数学史
数学史
数学史[单项选择题]1、在现存的中国古代数学著作中,最早的一部是()。
A.《孙子算经》B.《墨经》C.《算数书》D.《周髀算经》参考答案:D[单项选择题]2、《九章算术》的“少广”章主要讨论()。
A.比例术B.面积术C.体积术D.开方术参考答案:D[单项选择题]3、大数学家欧拉出生于().A.瑞士B.奥地利C.德国D.法国参考答案:A[单项选择题]4、《九章算术》中的“阳马”是指一种特殊的().A.棱柱B.棱锥C.棱台D.楔形体参考答案:B[单项选择题]5、欧洲中世纪漫长的黑暗时期过后,第一位有影响的数学家是()。
A.斐波那契B.卡尔丹C.塔塔利亚D.费罗参考答案:A[单项选择题]6、对微积分的诞生具有重要意义的“行星运行三大定律”,其发现者是().A.伽利略B.哥白尼C.开普勒D.牛顿参考答案:C[单项选择题]7、最早证明了有理数集是可数集的数学家是().A.康托尔B.欧拉C.魏尔斯特拉斯D.柯西参考答案:A[单项选择题]8、世界上第一个把π计算到3.1415926<π<3.1415927的数学家是()。
A.刘徽B.祖冲之C.阿基米德D.卡瓦列里参考答案:B参考解析:世界上第一个将圆周率精确到3.1415926和3.1415927之间的数学家是中国的祖冲之[单项选择题]9、数学的第一次危机的产生是由于().A.负数的发现B.无理数的发现C.虚数的发现D.超越数的发现参考答案:B[单项选择题]10、以“万物皆数”为信条的古希腊数学学派是()。
A.爱奥尼亚学派B.伊利亚学派C.诡辩学派D.毕达哥拉斯学派参考答案:D[单项选择题]11、微分符号“d”、积分符号“∫”的首先使用者是()。
A.牛顿B.莱布尼茨C.开普勒D.卡瓦列里参考答案:B[单项选择题]12、古希腊的三大闻名几何尺规作图问题是().①三等分角②立方倍积③正十七边形④化圆为方A.①②③B.①②④C.①③④D.②③④参考答案:B[单项选择题]13、我国古代著作《周髀算经》中的“髀”是指().A.太阳影子B.竖立的表或杆子C.直角尺D.算筹参考答案:B[单项选择题]14、“纯数学的对象是现实世界的空间形式与数量关系.”给出这个关于数学本质的论述的人是().A.笛卡尔B.恩格斯C.康托D.罗素参考答案:B[填空题]15.古希腊的三大著名几何问题是()、()和()。
数学史的重要事件与人物总结
数学史的重要事件与人物总结数学作为一门古老而重要的学科,其历史跨越了几千年。
在这漫长的历程中,数学经历了许多重要的事件和由杰出人物创造的重大成就。
本文将对数学史中的一些重要事件和人物进行总结。
一、古代数学1. 古埃及与古巴比伦数学古埃及与古巴比伦是人类历史上最早发展数学的文明。
古埃及人用于计量土地的方法促进了早期几何的发展,而古巴比伦人则研究了一些基本的代数概念,如线性方程和平方根。
2. 古希腊数学在古希腊时期,一些重要的数学思想被提出。
毕达哥拉斯学派关注几何和数论,他们发现了勾股定理,认为数是宇宙的基本构成元素。
欧几里得的几何原理成为数学教材的基础,对后来的数学发展产生了深远影响。
3. 阿拉伯数学古希腊的数学思想通过阿拉伯人的翻译活动传入伊斯兰世界。
在这一时期,阿拉伯数学家对代数学有了重大贡献,如穆罕默德·本·穆斯阿尔·哈拉齐为代数学奠定了基础,同时阿拉伯人还引入了十进制的数字系统,并通过这一发明推动了数学的发展。
二、近代数学1. 文艺复兴时期的科学革命随着欧洲文艺复兴的兴起,数学作为一门独立的学科开始发展。
法国数学家笛卡尔提出了坐标几何学,成为解析几何的奠基人。
伽利略的物理实验和理论研究推动了数学与自然科学之间的紧密联系,为物理学、力学和天文学的发展做出了贡献。
2. 新的数学分支的出现17世纪后期至18世纪初期,微积分被独立地发现和发展。
牛顿和莱布尼茨同时独立地发明了微积分,该发现极大地推动了物理学、工程学和其他学科的进展。
此外,概率论、统计学以及数学分析等新的数学分支也在这一时期出现。
3. 数学的形式化19世纪数学的一个重要事件是数学的形式化。
数学家如贝尔纳德·卡尔诺和乔治·庞加莱为数学建立了公理化的基础,并使之成为一门严密的学科。
形式化推动了数学的快速发展,使得许多新的数学分支的发展成为可能。
三、现代数学1. 20世纪的数学革命20世纪是数学发展的重要阶段之一。
2024版数学史简介
数学史涉及不同文化、不同民族和不同时期的数学成就, 可以促进文化多样性和包容性,推动不同文化之间的交流 与融合。
弘扬科学精神和创新精神
数学史中充满了科学家们的探索精神、创新精神和求真精 神,这些精神对于推动人类文明进步具有重要意义。
数学史对未来发展的启示
推动数学教育的改革 与发展
代数学的繁荣
阿拉伯数学家在代数学方面取得了显著成就,如解方程的方法、二次方程的求根公式等。他 们还研究了多项式、根的性质以及方程的解法。
三角学和几何学的贡献
阿拉伯数学家对三角学和几何学也有深入研究,如球面三角学、相似三角形性质等。他们还 编制了精确的三角函数表和天文表。
中国中世纪数学
《九章算术》的编
欧洲数学的复兴
文艺复兴时期,欧洲数学家开始重新发 掘古希腊数学遗产,并在此基础上发展 出解析几何、微积分等新的数学分支。
近代数学的兴起
微积分的创立
非欧几何的诞生
17世纪,牛顿和莱布尼茨分别独立发 明了微积分学,为现代数学和物理学 的发展奠定了基础。
19世纪,高斯、罗巴切夫斯基和波尔 约等人发现了非欧几里德几何,打破 了欧几里德几何一统天下的局面。
上的算子理论。
计算机与数学的结合
03
随着计算机技术的发展,数学与计算机科学紧密结合,产生了
计算数学、离散数学等新的数学分支。
02
古代数学的重要成就
古希腊数学
欧几里得几何学
古希腊数学家欧几里得在《几何原本》中创立了完整的几何学体 系,为后世数学发展奠定了基础。
阿基米德数学物理学
阿基米德在浮力、杠杆原理和圆周率等方面做出了杰出贡献,将 数学与物理学紧密结合。
三角学
数学中的数学史与数学文化
数学中的数学史与数学文化数学作为一门科学,拥有悠久的历史和丰富的文化内涵。
在数学中,数学史和数学文化是两个重要的方面,它们相互交融,共同构成了数学的发展和独特魅力。
本文将从数学史和数学文化的角度,探讨数学在历史中的发展轨迹以及对于当代社会的影响。
一、数学史1. 古代数学的起源和发展古代数学的起源可以追溯到古埃及和古巴比伦时代。
这些文明古国的数学发展对于数学史有着重要的影响。
埃及人发展了计算面积和体积的方法,并应用于建筑和土地测量。
巴比伦人则为世界数学史上的一个重要里程碑,他们发明了60进制的计数系统,并提出了代数和几何的问题。
2. 古希腊数学的辉煌时期古希腊以其杰出的数学家而闻名于世。
毕达哥拉斯、欧几里得、阿基米德等数学家在几何学、数论、解析学等方面做出了许多突出的贡献。
欧几里得的《几何原本》被誉为几何学的经典之作,对后世产生了深远的影响。
3. 中世纪数学的发展与变革中世纪欧洲的数学发展在某种程度上受到了宗教和哲学思想的限制。
然而,在阿拉伯世界和印度的影响下,阿拉伯数字和代数学得到了推广和应用。
同时,欧洲的数学家们开始从几何向代数的转变,并逐渐建立了现代数学的基础。
4. 近代数学的革命与创新在近代科学革命的推动下,数学经历了一系列重大的突破和创新。
牛顿和莱布尼茨的微积分发现引发了一场数学革命,为理论物理学的发展奠定了基础。
同时,统计学、概率论、数理逻辑等新的数学分支也相继涌现,推动了数学的多元发展。
5. 当代数学的新起与前沿当代数学的发展进入了新的时代。
数学的前沿领域包括数学物理学、计算数学、拓扑学等。
数学的应用领域也正在不断扩展,如金融数学、密码学、数据科学等。
当代数学正日益成为社会发展的重要力量,展示着其无限的潜力。
二、数学文化1. 数学的哲学与思维方式数学作为一门科学,不仅仅是一种工具或技术,更代表着一种独特的哲学和思维方式。
数学所强调的严密性、逻辑性和推理能力等都对人类思维产生了积极影响,培养了人们的逻辑思维和分析问题的能力。
数学史的作用和意义
数学史的作用和意义数学史的作用和意义数学史是研究数学发展历史的学科,如文学有文学史,哲学有哲学史,天文学有天文学史等等.当然,数学也有它的历史.只是它与其它学科相比,数学有它的独特之处.数学是一门历史性或者说累积性很强的科学.它最显著的特点是体系的严谨性.它要求每一个概念都要给出明确的定义.但“数学”这个概念本身,却很难给出一个完美的定义.根本的原因是数学这门科学还在不断地发展之中.数学史简单地说研究数学的历史就是数学史.数学史是研究数学科学发生发展及其规律的科学.它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响.数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教、政治、经济、历史等社会科学与人文科学内容,是一门文理交叉性学科.不了解数学史,就不可能全面了解整个人类文明史.数学史在整个人类文明史上的这种特殊地位,是由数学作为一种文化的特点决定的.是数学的一个分支,也是自然科学史研究下属的一个重要分支。
每一门科学都有其发展的历史,既有其历史性又有其现实性。
数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性。
“数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说”。
数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。
因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。
通过学习数学史,特别是一些著名数学家的故事和一些数学家发现数学规律的灵感等,可以极大地激发学生的学习兴趣,培养学生立志学习数学的远大理想,提高学生学习积极性和主动性,对学生提高学习的自信心、学习态度和学习习惯的养成都是有积极的意义,让学生明白数学并不是数学家的专利,每一个人只要付出了努力,不但可以学好数学,而且数学规律的发现灵感也会向你频频招手.同时学习数学史和中外数学家的故事,可以培养学生未来数学的学习志向和在数学方面异发展的理想。
第一讲数学史简介
欧洲中世纪数学状况及代表人物
中世纪初期,欧洲数学发展相对 滞后,主要受古希腊和阿拉伯数
学影响。
代表人物:斐波那契,其《算盘 书》介绍了印度数字系统和阿拉 伯数字运算,对欧洲数学产生深
远影响。
中世纪后期,随着大学兴起,数 学开始复兴,代表人物有奥雷姆
等。
文艺复兴时期对数学影响及代表人物
文艺复兴推动了科学和艺术的 发展,数学也得以繁荣。
印度数学
印度古代数学在算术、代 数和三角学等领域有着独 特贡献,如0的发明、阿拉 伯数字的发展等。
阿拉伯数学
阿拉伯数学家在数学史上 也占有重要地位,如花拉 子米的代数、阿拉伯三角 学等。
中美洲玛雅数学
玛雅文明在数学方面也有 一定成就,如玛雅数字系 统和复杂的历法计算等。
03
中世纪至文艺复兴时期数 学发展
数学史意义
数学史可以帮助学生了解数学在人类文明发展中的作用,理解数学在推动社会进 步和科学发展中的价值。同时,通过了解数学家们的探索精神和创新思维,可以 激发学生的数学兴趣和求知欲。
数学发展历程简述
• 古代数学:古代数学起源于人类早期的生产活动,产生于计数、测量和计算等 实践活动中。古埃及、古希腊、古印度和古代中国等文明古国都有自己的数学 发展历程,如古埃及的几何学、古希腊的演绎数学、古印度的算术和代数以及 古代中国的筹算等。
数据科学与数学
数据科学是近年来迅速发展的学科领域,它涉及到数据分析、数据挖掘、机器学习等方面 。数据科学与数学的交叉融合将为数学研究提供新的思路和方法,推动数学在数据分析、 人工智能等领域的应用。
生物数学与医学
生物数学是数学与生物学交叉融合的产物,它在生物医学研究中发挥着越来越重要的作用 。通过数学建模和模拟,生物数学家可以研究生物系统的复杂性和动态性,为医学诊断和 治疗提供新的思路和方法。
数学史
数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
3.什么是数学数学是量的科学。
(希腊哲学家亚里士多德,BC 4世纪)数学是研究现实世界的空间形式与数量关系的科学。
(恩格斯,19世纪)数学这个领域已被称为模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。
(数学的新定义)数学史的分期---------简答题(必背)Ⅰ数学的起源与早期发展(公元前6世纪前)Ⅱ初等数学时期(公元前6世纪~16世纪)①古代希腊数学(公元前6世纪~6世纪)②中世纪东方数学(3世纪~15世纪)③欧洲文艺复兴时期(15世纪~16世纪)Ⅲ近代数学时期(17世纪~18世纪)Ⅳ现代数学时期(1820 ’~现在)①现代数学酝酿时期(1820 ’~1870)②现代数学形成时期(1870 ~1940 ’)③现代数学繁荣时期(1950 ~现在)埃及与美索不达米亚数学美索不达米亚(巴比伦)数学的主要贡献是:60进制记数系统;三项二次,三次代数方程;初等代数变换思想;几何学。
古埃及数学形成在公元前3100年~公元前332年之间,其主要的贡献是:十进制的概念;加法运算;单位分数;几何学的萌芽;代数学的萌芽第二章古代数学古希腊数学横跨公元前600年至公元600年。
古希腊数学分两个阶段:古典时期(早期)的希腊数学(公元前600年至公元300年);亚历山大时期及后期的希腊数学(公元300年至公元600年)。
古希腊数学的代表人物有:⑴最早的希腊数学家---泰勒斯(公元前625年至公元前547年)泰勒斯是历史上有记载的第一位数学家和论证几何学的鼻祖主要贡献:圆的直径将圆分为两个相等的部分、等腰三角形两底角相等、两相交直线形成的对顶角相等。
泰勒斯定理:半圆上的圆周角是直角。
⑵毕达哥拉斯(公元前580年至公元前500年)主要贡献:成立了著名的毕达哥拉斯学派,致力于哲学和数学的研究;发现和证明了毕达哥拉斯定理(勾股定理);⑶柏拉图(公元前427年至公元前347年)主要贡献:柏拉图的具体数学成就不多,但对数学方法的研究贡献很大。
大学课本每册数学史资料整理
大学课本每册数学史资料整理1. 引言本文档旨在对大学教材中每册关于数学史方面的资料进行整理和归纳。
通过对这些资料的梳理,学生可以更好地理解数学的历史背景和发展过程,增强对数学的兴趣和理解能力。
2. 第一册2.1 数学史概述- 介绍数学史的定义和研究范围- 引导学生了解数学史的重要性和价值- 简要介绍数学史的主要发展时期和学派2.2 古代数学- 对古希腊、古埃及、古巴比伦等古代文明的数学成就进行概述- 介绍古代数学家如欧几里得、阿基米德等的贡献和成就- 探讨古代数学的应用领域和作用2.3 中世纪数学- 简要阐述中世纪欧洲数学的发展情况- 介绍中世纪数学家如勒让德、斐波那契等人的研究成果- 讨论中世纪数学与宗教、哲学等其他学科的关系3. 第二册3.1 文艺复兴数学- 介绍文艺复兴时期欧洲数学的兴起和发展- 引导学生了解文艺复兴数学家对数学思维的重要贡献- 分析文艺复兴数学对科学革命的影响和推动作用3.2 近代数学- 介绍近代数学的起源和发展背景- 探讨近代数学家如牛顿、莱布尼兹等的创新成果- 分析近代数学和科学革命、工业革命的相互关系3.3 现代数学- 对现代数学的重大突破和发展进行概述- 介绍现代数学家如高斯、欧拉等的影响力和贡献- 探讨现代数学的应用领域和对其他学科的影响4. 结论通过对大学课本中每册数学史资料的整理,学生能够系统地了解数学史的发展脉络和重要人物,加深对数学的认识和理解。
数学史能够激发学生的兴趣和好奇心,帮助他们更好地应用数学知识解决实际问题,促进数学思维的形成和发展。
以上是对大学课本每册数学史资料整理的简要概述,希望能对广大学生有所帮助和启发。
数学中的数学史与数学思想
数学中的数学史与数学思想数学作为一门古老而重要的学科,其发展历史可以追溯到古代文明的起源。
数学史是研究数学领域内发展、进化和创新的学科,而数学思想则是数学家们在解决问题和发现规律时应用的思维方式和方法。
本文将从数学史与数学思想两个方面来探讨数学的发展历程。
一、数学史数学史的研究可以分为不同的时期,每个时期都有其独特的数学发展特点和代表性的数学家。
下面将以几个重要时期为例,介绍数学史的发展。
1. 古希腊数学古希腊数学是数学史上的一个重要时期。
在这个时期,古希腊数学家们开始用严谨的演绎推理方法来解决问题。
毕达哥拉斯学派提出了著名的毕达哥拉斯定理,将几何和数学联系起来,开创了几何学的发展。
欧几里德整理并系统化了当时已有的数学知识,将其总结成著名的《几何原本》。
2. 古印度数学古印度数学在古希腊数学之后发展起来,对代数学和数论有重要贡献。
古印度数学家们发展了十进制数位系统,并且提出了零的概念,这对于数字的表示和计算具有重要意义。
同时,他们还发展了一种被称为“双调理论”的代数方法,这种方法对于解二次方程和高次方程起到了重要的推动作用。
3. 中世纪数学中世纪数学是数学史上一个相对较暗淡的时期。
在这个时期,教会对科学的统治使得数学的发展受到了限制,数学家们的研究只能是个别的、零散的。
然而,中世纪数学仍然保留了古希腊和古印度数学的遗产,保留并传承了许多重要的数学知识。
二、数学思想数学思想是数学家们在解决问题和发现规律时候的思维方式和方法。
下面将介绍一些重要的数学思想。
1. 归纳法归纳法是一种重要的数学推理方法,它通常用于证明一个性质在所有自然数上成立。
归纳法的基本思想是通过证明一个基本情况成立,然后假设对于某个正整数k成立,通过这个假设证明在k+1情况下也成立,从而推导出该性质对于所有自然数成立。
2. 逆向思维逆向思维在解决复杂问题和发现新的规律时起到了重要的作用。
逆向思维的基本思路是从最后的结果出发,逆向倒推,找到问题的解决途径。
数学史概论复习资料
第0章数学史—人类文明的重要篇章一、数学史研究哪些内容?(P1)数学史研究数学概念、数学方法和数学思想的起源与发展,与其与社会、经济和一般文化的联系。
数学是研究现实世界的空间形式与数量关系的科学二、数学史通常采用哪些线索进行分期?(P9)1、按时代顺序2、按数学对象、方法等本身的质变过程3、按数学发展的社会背景三、本书对数学史如何分期?(P9)1、数学的起源与早期发展(公元前6世纪);2、初等数学时期(公元前6世纪-16世纪);A.古代希腊数学(公元前6世纪—6世纪)B.中世纪东方数学(3世纪—15世纪)C.欧洲文艺复兴时期(15世纪—16世纪)3、近代数学时期(17世纪-18世纪);4、现代数学时期(1820年至今)。
A.现代数学酝酿时期(1820’—1870)B.现代数学形成时期(1870—1940)C.现代数学繁荣时期(或称当代数学时期,1950—现在)四、近几年新编的中小学数学教材中,增加了不少数学史知识.请对这种变化的积极意义谈谈你的认识与体会.这些数学史有效的补充了教材内容,使教材内容更丰富、充实,让学生对数学的历史有了进一步的了解,激发了学生的学习兴趣,培养了学生的数学素养。
将数学史融入数学实践活动,例如以七巧板系列活动为主题,以提高学生创新思维为抓手,由浅入深,循序渐进地开展了面向全体学生的智力七巧板实践活动。
七巧板实践活动的开展,充实了数学史应用的内容,丰富了学生的课余生活,培养了学生组合分解能力、动手实践能力和思维创新能力,特别是对学生创新素质的提高产生了积极的作用和深远的影响。
第一章数学的起源与早期发展一、世界上早期常见有几种古老文明记数系统,它们分别是什么数字,采用多少进制数系?(P13)1.古埃与的象形数字(公元前3400年左右)2.古巴比伦的楔形数字(公元前2400年左右)3.中国的甲骨文(公元前1600年左右)4.希腊阿提卡数字(公元前500年左右)5.中国的算筹码(公元前500年左右)6.印度婆罗门数字(公元前500年左右)7.玛雅数字(?)其中除巴比伦楔形数字采用六十进制、玛雅数字采用二十进制外,其他均属十进制数系二、“河谷文明”指的是什么?(P16)历史学家往往把兴起于埃与、美索不达米亚、中国、印度等地域的古代文明称为“河谷文明”。
数学史资料
数学史资料数学作为一门古老的学科,在人类历史上已经有着数千年的历史。
从最原始的计算工具,到现代复杂的数学理论,数学一直是人类社会持续发展的重要组成部分。
本文将介绍数学史的发展历程和一些数学领域的基础知识。
1、古代数学古代数学是指在西方古希腊和早期东方文明中,诞生的数学学科。
古代数学起源于公元前3000年左右的巴比伦和古埃及。
在那个时代,人们使用简单的计算工具,如木板、羊皮纸和算盘等,来进行基础的运算和计算。
古希腊数学的起源可以追溯到公元前6世纪。
希腊数学家发展了几何学,并设计了可以精确测量角度的工具,如量角器。
这些成果使得希腊文明成为古代数学的鼻祖。
在古代数学的发展历程中,爱因斯坦公认的古代数学家欧几里得是一位伟大的数学家。
他的著作《几何原本》包含许多几何学的基本定理和公式。
另一位著名的古代数学家是阿基米德。
他发展了物理学和几何学,并设计了可以测量园的周长和面积的工具。
这些古代数学家的成就对现代数学的发展产生了深远的影响。
2、中世纪数学中世纪数学是在公元5世纪至16世纪期间,在欧洲和阿拉伯国家发展起来的数学学科。
在这个时期,数学逐渐成为了一种独立的学科,并且与其他学科密切相关。
中世纪数学包括代数学、几何学和三角学等领域。
在这个时期,阿拉伯数学家也做出了许多重要的贡献。
阿拉伯数学家发明了数值法,并且开发出了一些解方程的方法。
中世纪时期最著名的数学家是阿拉伯数学家阿尔-哈里兹米。
他的书《代数的胜利》详细介绍了代数学的原理与应用。
尼可洛和勒让德则深入研究几何学,并发现了许多重要的公式和定理。
此外,中世纪数学家还开发出了用于计算圆周率的公式,并开发了几何学中的平滑曲线和三角函数。
3、现代数学现代数学是从17世纪开始,在欧洲和美国等国家快速发展起来的一门学科。
现代数学中的代数学、几何学、解析几何学、数论、分析数学、微积分等领域的发展,是近现代科学发展和工业化进程的基础。
17世纪的法国数学家笛卡尔提出了解析几何学,这使得人们能够在基于坐标的几何分析中使用代数学的方法。
数学史的意义和作用
数学史的意义和作用数学史是研究数学发展和演化的学科,它对于我们理解数学的本质和推动数学的进步具有重要的意义和作用。
下面我将详细阐述数学史的意义和作用。
首先,数学史可以让我们了解数学的起源和演变过程。
通过研究古代数学的文献和文物,我们可以追溯数学的历史根源,并了解数学的早期发展。
例如,研究埃及和巴比伦的数学可以让我们认识到他们对几何和代数的贡献,研究古希腊的数学可以了解到他们对几何推理和证明的重视。
这些早期的数学成果为后来的数学理论和方法奠定了基础,有助于我们更好地理解和应用现代数学知识。
其次,数学史可以展示数学的智力和创造力。
数学在长期的发展过程中,需要数学家们思考问题、发现模式、进行推理和证明,这体现了人类智慧的发展和创造力的展示。
例如,古希腊数学家欧几里得在《几何原本》中提出了一套完整严谨的几何体系,包括对几何图形的定义、公理和推理规则,这是对几何学的系统化和形式化的杰出贡献。
通过研究数学史,我们可以欣赏到数学家们不断追求数学真理和完善数学体系的探索过程,感受到他们思维的深度和广度。
第三,数学史有助于我们理解数学与其他学科的关系。
数学作为一门自身独立的学科,与其他学科密切相关。
通过研究数学史,我们可以了解到数学在物理学、工程学、经济学和计算机科学等各个领域的应用和发展。
例如,研究牛顿和莱布尼茨的微积分学可以认识到数学在物理学中的作用和应用。
数学史不仅可以让我们明白数学是如何服务于其他学科的,还可以帮助我们发现和理解数学与其他学科的相互关系,促进跨学科研究和学科融合。
最后,数学史对于培养数学思维和启发创新有着重要作用。
研究数学史可以让我们看到数学的发展过程中涌现出的不同思想方法和解决问题的策略,培养我们的数学思维方式。
例如,研究数学史可以让我们领悟到数学家们的直觉、启发和创造,从而培养我们的直觉思维和创新意识。
在教育实践中,数学史可以作为教学资源和案例,激发学生对数学的兴趣,提高学生的数学素养和解决问题的能力。
2024版《数学史》数学的起源ppt课件
微积分的应用
在物理学、工程学、经济学等领 域有广泛应用,如求解速度、加 速度、曲线的长度、面积、体积
等问题。
概率论与数理统计的兴起
1 2 3
概率论的起源 起源于17世纪中叶人们对机会性游戏的数学研究, 如赌博中的骰子点数问题。
数理统计的发展 随着数据收集和分析的需求增加,数理统计逐渐 从概率论中独立出来,成为一门研究如何从数据 中提取有用信息的学科。
《数学史》数学的起源ppt课件
目录
• 引言 • 古代数学的起源 • 中世纪数学的发展 • 近代数学的崛起 • 现代数学的发展与挑战 • 数学史对数学教育的启示
01
引言
Chapter
数学的定义与重要性
数学是研究数量、结构、空间及变化等概念的一门学科。
数学作为一种普遍适用的技术,有助于人们解决各种问 题,推动科技进步和社会发展。 数学在自然科学、社会科学、工程学、医学等领域都有 广泛应用,具有不可替代的重要性。
数学史的研究意义
了解数学发展的历史 进程,探究数学思想 和方法的演变。
借鉴历史经验,为现 代数学教育和研究提 供启示和借鉴。
揭示数学与人类社会、 文化、科技等方面的 互动关系。
课件内容与结构
课件内容
介绍数学的起源、早期数学的发展、古代数学的辉 煌成就、中世纪数学的停滞与复兴、近代数学的兴 起与发展等。
概率论与数理统计的应用 在金融、保险、医学、社会科学等领域有广泛应 用,如风险评估、质量控制、假设检验、回归分 析等。
代数与几何的变革
代数的抽象化
19世纪,数学家们开始研究抽象代数结构,如群、环、域 等,使得代数的研究对象从具体的数扩展到更一般的数学 对象。
几何的变革 非欧几何的兴起打破了欧几里得几何一统天下的局面,揭 示了几何学的多样性。同时,微分几何和拓扑学的发展也 为几何学注入了新的活力。
数学史资料
数学史资料
数学作为一门学科,其历史可以追溯到古代文明时期。
以下是一些数学史资料:
1. 早期数学:古代埃及和巴比伦都有广泛的数学实践。
埃及人使用简化的分数和几何形状来进行地量测和计算。
巴比伦人则使用一种基于60的数字系统,发明了现在我们称之为“圆盘”或“天平”的仪器来测量重量。
2. 古希腊数学:古希腊数学家如毕达哥拉斯、欧多克索斯和阿基米德等人开创了许多重要的数学理论,包括毕达哥拉斯定理、几何学原理和求圆周率的方法。
3. 中世纪数学:中世纪时期,数学在阿拉伯世界得到了重大发展,阿拉伯数学家如穆罕默德·本·穆萨(Al-Khwarizmi)和阿尔托西(Al-Tusi)等人发明了代数学和三角学的基础概念,以及阿拉伯数字系统。
4. 文艺复兴数学:文艺复兴时期,欧洲数学经验开始得到恢复和发展,一些著名数学家如卡尔丹(Cardano)和维达(Vieta)等人开创了代数学和解析几何学的新领域。
5. 现代数学:现代数学是从19世纪末开始的,这个时期数学家开始探索新的概念和理论,如无限集合理论、拓扑学和数学分析。
20世纪数学的发展更加广泛,包括数学物理学、组合数学和计算机科学等新领域。
总之,数学在整个人类历史中都发挥着重要作用,不断地推动着
科学技术的进步。
中国数学史
李善兰(清, 1811-1882)
李善兰恒等式
19世纪的中国数学
李善兰(清, 1811-1882)翻译部分西方学术著作
《几何原本》(1857) 《谈天》(1858, 赫谢尔) 《重学》(1859, 惠威尔)
徐光启等译《几何原本》 后250年
万有引力定律及天体力学 牛顿运动定律
《代微积拾级》(1859, 卢米斯)
《代数学》(1859, 德摩根)
“此书为算学中上乘功夫,此书一出,非特中
法几可尽废,即西法之古者亦无所用之矣。”
19世纪的中国数学
直线之公式,地=甲天丄乙,则地为天的函数。
dx a x ln (a x) c
禾 彳天 (甲 天)对 丙 甲 天
xdx ydy mydx
3.14159261<π<3.14159271
割之又割
《算经十书》
《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》 《夏候阳算经》、《张邱建算经》、《缀术》、《五曹算经》 《五经算术》、《缉古算经》。
《算经十书》
公元656年
汉唐千余年间中国 数学发展的水平
3.中算发展的第三次高峰
数学全盛时期
承前启后、融会中西的数学家 “历算第一名家”、“开山之袓” 《梅氏历算丛书辑要》62卷 代数(笔算)、几何、三角 康熙:历象算法,朕最留心,此 学今鲜知者,如梅文鼎实仅见也。
(清, 1633-1721)
光禄大夫、左都御史 “会通中西”、“西学中源”
18世纪的中国数学
康熙:“即西洋算法亦善,原系中国算法,
《缀术》
《隋书〃律历志》
公元462年, 祖冲之算出 3.1415926<π<3.1415927 密率355/113,约率22/7。 所著之书,名为《缀术》, 学官莫能究其深奥,是故废 而不理。 1913年起称355/113为祖率。
《数学史》数学的起源
欧拉
沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺 回来。欧拉完全失明以后,虽然生活在黑暗中,但仍然 以惊人的毅力与黑暗搏斗,欧拉的记忆力也确实罕见, 他能够完整地背诵出几十年前的笔记内容,数学公式当 然更能背诵如流。欧拉总是把推理过程想得很细,然后 口授,由他的长子记录。他用这种方法又发表了论文4 00多篇以及多部专著,这几乎占他全部著作的半数以 上。直到逝世,竟达17年之久。
分数分解
研究埃及数学的依据
埃及最古老的文字是象形文字,后来演变成一种较简单的书写 体,通常叫僧侣文。除了这两卷纸草书外,还有一些写在羊皮 上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。 两卷纸草书的年代在公元前1850~前1650年之间,相当于中 国的夏代。
单位分数之和:
7 1 1 1 1 1 29 6 24 58 87 232
a 2uv, b u 2 v 2 , c u 2 v 2
(2)相当于给出了正割的平方表.
下面介绍两位大家比较熟悉的数学家:
柯西 和 欧拉。
柯西
柯西(Cauchy,Augustin Louis 1789-1857),出生生 于巴黎,在数学领域,有很高的建树和造诣。很多数学 的定理和公式也都以他的名字来称呼,如柯西不等式、 柯西积分公式...他在纯数学和应用数学的功力是相当深厚 的,在数学写作上,他是被认为在数量上仅次于欧拉的 人,他一生一共著作了789篇论文和几本书。
古埃及人创造出了几套文字,其中一套是象形文 字.“象形文字”这个词源于希腊文,意思是神圣的文 字.直到基督降生的年代,埃及在纪念碑文和器皿上还 刻有象形字.自公元前2500年左右起,开始使用象形文 字的缩写,称作僧侣文(hieraticwriting).
数学史的概念
数学史的概念
数学史是研究数学发展历史的学科。
它涵盖了从古代至今数学的演进和变化,包括数学的发展背景、数学家的思想观点、数学理论的演化以及数学在不同时代和文化背景下的应用等方面。
数学史的研究内容包括以下几个方面:
1. 古代数学:研究古代文明中的数学知识和应用。
例如古埃及、古希腊、古印度和古中国等古代文明中的数学成就,如埃及人的几何知识、希腊人的几何学和算术、印度人的无理数概念、中国人的算盘运算等。
2. 中世纪数学:研究中世纪时期的数学发展及其思想。
中世纪的数学主要受到宗教、哲学和天文等领域的影响,包括经典数学、阿拉伯数学、欧几里德几何学、天文学中的数学应用等。
3. 近代数学:研究近代数学的发展和创新。
这一时期的数学成就包括代数学、几何学、分析学等多个学科的发展,以及数学分析的形式化、数学基础的建立等。
4. 现代数学:研究现代数学的发展和现状。
现代数学涉及到各个领域的数学发展,如数理逻辑、集合论、代数学、几何学、数论、微积分等。
通过研究数学史,可以了解数学的传承和演变过程,探讨数学家们的思维方式和创新思想,进一步深入理解数学的内涵和应用,为数学的教学和研究提供重要的基础和参考。
数学史的研究方法有
数学史的研究方法有
数学史是研究数学发展历史的学科,其研究方法主要包括以下几种:
1. 文献研究法:通过查阅相关文献,了解数学史上的重要人物、事件、理论等,从而深入理解数学的发展历程。
2. 史料收集法:获取历史文献、手稿、图书、照片、绘画等各类有关于数学史的文献资料,以便更好地了解数学史的发展历程和人物。
3. 比较研究法:对不同历史时期、不同学派、不同国家的数学发展进行比较和分析,探究其异同点和规律。
4. 数学史教学法:将数学史作为一门独立的课程,通过对有代表性的数学问题、理论的历史演变和重要人物的生平事迹的讲述,来加深对数学知识的理解和掌握。
5. 数学史研究法:通过对现有的数学问题进行历史研究,探寻其发展历程和演变规律,从而推进数学理论的发展。
总之,数学史的研究方法是多样的,既包括文献研究、史料收集、比较研究、数学史教学,也包括数学史研究等多种方法,这些方法的应
用有助于深入了解数学的发展历程和演变规律,对于推进数学理论的发展、提高数学教育水平都有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
莱布尼茨
大家好!
在生活中,我们常听到一句名言“世界上没有完全相同的树叶”,但是这句名言是出自哪位伟人之口呢?在数学中,我们学习了微积分以及一些积分符号,这一些又是哪位数学家发明创造的呢?相信大家都很想知道答案:这一些发明出自于德国数学家——莱布尼茨,我将和大家一起从其生平、数学成就等方面来认识这位科学史上的巨匠。
(一)名人简介
戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz,1646年-1716年),德国哲学家、数学家。
涉及的领域及法学、力学、
光学、语言学等40多个范畴,被誉为十七世纪的亚里
士多德、“德国百科全书式的天才”。
(二)人物生平
公元1646年7月1日,戈特弗里德·威廉·凡·莱
布尼茨出生于德国东部莱比锡的一个书香之家,父亲
弗里德希·莱布尼茨是莱比锡大学的道德哲学教授,
母亲凯瑟琳娜·施马克出身于教授家庭,虔信路德新
教。
在莱布尼茨6岁时父亲去世,为他留下丰富的藏书。
1661年15岁的莱布尼茨进入莱比锡大学学习法律,并钻研哲学,广泛阅读了培根、伽利略、开普勒等人的著作。
1663年5月,他以题目为《论个体原则方面的形而上学争论》的论文获得学士学位。
1664年1月,以《论法学之艰难》取得该校哲学学士学位。
是年2月12日,他母亲不幸去世。
18岁的莱布尼茨从此只身一人生活,他—生在思想、性格等方面受母亲影响颇深。
从1665年开始,莱比锡大学审查他提交的博士论文《论身份》,但1666年,以他年轻为由而拒绝不授予他博士学位,对此他愤怒地离开莱比锡前往纽伦堡的阿尔特多夫大学,1667年2月阿尔特多夫大学授予他博士学位,并聘他为教授,被他拒绝。
1672—1676年,任外交官并到欧洲各国游历,此间他结识了惠更斯等科学
家,从惠更斯的论著中看到了数学的魅力,从而激发了他对数学的兴趣与追求,在惠更斯的热情指导下,他深入钻研了笛卡尔、帕斯卡、巴罗等人的论著,并写下了很有见地的数学笔记,并于1673年被选为英国皇家学会会员。
1676年,他到德国西部的汉诺威,担任腓特烈公爵的顾问及图书馆馆长近40年,这使他能利用空闲钻研自己喜爱的问题,撰写各种题材的论文,其论文之多浩如烟海。
1682年,他与门克创办拉丁文科学杂志《教师学报》,他的数学、哲学文章大都刊登在此杂志上。
1700年被选为法国科学院院士,同时创建了柏林科学院,并担任第一任院长。
至此当时世界上四大科学院:英国皇家学会、法国科学院、罗马科学与数学科学院、柏林科学院都以莱布尼茨作为核心成员。
1712年左右,他同时被维也纳、布伦兹维克、柏林、彼得堡等王室所雇用。
这一时期他一有机会就积极地宣传他编写百科全书,建立科学院以及利用技术改造社会的计划。
在他去世以后,维也纳科学院、彼得堡科学院先后都建立起来了。
据传,他还曾经通过传教士,建议中国清朝的康熙皇帝在北京建立科学院。
1716年11月14日,由于痛风和胆结石引起的腹绞痛卧床一周后,莱布尼茨孤寂地离开了人世,终年70岁。
(三)数学成就
在数学中,以他的姓氏命名的有:莱布尼茨定理、莱布尼茨公式、莱布尼茨级数、莱布尼茨收敛准则、莱布尼茨性质等等。
他最著名的成就是创建了微积分的方法。
(1)微积分的创立
与牛顿流数论的运动学背景不同,莱布尼茨创立微积分首先出于几何问题的思考,尤其是特征三角形的研究。
莱布尼茨的微积分思想的最早记录,出现在他1675年的数学笔记中。
他研究了巴罗的《几何讲义》及帕斯卡的《关于四分之一圆的正弦》的论文之后,意识到微分与积分是互逆的关系,并得出了求曲线的切线依赖于纵坐标与横坐标的差值(当这些差值变成无穷小时)的比;而求面积则依赖于横坐标的无穷小区间上的纵坐标之和或无限窄矩形面积之和,并且这种求和与求差的运算是互逆的。
即莱布尼茨的微分学把微分看作变量相邻二值的无限小的差,而他的积分概念则以变量分成的无穷多个微分之和的形式出现。
莱布尼茨的第一篇微分学论文《一种求极大极小和求切线的新方法》,简称《新方法》,刊登在《教师学报》上,这也是数学史上第一篇正式发表的微积分文献,这篇仅有六页的论文,内容并不丰富,说理也颇含糊,但却有着划时代的意义。
文中介绍了微分的定义,函数的和、差、积以及乘幂的微分法则,关于一阶微分不变形式的定理,关于二阶微分的概念以及微分学对于研究极值、作切线、求曲率及拐点的应用。
莱布尼茨关于积分学的第一篇论文发表于1686年,其中首次引进了积分号⎰,并且初步论述了积分或求积问题与微分或求切线问题的互逆关系,该论文的题目为《探奥几何与不可分量及无限的分析》。
在这篇积分学论文中,莱布尼茨给出了摆线方程为:⎰-+-=2222y x x dx
x x ,目的是要说明他的方法和符号,
可以将一些被其他方法排斥的超越曲线表为方程。
(2)数学符号
莱布尼兹是数字史上最伟大的符号学者之一,堪称符号大师。
他曾说:“要发明, 就要挑选恰当的符号,要做到这一点,就要用含义简明的少量符号来表达和比较忠实地描绘事物的内在本质,从而最大限度地减少人的思维劳动”,正象印度——阿拉伯的数学促进了算术和代数发展一样,莱布尼兹所创造的这些数学符号对微积分的发展起了很大的促进作用。
莱布尼茨在微积分方面的贡献突出地表现在他发明了一套适用的符号系统。
1675年引入dx 表示x 的微分,“∫”表示积分,dddy ddv ,表示二阶、三阶微分。
1695年左右,用n d m 表示m 阶微分。
除积分、微分符号外, 他创设的符号还有除号“b
a ”比“a :
b ”,相似“∽”, 全等符号“≌”,并“⋃”,“交“ ⋂”,概念加号“⊕”,此外,还有对数符号、函数符合、行列式符号等等。
莱布尼茨的优越的符号为以后分析学的发展带来了极大地方便。
欧洲大陆的数学得以迅速发展, 莱布尼兹的巧妙符号功不可没。
(3)对其他数学分支的贡献
莱布尼茨在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。
莱布尼茨曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论。
在后来的研究中,莱布尼茨证明了自己结论是正确的。
他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论。
莱布尼茨还对于笛卡尔的解析几何,他提出了“坐标”及“横坐标”的概念;他还得到了sinx,cosx,arctanx等函数的无穷级数展开式,后来也认识到级数收敛的重要性;在常微分方程中,他想到分离变量法。
此外,莱布尼茨创立了符号逻辑学的基本概念。
莱布尼茨1679年撰写的《二进制算术》,使他成为二进记数制得发明人。
他是制造计算机的先驱,1674年在巴黎科学院当众演示了他制成的“算术计算机”,这是第一台能做四则运算的计算机。
他的一系列重要数学理论的提出,为后来的数学理论奠定了基础。
(四)牛顿与莱布尼茨发明权之争
牛顿与莱布尼兹之间发生了优先权问题的争执,争端是由局外人挑起的,一位瑞士数学家德勒1699年在一本小册子中提出“牛顿是微积分的第一发明人”而莱布尼兹为“第二发明人”,“曾从牛顿那里有所借鉴”,莱布尼兹立即对此反驳,1712年,英国皇家学会专门指定了一个委员会进行调查,并于翌年公布了一份著名的《旦报》,宣布“牛顿为第一发明人”,引起了莱布尼兹的申诉,争论在双方的追随者之间越演越烈,直到莱布尼兹和牛顿去世后,才逐渐平息并得到解决,经过调查,特别是对莱布尼兹的手稿的分析,证实两人确实是相互独立地完成了微积分的发明,就时间而言,牛顿要早,就发表的时间而言,莱布尼兹则先。
优先权争论被认为是“科学史上最不幸的一章”。
微积分发明权的争论,对整个18世纪英国与欧陆国在数学发展上分道扬镳,产生了严重的影响。
由于英国数学家们固守牛顿的传统使自己逐渐远离分析的主流,分析的进步在18世纪主要是由欧陆国家的数学家在发展莱布尼兹微积分方法的基础而取得的。
牛顿与莱布尼茨都是他们时代的巨人,就微积分的创立而言,尽管在背景、方法和形式上存在差异,各有特色,但二者的功绩是相当。
结束语:莱布尼茨的博学多才在科学史上罕有所比,他把一切领域的知识作为自己追求的目标。
莱布尼茨的研究涉及数学、哲学、法学、力学、光学、流体静力学、气体学、海洋学、生物学、地质学、机械学、逻辑学、语言学、历史学、神学等41个范畴,被誉为“17世纪的亚里士多德”、“德国百科全书式的天才”。
感谢大家同我一起来认识这位伟大名人,谢谢大家!。