第十七章勾股定理复习与小结

合集下载

人教数学八年级下《学练优》第17章 小结与复习评讲与答案

人教数学八年级下《学练优》第17章 小结与复习评讲与答案
A.2,2,3 B.60,80,100 C.4,5,6 D.5,6,7 13.在△ABC中,若三边长分别为9,12,15,则 以两个这样的三角形拼成的长方形的面积为 108
14.如图,在5×5的正方形网格中,从在格点上 的点A,B,C,D中任取三点,能构成直角三角形 的个数是 3个 .
15.如图,在四边形ABCD中,AB=BC=2,CD =3,DA=1,且AB⊥BC于B.求:【方法6】 (1)∠BAD的度数; (1)如图,连接AC. ∵AB⊥BC,∴∠B=90°. 在Rt△ABC中,∵AB=BC=2, ∴AC= AB2 BC2 =2 2,∠BAC=45°.
9.★一辆装满货物,宽为2.4米的卡车,欲通过如图 所示的隧道,则卡车的外形高必须低于 4.1 米.
解析:∵车宽2.4米,∴欲通过隧道,只要距隧道中 线1.2米处的高度大于车高.在Rt△OCD中,由勾股 定理可得CD= OC2 OD2= 22 1.22 =1.6(米). ∴CH=CD+DH=1.6+2.5=4.1(米),∴卡车的外形 高必须低于4.1米.
又∵CD=3,DA=1, ∴AC2+DA2=8+1=9,CD2=9, ∴AC2+DA2=CD2,∴△ACD是直角三角形, 且∠CAD=90°,∴∠BAD=45°+90°=135°.
(2)四边形ABCD的面积.
(2)S四边形ABCD=S△ABC+S△ACD
= 1 ×2×2+ 1 ×1×2 2 =2+ 2 .
11.(2018·福建中考)把两个同样大小的含45°角的 三角尺按如图所示的方式放置,其中一个三角尺的 锐角顶点与另一个的直角顶点重合于点A,且另三
个锐角顶点B,C,D在同一直线上.若AB= 2 ,
求CD的长.
解:如图,过点A作AF⊥BC于F, 在Rt△ABC中,∠B=45°, ∴AB=AC, ∴BC= 2 , AB=2, BF=AF= 2 AB=1.

第十七章 勾股定理学案

第十七章 勾股定理学案

- 1 -18.1 勾股定理(一) (一)课前预习 1.直角△ABC 的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: (2)若∠B=30°,则∠B 的对边和斜边:命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。

(二)、勾股定理的证明勾股定理的证明方法很多,你能否利用右图:赵爽弦图证明呢?1.已知:在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a 、b 、c 。

求证: 222a b c +=勾股定理的内容是: 。

(三)学以致用 在Rt△ABC 中,已知两边求第三边-------简称“知二求一” 1.在Rt△ABC 中,90C ∠=︒ , ⑴如果a =6,b =8,求c 的值; ⑵如果a =5,b =12,求c 的值; ⑶如果a =9,c =41,求b 的值; 练习 1.若一个直角三角形的两直角边分别为9和12,则第三边的长为( ) A.13 B. 13 C. 5 D.15 2.若一个直角三角形的斜边长为26,一条直角边长为24,则另一直角边长为( ) A.8 B.10 C.50 D.36 3.在Rt △ABC 中,∠C=90°,若a ︰b =3︰4,c=10,求a ,b 的值。

注意:⑴只有在直角三角形中,才能用勾股定理;⑵在用勾股定理求第三边时,要分清直角三角形的斜边和直角边; (四)当堂检测:1.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.2.在Rt△ABC,∠C=90°;⑴ 已知a =b =5,求c ;⑵已知c =17,b =8,求a ;⑶ 已知a ∶b =1∶2,c=5,求a ; ⑷已知b=15,∠A=30°,求a ,c 。

3.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,求斜边的长?4.一个直角三角形的两边长分别为3cm 和4cm ,求第三边的长?5.已知,如图在正ΔABC 中,AB=BC=CA=2cm .求ΔABC 的面积.BDbaD C C A- 2 -EFDCBA18.1 勾股定理(二)(一)回顾复习:1.勾股定理:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。

第17章 勾股定理小结与复习

第17章  勾股定理小结与复习

张大爷的房子吗?( A )
A.一定不会 B.可能会
C.一定会
D.以上答案都不对
2.在一棵树的10米高处B有两只猴子, 其中一只猴子爬下树走到离树20米的 池塘A,另一只猴子爬到树顶D后直接 跃向池塘的A处,如果两只猴子所经过 距离相等,试问这棵树有多高? D B.
C A
利用勾股定理解题决实际问题时,基本步 骤是什么? 1.把实际问题转化成数学问题,找出相应的
分析:由于本题中的△ABC不是直角三角形, 所以添加BC边上的高这条辅助线,就可以求得 BC及S△ABC . 答案:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°. 在△ABD中,∠ADB=90°, ∠B=45°,AB=2,∴AD=BD= 2 .∵在△ABD中, ∠ADC=90°,∠C=60°,AD= 2 ,
五 勾股定理及其逆定理的综合应用
已知:如图,四边形ABCD,AB=1,BC=2,CD=2, AD=3, 且AB⊥BC.求四边形 ABCD的面积. 分析:本题解题的关键是恰当的添加辅助 线,利用勾股定理的逆定理判定△ADC的 形状为直角三角形,再利用勾股定理解题. 答案:连接AC,∵AB⊥BC,∴∠ABC=90°. ∵在△ABC中,∠ABC=90°,AB=1,BC=2, ∴AC= 5 .∵CD=2,AD=3, ∴△ACD是直角三角形; ∴四边形的面积为1+ 5.
图1
图2
答案:第1种情况:如图1,在Rt△ADB和Rt△ADC中,分别由勾股 定理,得BD=9,CD=5,所以BC=BD+ CD=9+5=14. 故S△ABC=84(cm2). 第2种情况,如图2,可得:S△ABC=24( cm2 ).
二 用勾股定理解决简单的实际问题
1. 在一块平地上,张大爷家屋前9米远处有一棵大 树.在一次强风中,这棵大树从离地面6米处折断倒 下,量得倒下部分的长是10米.出门在外的张大爷担 心自己的房子被倒下的大树砸到.大树倒下时能砸到

勾股定理及其逆定理小结

勾股定理及其逆定理小结

勾股定理及其逆定理小结一、知识要点回顾 1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2 + b 2= c 2。

公式的变形:a 2= c 2- b 2, b 2= c 2-a 2。

2、勾股定理的逆定理如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2+ b 2= c 2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①、已知的条件:某三角形的三条边的长度.②、满足的条件:最大边的平方=最小边的平方+中间边的平方. ③、得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④、如果不满足条件(2),就说明这个三角形不是直角三角形。

二、考点剖析1、应用勾股定理在等腰三角形中求底边上的高例1、如图1所示,等腰中,,是底边上的高,若,则cm .2, 应用勾股定理解决楼梯上铺地毯问题 例2、某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .3,应用勾股定理解决勾股树问题例3,如图6所示,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是:A.13 B.26 C.47 D.944,应用勾股定理解决阴影面积问题例4,已知:如图7所示,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为.5,应用勾股定理解决数学风车问题例5、如图8中,图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的。

在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是______________。

第十七章勾股定理教案

第十七章勾股定理教案

第十七章勾股定理17. 1勾股定理第 1课时勾股定理(1)认识勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.要点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创建情境,引入新课让学生画一个直角边分别为 3 cm和 4 cm的直角△ ABC,用刻度尺量出斜边的长.再画一个两直角边分别为 5 和 12 的直角△ ABC,用刻度尺量出斜边的长.你能否发现了32+42与 52的关系, 52+ 122与 132的关系,即32+ 42= 52,52+ 122= 132,那么就有勾2+股2=弦2.关于随意的直角三角形也有这个性质吗?由一学生朗诵“毕达哥拉斯察看地面图案发现勾股定理”的传说,指引学生察看身旁的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,研究新知1.多媒体课件演示教材第22~ 23 页图 17.1 - 2 和图 17.1 - 3,指引学生察看思虑.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.指引学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这不过猜想,一个数学命题的成立,还要经过我们的证明.概括考证,得出定理(1) 猜想:命题1:假如直角三角形的两直角边长分别为a, b,斜边长为c,那么 a2+ b2= c2.(2)能否是全部的直角三角形都有这样的特色呢?这就需要对一个一般的直角三角形进行证明.到当前为止,对这个命题的证明已有几百种之多,下边我们就看一看我国数学家赵爽是如何证明这个定理的.①用多媒体课件演示.②小组合作研究:a.以直角三角形ABC的两条直角边a, b 为边作两个正方形,你能经过剪、拼把它拼成弦图的样子吗?b.它们的面积分别如何表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验先人赵爽的证法.想想还有什么方法?师:经过拼摆,我们证明了命题 1 的正确性,命题 1 与直角三角形的边相关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题解说【例 1】填空题.(1)在 Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在 Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在 Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4) 一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5) 已知等边三角形的边长为 2 cm,则它的高为________cm,面积为2________cm.【答案】 (1)17(2) 7 (3)68 (4)6 , 8, 10 (5) 33【例 2】已知直角三角形的两边长分别为 5 和 12,求第三边.剖析:已知两边中,较大边 12 可能是直角边,也可能是斜边,所以应分两种状况分别进行计算.让学生知道考虑问题要全面,领会分类议论思想.【答案】119或 13三、稳固练习填空题.在 Rt△ABC中,∠C=90°.(1)假如 a= 7,c= 25,则 b= ________;(2)假如∠ A= 30°, a= 4,则 b= ________;(3)假如∠ A= 45°, a= 3,则 c= ________;(4)假如 c= 10, a- b= 2,则 b= ________;(5)假如 a, b,c 是连续整数,则 a+ b+ c= ________;(6)假如 b= 8,a∶ c= 3∶ 5,则 c= ________.【答案】 (1)24(2)4 3 (3)3 2 (4)6(5)12(6)10四、讲堂小结1.本节课学到了什么数学知识?2.你认识了勾股定理的发现和考证方法了吗?3.你还有什么疑惑?本节课的设计关注学生能否踊跃参加研究勾股定理的活动,关注学生可否在活动中踊跃思虑、能够研究出解决问题的方法,可否进行踊跃的联想( 数形联合 ) 以及学生可否有条理地表达活动过程和所获取的结论等.关注学生的拼图过程,鼓舞学生联合自己所拼得的正方形考证勾股定理.第 2 课时勾股定理(2)能将实质问题转变为直角三角形的数学模型,并能用勾股定理解决简单的实质问题.要点将实质问题转变为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实质问题.一、复习导入问题 1:欲登 12 米高的建筑物,为安全需要,需使梯子底端离建筑物 5 米,起码需要多长的梯子?师生行为:学生疏小组议论,成立直角三角形的数学模型.教师深入到小组活动中,聆听学生的想法.生:依据题意,( 如图 )AC 是建筑物,则AC= 12 m, BC= 5 m, AB 是梯子的长度,所以在Rt△ ABC222222m.中, AB= AC+BC= 12 + 5 = 13,则 AB= 13所以起码需 13长的梯子.m师:很好!由勾股定理可知,已知两直角边的长分别为a, b,就能够求出斜边 c 的长.由勾股定理可得2=ac2-b2或 b2=c2- a2,由此可知,已知斜边与一条直角边的长,就能够求出另一条直角边的长,也就是说,在直角三角形中,已知两边便可求出第三边的长.问题 2:一个门框的尺寸以下图,一块长 3 m、宽 2.2 m的长方形薄木板可否从门框内经过?为何?学生疏组议论、沟通,教师深入到学生的数学活动中,指引他们发现问题,找寻解决问题的门路.生 1:从题意能够看出,木板横着进,竖着进,都不可以从门框内经过,只好试一试斜着可否经过.生 2:在长方形 ABCD中,对角线 AC是斜着能经过的最大长度,求出 AC,再与木板的宽比较,就能知道木板能否能经过.师生共析:解:在 Rt△ABC中,依据勾股定理22222= 5. AC= AB+ BC=1+ 2所以 AC=5≈ 2.236.因为 AC>木板的宽,所以木板能够从门框内经过.二、例题解说【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是米,水平距离是________米.剖析:由∠ CAB= 30°易知垂直距离为 2 3米,水平距离是 6 米.【答案】2 36【例 2】教材第25 页例 2三、稳固练习________1.如图,欲丈量松花江的宽度,沿江岸取B, C 两点,在江对岸取一点BC= 50 米,∠ B= 60°,则江面的宽度为________.A,使AC垂直江岸,测得【答案】 50 3米2.某人欲横渡一条河,因为水流的影响,登岸地址 C 偏离欲抵达地址 B 200 米,果他在水中游了520 米,求河流的度.【答案】480 m四、堂小1.自己在的收有哪些?会用勾股定理解决的用;会结构直角三角形.2.本是从出,化直角三角形,并用勾股定理达成解答.是一用,程中要充足学生的主性,鼓舞学生手、,将化直角三角形的数学模型的程,激了学生的学趣,了学生独立思虑的能力.第 3勾股定理(3)1.利用勾股定理明:斜和一条直角相等的两个直角三角形全等.2.利用勾股定理,能在数上找到表示无理数的点.3.一步学将化直角三角形的数学模型,并能用勾股定理解决的.要点在数上找表示2,3,5,⋯的表示无理数的点.点利用勾股定理找直角三角形中度无理数的段.一、复入复勾股定理的内容.本研究勾股定理的合用.:在八年上册,我曾通画获取:斜和一条直角相等的两个直角三角形全等.你能用勾股定理明一?学生思虑并独立达成,教巡指,并.先画出形,再写出已知、求以下:已知:如,在Rt△ABC和 Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求:△ ABC≌△ A′ B′ C′ .22明:在 Rt△ABC和 Rt△A′B′C′中,∠C=∠C′=90°,依据勾股定理,得BC=AB-AC,B′C′=A′ B′2- A′C′2. 又 AB= A′ B′, AC= A′ C′,∴ BC= B′ C′,∴△ ABC≌△ A′ B′C′ ( SSS) .:我知道数上的点有的表示有理数,有的表示无理数,你能在数上表示出13所的点?教可指学生找像度2,3,5,⋯的包括在直角三角形中的段.:因为要在数上表示点到原点的距离2, 3 ,5,⋯,所以只要画出2,3,5,⋯的段即可,我不如先来画出2,3,5,⋯的段.生:2的段是直角都 1 的直角三角形的斜,而5的段是直角 1 和 2 的直角三角形的斜.:13的段可否是直角正整数的直角三角形的斜呢?生: c=13,两直角分a, b,依据勾股定理a2+ b2= c2,即 a2+ b2=13. 若 a, b 正整数,13 必分解两个平方数的和,即13=4+9,a2=4,b2=9,a=2,b=3,所以13的段是直角分2, 3 的直角三角形的斜.:下边就同学在数上画出表示13的点.生:步以下:1.在数上找到点A,使 OA= 3.2.作直l 垂直于 OA,在 l 上取一点B,使 AB= 2.3.以原点O心、以OB半径作弧,弧与数交于点C,点 C 即表示13的点.二、例解【例 1】机在空中水平行,某一刻好到一个男孩正上方 4800 米,了 10 秒后,机距离个男孩 5000 米,机每小行多少千米?剖析:依据意,能够画出如所示的形, A 点表示男孩的地点,C, B 点是两个刻机的地点,∠ C 是直角,能够用勾股定理来解决这个问题.解:依据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得2=AB22222AC+ BC,即 5000= BC+ 4800 ,所以 BC= 1400 米.飞机飞翔 1400 米用了 10 秒,那么它 1 小时飞翔的距离为 1400× 6×60= 504000( 米 ) =504( 千米 ) ,即飞机飞翔的速度为504千米/时.【例 2】在沉静的湖面上,有一棵水草,它超出水面 3 分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草挪动的水平距离为 6 分米,问这里的水深是多少?解:依据题意,获取上图,此中D是无风时水草的最高点, BC为湖面, AB 是一阵风吹过水草的位22222置, CD= 3 分米, CB= 6 分米, AD= AB, BC⊥ AD,所以在Rt△ACB中, AB =AC+ BC,即 (AC+ 3)=AC 222分米.+ 6 , AC+ 6AC+ 9= AC+36,∴ 6AC= 27, AC= 4.5 ,所以这里的水深为【例 3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为 4 和 1 的直角三角形的斜边,所以,在数轴上画出表示17的点,以以下图:师生行为:由学生独立思虑达成,教师巡视指导.此活动中,教师应要点关注以下两个方面:①学生可否踊跃主动地思虑问题;②可否找到斜边为17,此外两条直角边为整数的直角三角形.三、讲堂小结1.进一步稳固、掌握并娴熟运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理获取一些无理数,并理解数轴上的点与实数一一对应.本节课的教课中,在培育逻辑推理的能力方面,做了仔细的考虑和精心的设计,把推理证明作为学生察看、实验、研究得出结论的自然持续,着重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到讲堂教课中间,很好地激发了学生学习数学的兴趣,培育了学生擅长提出问题、敢于提出问题、解决问题的能力.勾股定理的逆定理第 1 课时勾股定理的逆定理( 1)1.掌握直角三角形的鉴别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的研究方法.要点研究勾股定理的逆定理,理解并掌握互抗命题、原命题、抗命题的相关观点及关系.难点概括猜想出命题 2 的结论.一、复习导入活动研究(1)总结直角三角形有哪些性质;(2)一个三角形知足什么条件时才能是直角三角形?生:直角三角形有以下性质: (1) 有一个角是直角; (2) 两个锐角互余; (3) 两直角边的平方和等于斜边的平方; (4) 在含 30°角的直角三角形中, 30°的角所对的直角边是斜边的一半.师:那么一个三角形知足什么条件时,才能是直角三角形呢?生 1:假如三角形有一个内角是90°,那么这个三角形就为直角三角形.生 2:假如一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b 与斜边 c 拥有必定的数目关系即 a2+ b2=c2,我们能否能够不用角,而用三角形三边的关系来判断它能否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:听说古埃及人用以下图的方法画直角:把一根长绳打上等距离的 13 个结,而后以 3 个结、 4 个结、 5 个结的长度为边长,用木桩钉成一个三角形,此中一个角即是直角.这个问题意味着,假如围成的三角形的三边长分别为3, 4, 5,有下边的关系:2223+ 4=5 ,那么围成的三角形是直角三角形.画画看,假如三角形的三边长分别为, 6,,有下边的关系: 2.5 2+ 62= 6.5 2,画cm cm cm出的三角形是直角三角形吗?换成三边分别为4cm,cm, cm,再试一试.生 1:我们不难发现上图中,第 1 个结到第 4 个结是 3 个单位长度即 AC=3;同理 BC=4, AB=5.因为 32+ 42= 52,所以我们围成的三角形是直角三角形.生 2:假如三角形的三边长分别是 2.5 cm, 6 cm, 6.5 cm. 我们用尺规作图的方法作此三角形,经过丈量后,发现 6.5 cm的边所对的角是直角,而且222 2.5 +6 = 6.5 .再换成三边长分别为 4 cm, 7.5 cm, 8.5 cm的三角形,能够发现 8.5 cm的边所对的角是直角,且有 42+ 7.5 2=8.5 2.师:很好!我们经过实质操作,猜想结论.命题 2假如三角形的三边长a, b, c 知足 a2+ b2= c2,那么这个三角形是直角三角形.再看下边的命题:命题 1假如直角三角形的两直角边长分别为a, b,斜边长为c,那么 a2+ b2= c2.它们的题设和结论各有何关系?师:我们能够看到命题 2 与命题 1 的题设、结论正好相反,我们把像这样的两个命题叫做互抗命题.假如把此中的一个叫做原命题,那么另一个叫做它的抗命题.比如把命题 1 当作原命题,那么命题 2 是命题 1 的抗命题.二、例题解说【例 1】说出以下命题的抗命题,这些命题的抗命题成立吗?(1)同旁内角互补,两条直线平行;(2)假如两个实数的平方相等,那么这两个实数相等;(3)线段垂直均分线上的点到线段两头点的距离相等;(4)直角三角形中 30°角所对的直角边等于斜边的一半.剖析: (1) 每个命题都有抗命题,说抗命题时注意将题设和结论调动即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,抗命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、稳固练习教材第 33 页练习第 2题.四、讲堂小结师:经过这节课的学习,你对本节内容有哪些认识?学生讲话,教师评论.本节课的教课方案中,将教课内容精简化,推行分层教课.依据学生原有的认知结构,让学生更好地领会切割的思想.设计的题型前后响应,使知识有序推动,有助于学生理解和掌握;让学生经过合作、沟通、反省、感悟的过程,激发学生研究新知的兴趣,感觉研究、合作的乐趣,并从中获取成功的体验,真实表现学生是学习的主人.将目标分层后,知足不一样层次学生的做题要求,达到稳固讲堂知识的目的.第 2 课时勾股定理的逆定理( 2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的观点.要点勾股定理的逆定理的证明及互逆定理的观点.难点理解互逆定理的观点.一、复习导入师:我们学过的勾股定理的内容是什么?生:假如直角三角形的两条直角边长分别为a, b,斜边长为c,那么 a2+b2= c2.师:依据上节课学过的内容,我们获取了勾股定理抗命题的内容:假如三角形的三边长 a ,b, c 知足 a2+ b2= c2,那么这个三角形是直角三角形.师:命题 2 是命题 1 的抗命题,命题 1 我们已证明过它的正确性,命题 2 正确吗?如何证明呢?师生行为:让学生试着找寻解题思路,教师可指引学生理清证明的思路.师:△ ABC的三边长a, b, c 知足 a2+ b2=c2. 假如△ ABC是直角三角形,它应与直角边是a, b 的直角三角形全等,实质状况是这样吗?我们画一个直角三角形A′ B′ C′,使 B′ C′= a, A′ C′= b,∠ C′= 90° ( 如图 ) ,把画好的△A′ B′ C′剪下,放在△ABC上,它们重合吗?22222222生:我们所画的 Rt△A′B′C′,(A′B′)=a+ b,又因为 c = a + b ,所以 (A′ B′ ) =c,即 A′B′= c.△ABC 和△ A′ B′C′三边对应相等,所以两个三角形全等,∠ C=∠ C′= 90°,所以△ ABC 为直角三角形.即命题 2 是正确的.师:很好!我们证了然命题2 是正确的,那么命题 2 就成为一个定理.因为命题 1 证明正确此后称为勾股定理,命题2 又是命题 1 的抗命题,在此,我们就称定理 2 是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:可能否是原命题成立,抗命题必定成立呢?生:不必定,如命题“对顶角相等”成立,它的抗命题“假如两个角相等,那么它们是对顶角”不行立.师:你还可以举出近似的例子吗?生:比如原命题:假如两个实数相等,那么它们的绝对值也相等.抗命题:假如两个数的绝对值相等,那么这两个实数相等.明显原命题成立,而抗命题不必定成立.二、新课教授【例 1】教材第 32 页例 1【例 2】教材第 33 页例 2【例 3】一个部件的形状以下图,按规定这个部件中∠A 和∠ DBC 都应为直角.工人师傅量出了这个部件各边的尺寸,那么这个部件切合要求吗?剖析:这是一个利用直角三角形的判断条件解决实质问题的例子.2 2 =9+16 2A 是直角.解:在△ ABD 中, AB + AD = 25= BD ,所以△ ABD 是直角三角形,∠2 2 2 2DBC 是直角.在△ BCD 中,BD +BC = 25+ 144= 169=13 = CD ,所以△ BCD 是直角三角形,∠ 所以这个部件切合要求.三、稳固练习1.小强在操场上向东走80 m 后,又走了 60 m ,再走 100 m 回到原地.小强在操场上向东走了80 m 后,又走 60 m 的方向是 ________.【答案】向正南或正北2.如图,在我国沿海有一艘不明国籍的轮船进入我国海疆,我海军甲、乙两艘巡逻艇立刻从相距 13 海里的 A , B 两个基地前往拦截, 6 分钟后同时抵达 C 地将其拦截.已知甲巡逻艇每小时航行 120 海 里,乙巡逻艇每小时航行 50 海里,航向为北偏西 40°,求甲巡逻艇的航向.11222【答案】解:由题意可知:AC= 120× 6×60= 12, BC= 50× 6×60= 5, 12+ 5=13 . 又 AB=13,222ACB=90°,∴∠ CAB= 40°,航向为北偏东 50° .∴ AC+ BC= AB,∴△ ABC是直角三角形,且∠四、讲堂小结1.同学们对本节的内容有哪些认识?2.勾股定理的逆定理及其应用,熟记几组勾股数.本节课我采纳以学生为主体,指引发现、操作研究的教课方案,切合学生的认知规律和认知水平,最大限度地调动了学生学习的踊跃性,有益于培育学生着手、察看、剖析、猜想、考证、推理的能力,确实使学生在获取知识的过程中获取能力的培育.1、一知半解的人,多不谦逊;见多识广有本事的人,必定谦逊。

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。

2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。

3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。

教学重点:知道勾股定理的结果,并能运用于解题。

教学难点:进一步发展学生的说理和简单推理的意识及能力。

教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。

教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。

今天我们就来一同探索勾股定理。

二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

这个事实是我国古代3000多年前有一个叫XXX的人发现的。

他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。

下面这个古老的精彩的证法出自我国古代无名数学家之手。

已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

人教版八年级数学下册第17章勾股定理小结和复习优秀教学案例

人教版八年级数学下册第17章勾股定理小结和复习优秀教学案例
针对本节课的内容,我设置了丰富的课后作业,旨在巩固学生对勾股定理的理解和应用。在作业设计上,我注重分层布置,既保证了全体学生的基本学习需求,又满足了学有余力学生的进一步提高。此外,我还注重引导学生关注生活中的数学问题,将所学知识与实际生活紧密结合,提高学生的数学应用能力。
在教学评价方面,我将以学生的课堂表现、作业完成情况和课后实践成果为主要评价依据,全面评价学生对勾股定理的掌握程度。通过这一系列的教学设计,我相信学生们在复习和巩固勾股定理的过程中,能够提高自己的数学素养,为后续学习奠定坚实的基础。
3. 对学生的作业和实践活动进行评价,反馈学生学习情况,及时调整教学策略。
作业小结环节是课堂教学的延伸和巩固。我布置具有针对性、多样性的作业,巩固学生对勾股定理的理解和应用。设置课后实践任务,让学生将所学知识应用于实际问题,提高学生的数学应用能力。同时,我还对学生的作业和实践活动进行评价,反馈学生学习情况,及时调整教学策略,以保证教学效果的最大化。通过这一系列的教学内容与过程,我相信学生能够更好地理解和掌握勾股定理,提高自己的数学素养和问题解决能力。
(二)过程与方法
1. 通过自主探究、合作交流的方式,培养学生主动学习和团队协作的能力。
2. 引导学生运用多媒体教学资源,提高信息技术与数学学科的整合能力。
3. 培养学生关注生活中的数学问题,提高数学应用能力。
在过程与方法目标部分,我注重引导学生积极参与课堂活动,通过自主探究、合作交流等方式,培养学生主动学习和团队协作的能力。同时,我还充分利用多媒体教学资源,将信息技术与数学学科相结合,提高学生的学习兴趣和效果。此外,我还注重培养学生的数学应用能力,使学生能够将所学知识运用到实际生活中。
(四)总结归纳
引导学生对所学知识进行总结,巩固学习成果。

八年级数学下册教学课件第17章《勾股定理》小结与复习

八年级数学下册教学课件第17章《勾股定理》小结与复习

A.0
B.1 C.2 D.3
A
B
C
第2题图
第3题图
❖ 4. 如图所示,在四边形ABCD中,∠BAD=90°, AD=4,AB=3,BC=12,
❖ 求正方形DCEF的面积.
❖ 5. 如图,为修铁路需凿通隧道AC,测得 ∠A=50°,∠B=40°,AB=5 km,BC=4 km, 若每天凿隧道0.3 km,问几天才能把隧道凿通?
A时 B时
图1
图2
4. 如图3所示,梯子AB靠在墙上,梯子的底端A 到墙根O 的距离为2m,梯子的顶端B到地面的距 离为7m.现将梯子的底端A向外移动到A′,使梯子 的底端A′到墙根O的距离为3m,同时梯子的顶端 B下降到B′,那么BB′也等于1m吗?
B
B′
O
A′
A
图3
❖ 【学习体会】 ❖ 1.本节课你又那些收获? ❖ 2.复习时的疑难问题解决了吗?你还有那些困惑?
❖ 【变式练习】
❖ 1. 已知一个Rt△的两边长分别为3和4,则第三边长 的平方是( )
A.25
B.14
C.7 D.7或25
❖ 2. 如图1阴影部分是一个正方形,则此正方形的面 积为 .
❖ 3. 如图2,小明在A时测得某树的影长为2m,B时又
测得该树的影长为8m,若两次日照的光线互相垂直,
则树的高度为_____m.
2、直角三角形两直角边长分别为5和12,则它
斜边上的高为___6_0_/_1_3___。
❖ 【知识回顾】
❖ 1. 判断下列命题: ①等腰三角形是轴对称图形;②若a>1且b>1, 则a+b>2;③全等三角形对应角的平分线相等; ④直角三角形的两锐角互余,其中逆命题正确的 有( ) A.1个 B.2个 C.3个 D.0个

八年级数学下册第十七章勾股定理17.1勾股定理第2课时勾股定理在实际生活中的应用7

八年级数学下册第十七章勾股定理17.1勾股定理第2课时勾股定理在实际生活中的应用7

第十七章勾股定理
在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角
两点间的距离.
上任意两点
处放上了点儿火腿肠粒,你
的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多
求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.
第1题图第2题图
如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是
的长度可能是()
A.9cm
B.12cm
C.15cm
D.18cm
10cm和6cm,A和B是。

人教版初中数学第十七章勾股定理知识点

人教版初中数学第十七章勾股定理知识点

第十七章 勾股定理17.1 勾股定理1、勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=勾股定理的证明:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ ∴222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证17.2 勾股定理的逆定理2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=,那么这个三角形是直角三角形.3、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.4、勾股数:能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数常见的勾股数有:3、4、5;6、8、10;5、12、13;7、24、25等bacbac cabcabcb aHG F EDCBAa bccbaE D CBA例、在Rt△ABC中,a=3,b=4,求c.错解由勾股定理,得诊断这里默认了∠C为直角.其实,题目中没有明确哪个角为直角,当b>a时,∠B可以为直角,故本题解答遗漏了这一种情况.当∠B为直角时,例、已知Rt△ABC中,∠B=RT∠,,c= b.错解由勾股定理,得诊断这里错在盲目地套用勾股定理“a2+b2=c2”.殊不知,只有当∠C=Rt∠时,a2+b2=c2才能成立,而当∠B=Rt∠时,则勾股定理的表达式应为a2+c2=b2.正确解答∵∠B=Rt∠,由勾股定理知a2+c2=b2.∴例、若直角三角形的两条边长为6cm、8cm,则第三边长为________.错解设第三边长为xcm.由勾股定理,得x2=62+82.=10即第三边长为10cm.诊断这里在利用勾股定理计算时,误认为第三边为斜边,其实题设中并没有说明已知的两边为直角边,∴第三边可能是斜边,也可能是直角边.正确解法设第三边长为xcm.若第三边长为斜边,由勾股定理,得x=2268+=3664+=10(cm)若第三边长为直角边,则8cm 长的边必为斜边,由勾股定理,得x=2286-=28=27(cm)因此,第三边的长度是10cm 或者27cm.例、如图,已知Rt △ABC 中,∠BAC=90°,AD 是高,AM 是中线,且AM=12BC=23AD.又RT △ABC 的周长是(6+23)cm.求AD .错解 ∵△ABC 是直角三角形, ∴AC:AB:BC=3:4:5 ∴AC ∶AB ∶BC=3∶4∶5.∴AC=312(6+23)=33+,AB=412(6+23)=623+,BC=512(6+23)=1553+又∵12AC AB •=12BC AD • ∴AD=AC AB BC •=33623231553++⨯+ =(33)2(33)5(33)+•++=25(3+3)(cm) 诊断 我们知道,“勾三股四弦五”是直角三角形中三边关系的一种特殊情形,并不能代表一般的直角三角形的三边关系.上述解法犯了以特殊代替一般的错误.正确解法∵AM=3AD∴3AD 又∵MC=MA,∴CD=MD.∵点C与点M关于AD成轴对称.∴AC=AM,∴∠AMD=60°=∠C.∴∠B=30°,AC=12BC,∴AC+AB+BC=12BC+2BC+BC=6+∴BC=4.∵12AD,∴AD=122BC例、在△ABC中,a∶b∶c=9∶15∶12,试判定△ABC是不是直角三角形.错解依题意,设a=9k,b=15k,c=12k(k>0).∵a2+b2=(9k)2+(15k)2=306k2,c2=(12k)2=144k2,∴a2+b2≠c2.∴△ABC不是直角三角形.诊断我们知道“如果一个三角形最长边的平方等于另外两边的平方和,那么这个三角形是直角三角形”.而上面解答错在没有分辨清楚最长边的情况下,就盲目套用勾股定理的逆定理.正确解法由题意知b是最长边.设a=9k,b=15k,c=12k(k>0).∵a2+c2=(9k)2+(12k)2=81k2+144k2=225k2.b2=(15k)2=225k2,∴a2+c2=b2.∴△ABC是直角三角形.例、已知在△ABC中,AB>AC,AD是中线,AE是高.求证:AB2-AC2=2BC·DE错证如图.∵AE⊥BC于E,∴AB2=BE2+AE2,AC2=EC2+AE2.∴AB2-AC2=BE2-EC2=(BE+EC)·(BE-EC)=BC·(BE-EC).∵BD=DC,∴BE=BC-EC=2DC-EC.∴AB2-AC2=BC·(2DC-EC-EC)=2BC·DE.诊断题设中既没明确指出△ABC的形状,又没给出图形,因此,这个三角形有可能是锐角三角形,也可能是直角三角形或钝角三角形.∴高AE既可以在形内,也可以与一边重合,还可以在形外,这三种情况都符合题意.而这里仅只证明了其中的一种情况,这就犯了以偏概全的错误.剩下的两种情况如图所示.,正确证明由读者自己完成.例、已知在△ABC中,三条边长分别为a,b,c,a=n,b=24n-1,c=244n(n是大于2的偶数).求证:△ABC是直角三角形.错证1 ∵n是大于2的偶数,∴取n=4,这时 a=4,b=3,c=5.∵a2+b2=42+32=25=52=c2,∴△ABC是直角三角形(勾股定理的逆定理).由勾股定理知△ABC是直角三角形.正解∵a2+b2=n2+(24n-1)2=n2+416n-22n+1=416n+22n+1c2=(244n+)2=(214n+)2=416n+22n+1由勾股定理的逆定理知,△ABC是直角三角形. 诊断证明1错在以特殊取代一般.。

人教版八年级数学下册第十七章勾股定理小结教学设计

人教版八年级数学下册第十七章勾股定理小结教学设计
1.基础知识巩固题:请同学们完成课本第第十七章的练习题,包括勾股定理的概念理解、图形绘制和简单计算题。这些题目旨在帮助学生巩固勾股定理的基本知识,提高计算准确性和解题速度。
2.实践应用题:设计一道与实际生活相关的勾股定理应用题,要求学生运用勾股定理解决问题,并简要说明解题思路。例如,计算学校旗杆的高度、测量三角形地块的面积等。这样的题目可以培养学生的空间想象能力和解决问题的策略。
5.数学日记:请学生撰写一篇关于勾股定理学习的数学日记,内容包括学习心得、解题经验、遇到的问题和解决方法等。通过撰写数学日记,学生可以反思自己的学习过程,提高自我监控和自我评价的能力。
在布置作业时,我会强调以下几点:
-作业完成时间为课后自主安排,鼓励学生合理分配时间,保证作业质量。
-强调作业的目的是巩固所学知识,提高解题能力,而非应付任务。
1.学生对勾股定理的理解程度,注意引导他们从直观到抽象的过程,逐步提高学生的几何直观能力。
2.学生在解决实际问题时,可能对勾股定理的应用方法不够熟练,需要通过丰富的例题和练习,帮助学生巩固所学知识。
3.部分学生对数学学习存在恐惧心理,教师应关注学生的情感态度,鼓励他们积极参与,提高自信心。
4.学生在小组合作学习过程中,可能存在分工不均、沟通不畅等问题,教师需引导学生学会合作、分享和交流。
-通过直观演示和动画模拟,解释定理的内涵和证明过程。
-设计梯度练习题,由浅入深,让学生在练习中逐步掌握定理的应用。
4.分层教学,关注差异:针对不同学生的学习能力,实施分层教学,确保每个学生都能得到有效提升。
-为基础薄弱的学生提供更多的辅导和练习,加强基础知识的学习。
-对于学有余力的学生,设计拓展性问题和挑战性任务,提高他们的思维能力和创新精神。

17.1.2勾股定理在实际生活中的应用4

17.1.2勾股定理在实际生活中的应用4
1.小明拿出了牛奶盒,把小蚂蚁放在了点B3 A处,并在点B处放上了 点儿食物,你能算出小蚂蚁吃到食物的最短路程么?
B1
B
B
牛奶盒
A 10cm
8cm 6cm
A
10
B2
8
6
变式训练
1.小明拿出了牛奶盒,把小蚂蚁放在了点A处,并在点B处放上了
点儿食物,你能算出小蚂蚁吃到食物的最短路程么?
B
前面 8cm
A 长10
例2 在一个圆柱石凳上,若已知圆柱体高为12 cm,底面半径为3 cm.若小 明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信 息,于是它想从A处爬向B处,蚂蚁怎么走最近?(π取3)
蚂蚁A→B的路线
B
A' d B A'
B
OB
B
A
A
A
想一想:蚂蚁走哪一条路线最近?
A
A
立体图形中的最短路径 2
C B
A
AC+CB >AB(两点之间线段最短)
直线同侧两点之间路径最短
如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B 的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完 成这件事情所走的最短路程是多少?
解:如图,作出点A关于河岸的对称点A′, 连接A′B则A′B就是最短路线长. 由题意得 A′C=4+4+7=15(km),
②求法: 以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运
用勾股定理求最短路径.
立体图形中的最短路径 1
例1 如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和
6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去

第十七章 勾股定理(单元解读)八年级数学下册(人教版)

第十七章 勾股定理(单元解读)八年级数学下册(人教版)

教材内容 ---教学目标定位
1.经历股定理及其逆定理的探索过程;知道这两个定理的联系与区别能运用 这两个定理解决一些简单的实际问题. 2.初步认识勾股定理及其逆定理的重要意义,会运用这两个定理解决一些几 何问题. 3.通过具体的例子,了解逆命题、逆定理的概念,会识别两个互逆的命题, 知道原命题成立时其逆命题不一定成立. 4.通过对我国古代研究勾股定理成就的介绍,培养民族自豪感:通过对勾股 定理的探索和交流,培养数学学习的信心.
知识结构
◆本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的 逆定理及其应用.在第二节中结合勾股定理逆定理的内容展开,穿插介绍了 逆命题、逆定理的概念,并举例说明原命题成立其逆命题不一定成立.
知识结构
勾股定理是直角三角形的一个性质定理,而其逆定理是直角三角形的一个 判定定理.教科书按照先性质后判定的顺序,第一节安排了对于勾股定理的 观察、计算、猜想、证明及简单应用的探究过程,第二节勾股定理逆定理 的安排也是设计了一个从特殊到一般的探索、发现和证明的完整过程.展现 了“从特殊到一般”的研究几何图形的基本思路和定理课观察→计算→猜 想→证明的基本流程.
教材内容 ---地位和作用
◆勾股定理既是对直角三角形性质的丰富与深化,又是学习锐角三角函数 的基础;是“以形求数、以数溯形”的重要工具;在解决面积问题、三角形 问题、四边形问题圆的问题中都有勾股定理的“倩影”. ◆勾股定理的证明和应用历来都是中考命题的重点.近年来各地中考中有关 勾股定理方面的命题主要有以下几个方面:利用股定理解决门框是否能通过 的问题、利用勾股定理解决梯子移动的问题、利用勾股定理解决芦苇倾斜 的问题、利用勾股定理在数轴上表示无理数、利用勾股定理建立方程、折 叠问题、最短路径问题等。尤其是“利用勾股定理建立方程解决问题”几 乎在每个省份的考查中都有体现.

第十七章《勾股定理》

第十七章《勾股定理》

第十七章《勾股定理》本章主要内容是勾股定理及其逆定理。

首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。

在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念。

本章安排了两个小节和两个选学内容,教学时间约需8课时,大体分配如下(供参考):17.1 勾股定理4课时17.2 勾股定理的逆定理3课时小结 1课时一、教科书内容和本章学习目标本章知识结构框图:直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30°的角所对的直角边等于斜边的一半。

本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质。

勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大。

它不仅在数学中,而且在其他自然科学中也被广泛地应用。

目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

据说我国著名数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种“语言”的。

这个事实可以说明勾股定理的重大意义,发现勾股定理,尤其在2000多年前,是非常了不起的成就。

在第一节中,教科书让学生通过观察计算一些直角三角形两直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理。

勾股定理的证明方法很多,教科书正文中介绍的是一种面积证法。

其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

在教科书中,图18.1-3(1)中的图形经过割补拼接后得到图18.1-3(3)中的图形。

由此就证明了勾股定理。

勾股定理 小结与复习 教学设计

勾股定理 小结与复习  教学设计

小结与复习教学设计教学设计思想:本章内容比较单纯,故组织学生自己进行总结与反思,首先提出问题作为引导,让学生自己总结反思,全班交流、讨论补充,老师进一步帮助完整化和系统化。

然后给出几道典型题目让学生练习,以加强对知识的应用能力。

教学目标:知识与技能:熟记勾股定理,会由边的关系识别直角三角形(即勾股定理的逆定理),以及用这些知识解决相关的实际问题过程与方法:反思本章的学习过程,体会观察实验、猜想验证的方法,提高研究问题的能力情感态度价值观:阅读有关“勾股定理”历史的文章,了解更多的数学文化。

教学重难点:重点:掌握勾股定理及其逆定理。

难点:准确应用勾股定理及其逆定理。

课时安排1课时教学用具多媒体教学过程:一、知识总结(一)根据如下问题总结本章主要内容1.直角三角形的边存在着什么关系?画出直角三角形,并写出三边之间的数量关系。

2.直角三角形的角存在着什么关系?3.直角三角形还有哪些性质?4.如何判断一个三角形是直角三角形?5.你会用拼图的方法验证勾股定理吗?请你画图说明一种拼图验证的方法6.你能举例说明勾股定理和由边识别直角三角形有哪些应用吗?7.勾股定理与逆定理体现了什么数学思想?(二)知识构图二、例题讲解例在Rt△ABC中,∠C=90°,D在BA上,且DA=DB,M、N分别在AC和BC 上,且∠MDN=90°求证:MN2=AM2+NB2证明:延长ND到N’使DN’=DN连AN’、MN,由于AD=DB,∠1=∠2所以△AN’D≌△BND即AN’=BN,∠B=∠3,又MD⊥NN’故MN’=MN’因为∠A十∠B=90°,所以∠3+∠4=90°那么MN’2=AM2+AN’2即MN2=AM2+BN2三、练习课本P90 习题A组1,2,3,4四、课堂小结1.直角三角形有哪些性质?2.什么叫勾股定理?如何证明勾股定理?3.有几种方法可以判定一个三角形是直角三角形?五、作业课本P习题A组5,6,7六、板书。

八年级下数学第17章《勾股定理小结与复习》

八年级下数学第17章《勾股定理小结与复习》
AC2 AD2 CD2 , BC2 BD2 CD2 ,
AC2 AD2 BC2 BD2 ,
202 25 x2 152 x2,即50x=450,解得x=9.∴BD=9.
转化思想 例2 有一圆柱体高为8cm,底面圆的半径为2cm,如 图.在AA1上的点Q处有一只蜘蛛,QA1=3cm,在BB1 上的点P处有一只苍蝇,PB=2cm.求蜘蛛爬行的最 短路径长(π取3). 解:如图,沿AA1剪开,过Q作QM⊥BB1于M,连接QP. 则PM=8-3-2=3(cm), QM=A1B1=12×2×π×2=6(cm), 在Rt△QMP中,由勾股定理得
AC= AB2 BC2 = 202 152 =25, ∵AD2+DC2=625=252=AC2, ∴△ADC是直角三角形,且∠D=90°, ∵∠DAB+∠B+∠BCD+∠D=360°, ∴∠DAB+∠BCD=180°, 即∠A+∠C=180°.
考点三 勾股定理与折叠问题
2.勾股数 满足a2 +b2=c2的三个正整数,称为勾股数.
3.原命题与逆命题 如果两个命题的题设、结论正好相反,那么把其中 一个叫做原命题,另一个叫做它的逆命题.
考点一 勾股定理及其应用
例1 在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,
BC=15. (1)求AB的长;(2)求BD的长.
解:(1)∵在Rt△ABC中,∠ACB=90°,
AB AC2 BC2 202 152 25;
(2)方法一:∵S△ABC=
1AC•BC=
2
1 2
AB•CD,
∴20×15=25CD,∴CD=12.
∴在Rt△BCD中,BD BC2 CD2 152 122 9.

第十七章勾股定理知识与题型总结及测试题含答案

第十七章勾股定理知识与题型总结及测试题含答案

勾股定理知识技能和题型归纳(一)——知识技能一、本章知识内容归纳1、勾股定理——揭示的是平面几何图形本身所蕴含的代数关系。

(1)重视勾股定理的叙述形式:①直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积.②直角三角形斜边长度的平方,等于两个直角边长度平方之和.从这两种形式来看,有“形的勾股定理”和“数的勾股定理”之分。

(2)定理的作用:①已知直角三角形的两边,求第三边。

②证明三角形中的某些线段的平方关系。

,2……的无理数线段的几③作长为n的线段。

(利用勾股定理探究长度为,3何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示,加深对无理数概念的认识。

)2、勾股定理的逆定理(1)勾股定理的逆定理的证明方法,通过构造一个三角形与直角三角形全等,达到证明某个角为直角的目的。

(2)逆定理的作用:判定一个三角形是否为直角三角形。

(3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。

要注意叙述及书写格式。

运用勾股定理的逆定理的步骤如下:①首先确定最大的边(如c)②验证22b a +与2c 是否具有相等关系:若222c b a =+,则△ABC 是以∠C 为90°的直角三角形。

若222c b a ≠+,则△ABC 不是直角三角形。

补充知识:当222c b a >+时,则是锐角三角形;当222c b a <+时,则是钝角三角形。

(4)通过总结归纳,记住一些常用的勾股数。

如:3,4,5;5,12,13;6,8,10;8,15,17;9,40,41;……以及这些数组的倍数组成的数组。

勾股数组的一般规律: ① 丢番图发现的:式子n m n m mn n m >+-(,2,2222的正整数) ② 毕达哥拉斯发现的:122,22,1222++++n n n n n (1>n 的整数) ③柏拉图发现的:1,1,222+-n n n (1>n 的整数)3、勾股定理与勾股定理逆定理的关系 (1)注意分清应用条件:勾股定理是由直角得到三条边的关系,勾股定理逆定理则是由边的关系来判断一个角是否为直角。

2022年八年级数学上册第十七章特殊三角形17.3勾股定理1教案新版冀教版

2022年八年级数学上册第十七章特殊三角形17.3勾股定理1教案新版冀教版

17.3勾股定理(1)教学目标【知识与能力】1.经历探索勾股定理的过程,发展合情推理的能力,体会数形结合的思想.2.会初步应用勾股定理解决实际问题.【过程与方法】1.经历“测量——猜想——总结——验证”等一系列过程,体会数学定理发现的过程.2.在观察、猜想、归纳、验证等过程中培养语言表达能力和初步的逻辑推理能力.3.在探索的过程中,体会数形结合、由特殊到一般及化归等数学思想方法.【情感态度价值观】通过让学生参加探索与创造,获得参加数学活动成功的经验.教学重难点【教学重点】勾股定理的探索过程.【教学难点】勾股定理的应用.课前准备多媒体课件教学过程一:新课导入:导入一:【课件1】下图是三国时期数学家赵爽用来证明勾股定理的图形和希腊政府为纪念希腊历史上著名的数学家毕达哥拉斯而发行的一张邮票,观察这两个图形,你有什么感想?教师引导学生思考,各抒己见,发表自己的见解.[设计意图]从现实生活中提出的“赵爽弦图”和“希腊邮票”,为学生能够积极主动地投入到探索活动中创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料.导入二:【课件2】如图所示,强大的台风使得一个旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处.旗杆折断之前有多高?师:在直角三角形中,任意两条边确定了,另一边确定吗?为什么?在直角三角形中,任意两条边确定了,另一边也随之确定了,事实上,古人发现,直角三角形三边长度的平方存在着一个特殊的数量关系.让我们一起去探索吧![设计意图]创设问题情境,造成学生的认知冲突,激发学生的求知欲望.导入三:【课件3】相传两千多年前,古希腊著名的哲学家、数学家毕达哥拉斯去朋友家做客.在宴席上,其他的宾客都在尽情欢乐,只有毕达哥拉斯却看着朋友家地面所铺的瓷砖发起呆来.原来,朋友家的地面是用一块块直角三角形形状的瓷砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他,谁知,毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑着回家去了.原来,他发现了瓷砖上的三个正方形存在着某种数学关系.[设计意图]学生对故事中的问题很感兴趣,激发了学生探究知识的欲望,从而自然地引入本节课要探究的问题.二:新知构建:活动:探究勾股定理思路一探究1:测量计算——初步感知【课件4】学生活动:1.画一个直角三角形,使直角边分别为3cm和4cm,测量一下斜边是多少?2.画一个直角边分别是6cm和8cm的直角三角形,测量一下斜边是多少?3.画一个直角边分别是5cm和12cm的直角三角形,测量一下斜边是多少?问题:你能总结出直角三角形三边之间的关系吗?[设计意图]帮助学生感知直角三角形三条边的长度存在特殊的关系,进而激发学生的探索欲望.思路二【课件5】任意画几个直角三角形,分别度量三条边,把长度标在图形中,计算三边的平方,师:观察表格,有什么发现?生1:a2+b2=c2.生2:两直角边的平方和很接近斜边的平方.师:很精确,他用了很接近这个词,非常棒,有哪些数据符合a2+b2=c2?生:3,4,5;6,8,10;2,1.5,2.5;5,12,13;1.2,1.6,2……师:哪些数据不符合a2+b2=c2?生:2,4,4.5;5,8,9.5……师:怎样验证直角三角形三边之间的平方关系呢?探究2:面积推理勾股定理活动1:探索边长为3,4,5的直角三角形的情况【课件6】如图所示,每个小正方形都是边长为1的小正方形,在所围成的ΔABC中,∠ACB=90°.图中以AC,BC,AB为边的正方形的面积分别是多少?这三个正方形的面积之间具有怎样的关系?问题:(1)以AC为边的正方形的面积是;(2)以BC为边的正方形的面积是;(3)从AB为边的正方形的面积是;(4)三个正方形的面积之间关系是+=.活动2:探索直角边长为1的等腰直角三角形刚才我们接触到的是一般的直角三角形,那么对于等腰直角三角形是否也存在这个关系呢? 思路一【课件7】如图所示的是用大小相同的两种颜色的正方形地砖铺成的地面示意图,∠ACB=90°.分别以AC,BC,AB为边的三个正方形(粗线标出)的面积之间有怎样的关系?学生观察发现:以AC,BC为边的正方形的面积都是1.说明:对于以AB为边的正方形的面积,教师可让学生通过数格子的方法求出其面积,也可以将其分成四个等腰直角三角形的面积来求.思路二【课件8】如图所示,直角三角形三边的平方分别是多少?它们满足猜想的数量关系吗?你是如何计算的?师:在这幅图中,边长的平方是如何刻画的?我们的猜想如何实现?生:用正方形A,B,C刻画的,就是证明A+B=C.师:准确地说呢?生:是用三个正方形A,B,C的面积刻画的,就是证明正方形A的面积加上正方形B的面积等于正方形C的面积.师:请同学们快速算一算正方形A,B,C的面积.(学生交流正方形C的面积的求法,教师巡视点评.)生:A的面积是9,B的面积也是9,C的面积是18.师:你用什么方法得到正方形C的面积为18?生1:我先数整个格子有12个,两个三角形格子拼成一个正方形格子,能凑6个,一共是18个.生2:把正方形对折,得到两个三角形.(学生板演,并列式计算.)生3:分成四个全等的直角三角形.(学生板演,口述面积求法.)师:方法不错,你们很善于动脑筋,我们用数格子、分割图形的方法得到正方形C的面积,还有什么方法可以得到呢?活动3:类比发现,形成结论【课件9】如图所示,在ΔABC中,∠ACB=90°,请你猜想:分别以AC,BC,AB为边的三个正方形的面积之间是否也具有上述我们探究的面积之间的关系?若具有这种关系,请用图中的Rt ΔABC的边把这种关系表示出来.学生思考、交流,教师请学生口答,并板书.教师总结:在直角三角形中,两条直角边的平方和等于斜边的平方.如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.探究3:推理验证勾股定理与小组同学交流、讨论,拿出设计方案,并给出合理的解释.组1:我们的设计方案是:准备四块直角边分别为a,b,斜边为c的直角三角形的纸板,拼出如下图形:我们发现外部是一个大正方形,边长为c,内部是一个小正方形,其边长是a-b,四个直角三角形的面积+小正方形的面积=大正方形的面积.1ab×4+(a-b)2=c2,2化简后为:a2+b2=c2.组2:我们也准备了四个直角三角形,两条直角边分别为a,b,斜边为c.我们是这样拼的,如图所示.外部是一个边长是a+b的正方形,内部是一边长为c的小正方形.四个直角三角形的面积+小正方形的面积=大正方形的面积.1ab×4+c2=(a+b)2,2化简后为:a2+b2=c2.师:两个组的设计都非常精彩,你们利用了我们比较熟悉的面积的有关知识,还有其他方案吗?组3:我们准备了两个直角三角形,两条直角边为a,b,斜边为c.我们是这样拼的,如图所示.我们发现:两个直角三角形这样摆放,若连接A,B两点,就构成了一个直角梯形.直角梯形的上底为b ,下底为a ,高为a +b.直角梯形是由两个直角三角形和一个直角边为c 的等腰直角三角形构成的.直角梯形的面积=两个直角三角形的面积+等腰直角三角形的面积.12(a +b )(a +b )=12ab ×2+12c 2, 化简后为:a 2+b 2=c 2.师:以上三个小组的设计方案,实质上都渗透了数学的转化思想,将复杂问题转化、分解为简单问题,或将陌生的问题转化为熟悉的问题来解决.方法都是“拼凑法”,先拼出一个图形,再利用两种不同的方法求出面积的表达式.由于一个图形的面积不变,因此将两种面积的表达式用等号连接起来,再化简,就可能得出我们要探究的结论.说明:我们古代把直角三角形较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”.因此,直角三角形三边之间的关系称为勾股定理.勾股定理:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a 2+b 2=c 2. 思考:(1)运用此定理的前提条件是什么?(2)公式a 2+b 2=c 2有哪些变形公式?(3)由(2)知在直角三角形中,只要知道 条边,就可以利用 求出 . 指导学生完成教材第151页“做一做”.[知识拓展] (1)由勾股定理的基本形式a 2+b 2=c 2可以得到一些变形关系式,如a 2=c 2-b 2=(c +b )(c-b );b 2=c 2-a 2=(c +a )(c-a ).(2)在钝角三角形中,三角形三边长分别为a ,b ,c ,若c 为最大边长,则有a 2+b 2<c 2,在锐角三角形中,三角形三边长分别为a ,b ,c ,若c 为最大边长,则有a 2+b 2>c 2.[设计意图] 通过探索活动,调动学生的积极性,给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的意见,感受合作的重要性. 让学生经历“独立思考——小组讨论——合作交流”的环节,进一步加深对勾股定理的理解,并激发学生的爱国热情. 三:课堂小结: 1.勾股定理如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方.2.勾股定理的变形公式a =√c 2-b 2;b =√c 2-a 2;c =√a 2+b 2. 要求直角三角形中某一边的长度,就要知道其他两边的长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档