠=∠BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE ∴∠=∠,AB AC AD AE == ∴在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴BAD ≌CAE ( SAS ) ABD ACE ∴∠=∠130CAE ACE ADE ∠+∠+∠=︒130ABD BAD ADE ∴∠+∠+∠=︒ADE ABD BAD ∠=∠+∠2130ADE ∴∠=︒65ADE ∴∠=︒故选:B .【变式训练1】如图,将正方形ABCD 绕点A 逆时针旋转60°得到正方形AB ′C ′D ′,线段CD ,B ′C ′交于点E ,若DE =1,则正方形的边长等于_____.【答案】2+【详解】解:连接AC 、AE ,延长C ′B ′交AC 于点F ,过点F 作GF △DC 于G , 由题意得,AD =AB ′,△D =△AB ′E ,△B ′AB =60°,△CAB =△GCB ′=45°,△△DAB ′=30°,△CAB ′=15°在RT △ADE 与RT △AB ′E 中AD AB AE AE ='⎧⎨=⎩,△RT △ADE △RT △AB ′E (HL ), △△DAE =△B′AE =12△DAB ′=15°,DE=EB ′=1,△△B′AE=△CAB ′在△AB′E 和△AB′F 中==B AE CAB AB AB EB A FB A ∠'=∠'⎧⎪''⎨⎪∠'∠'⎩ ,△△AB′E △△AB′F (ASA ),△EB′=BF=1 △△DEB ′=360°-△D -△EB A '-∠DAB′=150°,△△GEF =30°在RT △EGF 中,EG =EF ×cos △GEFDF =EF ×sin △GEF =2×12=1 在△CGF 中,△GCF =45°,△CG=GF =1,△DC =DE+EG+GC所以正方形的边长为【变式训练1】如图,,,,AC BC DC EC AC BC DC EC ⊥⊥==, 求证:(1)ACE BCD ∆≅∆;(2)AE BD ⊥.【答案】(1)见解析;(2)见解析【详解】证明:()1AC BC ⊥,DC EC ⊥,90ACB DCE ∴∠=∠=︒, ACB ACD DCE ACD ∴∠+∠=∠+∠,∴∠=∠DCB ECA ,在DCB ∆和ECA ∆中,AC BC DCB ECA CD CE =⎧⎪∠=∠⎨⎪=⎩,()DCB ECA SAS ∴∆≅∆;()2如图,设AC 交BD 于N ,AE 交BD 于O ,∆≅∆DCB ECA ,A B ∴∠=∠,∠=∠AND BNC ,90∠+∠=︒B BNC , 90∴∠+∠=︒A AND ,90∴∠=︒AON ,AE BD ∴⊥.【变式训练2】如图,AB AC =,AE AD =,CAB EAD α∠=∠=.(1)求证:AEC ADB ≅△△;(2)若90α=︒,试判断BD 与CE的数量及位置关系并证明;(3)若CAB EAD α∠=∠=,求CFA ∠的度数.【答案】(1)见详解;(2)BD=CE ,BD△CE ;(3)902α︒-【详解】(1)△△CAB=△EAD△△CAB+△BAE=△EAD+△BAE ,△ △CAE=△BAD ,△AB=AC ,AE=AD 在△AEC 和△ADB 中AB AC CAE BAD AE AD =⎧⎪⎨⎪⎩∠=∠=△ △AEC△△ADB (SAS ) (2)CE=BD 且CE△BD ,证明如下:将直线CE 与AB 的交点记为点O ,由(1)可知△AEC△△ADB ,△ CE=BD , △ACE=△ABD ,△△BOF=△AOC ,△α=90°,△ △BFO=△CAB=△α=90°,△ CE△BD .(3)过A 分别做AM△CE ,AN△BD 由(1)知△AEC△△ADB ,△两个三角形面积相等故AM·CE=AN·BD△AM=AN△AF 平分△DFC由(2)可知△BFC=△BAC=α△△DFC=180°-α△△CFA=12△DFC=902α︒- 【变式训练3】如图①,在△ABC 中,△A =90°,AB =AC1,BC =2D 、E 分别在边AB 、AC 上,且AD =AE =1,DE.现将△ADE 绕点A 顺时针方向旋转,旋转角为α(0°<α<180°).如图②,连接CE 、BD 、CD .(1)如图②,求证:CE =BD ;(2)利用备用图进行探究,在旋转的过程中CE 所在的直线能否垂直平分BD?如果能,请猜想α的度数,画出图形,并将你的猜想作为条件,给出证明;如果不能,请说明理由; (3)在旋转的过程中,当△BCD 的面积最大时,α= °.(直接写出答案即可)【答案】(1)证明见解析;(2)能,α=90°;(3)135α=︒.【详解】(1)证明:如图2中,根据题意:AB AC =,AD AE =,90CAB EAD ∠=∠=︒, 90CAE BAE BAD BAE ∠+∠=∠+∠=︒,CAE BAD ∴∠=∠,在ACE ∆和ABD ∆中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,()ACE ABD SAS ∴∆≅∆,CE BD ∴=;(2)能,若CE 所在直线垂直平分BD ,则CD =BC ,△AB =AC+1,BC =2,AD =AE =1,DE△1122AC AD CD BC +=+=== △AC +AD =CD ,即A 、C 、D 在同一条直线上,此时α=90°,如下图,CE 的延长线与BD 交于F ,与(1)同理可得()ACE ABD SAS ∆≅∆,ACE ABD ∴∠=∠,90ACE AEC ∠+∠=︒,且AEC FEB ∠=∠,90ABD FEB ∴∠+∠=︒,90EFB ∴∠=︒,CF BD ∴⊥,BC CD =,CF ∴是线段BD 的垂直平分线;(3)解:BCD ∆中,边BC 的长是定值,则BC 边上的高取最大值时BCD ∆的面积有最大值, ∴当点D 在线段BC 的垂直平分线上时,BCD ∆的面积取得最大值,如图中:1AB AC ==,1AD AE ==,90CAB EAD ∠=∠=︒,DG BC ⊥于G ,12AG BC ∴==45GAB ∠=︒,1DG AG AD ∴=+==,18045135DAB ∠=︒-︒=︒, BCD ∴∆的面积的最大值为:1122BC DG ⋅==135α=︒. 模型五、手拉手全等模型例.如图,B ,,三点在一条直线上,和均为等边三角形,与交于点,与交于点.(1)求证:;(2)若把绕点任意旋转一个角度,(1)中的结论还成立C E ABC ∆DCE ∆BD AC M AE CDN AE BD =DCE ∆C吗?请说明理由.【答案】(1)见解析(2)成立,理由见解析.【详解】解:(1)证明:如图1中,与都是等边三角形,,,,,,,即.在和中,,(SAS)..即AE=BD ,(2)成立;理由如下:如图2中,、均为等边三角形, ,,,,即,在和中,,,.【变式训练1】如图,△OAB 和△OCD 中,OA =OB ,OC =OD ,△AOB =△COD =90°,AC 、BD 交于点M .(1) 如图1,求证:AC=BD ,判断AC 与BD 的位置关系并说明理由;(2) 如图2,△AOB =△COD =60°时,△AMD 的度数为___________.【答案】(1)答案见解析;(2)120.ABC ∆DCE∆AC BC ∴=CD CE =60ACB DCE ∠=∠=︒180ACB ACD DCE ∠+∠+∠=60ACD ∴∠=︒ACB ACD ACD DCE ∠+∠=∠+∠BCD ACE ∠=∠BCD ∆ACE ∆BC AC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩BCD ACE ∴∆≅∆BD AE ∴=AE BD =ABC ∆DCE ∆BC AC ∴=CD CE =60BCA DCE ∠=∠=︒BCA ACD DCE ACD ∴∠+∠=∠+∠BCD ACE ∠=∠ACE ∆BCD ∆AC BC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩()ACE BCD SAS ∴∆≅∆AE BD ∴=【详解】()190AOB COD ∠∠==,.AOB AOD COD AOD ∠+∠∠+∠= 即:.BOD AOC ∠∠=,,OA OB OC OD ==易证.BOD AOC ≌.OBD OAC ∴∠=∠ AC=BD△,AMD ABM BAM ∠=∠+∠.BAM BAO OAC ∠=∠+∠△.AMD ABM BAO OBD OBA BAO ∠=∠+∠+∠=∠+∠△90.AOB ∠= △90.OBA BAO ∠+∠=90.AMD ∴∠= △AC△BD(2)同理可得. .AMD OBA BAO ∠=∠+∠60.AOB ∠= 120.OBA BAO ∠+∠= 120.AMD ∴∠= 故答案为: 120.【变式训练2】如图,将两块含45°角的大小不同的直角三角板△COD 和△AOB 如图①摆放,连结AC ,BD .(1)如图①,猜想线段AC 与BD 存在怎样的数量关系和位置关系,请写出结论并证明;(2)将图①中的△COD 绕点O 顺时针旋转一定的角度(如图②),连结AC ,BD ,其他条件不变,线段AC 与BD 存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD 绕点O 逆时针旋转一定的角度(如图③),连结AC ,BD ,其他条件不变,线段AC 与BD 存在怎样的关系?请直接写出结论.【答案】(1)AC=BD ,AC△BD ,证明见解析;(2)存在,AC=BD ,AC△BD ,证明见解析;(3)AC=BD ,AC△BD【详解】(1)AC=BD ,AC△BD , 证明:延长BD 交AC 于点E .△△COD 和△AOB 均为等腰直角三角形,△OC=OD ,OA=OB ,△COA=△BOD=90º,△△AOC△△BOD (SAS ),△AC=BD ,△△OAC=△OBD ,△△ADE=△BDO ,△△AED=△BOD=90º,△AC△BD ;(2)存在,证明:延长BD 交AC 于点F ,交AO 于点G .△△COD 和△AOB 均为等腰直角三角形,△OC=OD ,OA=OB ,△DOC=BOA=90º,△△AOC=△DOC -△DOA ,△BOD=△BOA -△DOA ,△△AOC=△BOD ,△△AOC△△BOD (SAS ),△AC=BD ,△OAC=△OBD ,△△AGF=△BGO ,△△AFG=△BOG=90º,△AC△BD ;(3)AC=BD ,AC△BD .证明:BD 交AC 于点H ,AO 于M ,△△COD 和△AOB 均为等腰直角三角形,△OC=OD ,OA=OB ,△DOC=BOA=90º,△△AOC=△DOC+△DOA ,△BOD=△BOA+△DOA ,△△AOC=△BOD ,△△AOC△△BOD (SAS ),△AC=BD ,△OAC=△OBD ,△△AMH=△BMO ,△△AHM=△BOH=90º,△AC△BD .【变式训练3】已知:如图1,在和中,,,.(1)证明.(2)如图2,连接和,,与分别交于点和,,求的度数.(3)在(2)的条件下,若,请直接写出的度数.【答案】(1)证明见解析;(2)△ACE =62°;(3)△CBA =6°.【详解】解:(1)△△CAE =△DAB ,△△CAE +△CAD =△DAB +△CAD ,即△CAB =△EAD ,在△ABC 和△ADE 中,△△ABC△△ADE (AAS ),ABC ∆ADE ∆C E ∠=∠CAE DAB ∠=∠BC DE =ABC ADE ∆∆≌CE BD DE AD BC M N 56DMB ∠=︒ACE ∠CN EM =CBA∠C E CAB EAD BC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩(2)△△ABC△△ADE ,△△CBA=△EDA ,AC=AE ,在△MND 和△ANB 中,△△EDA +△MND+△DMB =,△CBA +△ANB +△DAB =,又△ △MND=△ANB ,△ △DAB=△DMB=,△△CAE =△DAB=,△AC=AE ,△△ACE =△AEC=,△△ACE =, (3)△CBA=,如图所示,连接AM ,,CN=EM,CA=EA,(SAS), AM=AN,,=即,由(2)可得:,=, △CAE =△DAB==-= .课后训练1.如图,已知AB AD =,BC DE =,且10CAD ∠=︒,25B D ∠=∠=︒,120EAB ∠=︒,则EGF ∠的度数为( )A .120︒B .135︒C .115︒D .125︒【答案】C 【详解】在△ABC 和△ADE 中AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩△ △ABC △△ADE (SAS )△△BAC =△DAE 180︒180︒56︒56︒1(18056)622︒︒︒-=62︒6︒NCA MEA ∠=∠∴NCA MEA ≅∴EAM CAN ∠=∠∴EAM CAM ∠-∠CAN CAM ∠-∠EAC MAN ∠=∠=56EAC MAN ︒∠=∠∴ANM ∠1(18056)622︒︒︒-=56︒∴CBA ANM DAB ∠=∠-∠62︒56︒6︒△△EAB =△BAC +△DAE +△CAD =120°△△BAC =△DAE ()112010552=⨯︒-︒=︒ △△BAF =△BAC +△CAD =65°△在△AFB 中,△AFB =180°-△B -△BAF =90°△△GFD =90°在△FGD 中,△EGF =△D +△GFD =115°故选:C2.如图,△ABC 中,E 在BC 上,D 在BA 上,过E 作EF△AB 于F ,△B =△1+△2,AB =CD ,BF =43,则AD 的长为________.【详解】在FA 上取一点T ,使得FT =BF ,连接ET ,在CB 上取一点K ,使得CK =ET ,连接DK . △EB =ET ,△△B =△ETB ,△△ETB =△1+△AET ,△B =△1+△2,△△AET =△2,△AE =CD ,ET =CK ,△△AET △△DCK (SAS ),△DK =AT ,△ATE =△DKC ,△△ETB =△DKB ,△△B =△DKB ,△DB =DK ,△BD =AT ,△AD =BT ,△BT =2BF =83,△AD =83,故答案为:83.3.如图,2A C ,BD 平分ABC ∠,10BC =,6AB =,则AD =_____.【答案】4【详解】解:(1)在BC 上截取BE =BA ,如图,△BD 平分△ABC ,△△ABD =△EBD ,在△ABD 和△BED 中,BE BA ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩,△△ABD △△EBD (SAS ),△DE =AD ,△BED =△A ,又△△A =2△C ,△△BED =△C +△EDC =2△C ,△△EDC =△C ,△ED =EC ,△EC =AD ,△BC =BE +EC =AB +AD ,△BC =10,AB =6,△AD =10﹣6=4;故答案为:4.4.如图,正方形ABCD ,将边CD 绕点D 顺逆时针旋转α(0°<α<90°),得到线段DE ,连接AE ,CE ,过点A 作AF △CE 交线段CE 的延长线于点F ,连接BF .(1)当AE =AB 时,求α的度数;(2)求证:△AEF =45°;(3)求证:AE △FB .【答案】(1)α=30°;(2)证明见解析;(3)证明见解析.【详解】解:(1) 在正方形ABCD 中,AB =AD =DC ,由旋转可知,DC =DE ,△AE =AB △AE =AD =DE△△AED 是等边三角形,△∠ADE =60°,△△ADC =90°,△α=△ADC -∠ADE =90°-60°=30°.(2)证明:在△CDE 中,DC =DE ,△△DCE =△DEC =180=9022αα--, 在△ADE 中,AD =ED ,△ADE =90°-α,△△DAE =△DEA =()18090=4522αα--+ △△AEC =△DEC +△DEA =90+45+22αα-=135°.△△AEF =45°,(3)证明:过点B 作BG //CF 与AF 的延长线交于点G ,过点B 作BH //GF 与CF 交于点H , 则四边形BGFH 是平行四边形,△AF △CE ,△平行四边形BGFH 是矩形,△△AFP =△ABC =90°,△APF =△BPC ,△△GAB =BCP ,在△ABG 和△CBH 中,GAB HCB BGA BHC AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABG △△CBH (AAS ),△BG =BH ,△矩形BGFH 是正方形,△△HFB =45°,由(2)可知:△AEF =45°,△△HFB =△AEF =45°,△AE△F B .5.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65º,求∠BDC的度数.【答案】(1)见解析;(2)50º【解析】(1)证明:∵∠BAC=∠EAD,∴∠BAC-∠EAC=∠EAD-∠EAC,即∠BAE =∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD,∴∠ABD=∠ACD;(2)∵∠BOC是△ABO和△DCO的外角,∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD +∠BDC,∴∠ABD+∠BAC=∠ACD+∠BDC,∵∠ABD=∠ACD,∴∠BAC=∠BDC,∵∠ACB=65º,AB=AC,∴∠ABC=∠ACB=65º ,∴∠BAC=180º-∠ABC-∠ACB=180º-65º-65º=50º ,∴∠BDC=∠BAC=50º.6.如图①,在△ABC中,△BAC=90°,AB=AC,点E在AC上(且不与点A、C重合),在△ABC 的外部作△CED,使△CED=90°,DE=CE,连接AD,分别以AB、AD为邻边作平行四边形ABFD,连接AF.(1)求证:EF=AE;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF、AE的数量关系,并证明你的结论.【答案】(1)见解析;(2)AF=,见解析.【详解】解:(1)如图,四边形ABFD是平行四边形,∴AB=DF,AB=AC,∴AC=DF,DE=EC∴AE=EF;(2)AF=,证明:连接EF,设DF交BC于K,四边形ABFD是平行四边形,∴AB//DF∴△DKE=△ABC=45°,∴△EKF=180°-△DKE=135°△ADE=180°-△EDC=180°-45°=135°,∴△EKF=△ADE,△DKC=△C,∴DK=DC ,DF=AB=AC,∴KF=AD在△EKF和△EDA中,EK DKEKF ADEKF AD=⎧⎪∠=∠⎨⎪=⎩,∴△EKF△△EDA(SAS)∴EF=EA, △KEF=△AED,∴△FEA=△BED=90°,∴△AEF是等腰直角三角形,AF=.7.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB =CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.【解答】(1)见解析;(2)见解析;(3)【解析】(1)证明,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)如图,过E作EM⊥AG,交AG于M,=AG•EM,∵S由(2)得△ACG≌△BCG,∴BG=AG=6,∴×6×EM,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM,∴M是AG的中点,∴AE=EG,∴BE=BG+EG=6+,在Rt△ECB中,∠EBC=30°,∴CE=BE=,∴AC=AE+EC.8.如图,在△ABC中,∠ABC=60°,点D,E分别为AB,BC上一点,BD=BE,连接DE,DC,AC=CD.(1)如图1,若AC=3,DE=2,求EC的长;(2)如图2,连接AE交DC于点F,点M为EC上一点,连接AM交DC于点N,若AE =AM,求证:2DE=MC;(3)在(2)的条件下,若∠ACB=45°,直接写出线段AD,MC,AC的等量关系.【解答】(1(2)见解析;(3【解析】(1)如图,过点C作CG⊥AB于G,∵AC=CD,∴AG=DG,设DG=a,∵BD=BE,∠ABC=60°,∴△BDE是等边三角形,∴BD=DE,∴BG=BD+DG+a,在Rt△BGC中,∠BCG=90°-∠ABC=30°,∴BC=2BG,CG=BG=6+a,在Rt△DGC中,CD=AC=3,根据勾股定理得,CG2+DG2=CD2,∴(6+a)2+a2=90,∴(舍),∴BC=EC+BE=EC+BD,∴EC+BD=2(BD+DG),∴EC=BD+2DG;(2)如图在MC上取一点P,使MP=DE,连接AP,∵△BDE是等边三角形,∴∠BED=60°,BE=DE,∴∠DEC=120°,BE=PM,∵AE=AM,∴∠AEM=∠AME,∴∠AEB=∠AMP,∴△ABE≌△APM(SAS),∴∠APM=∠ABC=60°,∴∠APC=120°=∠DEC,如图,过点M作AC的平行线交AP的延长线于Q,∴∠MPQ=∠APC=120°=∠DEC,∵AC=CD,∴∠ADC=∠DAC,∴∠CDE=180°-∠BDE-∠ADC=180°-60°-∠DAC=120°-∠DAC,在△ABC中,∠ACB=180°-∠ABC-∠DAC=120°-∠DAC=∠CDE,∵MQ∥AC,∴∠PMQ=∠ACB,∴∠PMQ=∠EDC,∴△MPQ≌△DEC(ASA),∴MQ=CD,∵AC=MQ,∴△APC≌△QPM(AAS),∴CP=MP,∴CM=MP+CP=2DE;(3)如图,在MC上取一点P,使PM=DE,由(2)知,MC=2CP=2DE,由(2)知,△ABE≌△APM,∴AB=AP,∵∠ABC=60°,∴△ABP是等边三角形,∴BP=AB,∵BE=BD,∴PE=AD,∴BC=BE+PE+CP=DE+PE+DE=2DE+AD=MC+AD,过点A作AH⊥BC于H,设BH=m,在Rt△ABH,在Rt△ACH中,∠ACB=45°,∴∠CAH=90°-∠ACB=45°=∠ACB,∴CH=AH,∵MC+AD=BC=BH+CH=,∴MC+AD=AC.。
全等三角形复习专题
全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。
全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。
如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。
二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。
2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。
3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。
4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。
5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。
三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。
如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。
四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。
2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。
3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。
4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。
5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。
全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。
全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。
动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。
将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。
专题训练(六) 锐角三角函数求值的六种方法讲解
专题训练(六) 锐角三角函数求值的六种方法讲解►方法一运用定义求锐角三角函数值1.在下列网格中,每个小正方形的边长均为1,点A,B,O都在格点上,则∠O的正弦值是________.图ZT-6-12.如图ZT-6-2所示,在Rt△ABC中,∠C=90°,AC=12,BC=5.(1)求AB的长;(2)求两个锐角的三角函数值.图ZT-6-2►方法二巧设参数求锐角三角函数值3.在Rt△ABC中,∠C=90°,若sin A=513,则cos A的值是()A.512B.813C.23D.12134.2017·铜仁如图ZT -6-3,在Rt △ABC 中,∠C =90°,D 是AB 的中点,ED ⊥AB 交AC 于点E.设∠A =α,且tan α=13,则tan 2α=________.图ZT -6-35.已知:如图ZT -6-4,在Rt △ABC 中,∠C =90°,tan A =12,求∠B 的正弦值、余弦值.图ZT -6-46.如图ZT -6-5,∠C =90°,∠DBC =30°,AB =BD ,根据此图求tan 15°的值.图ZT -6-5► 方法三 利用边角关系求锐角三角函数值7.如图ZT -6-6所示,在四边形ABCD 中,E ,F 分别是AB ,AD 的中点,若EF =2,BC =5,CD =3,则tan C 的值是( )图ZT -6-6A.34B.43C.35D.458.如图ZT -6-7所示,在△ABC 中,点D 在AC 上,DE ⊥BC ,垂足为E ,若AD =2DC ,AB =4DE ,则sin B 的值是( )图ZT -6-7A.12B.73C.3 77D.349.已知锐角三角形ABC 中,点D 在BC 的延长线上,连结AD ,若∠DAB =90°,∠ACB =2∠D ,AD =2,AC =32,根据题意画出示意图,并求出tan D 的值.►方法四利用等角求锐角三角函数值10.如图ZT-6-8所示,∠ACB=90°,DE⊥AB,垂足为E,AB=10,BC=6,求∠BDE的正弦值、余弦值、正切值.图ZT-6-811.如图ZT-6-9所示,在矩形ABCD中,AB=10,BC=8,E为AD边上一点,沿CE将△CDE折叠后,点D正好落在AB边上的点F处,求tan∠AFE的值.图ZT -6-9► 方法五 利用同角三角函数的关系求锐角三角函数值同角三角函数之间有如下关系:对于锐角α,有sin 2α+cos 2α=1,tan α=sin αcos α. 12.已知在Rt △ABC 中,∠C =90°,cos B =23,则sin B 的值为( )A.2 53B.53C.2 55D.5513.已知α为锐角,且cos α=13,求tan α+cos α1+sin α的值.► 方法六 利用互余两角三角函数的关系求锐角三角函数值 若∠A +∠B =90°,则sin A =cos B ,cos A =sin B.对于锐角α,sin α随α的增大而增大,cos α随α的增大而减小,tan α随α的增大而增大.14.已知0°<∠A <90°,那么cos (90°-∠A)等于( ) A .cos A B .sin (90°+∠A) C .sin A D .sin (90°-∠A)15.在△ABC 中,∠C =90°,tan A =3,求cos B 的值.16.在△ABC 中,(1)若∠C =90°,cos A =1213,求sin B 的值;(2)若∠A=35°,∠B=65°,试比较cos A与sin B的大小,并说明理由.教师详解详析1.[答案]10 10[解析] 如图,过点C作CD⊥OB于点D,根据正方形的性质可知点D为小正方形对角线的中点,∴CD=22,由勾股定理得OC=22+12=5,∴在Rt△OCD中,sin O=CDOC=225=1010.2.解:(1)AB=AC2+BC2=13.(2)sin A=BCAB=513,cos A=ACAB=1213,tan A=BCAC=512;sin B=ACAB=1213,cos B=BCAB=513,tan B=ACBC=125.3.D4.[答案]34[解析] 连结BE.∵D是AB的中点,ED⊥AB,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA =∠A =α,∴∠BEC =2α.∵tan α=13,设DE =a ,则AD =3a ,∴AE =10a ,AB =6a ,∴BC =3 10a 5,AC =9 10a 5,∴CE =9 10a 5-10a =4 10a 5,∴tan2α=BCCE =3 10a 54 10a5=34. 5.解:∵∠C =90°,tan A =BC AC =12, ∴设BC =x ,AC =2x , ∴AB =5x ,∴sin B =AC AB =2x 5x =2 55,cos B =BC AB =x 5x =55.6.解:设AB =BD =2x . ∵AB =BD ,∠DBC =30°, ∴∠A =12∠DBC =15°.∵∠DBC =30°,∠C =90°, ∴CD =x ,由勾股定理可求出BC =3x , ∴AC =AB +BC =2x +3x , ∴tan15°=CDAC =2- 3.7.[解析] B 连结BD .∵E ,F 分别是AB ,AD 的中点, ∴BD =2EF =4.∵BC =5,CD =3,BD =4, ∴BD 2+CD 2=BC 2,∴△BCD 是直角三角形,且∠BDC =90°, ∴tan C =BD CD =43.8.[解析] D 如图,过点A 作AF ⊥BC 于点F ,则有DE ∥AF . ∵AD =2DC ,∴DC ∶AC =1∶3=DE ∶AF , ∴AF =3DE . ∵AB =4DE , ∴sin B =AF AB =3DE 4DE =34.9.解:示意图如图所示.∵∠ACB =∠D +∠CAD ,∠ACB =2∠D , ∴∠CAD =∠D , ∴AC =DC .∵∠BAD =90°,∴∠B +∠D =90°.∵∠BAC +∠CAD =90°,∴∠B =∠BAC ,∴BC =AC ,∴BD =2AC .∵AC =32, ∴BD =3.在Rt △BAD 中,∵AD =2,BD =3,∴AB =5,∴tan D =AB AD =52. 10.解:∵在Rt △ABC 中,AB =10,BC =6, ∴AC =AB 2-BC 2=8.∵∠C =∠DEB =90°,∠B =∠B ,∴△ACB ∽△DEB ,∴∠A =∠BDE ,∴sin ∠BDE =sin A =35, cos ∠BDE =cos A =45, tan ∠BDE =tan A =34.11.解:根据图形得∠AFE +∠EFC +∠BFC =180°. 根据折叠的性质,得∠EFC =∠EDC =90°,∴∠AFE +∠BFC =90°.在Rt △BCF 中,∠BCF +∠BFC =90°,∴∠AFE =∠BCF .又根据折叠的性质,得CF =CD =10.在Rt △BCF 中,BC =8,CF =10,由勾股定理,得BF =CF 2-BC 2=6,∴tan ∠BCF =34, ∴tan ∠AFE =tan ∠BCF =34. 12.[解析] B ∵在Rt △ABC 中,∠C =90°,cos B =23, ∴sin B =1-(23)2=53. 故选B.13.解:∵cos α=13, ∴sin α=1-(13)2=2 23, tan α=sin αcos α=2 2313=2 2, ∴tan α+cos α1+sin α=2 2+131+2 23=2 2+3-2 2=3.14.C15.解:∵tan A =3,∴∠A =60°,sin A =32. 又∵∠A +∠B =90°,∴cos B =sin A =32. 16.解:(1)在Rt △ABC 中,∵∠A +∠B =90°,∴sin B =cos A =1213. (2)cos A <sin B .理由:∵cos A =cos35°=sin55°<sin65°, ∴cos A <sin B .。
角度计算的综合大题专项训练(30道)(含答案)
专题11.7 角度计算的综合大题专项训练(30道)考卷信息:本套训练卷共30题,培优篇15题,拔尖篇15题,题型针对性较高,覆盖面广,选题有深度,渗透角度计算由一般到特殊的思想!1.(2021春•平顶山期末)如图,已知△ABC,AD平分∠BAC交BC于点D,AE⊥BC于点E,∠B<∠C.(1)若∠B=44°,∠C=72°,求∠DAE的度数;(2)若∠B=27°,当∠DAE=21度时,∠ADC=∠C.【解题思路】(1)利用三角形的内角和求出∠BAC,再利用内角与外角的关系先求出∠ADC,再求出∠DAE;(2)利用三角形的内角和定理及推论,用含∠C的代数式表示出∠BAC、∠ADC,根据∠C=∠ADC得到关于∠C的方程,先求出∠C,再求出∠DAE的度数.【解答过程】解:∵AD平分∠BAC交BC于点D,AE⊥BC于点E,∴∠BAD=∠CAD=12∠BAC,∠AED=90°.(1)∵∠B=44°,∠C=72°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣44°﹣72°=64°.∴∠BAD=12×64°=32°.∵∠ADC=∠B+∠BAD =44°+32°=76°,∴∠DAE=90°﹣∠ADC=90°﹣76°=24°.(2))∵∠B=27°,∠C=∠ADC,∴∠BAC=180°﹣∠B﹣∠C=180°﹣27°﹣∠C=153°﹣∠C.∴∠BAD=12×(153°﹣∠C)=76.5°−12∠C.∴∠ADC=∠B+∠BAD=27°+76.5°−12∠C=103.5°−12∠C.∵∠ADC=∠C,∴103.5°−12∠C=∠C.∴∠ADC=∠C=69°.∴∠DAE=∠AED﹣∠ADC=90°﹣69°=21°.故答案为:21.2.(2021春•长春期末)如图,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO和∠ABO的角平分线,BC延长线交OM于点G.解决问题:(1)若∠OBA=80°,∠OAB=40°,则∠ACG=60°;(直接写出答案)(2)若∠MON=100°,求出∠ACG的度数.【解题思路】(1)由角平分线的定义可求出∠CBA和∠CAB的度数,再根据三角形外角的性质求出∠ACG的度数即可;(2)先根据三角形内角和定理求出∠OBA+∠OAB的度数,然后再根据角平分线的定义求出∠CBA+∠CAB的度数,最后根据三角形外角的性质求出结果即可.【解答过程】解:(1)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∵∠OBA=80°,∠OAB=40°,∴∠CBA=40°,∠CAB=20°,∴∠ACG=∠CBA+∠CAB=60°.故答案为:60°.(2)∵∠MON=100°,∴∠BAO+∠ABO=180°﹣100°=80°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∴∠CBA+∠CAB=12(∠ABO+∠BAO)=12×80°=40°,∴∠ACG=∠CBA+∠CAB=40°.3.(2021春•兴化市期末)如图,在△ABC中,∠ACB=90°,AE平分∠CAB,CD⊥AB,AE、CD相交于点F.(1)若∠DCB=50°,求∠CEF的度数;(2)求证:∠CEF=∠CFE.【解题思路】(1)根据直角三角形的性质得到∠DCB+∠B=90°,∠CAB+∠B=90°,进而得到∠CAB =∠DCB,根据角平分线的定义计算即可;(2)根据角平分线的定义得到∠BAE=∠CAE,根据直角三角形的性质得到∠CEF=∠AFD,根据对顶角相等证明结论.【解答过程】(1)解:∵CD⊥AB,∴∠DCB+∠B=90°,∵∠ACB=90°,∴∠CAB+∠B=90°,∴∠CAB=∠DCB=50°,∵AE平分∠CAB,∴∠CAE=12∠CAB=25°,∴∠CEF=90°﹣∠CAE=65°;(2)证明:∵AE平分∠CAB,∴∠BAE=∠CAE,∵∠CAE+∠CEF=90°,∠BAE+∠AFD=90°,∴∠CEF=∠AFD,∵∠CFE=∠AFD,∴∠CEF=∠CFE.4.(2021春•海陵区期末)如图,CD是△ABC的角平分线,DE∥BC,交AB于点E.(1)若∠A=45°,∠BDC=70°,求∠CED的度数;(2)若∠A﹣∠ACD=34°,∠EDB=97°,求∠A的度数.【解题思路】(1)利用三角形内角和定理求出∠ACB,再求出∠ECD,∠EDC,可得结论.(2)设∠A=x,则∠ACD=x﹣34°,根据∠EDB=∠A+∠AED,构建方程求解即可.【解答过程】解:(1)∵∠CDB=∠A+∠ACD,∴∠ACD=70°﹣45°=25°,∵CD平分∠ACB,∴∠DCB=∠ACB=25°,∵DE∥CB,∴∠EDC=∠BCD=25°,∴∠DEC=180°﹣25°﹣25°=130°.(2)设∠A=x,则∠ACD=x﹣34°,∵CD平分∠ACB,∴∠ACB=2x﹣68°,∵DE∥CB,∴∠AED=∠ACB=2x+68°,∵∠EDB=∠A+∠AED,∴97°=x+2x﹣68°,∴x=55°,∴∠A=55°.5.(2021春•宽城区期末)如图,在△ABC中,点E是边AC上一点,∠AEB=∠ABC.(1)如图1,作∠BAC的平分线交CB、BE于D、F两点.求证:∠EFD=∠ADC.(2)如图2,作△ABC的外角∠BAG的平分线,交CB的延长线于点D,延长BE、DA交于点F,试探究(1)中的结论是否成立?请说明理由.【解题思路】(1)首先根据角平分线的性质可得∠BAD=∠DAC,再根据内角与外角的性质可得∠EFD =∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,进而得到∠EFD=∠ADC;(2)首先根据角平分线的性质可得∠BAD=∠DAG,再根据等量代换可得∠F AE=∠BAD,然后再根据内角与外角的性质可得∠EFD=∠AEB﹣∠F AE,∠ADC=∠ABC﹣∠BAD,进而得∠EFD=∠ADC.【解答过程】解:(1)∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC;(2)探究(1)中结论仍成立;理由:∵AD平分∠BAG,∴∠BAD=∠GAD,∵∠F AE=∠GAD,∴∠F AE=∠BAD,∵∠EFD=∠AEB﹣∠F AE,∠ADC=∠ABC﹣∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC.6.(2021春•镇江期中)如图,将一张三角形纸片ABC的一角折叠,使得点A落在四边形BCDE的外部A'的位置,且A'与点C在直线AB的异侧,折痕为DE,已知∠C=90°,∠A=30°.(1)求∠1﹣∠2的度数;(2)若保持△A′DE的一边与BC平行,求∠ADE的度数.【解题思路】(1)先求出∠B的度数,在根据四边形内角和求出∠1+∠BFD的度数,由∠BFD=∠A′FE和∠A’的度数可求出答案.(2)分EA'∥BC和DA'∥BC两种情况讨论.当DA'∥BC时,先求出∠A′DA=90°,再根据折叠可得出∠ADE=45°;当EA'∥BC时,根据平行线的性质求出∠2=∠ABC=60°,由(1)得出∠1=120°,再根据折叠可求出∠ADE的度数.【解答过程】解:(1)由折叠可知,∠A′=∠A=30°,在△A′EF中,∠A′+∠2+∠A′FE=180°,∴∠2=180°﹣∠A′﹣∠A′FE=150°﹣∠A′FE,在△ABC中,∠B=180°﹣∠C﹣∠A=60°,在四边形BCDF中,∠1+∠C+∠B+∠BFD=360°,∴∠1=360°﹣∠C﹣∠B﹣∠BFD=210°﹣∠BFD,∵∠BFD=∠A′FE,∴∠1﹣∠2=210°﹣150°=60°;(2)当DA'∥BC时,如图,∠A′DA=∠ACB=90°,∵△ADE沿DE折叠到△A′DE,∴∠ADE=∠A′DE=12∠ADA′=45°,当EA'∥BC时,如图,∠2=∠ABC=60°.由(1)知,∠1﹣∠2=60°,∴∠1=∠2+60°=120°,∵△ADE沿DE折叠到△A′DE,∴∠ADE=∠A′DE=12∠ADA′=(180°﹣∠1)=30°.综上所述∠ADE的度数为:45°或30°.7.(2021春•常熟市期中)已知△ABC中,AD⊥BC于点D,AE平分∠BAC,过点A作直线GH∥BC,且∠GAB=60°,∠C=40°.(1)求△ABC的外角∠CAF的度数;(2)求∠DAE的度数.【解题思路】(1)根据平行线的性质、对顶角相等计算即可;(2)根据角平分线的定义得到∠BAE=40°,根据平行线的性质求出∠GAD=90°,结合图形计算,得到答案.【解答过程】解:(1)∵GH∥BC,∠C=40°,∴∠HAC=∠C=40°,∵∠F AH=∠GAB=60°,∴∠CAF=∠HAC+∠F AH=100°;(2)∵∠HAC=40°,∠GAB=60°,∴∠BAC=80°,∵AE平分∠BAC,∴∠BAE=40°,∵GH∥BC,AD⊥BC,∴∠GAD=90°,∴∠BAD=90°﹣60°=30°,∴∠DAE=∠BAE﹣∠BAD=10°.8.(2020秋•红桥区期末)如图,在△ABC中,AD是高,角平分线AE,BF相交于点O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的大小.【解题思路】根据三角形高线可得∠ADC=90°,利用三角形的内角和定理可求解∠DAC的度数;由三角形的内角和可求解∠B的度数,再根据角平分线的定义可求出∠BAO和∠ABO的度数,再利用三角形的内角和定理可求解.【解答过程】解:∵AD是△ABC的高线,∴∠ADC=90°,∵∠ADC+∠C+∠CAD=180°,∠C=70°,∴∠CAD=180°﹣90°﹣70°=20°;∵∠ABC+∠C+∠CAB=180°,∠C=70°,∠BAC=50°,∴∠ABC=180°﹣70°﹣50°=60°,∵AE,BF分别平分∠BAC,∠ABC,AE,BF相交于点O,∴∠BAO=12∠BAC=25°,∠ABO=12∠ABC=30°,∵∠ABO+∠BAO+∠AOB=180°,∴∠AOB=180°﹣25°﹣30°=125°.9.(2020秋•涪城区期末)如图,在△ABC中,∠1=∠2=∠3.(1)证明:∠BAC=∠DEF;(2)∠BAC=70°,∠DFE=50°,求∠ABC的度数.【解题思路】(1)利用三角形的外角的性质解决问题即可.(2)利用三角形的外角的性质解决问题即可.【解答过程】(1)证明:∵∠BAC=∠1+∠CAE,∠DEF=∠3+∠CAE,∠1=∠3,∴∠BAC=∠DEF.(2)∵∠ABC=∠2+∠ABD,∠1=∠2,∴∠ABC=∠1+∠ABD=∠EDF,由(1)可知∠DEF=∠BAC=70°,∴∠ABC=∠1+∠ABD=∠EDF=180°﹣∠DEF﹣∠DFE=180°﹣70°﹣50°=60°,∴∠ABC=60°.10.(2021春•苏州期末)如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD 于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.【解题思路】(1)由角平分线定义得∠ABE=∠CBE,再根据三角形的外角性质得∠AEF=∠AFE;(2)由角平分线定义得∠AFE=∠GFE,进而得∠AEF=∠GFE,由平行线的判定得FG∥AC,再根据平行线的性质求得结果.【解答过程】解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°﹣∠C=150°.11.(2020秋•恩施市期末)已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.【解题思路】(1)根据三角形的外角性质即可得出结论;(2)根据三角形内角和和互余进行分析解答即可.【解答过程】解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°.12.(2020秋•白银期末)(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.【解题思路】(1)作射线OA,由三角形外角的性质可知∠1+∠B=∠3,∠2+∠C=∠4,两式相加即可得出结论;(2)连接AD,由(1)的结论可知∠F+∠2+∠3=∠DEF,∠1+∠4+∠C=∠ABC,两式相加即可得出结论.【解答过程】解:(1)作射线OA,∵∠3是△ABO的外角,∴∠1+∠B=∠3,①∵∠4是△AOC的外角,∴∠2+∠C=∠4,②①+②得,∠1+∠B+∠2+∠C=∠3+∠4,即∠BOC=∠A+∠B+∠C;(2)连接AD,同(1)可得,∠F+∠2+∠3=∠DEF③,∠1+∠4+∠C=∠ABC④,③+④得,∠F+∠2+∠3+∠1+∠4+∠C=∠DEF+∠ABC=130°+100°=230°,即∠A+∠C+∠D+∠F=230°.13.(2021春•新蔡县期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.【解题思路】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答过程】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.14.(2020春•香坊区校级月考)如图,在△ABC中,∠C=40°,AE、BF分别为△ABC的角平分线,它们相交于点O.(1)求∠EOF的度数.(2)AD是△ABC的高,∠AFB=80°时,求∠DAE的度数.【解题思路】(1)先根据三角形内角和定理得∠C=180°﹣(∠BAC+∠ABC)的度数,由角平分线的定义和三角形内角和定理可得结论;(2)先根据垂直的定义及三角形内角和可得到∠CAD的度数,再求出∠1的度数,最后根据三角形内角和即可求解.【解答过程】解:(1)∵∠CAB+∠ABC=180°﹣∠C,∵AE、BF是角平分线,∴∠EAB=12∠BAC,∠FBA=12∠ABC,∴∠EAB+∠FBA=12(∠BAC+∠ABC)=12(180°﹣∠C)=90°−12∠C,∴∠AOB=180°﹣(90°−12∠C)=90°+12∠C,∵∠C=40°,∴∠AOB=110°,∴∠EOF=∠AOB=110°.(2)∵AD⊥BC,∠C=40°,∴∠CAD=50°,∵∠AFB=80°,∴∠1=180°﹣50°﹣80°=50°,∴∠DAE=180°﹣∠1﹣∠AOB=180°﹣50°﹣110°=20°.15.(2021春•海陵区校级月考)如图1,△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,CF∥AD.(1)如图1,∠B=30°,∠ACB=70°,求∠CFE的度数;(2)若(1)中的∠B=α,∠ACB=β(α<β),则∠CFE=12β−12α;(用α、β表示)(3)如图2,(2)中的结论还成立么?请说明理由.【解题思路】(1)求∠CFE的度数,求出∠DAE的度数即可,只要求出∠BAE﹣∠BAD的度数,由平分和垂直易得∠BAE和∠BAD的度数即可;(2)由(1)类推得出答案即可;(3)类比以上思路,把问题转换为∠CFE=90°﹣∠ECF即可解决问题.【解答过程】解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∠B=α,∠ACB=β,∴∠CFE=∠DAE=20°;(2)∵∠BAE=90°﹣∠B,∠BAD=12∠BAC=12(180°﹣∠B﹣∠ACB),∵CF ∥AD ,∴∠CFE =∠DAE =∠BAE ﹣∠BAD =90°﹣∠B −12(180°﹣∠B ﹣∠BCA )=12(∠ACB ﹣∠B )=12β−12α, 故答案为:12β−12α; (3)(2)中的结论成立.∵∠B =α,∠ACB =β,∴∠BAC =180°﹣α﹣β,∵AD 平分∠BAC ,∴∠DAC =12∠BAC =90°−12α−12β,∵CF ∥AD ,∴∠ACF =∠DAC =90°−12α−12β,∴∠BCF =β+90°−12α−12β=90°−12α+12β,∴∠ECF =180°﹣∠BCF =90°+12α−12β,∵AE ⊥BC ,∴∠FEC =90°,∴∠CFE =90°﹣∠ECF =12β−12α.16.(2021春•市北区期末)阅读并填空将三角尺(△MPN ,∠MPN =90°)放置在△ABC 上(点P 在△ABC 内),如图1所示,三角尺的两边PM 、PN 恰好经过点B 和点C .我们来探究:∠ABP 与∠ACP 是否存在某种数量关系.(1)特例探索:若∠A =50°,则∠PBC +∠PCB = 90 度;∠ABP +∠ACP = 40 度;(2)类比探索:∠ABP、∠ACP、∠A的关系是∠ABP+∠ACP=90°﹣∠A;(3)变式探索:如图2所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是∠ACP﹣∠ABP=90°﹣∠A.【解题思路】(1)利用三角形内角和定理即可解决问题.(2)结论:∠ABP+∠ACP=90°﹣∠A.利用三角形内角和定理即可证明.(3)不成立;存在结论:∠ACP﹣∠ABP=90°﹣∠A.利用三角形内角和定理即可解决问题.【解答过程】解:(1)∵∠A=50°,∴∠ABC+∠ACB=130°,∵∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP+∠ACP=130°﹣90°=40°,故答案为:90,40;(2)结论:∠ABP+∠ACP=90°﹣∠A.证明:∵(∠PBC+∠PCB)+(∠ABP+∠ACP)+∠A=180°,∴90°+(∠ABP+∠ACP)+∠A=180°,∴∠ABP+∠ACP+∠A=90°,∴∠ABP+∠ACP=90°﹣∠A.故答案为:∠ABP+∠ACP=90°﹣∠A;(3)结论:∠ACP﹣∠ABP=90°﹣∠A,理由是:设AB交PC于O,如图2:∵∠AOC=∠POB,∴∠ACO+∠A=∠P+∠PBO,即∠ACP+∠A=90°+∠ABP,∴∠ACP﹣∠ABP=90°﹣∠A,故答案为:∠ACP﹣∠ABP=90°﹣∠A.17.(2021春•东海县期末)如图1.△ABC的外角平分线BF、CF交于点F.(1)若∠A=50°.则∠F的度数为65°;(2)如图2,过点F作直线MN∥BC,交AB,AC延长线于点M、N.若设∠MFB=α,∠NFC=β,则∠A与a+β满足的数量关系是α+β−12∠A=90°;(3)在(2)的条件下,将直线MN绕点F转动.①如图3,当直线MN与线段BC没有交点时,试探索∠A与α,β之间满足的数量关系,并说明理由;②当直线MN与线段BC有交点时,试问①中∠A与α,β之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请直接写出三者之间满足的数量关系.【解题思路】(1)根据三角形内角和定理以及角平分线的定义,即可得到∠F的度数;(2)根据三角形内角和定理以及角平分线的定义,即可得到∠BFC的度数,再根据平行线的性质,即可得到∠A与α+β的数量关系;(3)①根据(2)中的结论∠BFC=90°﹣∠A,以及平角的定义,即可得到∠A与α,β之间的数量关系;②分两种情况进行讨论,根据(2)中的结论∠BFC=90°﹣∠A,以及平角的定义,即可得到∠A与α,β之间的数量关系.【解答过程】解:(1)如图1,∵∠A=50°,∴∠ABC+∠ACB=130°,∴∠DBC﹣∠ECB=360°﹣130°=230°,又∵△ABC的外角平分线交于点F,∴∠FBC+∠FCB=12(∠DBC+∠ECD)=12×230°=115°,∴△BCF中∠F=180°﹣115°=65°,故答案为65°;(2)如图2,∵∠ABC+∠ACB=180°﹣∠A,∴∠DBC+∠ECB=360°﹣(180°﹣∠A)=180°+∠A,又∵△ABC的外角平分线交于点F,∴∠FBC+∠FCB=12(∠DBC+∠ECB)=12×(180°+∠A)=90°+12∠A,∴△BCF中,∠BFC=180°﹣(90°+12∠A)=90°−12∠A,又∵∠MFB=α,∠NFC=β,MN∥BC,∴∠FBC=α,∠FCB=β,∵△BCF中,∠FBC+∠FCB+∠BFC=180°,∴α+β+90°−12∠A=180°,即α+β−12∠A=90°,故答案为:α+β−12∠A=90°;(3)①α+β−12∠A=90°,理由如下:如图3,由(2)可得,∠BFC=90°−12∠A,∵∠MFB+∠NFC+∠BFC=180°,∴α+β+90°−12∠A=180°,即α+β−12∠A=90°,②当直线MN与线段BC有交点时,①中∠A与α,β之间的数量关系不成立,分两种情况:如图4,当M在线段AB上,N在AC延长线上时,由(2)可得,∠BFC=90°−12∠A,∵∠BFC﹣∠MFB+∠NFC=180°,∴90°−12∠A﹣α+β=180°,即β﹣α−12∠A=90°;如图5,当M在AB的延长线上,N在线段AC上时,由(2)可得,∠BFC=90°−12∠A,∴∠BFC﹣∠NFC+∠MFB=180°,∴90°−12∠A﹣β+α=180°,即α﹣β−12∠A=90°;综上所述,∠A与α,β之间的数量关系为β﹣α−12∠A=90°或α﹣β−12∠A=90°.18.(2021春•宽城区期末)在△ABC中,∠ACB=90°,点D、E分别是边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)如图1,点P在斜边AB上运动.①若∠α=70°,则∠1+∠2=160度.②写出∠α、∠1、∠2之间的关系,并说明理由.(2)如图2,点P在斜边AB的延长线上运动(CE<CD),BE、PD交于点F,试说明∠1﹣∠2=90°+∠α.(3)如图3,点P在△ABC外运动(只需研究图③的情形),直接写出∠α、∠1、∠2之间的关系.【解题思路】(1)①求出∠CEP+∠CDP,可得结论.②结论:∠1+∠2=90°+∠α.连接PC,利用三角形的外角的性质解决问题即可.(2)利用三角形的外角的性质以及三角形内角和定理证明即可.(3)利用基本结论∠C+∠3=∠P+∠4,构建关系式,可得结论.【解答过程】解:(1)①∵∠C=90°,α=70°,∴∠CEP+∠CDP=360°﹣(90°+70°)=200°,∴∠1+∠2=360°﹣200°=160°,故答案为:160.②结论:∠1+∠2=90°+∠α.理由:如图1中,连结CP.∵∠1=∠DCP+∠CPD,∠2=∠ECP+∠CPE,∴∠1+∠2=∠DCP+∠CPD+∠ECP+∠CPE,∵∠DCP+∠ECP=∠ACB=90°,∠CPD+∠CPE=∠DPE=∠α,∴∠1+∠2=90°+∠α.(2)如图2中,∵∠1=∠ACB+∠CFD,∠CFD=∠2+∠α,∴∠1=∠ACB+∠2+∠α.∵∠ACB=90°,∴∠1=90°+∠2+∠α.∴∠1﹣∠2=90°+∠α.(3)结论:∠2﹣∠1=90°﹣∠α.理由:如图3中,∵∠C+∠3=∠P+∠4,∠C=90°,∠P=α,∴90°+(180°﹣∠2)=α+(180°﹣∠1),∴∠2﹣∠1=90°﹣∠α.19.(2021春•延庆区期末)在三角形ABC中,点D在线段AC上,ED∥BC交AB于点E,点F在线段AB上(点F不与点A,E,B重合),连接DF,过点F作FG⊥FD交射线CB于点G.(1)如图1,点F在线段BE上,用等式表示∠EDF与∠BGF的数量关系,并证明;(2)如图2,点F在线段BE上,求证:∠ABC+∠BFG﹣∠EDF=90°;(3)当点F在线段AE上时,依题意,在图3中补全图形,请直接用等式表示∠EDF与∠BGF的数量关系,不需证明.【解题思路】(1)结论:∠EDF+∠BGF=90°.如图1中,过点F作FH∥BC交AC于点H.利用平行线的性质求解即可.(2)如图2中,过点F作FH∥BC交AC于点H.利用平行线的性质求解即可.(3)作出图形,利用平行线的性质求解即可.【解答过程】(1)解:结论:∠EDF+∠BGF=90°.理由:如图1中,过点F作FH∥BC交AC于点H.∵ED∥BC,∴ED∥FH.∴∠EDF=∠1.∵FH∥BC,∴∠BGF=∠2.∵FG⊥FD,∴∠DFG=90°.∴∠1+∠2=90°.∴∠EDF+∠BGF=90°.(2)证明:如图2中,过点F作FH∥BC交AC于点H.∴∠ABC=∠AFH.∴∠ABC=∠1+∠3.∴∠3=∠ABC﹣∠1.∵∠EDF=∠1,∴∠3=∠ABC﹣∠EDF.∵FG⊥FD,∴∠DFG=90°.∴∠BFG+∠3=90°.∴∠3=90°﹣∠BFG.∴90°﹣∠BFG=∠ABC﹣∠EDF.∴∠ABC+∠BFG﹣∠EDF=90°.(3)解:结论:∠BGF﹣∠EDF=90°.理由:设DE 交FG 于J .∵DE ∥BC ,∴∠BGF =∠FJE ,∵∠FJE =∠DEJ +∠EDF ,∠DEJ =90°,∴∠BGF ﹣∠EDF =90°20.(2021春•中山市期末)同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC 的平分线与∠EGC 的平分线相交于点Q ,求∠FQG 的大小;(3)如图3,点P 是线段AD 上的动点(不与A ,D 重合),连接PF 、PG ,∠DFP+∠FPG ∠EGP 的值是否变化?如果不变,请求出比值;如果变化,请说明理由.【解题思路】(1)如图1,延长AM 交EG 于M .由题意知:DF ∥EG ,∠ACB =90°,故∠α=∠GMC ,∠ACB =∠GMC +∠CGM =90°.进而推断出∠β+∠α=90°.(2)如图2,延长AC 交EG 于N .由题意知:DF ∥EN ,∠ACB =90°,得∠1=∠GNC ,∠CGN +∠GNC =90°,故∠1+∠CGN =90°.因为∠DFC 的平分线与∠EGC 的平分线相交于点Q ,所以∠QFC =12∠DFC =12(180°−∠1)=90°−12∠1,∠GQC =90°−12∠CGN .那么,∠FQG =360°﹣∠QFC ﹣∠QGC﹣∠ACB =135°.(3)由题意知:DF ∥EG ,得∠FOG =∠EGO ,故∠DFP+∠FPG ∠EGP =∠GOF ∠EGP =1.【解答过程】解:(1)如图1,延长AM 交EG 于M .∠β+∠α=90°,理由如下:由题意知:DF ∥EG ,∠ACB =90°.∴∠α=∠GMC ,∠ACB =∠GMC +∠CGM =90°.∵∠EGB 和∠CGM 是 对顶角,∴∠β=∠CGM .∴∠β+∠α=90°.(2)如图2,延长AC 交EG 于N .由题意知:DF ∥EN ,∠ACB =90°.∴∠1=∠GNC ,∠CGN +∠GNC =90°.∴∠1+∠CGN =90°.∵QF 平分∠DFC ,∴∠QFC =12∠DFC =12(180°−∠1)=90°−12∠1.同理可得:∠GQC =90°−12∠CGN .∵四边形QFCG 的内角和等于360°.∴∠FQG =360°﹣∠QFC ﹣∠QGC ﹣∠ACB =360°﹣(90°−12∠1)﹣(90°−12∠CGN )﹣90°. ∴∠FQG =135°.(3)如图3,由题意知:DF ∥EG .∴∠FOG =∠EGO .∴∠DFP+∠FPG ∠EGP =∠GOF ∠EGP =1. ∴∠DFP+∠FPG ∠EGP 的值不变.21.(2021春•禅城区期末)△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,求∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 与∠B 、∠C 的数量关系;(3)拓展:如图3,四边形ABDC 中,AE 是∠BAC 的角平分线,DA 是∠BDC 的角平分线,猜想:∠DAE 与∠B 、∠C 的数量关系是否改变.说明理由.【解题思路】(1)根据三角形的内角和定理可求得∠BAC =80°,由角平分线的定义可得∠CAD 的度数,利用三角形的高线可求∠CAE 得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE、∠B、∠C的数量关系;(3)连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据角平分线的定义得到∠EAM=12(∠ACB﹣∠ABC),同理,∠ADN=12(∠BCD﹣∠CBD),求得∠MAD=∠ADN,根据角的和差即可得到结论.【解答过程】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE=12∠BAC﹣(90°﹣∠C)=12(180°﹣∠B﹣∠C)﹣90°+∠C=12∠C−12∠B,即∠DAE=12∠C−12∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM=12(∠ACB﹣∠ABC),同理,∠ADN=12(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN=12(∠ACB﹣∠ABC)+12(∠BCD﹣∠CBD)=12(∠ACD﹣∠ABD).22.(2021春•侯马市期末)(1)已知:如图①的图形我们把它称为“8字形”,试说明:∠A+∠B=∠C+∠D.(2)如图②,AP,CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是∠P=90°+12(∠B+∠D);(4)如图(4),直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是∠P=180°−12(∠B+∠D).【解题思路】(1)根据三角形的内角和等于180°列式整理即可得证;(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;(3)表示出∠P AD和∠PCD,再根据(1)的结论列出等式并整理即可得解;(4)根据四边形的内角和等于360°可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解.【解答过程】解:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)∵AP,CP分别平分∠BAD,∠BCD,∴∠BAP=∠P AD,∠BCP=∠PCD,由(1)的结论得,∠P+∠BCP=∠ABC+∠BAP,①,∠P+∠P AD=∠ADC+∠PCD②,①+②得,2∠P+∠BCP+∠P AD=∠BAP+∠PCD+∠ABC+∠ADC,∴2∠P=∠ABC+∠ADC,∵∠ABC=36°,∠ADC=16°,∴∠P=26°.(3)∵直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠P AB=∠P AD,∠PCB=∠PCE,∴2∠P AB+∠B=180°﹣2∠PCB+∠D,∴180°﹣2(∠P AB+∠PCB)+∠D=∠B,∵∠P+∠P AD=∠PCB+∠AOC=∠PCB+∠B+2∠P AD,∴∠P=∠P AD+∠B+∠PCB=∠P AB+∠B+∠PCB,∴∠P AB+∠PCB=∠P﹣∠B,∴180°﹣2(∠P﹣∠B)+∠D=∠B,即∠P=90°+12(∠B+∠D).故答案为:∠P=90°+12(∠B+∠D).(4)∵直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∴∠F AP=∠P AO,∠PCE=∠PCB,在四边形APCB中,(180°﹣∠F AP)+∠P+∠PCB+∠B=360°①,在四边形APCD中,∠P AD+∠P+(180°﹣∠PCE)+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,∴∠P=180°−12(∠B+∠D).故答案为:∠P=180°−12(∠B+∠D).23.(2020春•西城区校级期末)在△ABC中,BD,CE是它的两条角平分线,且BD,CE相交于点M,MN⊥BC于点N.将∠MBN记为∠1,∠MCN记为∠2,∠CMN记为∠3.(1)如图1,若∠A=110°,∠BEC=130°,则∠2=20°,∠3﹣∠1=55°;(2)如图2,猜想∠3﹣∠1与∠A的数量关系,并证明你的结论;(3)若∠BEC=α,∠BDC=β,用含α和β的代数式表示∠3﹣∠1的度数.(直接写出结果即可)解:(2)∠3﹣∠1与∠A的数量关系是:∠3﹣∠1=12∠A.(3)∠3﹣∠1=α+β3−30°.【解题思路】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠BEC﹣∠A,再根据角平分线的定义可得∠2=∠ACE;根据角平分线的定义求出∠ACB,再根据三角形的内角和定理求出∠ABC,然后求出∠1,根据直角三角形两锐角互余求出∠3,然后相减即可得解;(2)根据角平分线的定义可得∠1=12∠ABC,∠2=12∠ACB,再根据直角三角形两锐角互余表示出∠3,然后表示出∠3﹣∠1=90°−12∠ACB−12∠ABC,再根据三角形的内角和定理可得∠ACB+∠ABC=180°﹣∠A,然后代入整理即可得解;(3)在△BCE和△BCD中,根据三角形内角和定理列式整理得到∠1+∠2,再根据三角形的内角和定理和角平分线的定义用∠A表示出∠1+∠2,然后根据∠3﹣∠1=12∠A整理即可得解.【解答过程】(1)解:在△ACE中,∠ACE=∠BEC﹣∠A=130°﹣110°=20°,∵CE平分∠ACE,∴∠2=∠ACE=20°,∴∠ACB=2∠2=2×20°=40°,在△ABC中,∠ABC=180°﹣∠A﹣∠ACB=180°﹣110°﹣40°=30°,∵BD平分∠ABC,∴∠1=12∠ABC=12×30°=15°,∵MN⊥BC,∴∠3=90°﹣∠2=90°﹣20°=70°,∴∠3﹣∠1=70°﹣15°=55°,故答案为:20,55;(2)∠3﹣∠1与∠A的数量关系是:∠3﹣∠1=12∠A.证明:在△ABC中,BD,CE是它的两条角平分线,∴∠1=12∠ABC,∠2=12∠ACB,∵MN⊥BC于点N,∴∠MNC=90°,在△MNC中,∠3=90°﹣∠2,∴∠3﹣∠1=90°﹣∠2﹣∠1,=90°−12∠ACB−12∠ABC,=90°−12(∠ACB+∠ABC),∵在△ABC中,∠ACB+∠ABC=180°﹣∠A,∴∠3﹣∠1=90°−12(180°﹣∠A)=12∠A;故答案为:∠3﹣∠1=12∠A ;(3)∵BD ,CE 是△ABC 的两条角平分线, ∴∠ABC =2∠1,∠ACB =2∠2,在△BCE 和△BCD 中,∠1+2∠2+β=180°, ∠2+2∠1+α=180°, ∴∠1+∠2=120°−α+β3,∵∠1+∠2=12(∠ACB +∠ABC )=12(180°﹣∠A ), ∴120°−α+β3=12(180°﹣∠A ), 整理得,12∠A =α+β3−30°,∴∠3﹣∠1=α+β3−30°. 故答案为:α+β3−30°.24.(2020春•福山区期中)直线在同一平面内有平行和相交两种位置关系,线段首尾连接可以变换出很多不同的图形,这些不同的角又有很多不同关系,今天我们就来探究一下这些奇妙的图形吧! 【问题探究】(1)如图1,请直接写出∠A +∠B +∠C +∠D +∠E = 180° ;(2)将图1变形为图2,∠A +∠DBE +∠C +∠D +∠E 的结果如何?请写出证明过程; (3)将图1变形为图3,则∠A +∠B +∠C +∠D +∠E 的结果如何?请写出证明过程. 【变式拓展】(4)将图3变形为图4,已知∠BGF =160°,那么∠A +∠B +∠C +∠D +∠E +∠F 的度数是 320° .【解题思路】(1)根据三角形外角的性质,得到∠2=∠C+∠E,∠1=∠A+∠2,根据三角形内角和等于180°即可求解.(2)根据三角形外角的性质,得到∠ABE=∠C+∠E,∠DBC=∠A+∠D,即可证明此结论.(3)根据三角形外角的性质,得到∠DFG=∠B+∠E,∠FGD=∠A+∠C,即可证明此结论;(4)根据三角形外角的性质,得到∠BGF=∠B+∠2=160°,∠2=∠D+∠F,∠BGF=∠1+∠E=160°,∠1=∠A+∠C,即可得到结论.【解答过程】(1)解:如图1,∵∠2=∠C+∠E,∠1=∠A+∠2,∴∠A+∠B+∠C+∠D+∠E=∠1+∠B+∠D=180°,故答案为:180°;(2)证明:∵∠ABE=∠C+∠E,∠DBC=∠A+∠D,∠ABE+∠DBE+∠DBC=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°∴将图①变形成图②∠A+∠DBE+∠C+∠D+∠E仍然为180°;(3)证明:∵在△FGD中,∠DFG+∠FGD+∠D=180°,∠DFG=∠B+∠E,∠FGD=∠A+∠C,∴∠A+∠B+∠C+∠D+∠E=180°,∴将图①变形成图③,则∠A+∠B+∠C+∠D+∠E还为180°;(4)解:∵∠BGF=∠B+∠2=160°,∠2=∠D+∠F,∴∠B+∠D+∠F=160°,∵∠BGF=∠1+∠E=160°,∠1=∠A+∠C,∴∠A+∠C+∠E=160°,∴∠A+∠B+∠C+∠D+∠E+∠F=320°,故答案为:320°.25.(2020春•蓬溪县期末)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=122°;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC 与∠A的数量关系,并说明理由.(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC=119°,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R=29°.【解题思路】(1)根据三角形的内角和角平分线的定义;(2)由角平分线得出∠ECB=12∠ACB,∠EBD=12∠ABD.由三角形外角的性质知∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,根据∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB可得答案;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠QBC与∠QCB,然后再根据三角形的内角和定理列式整理即可得解;(4)结合(1)(2)(3)的解析即可求得.【解答过程】解:(1)∵PB、PC分别平分∠ABC和∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB(角平分线的定义),∵∠BPC+∠PBC+∠PCB=180°(三角形内角和定理),∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=180°﹣90°+12∠A=90°+12∠A=90°+12×64°=122°.故答案为:122°;(2)∵BE是∠ABD的平分线,CE是∠ACB的平分线,∴∠ECB=12∠ACB,∠EBD=12∠ABD.∵∠ABD是△ABC的外角,∠EBD是△BCE的外角,∴∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,∴∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB,即12∠A+∠ECB=∠ECB+∠BEC,∴∠BEC=12∠A=12α;(3)结论:∠BQC=90°−12∠A.理由如下:∵∠CBM与∠BCN是△ABC的外角,∴∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC,∵BQ,CQ分别是∠ABC与∠ACB外角的平分线,∴∠QBC=12(∠A+∠ACB),∠QCB=12(∠A+∠ABC).∵∠QBC+∠QCB+∠BQC=180°,∴∠BQC=180°﹣∠QBC﹣∠QCB,=180°−12(∠A+∠ACB)−12(∠A+∠ABC),=180°−12∠A−12(∠A+∠ABC+∠ACB),=180°−12∠A﹣90°=90°−12∠A;(4)由(3)可知,∠BQC=90°−12∠A=90°−12×64°=58°,由(1)可知∠BPC=90°+12∠BQC=90°+12×58°=119°;由(2)可知,∠R=12∠BQC=29°故答案为119,29.26.(2021春•鄂州期末)探究知:任何一个三角形都满足三角形三内角和等于180°,我们把这个结论称之为三角形三内角和定理.如图1,AB∥CD,且∠BED+∠CDE=120°,请根据题目条件,结合三角形三内角和定理,探究下列问题:(1)如图2,在图1基础上作:∠BEF=12∠DEF,∠CDE=3∠CDF,EF与DF交于点F,求∠EFD的度数;(2)如图3,在图1基础上作:过B作BG⊥AB,交CD于点F,且∠CDG=34∠CDE,求∠G∠E的值.【解题思路】(1)设∠BEF=α,∠CDF=β,根据角之间的比例关系可得∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,进而可得∠DEF+∠EDF=80°,所以可得答案;(2)根据垂直可得∠CDG =90°﹣∠G ,再根据∠E +∠CDE =120°经过整理得3∠E =4∠G ,进而可得答案.【解答过程】解:(1)∵∠BEF =12∠DEF , ∴∠DEF =2∠BEF , 又∵∠CDE =3∠CDF , ∴设∠BEF =α,∠CDF =β,∴∠DEF =2α,∠DEB =3α,∠CDE =3β,∠EDF =2β, ∵∠BED +∠CDE =120°, ∴3α+3β=120°, ∴α+β=40°, ∴2α+2β=80°,∴∠EFD =180°﹣∠DEF ﹣∠EDF =180°﹣(2α+2β)=180°﹣80°=100°, 答:∠EFD 的度数为100°; (2)∵BF ⊥AB , ∴∠ABG =90°, ∵AB ∥CD ,∴∠ABG +∠BFC =180°, ∴∠BFC =∠GFD =90°,在△GFD 中,∠GFD +∠CDG +∠G =180°, ∴∠CDG =90°﹣∠G ,∵∠E +∠CDE =120°,∠CDG =34∠CDE ,∴∠E +43∠CDG =120°,∠E +43(90°﹣∠G )=120°, 整理得:3∠E =4∠G , ∴∠G ∠E=34.27.(2020秋•南昌期中)【问题探究】将三角形ABC 纸片沿DE 折叠,使点A 落在点A ′处(1)如图1,当点A 落在四边形BCDE 的边CD 上时,直接写出∠A 与∠1之间的数量关系; (2)如图2,当点A 落在四边形BCDE 的内部时,求证:∠1+∠2=2∠A ;(3)如图3,当点A落在四边形BCDE的外部时,探索∠1,∠2,∠A之间的数量关系,并加以证明;【拓展延伸】(4)如图4,若把四边形ABCD纸片沿EF折叠,使点A、D落在四边形BCFE的内部点A′、D′的位置,请你探索此时∠1,∠2,∠A,∠D之间的数量关系,写出你发现的结论,并说明理由.【解题思路】(1)运用折叠原理及三角形的外角性质即可解决问题;(2)运用折叠原理及四边形的内角和定理即可解决问题;(3)运用三角形的外角性质即可解决问题;(4)根据三角形的内角和和四边形的内角和即可得到结论.【解答过程】解:(1)如图1,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A;(2)如图2,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2;(3)如图3,∠1﹣∠2=2∠A,理由:∵∠1+2∠AED=180°,2∠ADE﹣∠2=180°,∴∠1﹣∠2+2∠AED+2∠AED=360°,∵∠A+∠AED+∠ADE=180°,∴2∠A+2∠AED+2∠ADE=360°,∴∠1﹣∠2=2∠A;(4)∠1+∠2=2(∠A+∠D)﹣360°,理由:∵∠1+2∠AEF=180°,∠2+2∠DFE=180°,∴∠1+∠2+2∠AEF+2∠DFE=360°,∵∠A+∠D+∠AEF+∠DFE=360°,∴2∠A+2∠D+2∠AEF+2∠DFE=720°,∴∠1+∠2=2(∠A+∠D)﹣360°.28.(2021春•桥西区期末)请认真思考,完成下面的探究过程.已知在△ABC中,AE是∠BAC的角平分线,∠B=60°,∠C=40°.【解决问题】如图1,若AD⊥BC于点D,求∠DAE的度数;【变式探究】如图2,若F为AE上一个动点(F不与E重合),且FD⊥BC于点D时,则∠DFE=10°;【拓展延伸】如图2,△ABC中,∠B=x°,∠C=y°,(且∠B>∠C),若F为线段AE上一个动点(F不与E重合),且FD⊥BC于点D时,试用x,y表示∠DFE的度数,并说明理由.【解题思路】(1)由∠B=60°,∠C=40°,得∠BAC=180°﹣∠B﹣∠C=80°.由角平分线的定义,得∠EAC=40°.根据三角形外角的性质,得∠FED=80°.由FD⊥BC,根据三角形内角和定理,故可求得∠DFE.(2)与(1)同理.(3)与(1)同理.【解答过程】解:(1)解决问题:∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=80°.又∵AE是∠BAC的角平分线,∴∠EAC=12∠BAC=40°.∴∠AED=∠C+∠EAC=40°+40°=80°.∵AD⊥BC,∴∠ADE=90°.∴∠DAE=180°﹣∠ADE﹣∠AED=180°﹣90°﹣80°=10°.(2)变式探究:由(1)知:∠AED=80°.∵FD⊥BC,∴∠FDE=90°.∴∠DFE=180°﹣∠FDE﹣∠FED=180°﹣90°﹣80°=10°.故答案为:10°.(3)拓展延伸:∠DFE=12x°−12y°,理由如下:∵∠B=x°,∠C=y°,∴∠BAC=180°﹣x°﹣y°.又∵AE是∠BAC的角平分线,∴∠CAE=12∠BAC=12(180°−x°−y°)=90°−12x°−12y°.∴∠AED=∠C+∠CAE=y°+90°−12x°−12y°=90°−12x°+12y°.∵FD⊥BC,∴∠FDE=90°.∴∠DFE=180°﹣∠FDE﹣∠FED=180°﹣90°﹣(90°−12x°+12y°)=12x°−12y°.29.(2021春•庐江县期末)如图1,AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.(1)求证:∠EAB=∠CED;(2)如图2,AF、DF分别平分∠BAE和∠CDE,则∠F的度数是45°(直接写出答案即可);(3)如图3,EH平分∠CED,EH的反向延长线交∠BAE的平分线AF于点G.求证:EG⊥AF.(提示:三角形内角和等于180°)【解题思路】(1)根据垂直得到直角三角形,由直角三角形两锐角互余利用等量代换证明结论;(2)通过作FM∥AB∥CD可证∠DF A=∠CDF+∠BAF,因为∠CDE+∠BAE=90°和角平分线的定义可得∠F=12(∠CDE+∠BAE),继而得到答案;(3)根据角平分线的定义得∠CEH=∠DEH=∠GEB=∠BAG=∠EAF,由于∠B=90°,∠BAE+∠BEA =90°,在△AEG中,可证得∠EAG+∠AEG=90°,从而证得结论.【解答过程】(1)证明:∵AB⊥BC,CD⊥BC,∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠CED=90°,∴∠BAE=∠CED.(2)解:答案为45°;过点F作FM∥AB,如图,∵AB⊥BC,CD⊥BC,∴∠B=∠C=90°,∴AB∥CD,∵∠C=90°,∴∠CED+∠CDE=90°,∵∠BAE=∠CED,∴∠BAE+∠CDE=90°,∵AF、DF分别平分∠BAE和∠CDE,∴∠CDF=12∠CDE,∠BAF=12∠BAE,∴∠CDF+∠BAF=12(∠BAE+∠CDE)=45°,∵FM∥AB∥CD,∴∠CDF=∠DFM,∠BAF=∠AFM,∴∠AFD=∠CDF+∠BAF=45°.(3)∵EH平分∠CED,∴∠CEH=12∠CED,∴∠BEG=12∠CED,∵AF平分∠BAE,∴∠BAG=12∠BAE,∵∠BAE=∠CED,∴∠BAG=∠BEG,∵∠BAE+∠BEA=90°,∴∠BAG+∠GAE+∠AEB=90°,即∠GAE+∠AEB+∠BEG=90°,∴∠AGE=90°,∴EG⊥AF.30.(2021春•崇川区期末)在△ABC中,BD是△ABC的角平分线,E为边AC上一点,EF⊥BC,垂足为F,EG平分∠AEF交BC于点G.(1)如图1,若∠BAC=90°,延长AB、EG交于点M,∠M=α.①用含α的式子表示∠AEF为180°﹣2α;②求证:BD∥ME;(2)如图2,∠BAC<90°,延长DB,EG交于点N,请用等式表示∠A与∠N的数量关系,并证明.。
专题六 几何图形综合问题
类型一
类比、迁移与拓展类几何综合问题
(1)该类问题常常是先根据特殊的条件结合图形猜想出结论,然后在一般条件下论证结论,最后运用
结论解决问题;或者是在特殊条件下得出结论,改变条件的特殊性(如点的位置发生改变,图形的形状
发生改变等)判断结论是否仍然成立.
(2)解答该类问题注意类比,几问之间层层递进,但是原理相同,图形结构类似或方法类似,或在此基
∵四边形ABCD和四边形AEGF是正方形,∴∠DAB=∠AFG=90°,AE=AF,AD=AB=FH,∠EAG=∠AGF,
∴∠EAD=∠EAG+∠DAB=∠AFG+∠AGF=∠AFG+∠HFG=∠AFH,
∴△EAD≌△AFH(SAS),∴DE=AH.
又∵AM=MH,∴DE=AM+MH=2AM.
∵△EAD≌△AFH,∴∠ADE=∠FHA.
边形ABCD中这对互余的角可类比(1)中思路进行拼合,先作∠CDF=
∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量
关系是
.
(1)解:∠DCA′
(2)解:AD2+DE2=AE2
①
②
方法运用
(3)如图③所示,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平
∵△AMB≌△HMF,∴∠FHA=∠BAM,∴∠ADE=∠BAM.
又∵∠BAM+∠DAM=∠DAB=90°,∴∠ADE+∠DAM=90°,
∴∠AND=180°-(∠ADE+∠DAM)=90°,即DE⊥AM.
故DE=2AM,DE⊥AM.
类型三 几何多结论判断问题
几何多结论判断问题考查的知识点较多,主要以圆和四边形为核心,解决问题的主要手段是利用三
《三角形》证明题专题训练
《三角形》证明题专题训练名字_____________ 第一组简单角度计算1.如图,∠1=40°,∠2=25°,∠A=35°,求∠BDC的度数。
2.如图,∠A=80°,∠B=25°,∠C=30°,求∠BDC的度数。
3.如图,AB∥CD,∠BAE=∠DCE=45°,求∠E的度数.4.如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,求∠EDF的度数.第二组折叠问题5.如图,将一长方形纸片按如图方法折叠,BC、BD为折痕,求∠CBD的度数;6.如图,把△ABC沿DE折叠,请求出∠A与∠1+∠2之间的数量关系。
第三组 三角形内角外角平分线夹角7.如图,△ABC 的两条内角平分线交于点P ,求证:∠P=90°+ ∠A ;8.如图,△ABC 的两条外角平分线交于点P ,求证:∠P=90°+ ∠A ;9.如图,△ABC 的一条内角平分线与一条外角平分线交于点P ,求证:∠P= ∠A第四组 三角形边长大小比较10.如图,点P 是△ABC 内任意一点,说明:PA+PB+PCA>21(AB+BC+AC) ;11.如图,AC 和BD 相交于点O ,说明:AC+BD >AB+CD 。
第五组 三角形中线平分面积12.如图,CD 、DE 、EF 分别是△ABC 、△ACD 、△ADE 的中线,若△AFE 的面积为12cm ,求ABC S ∆; 13.如图,已知∠1=∠2=∠3,∠FDE=43°,∠DEF=64°,求△ABC 的各内角度数。
14.如图,AD=1,DC=2,AB=4,△ABC 的面积等于△DEC 的面积的2倍,求BE 的长。
15.如图,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,求四边形ABGD 面积。
第六组 多边形周长16.如图,在三角形ABC 中,AD 是BC 边上的中线,三角形ABD 的周长比三角形ACD 的周长小5,求出AC 与AB 的边长的差。
《 与三角形有关的角》同步专题提升训练(附答案)2021-2022学年八年级数学人教版上册
2021-2022学年人教版八年级数学上册《11.2与三角形有关的角》同步专题提升训练(附答案)一.选择题1.如图,直线AB∥CD,∠B=50°,∠D=20°,则∠E的度数是()A.20°B.30°C.50°D.70°2.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°3.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正确的结论是()A.①③B.②④C.①③④D.①②③④4.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°6.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°7.如图,∠1,∠2,∠3,∠4恒满足关系式是()A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4﹣∠3C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2﹣∠38.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°二.填空题9.如图,∠A=70°,∠B=15°,∠D=20°,则∠BCD的度数是.10.如图,在△ABC中,BI平分∠ABC,CI平分∠ACB,∠BIC=130°,则∠A=.11.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=度.12.一副分别含有30°和45°的两个直角三角板,拼成如图图形,其中∠C=90°,∠B=45°,∠E=30°.则∠BFD的度数是.13.如图,∠A+∠B+∠C+∠D+∠E+∠F=度.14.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.15.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于.三.解答题16.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)求∠AFC的度数;(2)求∠EDF的度数.17.已知如图∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC度数.18.如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.19.已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)20.已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.参考答案一.选择题1.解:∵AB∥CD,∴∠BMD=∠B=50°,又∵∠BMD是△CDE的外角,∴∠E=∠BMD﹣∠D=50°﹣20°=30°.故选:B.2.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选:C.3.解:∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB故③正确.故选:C.4.解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选:B.5.解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.6.解:∵∠A+∠B+∠ACB=180°,∠ACB=100°,∠A=20°,∴∠B=60°,根据翻折不变性可知:∠CB′D=∠B=60°,∵∠DB′C=∠A+∠ADB′,∴60°=20°+∠ADB′,∴∠ADB′=40°,故选:A.7.解:∵∠6是△ABC的外角,∴∠1+∠4=∠6,﹣﹣﹣(1);又∵∠2是△CDF的外角,∴∠6=∠2﹣∠3,﹣﹣﹣(2);由(1)(2)得:∠1+∠4=∠2﹣∠3.故选:D.8.解:∵BE为△ABC的高,∴∠AEB=90°∵∠C=70°,∠ABC=48°,∴∠CAB=62°,∵AF是角平分线,∴∠1=∠CAB=31°,在△AEF中,∠EF A=180°﹣31°﹣90°=59°.∴∠3=∠EF A=59°,故选:A.二.填空题9.解:连接AC,并延长到E,∵∠A=70°,∠B=15°,∠D=20°,∴∠BCE=∠B+∠BAC,∠ECD=∠D+∠CAD,∴∠BCD=∠BCE+∠ECD=∠B+∠D+∠BAD=70°+15°+20°=105°,故答案为:105°.10.解:∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=,∠ICB=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB),∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣130°=50°,∴∠ABC+∠ACB=50°×2=100°,∴∠A=180°﹣100°=80°.故答案为:80°.11.解:由题意得:∠NCM=∠NBM=×180°=90°,∴可得:∠CMB+∠CNB=180°,又∠CMB:∠CNB=3:2,∴∠CMB=108°,∴(∠ACB+∠ABC)=180°﹣∠CMB=72°,∴∠CAB=180°﹣(∠ACB+∠ABC)=36°.故答案为:36°.12.解:∵△CDE中,∠C=90°,∠E=30°,∴∠CDF=60°,∵∠CDF是△BDF的外角,∠B=45°,∴∠BFD=∠CDF﹣∠B=60°﹣45°=15°.故答案为:15°.13.解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.14.解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90°﹣72°=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.15.解:∵△ABC中,∠C=50°,∴∠A+∠B=180°﹣∠C=130°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°,故答案为:230°.三.解答题16.解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°,∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∠ADC=50°+30°=80°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠ADE﹣∠ADC=100°﹣80°=20°.17.解:△ABD中,由三角形的外角性质知:∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°;①同理,得:∠2=∠EDC+∠C,已知∠1=∠2,∠B=∠C,∴∠1=∠EDC+∠B,②②代入①得:2∠EDC+∠B=∠B+40°,即∠EDC=20°.18.解:∵AD⊥BC∴∠ADC=90°∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20°;∵∠BAC=50°,∠C=70°∴∠BAO=25°,∠ABC=60°∵BF是∠ABC的角平分线∴∠ABO=30°∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°.19.解:(1)结论:∠A+∠D=∠C+∠B;(2)结论:六个;(3)由∠D+∠1+∠2=∠B+∠3+∠4①(∵∠AOD=∠COB),由∠1=∠2,∠3=∠4,∴40°+2∠1=36°+2∠3∴∠3﹣∠1=2°(1)由∠ONC=∠B+∠4=∠P+∠2,②∴∠P=∠B+∠4﹣∠2=36°+2°=38°;(4)由①∠D+2∠1=∠B+2∠3,由②2∠B+2∠3=2∠P+2∠1①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1∠D+2∠B=2∠P+∠B.∴∠P=.20.解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°。
三角形及多边形中的角度计算 专题训练
三角形及多边形中的角度计算专题训练一、选择题:1.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE=()A.105°B.110°C. 115°D.120°1题 2题2.如图,在折纸活动中,把一个△ABC纸片的三个角向内折叠(3个顶点不重合),则图中∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.270°C.360°D.540°3.如图,小明将几块六边形纸片分别剪掉一部分(虚线部分),得到了一个新多边形,若新多边形的内角和为540°,则对应的是下列哪个图形()A B C D二、填空题:4.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE//AB,交AC于E,则∠ADE= 。
4题 5题 6题5.如图,在△ABC中,∠B=42°,△ABC的外角∠DAC和∠ACF的平分线相交于点E,则∠AEC= 。
6.如图,五边形ABCDE中,AB//CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3= 。
三、解答题:7.如图所示,求∠A+∠B+∠C+∠D+∠E.8.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE//BD,∠A=55°,∠BDE=125°,求∠C的度数.9.如图,∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC的度数.10.如图,在△ABC中,∠ACB=90°,CD⊥AB于D.(1)求证:∠ACD=∠B.(2)若AF平分∠CAB分别交CD、BC于点E,F,求证:∠CEF=∠CFE.11.如图,△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B 的大小.12.如图,把图1的△ABC沿着DE折叠,得到图2.(1)填空:∠1+∠2 ∠B+∠C(填“>”“<”或“=”)(2)当∠A=40°时,求∠B+∠C+∠3+∠4的度数.13.如图1所示,在△ABC中,AD是角平分线,AE⊥BC于E.(1)若∠C=80°,∠B=50°,求∠DAE的度数.14.(1)如图,甲图形我们称为“8字形”,请说明:∠A+∠B=∠C+∠D (2)如图2,AB∥CD,AP、CP分别平分∠BAD、∠BCD,①图2中共有______个“8字形”;②若∠ABC=80°,∠ADC=38°,求∠P的度数;③猜想图2中∠P与∠B+∠D的数量关系,并说明理由.。
11.2与三角形有关的角 同步专题优生辅导训练 2021—2022学年人教版八上(附答案)
2021年人教版八年级数学上册《11.2与三角形有关的角》同步专题优生辅导训练(附答案)1.已知∠A、∠B、∠C是△ABC的三个内角,下列条件不能确定△ABC是直角三角形的是()A.∠A=40°,∠B=50°B.∠A=90°C.∠A+∠B=∠C D.∠A+∠B=2∠C2.在△ABC中,如果∠A:∠B:∠C=1:2:3,那么△ABC的形状是()A.直角三角形B.锐角三角形C.等腰三角形D.等腰直角三角形3.如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∠AOB=125°,则∠CAD的度数为()A.20°B.30°C.45°D.50°4.将一副三角板按如图方式重叠,则∠1的度数为()A.45°B.60°C.75°D.105°5.下列说法中,正确的是()A.三角形的高都在三角形内B.三角形的三条中线相交于三角形内一点C.三角形的一个外角大于任何一个内角D.三角形最大的一个内角的度数可以小于60度6.如图,在△ABC中,∠A=70°,∠C=30°,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,则∠BDE的度数是()A.30°B.40°C.50°D.60°7.如图,在△ABC中,AB⊥AC,过点A作AD⊥BC交BC于点D,若∠B=36°,则∠DAC 的度数为()A.36°B.46°C.54°D.64°8.如图,在△ABC中,∠B=70°,沿图中虚线EF翻折,使得点B落在AC上的点D处,则∠1+∠2等于()A.160°B.150°C.140°D.110°9.如图,在△ABC中,∠B=45°,CD平分∠ACB交AB于点D,过点A作AE⊥CD交BC于点E,交CD于点F,若∠BAE=20°,则∠CAF的大小为.10.如图,AD是△ABC的角平分线,△ABC的一个外角的平分线AE交边BC的延长线于点E,且∠BAD=20°,∠E=30°,则∠B的度数为.11.如图,在△ABC中,OB,OC分别为∠ABC和∠ACB的平分线,且∠A=68°,则∠BOC=.12.如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2021为.13.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D,BE⊥AD交AD的延长线于点E.若∠DBE=24°,则∠CAB=.14.如图,∠CAD和∠CBD的平分线相交于点P.请写出∠C、∠D、∠P的数量关系.15.如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=26°,则∠DAE的度数为.16.如图,三角形纸片ABC中,∠A=75°,∠B=72°.将三角形纸片的一角折叠,使点C落在△ABC内,如果∠1=32°,那么∠2=度.17.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠ACB的度数是°.18.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于.19.如图,△ABC中,∠1=∠2,∠BAC=65°,则∠APB=.20.综合与探究:如图①,在△ABC中,∠C>∠B,AD是∠BAC角平分线.(1)探究与发现:如图①,AE⊥BC于点E,①若∠B=20°,∠C=70°,则∠CAD=°,∠DAE=°;②若∠B=40°,∠C=80°,则∠DAE=°;③试探究∠DAE与∠B、∠C的数量关系,并说明理由.(2)判断与思考:如图②,F是AD上一点,FE⊥BC于点E,这时∠DFE与∠B、∠C 又有怎样的数量关系?21.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAB=3∠CAP,∠CDB=3∠CDP”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.22.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=30°,∠ACB=40°,求∠E的度数;(2)求证:∠BAC=∠B+2∠E.23.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.参考答案1.解:选项A:∵∠A=40°,∠B=50°,∴∠C=180°﹣∠A﹣∠B=90°.∴△ABC是直角三角形.选项B:∵∠A=90°,∴△ABC是直角三角形.选项C:∵∠A+B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°.∴∠C=90°.∴△ABC是直角三角形.选项D:∵∠A+∠B=2∠C,∠A+∠B+∠C=180°,∴3∠C=180°.∴∠C=60°.∴∠A+∠B=120°.∴无法确定△ABC是直角三角形.故选:D.2.解:设∠A=α°,则∠B=2α°,∠C=3α°,依题意得:α+2α+3α=180,解得:α=30,∴∠C=3α°=3×30°=90°.∴△ABC为直角三角形.故选:A.3.解:∵∠AOB=125°,∴∠OAB+∠OBA=55°,∵AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∴∠BAC+∠ABC=2(∠OAB+∠OBA)=110°,∴∠C=70°,∵AD是BC边上的高,∴∠ADC=90°,即∠CAD的度数是20°.故选:A.4.解:根据三角板的度数知,∠ABC=∠ACB=45°,∠DBC=30°,∴∠1=∠DBC+∠ACB=30°+45°=75°,故选:C.5.解:A、锐角三角形的三条高在三角形内部,相交于三角形内一点,故本选项错误;B、三角形的三条中线相交于三角形内一点,故本选项正确;C、三角形的一个外角大于任何一个不相邻的一个内角,故本选项错误;D、根据三角形内角和等于180°,三角形最大的一个内角的度数大于或等于60度,故本选项错误;故选:B.6.解:在△ABC中,∠A=70°,∠C=30°,∴∠ABC=180°﹣∠A﹣∠C=80°,∵BD平分∠ABC,∴∠ABD=∠ABC=40°,∵DE∥AB,∴∠BDE=∠ABD=40°,故选:B.7.解:∵AB⊥AC,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣36°=54°,∴∠DAC=90°﹣54°=36°,故选:A.8.解:∵∠B=70°,∴∠BEF+∠BFE=110°,∵翻折,∴∠BEF=∠DEF,∠BFE=∠DFE,∴∠BED+∠BFD=2(∠BEF+∠BFE)=2×110°=220°,∴∠1+∠2=180°×2﹣220°=140°,故选:C.9.解:∵AE⊥CD交CD于点F,∴∠AFC=∠EFC=90°,∵CD平分∠ACB,∴∠ACF=∠ECF,∵∠AFC+∠CAF+∠ACF=180°,∠EFC+∠CEA+∠ECF=180°,∴∠CAF=∠CEA,∵∠CEA=∠B+∠BAE,∠B=45°,∠BAE=20°,∴∠CAE=65°,∴∠CAF=65°,故答案为:65°.10.解:∵AD是△ABC的角平分线,∠BAD=20°,∴∠BAC=40°,∴∠F AC=180°﹣∠BAC=180°﹣40°=140°,∵AE平分∠CAF,∴∠CAE=70°,∴∠BAE=40°+70°=110°,∵∠AED=30°,∴∠B=180°﹣30°﹣110°=40°,故答案为:40°.11.解:∵∠A=68°,∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=112°,∵OB、OC分别平分∠ABC和∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=56°,∵∠BPC+∠PBC+∠PCB=180°,∴∠BPC=124°.故答案为:124°.12.解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,同理理可得∠A2=∠A1,∠A3=∠A2,……则∠A2021=∠A1=.故答案为:.13.解:∵BE⊥AE,∴∠E=∠C=90°,∵∠ADC=∠BDE,∴∠CAD=∠DBE=24°,∵AE平分∠CAB,∴∠CAB=2∠CAD=2×24°=48°,故答案为48°.14.解:∵∠BF A=∠P AC+∠P,∠BF A=∠PBC+∠C,∴∠P AC+∠P=∠PBC+∠C,∵∠CAD和∠CBD的平分线相交于点P,∴∠P AC=∠CAD,∠PBC=∠CBD,∴∠CAD+∠P=∠CBD+∠C①,同理:∠CAD+∠D=∠CBD+∠P②,①﹣②,得∠P﹣∠D=∠C﹣∠P,整理得,2∠P=∠D+∠C,故答案为:2∠P=∠D+∠C.15.解:∵AD⊥BC,∴∠ADC=90°,∴∠CAD=180°﹣∠ADC﹣∠C=180°﹣90°﹣26°=64°,∵AE平分∠BAC,∴∠CAE=∠BAC=×100°=50°,∴∠DAE=∠CAD﹣∠CAE=64°﹣50°=14°.故答案为14°.16.解:如图延长AE、BF交于点C′,连接CC′.在△ABC′中,∠AC′B=180°﹣72°﹣75°=33°,∵∠ECF=∠AC′B=33°,∠1=∠ECC′+∠EC′C,∠2=∠FCC′+∠FC′C,∴∠1+∠2=∠ECC′+∠EC′C+∠FCC′+∠FC′C=2∠AC′B=66°,∵∠1=32°,∴∠2=34°,故答案为:34.17.解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°.故答案为:45.18.解:∵△ABC中,∠C=50°,∴∠A+∠B=180°﹣∠C=130°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°,故答案为:230°.19.解:∵∠1=∠2,∠BAC=∠BAP+∠1=65°,∴∠BAP+∠2=65°,∴△ABP中,∠P=180°﹣65°=115°,故答案为:115°.20.解:(1)探究与发现:①在△ABC中,∠B+∠C+∠BAC=180°,∠B=20°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=90°,∵AD是∠BAC角平分线,∴∠CAD=∠BAC=×90°=45°,∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°﹣70°=20°,∴∠DAE=∠CAD﹣∠CAE=25°,故答案为:45,25;②∵∠B=40°,∠C=80°,∴∠BAC=60°,∵AD是∠BAC角平分线,∴∠CAD=∠BAC=30°,∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°﹣80°=10°,∴∠DAE=∠CAD﹣∠CAE=20°,故答案为:20;③∠DAE=(∠C﹣∠B),理由如下:在△AEC中,∠AEC+∠C+∠EAC=180°,∴∠EAC=180°﹣∠AEC﹣∠C=180°﹣90°﹣∠C=90°﹣∠C,∴∠DAE=∠CAD﹣∠EAC=×(180°﹣∠B﹣∠C)=(90°﹣∠B﹣∠C)﹣(90°﹣∠C)=(∠C﹣∠B);(2)判断与思考;∠DFE=(∠C﹣∠B),理由如下:证明:∵AD平分∠BAC,∴∠BAD==90°﹣(∠C+∠B),∵∠ADC为△ABD的外角,∴∠ADC=∠B+90°﹣(∠C+∠B)=90°+(∠B﹣∠C),∵FE⊥BC,∴∠FED=90°,∴∠DFE=90°﹣[90°+(∠B﹣∠C)]=90°﹣90°﹣(∠B﹣∠C),∴∠DFE=(∠C﹣∠B).21.解:(1)证明:在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①3;4;故答案为:3,4;②以M为交点”8字型“中,有∠P+∠CDP=∠C+∠CAP,以N为交点”8字型“中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=(∠B+∠C)=(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAB=3∠CAP,∠CDB=3∠CDP,∴∠BAP=∠CAB,∠BDP=∠CDB,以M为交点”8字型“中,有∠P+∠CDP=∠C+∠CAP,以N为交点”8字型“中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B.∴3∠P=∠B+2∠C.22.解:(1)∵∠ACB=40°,∴∠ACD=180°﹣40°=140°,∵∠B=30°,∴∠EAC=∠B+∠ACB=70°,∵CE是△ABC的外角∠ACD的平分线,∴∠ACE=70°,∴∠E=180°﹣70°﹣70°=40°;(2)∵CE平分∠ACD,∴∠ACE=∠DCE,∵∠DCE=∠B+∠E,∴∠ACE=∠B+∠E,∵∠BAC=∠ACE+∠E,∴∠BAC=∠B+∠E+∠E=∠B+2∠E.23.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A ∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.。
八年级数学上册第13章知识专题6_与三角形有关的证明(人教版)
《小专题与三角形有关的证明》题组(一)证明角相等类型1 利用内、外角和进行简单证明1.如图,在△ACB中,∠ACB=90°,CD AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.2.如图,AD平分△ABC的外角∠CAE.(1)若∠2=100°,∠3=30°,求∠1的度数;(2)求证:∠3=(∠2-∠1).类型2 运用全等进行证明3.已知:如图,AD平分∠BAC,DB AB于B,DH AC于H,G是AB上一点,GD=DC. 求证:∠C=∠BGD.4.已知:如图,A,E,B三点在一条直线上,B,D,C三点在一条直线上,且AB=BC,BD=BE,AD交CE于F点,连接BF.求证:(1)∠A=∠C;(2)BF平分∠ABC.5.如图,△ACB和△ECD都是等边三角形,点A,D,E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数.6.如图,点D在CB的延长线上,DB=CB,点E在AB上,连接DE,DE=AC,求证:∠A=∠DEB.类型3 运用等腰三角形(或线段垂直平分线)的性质进行证明7.如图,在△ABC中,AB=AC,D为边BC的中点,DE AB.(1)求证:∠BAC=2∠BDE;(2)若AC=4,DE=3,求△ABC的面积.8.如图,在四边形ABCD中,M,N分别是CD,BC的中点,且AM CD,AN BC.(1)求证:∠BAD=2∠MAN;(2)连接BD,若∠MAN=70°,∠DBC=40°,求∠ABC的度数.题组(二)证明线段之间的位置关系类型1 证明线段平行思路:先证明角相等,然后利用平行线的判定证明两直线平行9.如图,点B,F,C,E在同一条直线上,且FB=CE,∠A=∠D,∠ACB=∠DFE,求证:(1)△ACB△DFE;(2)AB∥DE.类型2 证明线段垂直思路一:证明角为90°10.如图,AD为△ABC的高,E为AC上一点,BE交AD于点F,且有BF=AC,FD=CD.求证:BE AC.思路二:等腰三角形三线合一11.如图所示,在△ABC中,AB=AC,AD BC于D,DE AB于E,DF AC于F,求证:AD EF.12.如图,△ABC是直角三角形,∠ABC=90°,△ABD和△BCE是等边三角形,连接CD,ED.求证:BD CE.题组(三)证明线段之间的数量关系类型1 证明线段相等思路一:利用全等三角形的性质证明线段相等13.如图,在△ABC中,∠ACB=90°,AC=BC.E为AC边的中点,AD AB交BE延长线于点D.CF平分∠ACB交BD于点F,连接CD.求证:(1)AD=CF;(2)点F为BD的中点.14.如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,过D作DE AB交AC于点E,BC=BD,连接CD交BE于点F.(1)求证:CE=DE;(2)若点D为AB的中点,求∠AED的度数.思路二:利用等腰(边)三角形的性质与判定证明线段相等15.如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB交AD的延长线于点E,求证:CE=AB.16.如图,已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM BC,垂足为M,求证:M是BE的中点.思路三:利用线段的垂直平分线的性质与判定证明线段相等17.如图,在△ABC中,AB=AC,∠BAC=120,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,求证:BM=MN=NC.思路四:利用角平分线的性质与判定证明线段相等18.如图,在△ABC中,∠BAC=90°,AD BC于点D,∠ACB的平分线交AD于点E,交AB于点F,FG BC于点G,求证:AE=FG.类型2 证明线段的和差关系19.如图,已知AD∥BC,点E为CD上一点,AE,BE分别平分∠DAB,∠CBA,BE交AD的延长线于点F.求证:(1)△ABE△AFE;(2)AD+BC=AB.20.如图,在△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD,CE 交于点O,试判断BE,CD,BC的数量关系,并加以证明.类型3 证明线段的倍分关系21.如图,△ABC为等边三角形,D,E分别是边AC,BC上的点,且AD=CE,AE 与BD相交于点P.(1)求∠BPE的度数;(2)若BF AE于点F,试判断BP与PF的数量关系,并说明理由.综合训练22.如图,一个直角三角形的顶点A在∠MON的边OM上(不与O重合),且ABON于点B,AC上OM于点A,点C在ON上,∠MON的平分线OP分别交AB,AC 于D,E两点.(1)线段AD和AE有怎样的数量关系?并说明理由;(2)射线ON上的点F与点A关于OP所在的直线对称,那么线段DF和AE有怎样的数量关系?并说明理由:(3)若∠MON=45°,猜想线段AC,AD.OC之间有怎样的数量关系?并证明你的猜想。
高考数学复习专题训练—三角函数与解三角形解答题(含解析)
高考数学复习专题训练—三角函数与解三角形解答题1.(2021·山东滨州期中)已知向量a=(cos x,sin x),b=(4√3sin x,4sin x),若f(x)=a·(a+b).(1)求f(x)的单调递减区间;]上的最值.(2)求f(x)在区间[0,π22.(2021·北京丰台区模拟)如图,△ABC中,∠B=45°,N是AC边的中点,点M在AB边上,且MN⊥AC,BC=√6,MN=√3.(1)求∠A;(2)求BM.3.(2021·山东潍坊二模)如图,D为△ABC中BC边上一点,∠B=60°,AB=4,AC=4√3.给出如下三种数值方案:①AD=√5;②AD=√15;③AD=2√7.判断上述三种方案所对应的△ABD的个数,并求△ABD唯一时,BD的长.4.(2021·海南海口月考)在△ABC中,已知a,b,c分别是角A,B,C的对边,b cos C+c cos B=4,B=π.请再在下4列三个条件:①(a+b+c)(sin A+sin B-sin C)=3a sin B;②b=4√2;③√3c sin B=b cos C中,任意选择一个,添加到题目的条件中,求△ABC的面积.5.(2021·辽宁大连一模)如图,有一底部不可到达的建筑物,A为建筑物的最高点.某学习小组准备了三种工具:测角仪(可测量仰角与俯角)、米尺(可测量长度)、量角器(可测量平面角度).(1)请你利用准备好的工具(可不全使用),设计一种测量建筑物高度AB的方法,并给出测量报告;注:测量报告中包括你使用的工具,测量方法的文字说明与图形说明,所使用的字母和符号均需要解释说明,并给出你最后的计算公式.(2)该学习小组利用你的测量方案进行了实地测量,并将计算结果汇报给老师,发现计算结果与该建筑物实际的高度有误差,请你针对误差情况进行说明.6.(2021·湖北武汉3月质检)在△ABC中,它的内角A,B,C的对边分别为a,b,c,且B=2π3,b=√6.(1)若cos A cos C=23,求△ABC的面积;(2)试问1a +1c=1能否成立?若能成立,求此时△ABC的周长;若不能成立,请说明理由.7.(2021·湖南长沙模拟)在△ABC中,内角A,B,C所对的边分别为a,b,c,且(b-c)sinCb+a=sin B-sin A.(1)求角A;(2)若a=2,求1tanB +1tanC的最小值.8.(2021·江苏南京期中)如图,某景区内有一半圆形花圃,其直径AB为6,O是圆心,且OC⊥AB.在OC上有一座观赏亭Q,其中∠AQC=2π3.计划在BC⏜上再建一座观赏亭P,记∠POB=θ(0<θ<π2).(1)当θ=π3时,求∠OPQ的大小;(2)当∠OPQ越大时,游客在观赏亭P处的观赏效果越佳,当游客在观赏亭P处的观赏效果最佳时,求sin θ的值.答案与解析1.解由于f(x)=a·(a+b)=|a|2+a·b=1+4√3sin x cos x+4sin2x=1+2√3sin 2x+4·1-cos2x2=2√3sin 2x-2cos 2x+3=4sin(2x-π6)+3.(1)由π2+2kπ≤2x-π6≤3π2+2kπ(k∈Z),解得π3+kπ≤x≤5π6+kπ(k∈Z),所以f(x)的单调递减区间是[π3+kπ,5π6+kπ](k∈Z).(2)由于x∈[0,π2],所以2x-π6∈[-π6,5π6],故当2x-π6=π2即x=π3时,函数f(x)取最大值7;当2x-π6=-π6即x=0时,函数f(x)取最小值1.2.解(1)如图,连接MC,因为N是AC边的中点,且MN⊥AC, 所以MC=MA.在Rt△AMN中,MA=MNsinA=√3sinA,所以MC=√3sinA.在△MBC中,由正弦定理可得MCsinB=BCsin∠BMC,而∠BMC=2∠A,所以√3sinA·sin45°=√6sin2A,即√3sinA·√22=√62sinAcosA,所以cos A=12,故∠A=60°.(2)由(1)知MC=MA=√3sin60°=2,∠BMC=2∠A=120°.在△BCM中,由余弦定理得BC2=BM2+MC2-2BM·MC·cos∠BMC,所以(√6)2=BM2+22-2BM·2·cos 120°,解得BM=√3-1(负值舍去).3.解过点A作AE⊥BC,垂足为点E(图略),则AE=4·sin 60°=2√3,当AD=√5时,AD<AE,所以方案①对应△ABD无解,当AD=√15时,AE<AD<AB<AC ,所以方案②对应△ABD 有两解, 当AD=2√7时,AB<AD<AC ,所以方案③对应△ABD 只有一解. 由方案③知AD=2√7,设BD=x (x>0),所以在△ABD 中由余弦定理得(2√7)2=42+x 2-2×4×x×cos 60°,即x 2-4x-12=0,解得x=6或x=-2(舍去).又因为在△ABC 中易得BC=8,BD=6<BC ,符合题意, 所以BD 的长为6.4.解 若选择条件①,则(a+b+c )(sin A+sin B-sin C )=3a sin B ,由正弦定理可得(a+b+c )(a+b-c )=3ab ,所以(a+b )2-c 2=3ab ,整理得a 2+b 2-c 2=ab ,所以cos C=12,故C=π3.又B=π4,所以A=π-π3−π4=5π12. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,即a=4.由正弦定理可得asinA =bsinB , 所以b=asinB sinA=4sin π4sin 5π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π3=4(3-√3). 若选择条件②,则b=4√2. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b22ac =4,即a=4.又B=π4,所以由正弦定理可得asinA =bsinB , 所以sin A=asinBb=4sin π44√2=12,所以A=π6或A=5π6.由于b>a ,所以B>A ,因此A=5π6不合题意舍去,故A=π6,从而C=π-π6−π4=7π12. 故△ABC 的面积S=12ab sin C=12×4×4√2×sin 7π12=4(√3+1). 若选择条件③,因为b cos C+c cos B=4, 所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,所以a=4.因为√3c sin B=b cos C ,所以√3sin C sin B=sin B cos C ,所以tan C=√33,于是C=π6,从而A=π-π6−π4=7π12,所以由正弦定理可得a sinA =bsinB , 所以b=asinB sinA=4sin π4sin 7π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π6=4(√3-1). 5.解 (1)选用测角仪和米尺,如图所示.①选择一条水平基线HG ,使H ,G ,B 三点在同一条直线上;②在H ,G 两点用测角仪测得A 的仰角分别为α,β,HG=a ,即CD=a.测得测角仪器的高是h ;③(方法一)在△ACD 中,由正弦定理,得ACsinα=CDsin (β-α), 所以AC=CDsinαsin (β-α)=asinαsin (β-α),在Rt △ACE 中,有AE=AC sin β=asinαsinβsin (β-α), 所以建筑物的高度AB=AE+h=asinαsinβsin (β-α)+h. (方法二)在Rt △ADE 中,DE=AEtanα, 在Rt △ACE 中,CE=AEtanβ, 所以CD=DE-CE=AEtanα−AEtanβ=AE (tanβ-tanα)tanαtanβ,所以AE=atanαtanβtanβ-tanα,所以建筑物的高度AB=AE+h=atanαtanβtanβ-tanα+h. (2)①测量工具问题;②两次测量时位置的间距差; ③用身高代替测角仪的高度.6.解 (1)由B=2π3,得A+C=π3,cos(A+C )=cos A cos C-sin A sin C ,即12=cos A cos C-sin A sin C.因为cos A cos C=23,所以sin A sin C=16.因为a sinA =c sinC =√6√32=2√2,所以a=2√2sin A ,c=2√2sin C.所以S △ABC =12·2√2sin A·2√2sin C·sin B=4sin A·sin B sin C=4×16×√32=√33. (2)假设1a +1c =1能成立,所以a+c=ac.由余弦定理,得b 2=a 2+c 2-2ac cos B ,所以6=a 2+c 2+ac.所以(a+c )2-ac=6,所以(ac )2-ac-6=0,所以ac=3或ac=-2(舍去),此时a+c=ac=3. 不满足a+c ≥2√ac ,所以1a +1c =1不成立.7.解 (1)由(b -c )sinCb+a =sin B-sin A ,可得(b-c )sin C=(sin B-sin A )(b+a ),由正弦定理得(b-c )c=(b-a )(b+a ),即b 2+c 2-a 2=bc , 由余弦定理,得cos A=b 2+c 2-a 22bc=12,因为0<A<π,可得A=π3.(2)由(1)知A=π3,设△ABC 的外接圆的半径为R (R>0),可得2R=asinA =4√33, 由余弦定理得a 2=b 2+c 2-2bc cos A=b 2+c 2-bc ≥bc , 即bc ≤a 2=4,当且仅当b=c=2时取等号, 又1tanB +1tanC =cosBsinB +cosCsinC =cosBsinC+sinBcosCsinBsinC =sin (B+C )sinBsinC =sinAsinBsinC =2R ·2RsinA 2RsinB ·2RsinC=2R ·abc =8√33bc ≥8√33×4=2√33,所以1tanB +1tanC 的最小值为2√33.8.解 (1)在△POQ 中,因为∠AQC=2π3,所以∠AQO=π3.又OA=OB=3,所以OQ=√3. 设∠OPQ=α,则∠PQO=π2-α+θ. 由正弦定理,得3sin (π2-α+θ)=√3sinα,即√3sin α=cos(α-θ), 整理得tan α=√3-sinθ,其中θ∈(0,π2).当θ=π3时,tan α=√33.因为α∈(0,π2),所以α=π6. 故当θ=π3时,∠OPQ=π6.(2)设f(θ)=√3-sinθ,θ∈(0,π2),则f'(θ)=-sinθ(√3-sinθ)+cos 2θ(√3-sinθ)2=1-√3sinθ(√3-sinθ)2.令f'(θ)=0,得sin θ=√33,记锐角θ0满足sin θ0=√33,当0<θ<θ0时,f'(θ)>0;当θ0<θ<π2时,f'(θ)<0, 所以f(θ)在θ=θ0处取得极大值亦即最大值.由(1)可知tan α=f(θ)>0,则α∈(0,π2),又y=tan α单调递增,则当tan α取最大值时,α也取得最大值.故游客在观赏亭P处的观赏效果最佳时,sin θ=√33 .。
(新高考)高考二轮精品专题六 三角函数与解三角形 教师版
1.高考对三角函数的考查主要在于三角函数的定义、图象和性质、三角恒等变换,主要考查三角函数图象的变换、三角函数的性质(单调性、奇偶性、周期性、对称性及最值),三角恒等变换通常还与解三角交汇命题.2.解三角形的考查主要在具体面积、角的大小、面积与周长的最值或范围的考查,本部分要求对三角恒等变换公式熟悉.一、三角函数1.公式(1)扇形的弧长和面积公式如果半径为r 的圆的圆心角α所对的弧的长为l ,那么角α的弧度数的绝对值是l rα=.相关公式:①l =|α|r②21122S lr r α==(2)诱导公式:正弦余弦正切α+k ⋅2πsin αcos αtan αα+π―sin α―cos αtan α―α―sin αcos α―tan απ―αsin α―cos α―tan α2πα+cos α―sin α2πα-cos αsin α32πα+―cos αsin α32πα-―cos α―sin α(3)同角三角函数关系式:sin 2α+cos 2α=1,sin tan cos ααα=(4)两角和与差的三角函数:sin(α+β)=sin αcos β+cos αsin βsin(α―β)=sin αcos β―cos αsin βcos(α+β)=cos αcos β―sin αsin βcos(α―β)=cos αcos β+sin αsin βtan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+(5)二倍角公式:sin 22sin cos ααα=2222cos 2cos sin 12sin 2cos 1ααααα=-=-=-22tan tan 21tan ααα=-(6)降幂公式:21cos 2sin 2αα-=,21cos 2cos 2αα+=2.三角函数性质性质y =sin x ,x ∈Ry =cos x ,x ∈R奇偶性奇函数偶函数单调性在区间()2,222k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z 上是增函数,在区间()32,222k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z 上是减函数在区间[―π+2kπ,2kπ](k ∈Z )上是增函数,在区间[2kπ,π+2kπ](k ∈Z )上是减函数最值在()22x k k ππ=+∈Z 时,y max ;在()22x k k ππ=-∈Z 时,y min在x =2kπ(k ∈Z )时,y max ;在x =2kπ+π(k ∈Z )时,y min对称中心(kπ,0)(k ∈Z )(),02k k ππ⎛⎫+∈⎪⎝⎭Z 对称轴()2x k k ππ=+∈Z x =kπ(k ∈Z )正切函数的性质图象特点定义域为{|,}2x x k k ππ≠+∈Z 图象与直线2x k k ππ=+∈Z ,没有交点最小正周期为π在区间,22k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z ,上图象完全一样在,22k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z ,内是增函数图象在,22k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z ,内是上升的对称中心为,02k k π⎛⎫∈⎪⎝⎭Z ,图象关于点,02k k π⎛⎫∈⎪⎝⎭Z ,成中心对称3.函数y =A sin(ωx +φ)的图象及变换(1)φ对函数y =sin(x +φ)的图象的影响(2)ω(ω>0)对y =sin(ωx +φ)的图象的影响(3)A(A >0)对y =A sin(ωx +φ)的图象的影响4.函数y =A sin(ωx +φ)的性质(1)函数y =A sin(ωx +φ)(A >0,ω>0)中参数的物理意义(2)函数y =A sin(ωx +φ)(A >0,ω>0)的有关性质二、解三角形1.正余弦定理定理正弦定理余弦定理内容(为外接圆半径);;变形形式,,;,,;;;;2.利用正弦、余弦定理解三角形(1)已知两角一边,用正弦定理,只有一解.(2)已知两边及一边的对角,用正弦定理,有解的情况可分为几种情况.在中,已知,和角时,解得情况如下:为锐角为钝角或直角直角图形关系式解的个数一解两解一解一解上表中为锐角时,,无解.为钝角或直角时,,均无解.(3)已知三边,用余弦定理,有解时,只有一解.(4)已知两边及夹角,用余弦定理,必有一解.3.三角形中常用的面积公式(1)(表示边上的高);(2);(3)(为三角形的内切圆半径).4.解三角形应用题的一般步骤一、选择题.1.在平面直角坐标系xOy 中,α为第四象限角,角α的终边与单位圆O 交于点P (x 0,y 0),若cos 356πα⎛⎫+= ⎪⎝⎭,则x 0=( )ABCD【答案】C【解析】∵,02πα⎛⎫∈-⎪⎝⎭,∴,636πππα⎛⎫+∈- ⎪⎝⎭,又3cos 65πα⎛⎫+=< ⎪⎝⎭,所以,063ππα⎛⎫+∈- ⎪⎝⎭,所以4sin 65πα⎛⎫+=- ⎪⎝⎭,∴0cos cos cos cos sin sin 666666x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦341552=-⨯=,故选C .【点评】本题容易忽视6πα+的范围,而导致sin 6πα⎛⎫+⎪⎝⎭出错.2.已知 tan 2θ―4tan θ+1=0,则2cos 4πθ⎛⎫+= ⎪⎝⎭( )A .12B .13C .14D .15【答案】C(70分钟)经典训练题【解析】由 tan 2θ―4tan θ+1=0,可得1tan 4tan θθ+=,所以sin cos 4cos sin θθθθ+=,即22sin cos 4cos sin θθθθ+=⋅,即1cos sin 4θθ⋅=,211cos 2121sin 212sin cos 124cos 422224πθπθθθθ⎛⎫++-⨯⎪--⎛⎫⎝⎭+===== ⎪⎝⎭,故选C .【点评】本题考查同角三角函数的关系、降幂公式、二倍角公式,解答本题的关键是由条件有1tan 4tan θθ+=,从而可得1cos sin 4θθ⋅=,由21cos 21sin 22cos 422πθπθθ⎛⎫++ ⎪-⎛⎫⎝⎭+== ⎪⎝⎭12sin cos 2θθ-=可解,属于中档题.3.已知函数f (x )=2sin(ωx +φ),(0,2πωϕ><的部分图象如图所示,f (x )的图象过,14A π⎛⎫⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将f (x )的图象向左平移712π个单位得到g (x )的图象,则函数g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为()A .―2B .2C .―3D .―1【答案】A【解析】由图象知,5244T πππ=-=,∴T =2π,则1ω=,∴f (x )=2sin(x +φ),将点,14A π⎛⎫⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭,又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=-⎪⎝⎭,将f (x )的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x x πππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为32cos 4π=,故选A .【点评】本题主要考了三角函数图象,以及三角函数的性质和三角函数图象的变换,属于中档题.4.已知a 、b 、c 分别是△ABC 的内角A 、B 、C 的对边,若sin cos sin CA B<,则ΔABC 的形状为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【答案】A【解析】因为在三角形中,sin cos sin CA B<变形为sin C <sin B cos A ,由内角和定理可得sin(A +B)<cos A sin B ,化简可得:sin A cos B <0,∴cos B <0,所以2B π>,所以三角形为钝角三角形,故选A .【点评】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.5.(多选)已知函数f(x)=3sin x +sin 3x ,则( )A .f(x)是奇函数B .f(x)是周期函数且最小正周期为2πC .f(x)的值域是[―4,4]D .当x ∈(0,π)时,f(x)>0【答案】ABD【解析】A .f (―x )=3sin(―x )+sin(―3x )=―3sin x ―sin 3x =―f (x ),故f(x)是奇函数,故A 正确;B .因为y =sin x 的最小正周期是2π,y =sin 3x 的最小正周期为23π,二者的“最小公倍数”是2π,故2π是f(x)的最小正周期,故B 正确;C .分析f(x)的最大值,因为3sin x ≤3,sin 3x ≤1,所以f(x)≤4,等号成立的条件是sin x =1和sin 3x =1同时成立,而当sin x =1,即()22x k k ππ=+∈Z 时,()3362x k k ππ=+∈Z ,sin 3x =―1,故C 错误;D .展开整理可得()2()3sin sin cos 2cos sin 2sin 4cos 2f x x x x x x x x =++=+,易知当x ∈(0,π)时,f(x)>0,故D 正确,故选ABD .【点评】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数()f x 为奇函数或偶函数的必要非充分条件;(2)()()f x f x -=-或()()f x f x -=是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.二、解答题.6.已知m =(2sin x ,sin x ―cos x ),n =(3cos x ,sin x +cos x ),函数f(x)=m ⋅n .求函数f(x)的最大值以及取最大值时x 的取值集合.【答案】f(x)的最大值为2,,3x x k k ππ⎧⎫=+∈⎨⎬⎩⎭Z .【解析】()()()cos sin cos sin cos f x x x x x x x =⋅=+-+m n2cos 22sin 26x x x π⎛⎫=-=- ⎪⎝⎭,所以函数f(x)的最大值为2,当2262x k πππ-=+,即,3x k k ππ=+∈Z 取得,即集合为,3x x k k ππ⎧⎫=+∈⎨⎬⎩⎭Z .【点评】本题与向量的坐标运算结合,考查三角函数的最值,属于基础题.7.已知函数2()cos 222x x x f x =+-.(1)求函数f(x)在区间[0,π]上的值域;(2)若方程f(ωx)=3(ω>0)在区间[0,π]上至少有两个不同的解,求ω的取值范围.【答案】(1)[―2,2];(2)5,12⎡⎫+∞⎪⎢⎣⎭.【解析】(1)()2cos 2sin(2224x x x f x x x x π=+-==+,令4U x π=+,∵x ∈[0,π],5,44U ππ⎡⎤∴∈⎢⎥⎣⎦,由y =sin U 的图象知,sin U ⎡⎤∈⎢⎥⎣⎦,即sin 4x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,2sin 24x π⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭,所以函数f(x)的值域为[―2,2].(2)()2sin()(0)4f x x πωωω=+>,∵f(ωx)=3,2sin(4x πω∴+=,即sin()4x πω+=,∵x ∈[0,π],,444x πππωωπ⎡⎤∴+∈+⎢⎥⎣⎦,且()243x k k ππωπ+=+∈Z 或()2243x k k ππωπ+=+∈Z ,由于方程f(ωx)=3(ω>0)在区间[0,π]上至少有两个不同的解,所以243ππωπ+≥,解得512ω≥,所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭.【点评】考查三角函数的值域时,常用的方法:(1)将函数化简整理为f(x)=A sin(ωx +φ),再利用三角函数性质求值域;(2)利用导数研究三角函数的单调区间,从而求出函数的最值.8.已知函数f(x)=3sin x cos x +cos 2x +1.(1)求f(x)的最小正周期和值域;(2)若对任意x ∈R ,2()()20f x k f x -⋅-≤的恒成立,求实数k 的取值范围.【答案】(1)最小正周期π,值域为15,22⎡⎤⎢⎥⎣⎦;(2)1710k ≥.【解析】(1)f(x)=3sin x cos x +cos 2x +1cos 21133212cos 2sin 222262x x x x x π+⎛⎫=++=++=++ ⎪⎝⎭,∴f(x)的为最小正周期22T ππ==,值域为()15,22f x ⎡⎤∈⎢⎥⎣⎦.(2)记f(x)=t ,则15,22t ⎡⎤∈⎢⎥⎣⎦,由f 2(x)―k ⋅f(x)―2≤0恒成立,知t 2―kt ―2≤0恒成立,即kt ≥t 2―2恒成立,∵t >0,∴222t k t t t-≥=-.∵()2g t t t =-在15,22t ⎡⎤∈⎢⎥⎣⎦时单调递增,max 5541722510g g ⎛⎫==-= ⎪⎝⎭,∴k 的取值范围是1710k ≥.【点评】本题主要考查了三角函数的恒等变换的应用,正弦函数的性质,考查了函数思想,属于中档题.9.△ABC 的内角A ,B ,C 的对边为a ,b ,c ,且3(sin B +sin C )2―3sin 2(B +C)=8sin B sin C .(1)求cos A 的值;(2)若△ABC 的面积为,求a +b +c 的最小值.【答案】(1)13;(2)4+.【解析】(1)由3(sin B +sin C )2―3sin 2(B +C)=8sin B sin C ,∵A +B +C =π,所以228(sin sin )sin sin sin 3B C A B C +=+,由正弦定理可得228()3b c a bc +=+,则22223b c a bc +-=,由余弦定理可得2221cos 23b c a A bc +-==.(2)由1cos 3A =,得sin A =,∵1sin 2ABC S bc A ==△,∴bc =12,由22223b c a bc +-=,得222224216333a b c bc bc bc bc =+-≥-==,∴a ≥4,当且仅当b =c =23时,等号成立.又b +c ≥2bc =43,当且仅当b =c =23时,等号成立.∴a +b +c ≥4+43,当且仅当b =c =23时,等号成立.即a +b +c 的最小值为4+.【点评】求解三角形中有关边长、角、面积的最值(范围)问题时,常利用正弦定理、余弦定理与三角形面积公式,建立a +b ,ab ,a 2+b 2之间的等量关系与不等关系,然后利用函数或基本不等式求解.10.设函数f(x)=12cos 2x ―43sin x cos x ―5.(1)求f(x)的最小正周期和值域;(2)在锐角△ABC 中,角A 、B 、C 的对边长分别为a 、b 、c .若f(A)=―5,a =3,求△ABC 周长的取值范围.【答案】(1)π,[―43+1,43+1](2)(3+3,33].【解析】(1)f (x )=12cos 2x ―43sin x cos x ―5=12cos 2x ―23sin 2x ―56cos 221216x x x π⎛⎫=-+=++ ⎪⎝⎭,T π∴=,值域为[―43+1,43+1].(2)由f(A)=―5,可得212cos cos A A A =,因为三角形为锐角△ABCsin A A =,即tan A =,3A π=,由正弦定理sin sin sin a b c A B C ==,得2sin b B =,22sin 2sin()3c C B π==-,所以212sin sin()2(sin sin )32a b c B B B B B π⎡⎤++=++-=++⎢⎥⎣⎦32(sin ))26B B B π==++,因为△ABC 为锐角三角形,所以02B π<<,02C π<<,即022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<,所以2363B πππ<+<sin(16B π<+≤,即36B π+<+≤,所以周长的取值范围为区间(3+3,33].【点评】在解三角形的周长范围时,将a +b +c 转化为含一个角的三角函数问题,利用三角函数的值域,求周长的取值范围,是常用解法.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a +b )(sin A ―sin B )=(b +c )sin C .(1)求角A 的大小;(2)若点D 是BC 的中点,且AD =2,求△ABC 的面积的最大值.【答案】(1)23π;(2)23.【解析】(1)由题意得(a +b)(a ―b)=(b +c)c ,∴b 2+c 2―a 2=―bc ,1cos 2A ∴=-,()0,A π∈,23A π∴=.(2)1()2AD AB AC =+u u u r u u u r u u u r ,()()2222211244AD AB AC AB AC AB AC AB AC =++⋅=+-⋅u u u r u u u r u u u r u u u r u u u r ,()1224AB AC AB AC ∴≥⋅-⋅,当且仅当AB =AC 时,等号成立,∴AB ⋅AC ≤8,11sin120822S AB AC =⋅︒≤⨯=故△ABC 的面积的最大值是23.【点评】用三角形中线向量进行转化是解题关键.12.如图,在△ABC 中,AB =2AC ,∠BAC 的角平分线交BC 于点D .(1)求ABD ADCS S △△的值;(2)若AC =1,BD =2,求AD 的长.【答案】(1)2;(2)1.【解析】(1)∵AD 为∠BAC 的角平分线,∴∠BAD =∠CAD ,即sin ∠BAD =sin ∠CAD,∴1sin 21sin 2ABDADC AB AD B AB AD S S AC AD A ACC D ⋅∠∠==⋅V V ,又∵AB =2AC ,∴2ABD ADC S S =△△.(2)由(1)知2ABD ADC S AB S AC ==△△,而1212ABDADC BC h S BC S CDCD h ⋅==⋅△△,2AB BD AC CD ∴==且AC =1,BD =2,∴2AB =,CD =∵∠BAD =∠CAD ,∴cos ∠BAD =cos ∠CAD ,在△ABD 中,22222422cos 2224AB AD BD AD AD BAD AB AD AD AD+-+-+∠===⋅⨯⨯,在△ACD 中,2222211122cos 2212AD AD AC AD CD CAD AC AD AD AD +-++-∠===⋅⨯⨯,∴2212242AD AD AD AD ++=,∴AD =1.【点评】本题考查三角形面积公式和余弦定理的应用,解题的关键在于对角平分线的性质的理解和运用,考查解题和运用能力.13.在ΔABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且(a +b +c)(a +b ―c)=3ab .(1)求角C 的值;(2)若c =2,且ΔABC 为锐角三角形,求a +b 的取值范围.【答案】(1)3C π=;(2)(23,4].【解析】(1)由题意知(a +b +c)(a +b ―c)=3ab ,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵C ∈(0,π),∴3C π=.(2)由正弦定理可知,2sin sin sin 3a b A B π===a A =,b B =,∴)2sin sin sin sin 3a b A B A A π⎡⎤⎛⎫+=+=+- ⎪⎢⎥⎝⎭⎣⎦2cos 4sin 6A A A π⎛⎫=+=+ ⎪⎝⎭,又∵ΔABC 为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上a +b 的取值范围为(23,4].【点评】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.一、选择题.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则“b cos A ―c <0”,是“△ABC 为锐角三角形”的( )条件.A .充分必要B .充分不必要C .必要不充分D .既不充分也不必要【答案】C高频易错题即sin(A +B)=sin A cos B +sin B cos A >sin B cos A ,∴sin A cos B >0,因为sin A >0,∴cos B >0,所以B 为锐角.当B 为锐角时,△ABC 不一定为锐角三角形;当△ABC 为锐角三角形时,B 一定为锐角,所以“b cos A ―c <0”是“△ABC 为锐角三角形”的必要非充分条件,故选C .【点评】判断充分必要条件,一般有三种方法:(1)定义法;(2)集合法;(3)转化法.我们要根据实际情况灵活选择方法,本题选择的是定义法判断充分必要条件.二、填空题.2.设锐角三角形ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,B =2A ,则b 的取值范围为___________.【答案】(22,23)【解析】由sin2sin b a A A=,得4cos b A =,由0290045A A ︒<<︒⇒︒<<︒,01803903060A A ︒<︒-<︒⇒︒<<︒,故3045cos A A ︒<<︒⇒<<cos A <<b =4cos A ∈(22,23).【点评】该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理,以及锐角三角形的条件,属于简单题目.三、解答题.3.已知a >0,函数()2sin(2)26f x a x a b π=-+++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,―5≤f (x )≤1.(1)求常数a ,b 的值;(2)设()2g x f x π⎛⎫=+ ⎪⎝⎭且lg g (x )>0,求g (x )的单调区间.【答案】(1)2a =,5b =-;(2)递增区间为,6k k k πππ⎛⎫+∈ ⎪⎝⎭Z ,;递减区间为,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ,.【解析】(1)由0,2x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin(2),162x π⎡⎤+∈-⎢⎥⎣⎦,所以[]2sin(2)2,6a x a a π-+∈-,所以f (x )∈[b ,3a +b],又因为―5≤f (x )≤1,可得531b a b =-⎧⎨+=⎩,解得2a =,5b =-.(2)由(1)得()4sin(2)16f x x π=-+-,则()74sin(214sin(21266g x f x x x πππ⎛⎫=+=-+-=+- ⎪⎝⎭,又由lg g (x )>0,可得g (x )>1,所以4sin(2116x π+->,即1sin(2)62x π+>,所以5222666k x k k πππππ+<+<+∈Z ,,当222662k x k k πππππ+<+≤+∈Z ,时,解得6k x k k πππ<≤+∈Z ,,此时函数g (x )单调递增,即g (x )的递增区间为,6k k k πππ⎛⎫+∈ ⎪⎝⎭Z ,;当5222266k x k k πππππ+<+<+∈Z 时,解得63k x k k ππππ+<<+∈Z ,,此时函数g (x )单调递减,即g (x )的递减区间为,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ,.【点评】本题主要考查了三角函数的图象与性质的综合应用,其中解答中根据三角函数的性质,求得函数的解析式,熟练应用三角函数的性质是解答的关键,着重考查推理与运算能力.一、选择题.1.如图所示,扇形OQP 的半径为2,圆心角为3π,C 是扇形弧上的动点,四边形ABCD 是扇形的内接矩形,则S ABCD 的最大值是()AB.CD .23【答案】A【解析】如图,记∠COP =α,在Rt △OPC 中,2cos OB α=,2sin BC α=,在Rt △OAD中,OA DA BC α===,所以2cos AB OB OA αα=-=,设矩形ABCD 的面积为S,(2cos )2sin S AB BC ααα=⋅=⋅精准预测题24sin cos 2sin 22ααααα==+-)6πα=+,由03πα<<,所以当262ππα+=,即6πα=时,S =,故选A .【点评】本题考查在实际问题中建立三角函数模型,求解问题的关键是根据图形建立起三角模型,将三角模型用所学的恒等式变换公式进行求解.2.已知函数()2sin 26f x x π⎛⎫=+⎪⎝⎭,现将()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,则g (x )的解析式为( )A .221124x y +=B .sin 3y x π⎛⎫=+⎪⎝⎭C .2sin 43y x π⎛⎫=+⎪⎝⎭D .2sin 3y x π⎛⎫=+⎪⎝⎭【答案】C【解析】将()y f x =的图象向左平移12π个单位得2sin 22sin 21263y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到()2sin 43y g x x π⎛⎫==+⎪⎝⎭,故选C .【点评】在三角函数平移变换中,y =sin ωx 向左平移ϕ个单位得到的函数解析式为y =sin[ω(x +φ)]=sin(ωx +ωφ),而不是y =sin(ωx +),考查运算求解能力,是基础题.3.(多选)如图是函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象,则下列说法正确的是( )A .ω=2B .,06π⎛⎫-⎪⎝⎭是函数,f (x )的一个对称中心C .23πϕ=D .函数f (x )在区间4,5ππ⎡⎤--⎢⎥⎣⎦上是减函数【答案】ACD【解析】由题知,A =2,函数f (x )的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,所以22T πω==,故A 正确;因为1111112sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11262k ππϕπ+=+,k ∈Z ,解得423k πϕπ=-,k ∈Z ,又|φ|<π,所以23πϕ=,故C 正确;函数()22sin 23f x x π⎛⎫=+⎪⎝⎭,因为22sin 22sin 06633f ππππ⎡⎤⎛⎫⎛⎫-=⨯-+==≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以,06π⎛⎫-⎪⎝⎭不是函数f (x )的一个对称中心,故B 错误;令23222232m x m πππππ+≤+≤+,m ∈Z ,得51212m x mx πππ-≤≤+,m ∈Z ,当m =―1时,1371212x ππ-≤≤-,因为4137,,51212ππππ⎡⎤⎡⎤--⊆--⎢⎥⎢⎥⎣⎦⎣⎦,所以函数f (x )在区间4,5ππ⎡⎤--⎢⎥⎣⎦上是减函数,故D 正确,故选ACD .【点评】已知()(sin 0,0)()f x A x A ωϕω+>>=的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由2Tπω=,即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标0x ,则令00x ωϕ+=(或0x ωϕπ+=),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.二、解答题.4.已知函数f(x)=cos(ωx)(ω>0)的最小正周期为π.(1)求ω的值及函数()()0,42g x x f x x ππ⎛⎫⎡⎤=--∈ ⎪⎢⎥⎝⎭⎣⎦,的值域;(2)在△ABC 中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,若0,2A π⎛⎫∈ ⎪⎝⎭,()12f A =-,△ABC 的面积为33,b ―c =2,求a 的值.【答案】(1)ω=2,值域为[―1,2];(2)4.【解析】(1)因为函数f(x)=cos(ωx)的最小正周期为π,由2T ππω==,2ω=,又因为ω>0,所以ω=2.此时f(x)=cos 2x ,则得()2cos 24g x x x π⎛⎫=-- ⎪⎝⎭,即g(x)=3sin 2x ―cos 2x ,即()2sin 26g x x π⎛⎫=-⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,[]2sin 21,26x π⎛⎫-∈- ⎪⎝⎭,所以所求函数的值域为[―1,2].(2)由题意得1cos 22A =-,因为0,2A π⎛⎫∈ ⎪⎝⎭,则得2A ∈(0,π),所以223A π=,解得3A π=,因为△ABC 的面积为33,则得1sin 2bc A =,即1sin 23bc π=,即bc =12.又因为b ―c =2,由余弦定理,得a =b 2+c 2―2bc cos A =b 2+c 2―bc =(b ―c )2+bc =22+12=4,所以a =4.【点评】本题考查求三角函数的值域,考查余弦定理解三角形,以及三角形面积公式.三角函数问题中,首先需利用诱导公式、二倍角公式、两角和与差的正弦(余弦)公式化函数为一个角的一个三角函数形式(主要是f(x)=A sin(ωx +ϕ)+k 形式),然后利用正弦函数性质确定求解.5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B ―C )=c sin(B +C ).(1)求角C 的大小;(2)若2a +b =8,且△ABC 的面积为23,求△ABC 的周长.【答案】(1)3C π=;(2)6+23.【解析】(1)∵a sin(A +B ―C)=c sin(B +C),∴sin A sin(π―2C)=sin C sin A ,∴2sin A sin C cos C =sin C sin A ,∵sin A sin C ≠0,1cos 2C ∴=,0C π<<,3C π∴=.(2)由题意可得12=∴ab =8,∵2a +b =8联立可得,a =2,b =4,由余弦定理可得,c 2=12,c =23,此时周长为6+23.【点评】本题主要考查了三角形的内角和诱导公式在三角化简中的应用,还考查了三角形的面积公式及余弦定理,属于基础题.6.如图,矩形ABCD 是某个历史文物展览厅的俯视图,点E 在AB 上,在梯形DEBC 区域内部展示文物,DE 是玻璃幕墙,游客只能在△ADE 区域内参观.在AE 上点P 处安装一可旋转的监控摄像头,∠MPN 为监控角,其中M 、N 在线段DE (含端点)上,且点M 在点N 的右下方.经测量得知:AD =6米,AE =6米,AP =2米,4MPN π∠=.记∠EPM =θ(弧度),监控摄像头的可视区域△PMN 的面积为S 平方米.(1)分别求线段PM 、PN 关于θ的函数关系式,并写出θ的取值范围;(2)求S 的最小值.【答案】(1)4sin cos PM θθ=+,PN =,30arctan 34πθ≤≤-;(2)8(2―1)平方米.【解析】(1)在△PME 中,∠EPM =θ,4PE AE AP =-=米,4PEM π∠=,34PME πθ∠=-,由正弦定理得sin sin PM PEPEM PME=∠∠,所以sin 4sin sin cos PE PEM PM PME θθ⨯∠===∠+;同理在PNE △中,由正弦定理得sin sin PN PEPEN PNE=∠∠,所以sin sin PE PEN PN PNE ⨯∠===∠当M 与E 重合时,θ=0;当N 与D 重合时,tan ∠APD =3,即∠APD =arctan 3,3πarctan 3arctan 344πθπ=--=-,所以30arctan 34πθ≤≤-.(2)△PMN 的面积214sin 2cos sin cos S PM PN MPN θθθ=⨯⨯∠=+481cos 21sin 2cos 21sin 222θθθθ===++++,因为30arctan 34πθ≤≤-,所以当242ππθ+=,即30,arctan 384ππθ⎡⎤=∈-⎢⎥⎣⎦时,S)81=-,所以可视区域△PMN 面积的最小值为8(2―1)平方米.【点评】本题考查解三角形的应用.掌握三角函数的性质是解题关键.解题方法是利用正弦定理或余弦定理求出三角形的边长,面积,利用三角函数的恒等变换化函数为基本三角函数形式,然后由正弦函数性质求最值.7.在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若23cos 2A +cos 2A =0,且△ABC 为锐角三角形,a =7,c =6,求b 的值;(2)若a =3,3A π=,求b +c 的取值范围.【答案】(1)5b =;(2)b +c ∈(3,23].【解析】(1)22223cos cos 223cos 2cos 10A A A A +=+-=Q ,∴21cos 25A =,又∵A 为锐角,1cos 5A =,而a 2=b 2+c 2―2bc cos A ,即2121305b b --=,解得b =5或135b =-(舍去),∴b =5.(2)由正弦定理可得()22sin sin 2sin sin 36b c B C B B B ππ⎡⎤⎛⎫⎛⎫+=+=+-=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,203B π<<Q ,∴5666B πππ<+<,∴1sin 126B π⎛⎫<+≤ ⎪⎝⎭,∴b +c ∈(3,23].【点评】本题考查三角函数的恒等变换,三角形的正弦定理和余弦定理的运用,以及运算能力,属于中档题.。
八年级数学上册第2章轴对称图形专题训练5等腰三角形角度计算的技巧习题课件新版苏科版
B1 C ,连接 BB1,设 CB1交 AB 于点 D , A1 B1分别交
AB 、 AC 于点 E 、 F .
(1)在图中不再添加其他任何线段的情况下,请你找出一
对全等的三角形,并加以证明(△ ABC 与△ A1 B1 C 全等
分类讨论求角度
6. [2024张家港期末]等腰三角形一腰上的高与底边的夹角为
140° .
70°,则顶角的度数为
1
2
3
4
5
6
7
8
9
10
11
7. [2024无锡新吴区期末]在△ ABC 中, AB = AC , AB 的垂
直平分线与 AC 所在直线相交所得的锐角为30°,则底角
∠ B 的度数是
60°或30°
除外);
1
2
3
4
5
6
7
8
9
10
11
解:(1)△ CBD ≌△ CA1 F . 理由如下:∵ AC = BC ,
∠ ACB =90°,∴∠ A =∠ CBA =45°.
∵△ ABC 绕点 C 逆时针旋转α角(0°<α<90°),得到
△ A1 B1 C ,∴ CA = CA1,∠ A =∠ A1,∠ ACA1=
∠ CDE =60°,∴∠ DAE =∠ DEA =60°,
∴△ ADE 是等边三角形.
1
2
3
4
5
6
7
8
9
10
11
(2)若 AD = AE ,试求α与β之间的关系.
解:(2)∵ AB = AC ,∴∠ B =∠ C =90°- ∠ BAC .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题训练(六)
与三角形有关的角度计算
类型之一 利用三角形角的关系求角度 1.在△ABC 中,∠A=2∠B=2∠C,则∠A 的度数是( A.30° B.36° C.45° D.90° 2. 如图, 点 D 在△ABC 的边 BC 的延长线上, CE 平分∠ACD, ∠A=80°,∠B=40°,则∠ACE 的大小是________度. )
6.如图所示,∠A=50°,∠B=30°,∠BDC=110°,求∠C 的度数.
类型之二 与平行线结合求角度 7.如图,已知 AB∥CD,∠C=70°,∠F=30°,则∠A 的度数 为( ) A.30° B.35° C.40° D.45°
第 7 题图
第 8 题图
8.如图,AE⊥BC 于点 E,∠1=∠2,则∠BCD=________.
3. 如图, 在△ABC 中, ∠A=70°, ∠ACD=30°, CD 平分∠ACB. 求∠B 的度数.
4.如图,在△ABC 中,∠ABC=46°,∠ACB=80°,延长 BC 至点 D,使 CD=CA,连接 AD,求∠BAD 的度数.
5. 如图, 在△ABC 中, ∠B=40°, 三角形的外角∠DAC 和∠ACF 的平分线交于点 E,求∠AEC 的度数.
类型之四 与截取或折叠有关的角度计算 14.一副三角板有两个直角三角形,如图叠放在一起,则∠α 的 度数是( A ) A.165° B.120° C.150° D.135°
15.如图,把一张长方形纸片 ABCD 沿 EF 折叠后,点 C,D 分别落 在点 C′,D′的位置上,EC′交 AD 于点 G,若∠EFG=60°,试求 ∠BEG 的度数.
9.如图,直线 AB∥CD,BC 平分∠ABD,∠1=65°,求∠2 的 度数.
类型之三 与三角板或直尺有关的角度计算 10.将一副直角三角板如图摆放,点 C 在 EF 上,AC 经过点 D. 已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°,则 ∠CDF=________.
11.将一副三角尺按如图所示的方式放置,使含 30°角的三角尺 的短直角边和 45°角的三角尺的一条直角边重合,则∠1 的度数是 ________.
12.如图,四边形 ABCD 中,∠A=∠C=90° ,BE 平分∠ABC, DF 平分∠ADC,则 BE 与 DF 有何位置关系?试说明理由.
13.如图,将两块直角三角板的直角顶点叠放在一起. (1)猜想∠AOC 与∠BOD 的大小关系,并说明理由; (2)求∠AOD+∠BOC 的度数; (3)若∠BOD 与∠AOD 的度数比为 2∶11,求∠BOC 的度数.