对数函数及其性质(一)[
对数函数及其性质(一)
2.2.2 对数函数及其性质(一)一、教学目的和要求【知识与技能目标】通过具体实例,直观了解对数函数模型刻画的数量关系,初步理解对数函数的概念,并能画出具体对数函数的图像,掌握对数函数的图象和性质。
【过程与方法】通过从具体到一般的过程,数形结合的方法,体会研究具体函数及其性质的过程和方法。
【情感、态度与价值观】培养学生数形结合的思想,学会研究函数性质的方法,能应用对数函数的性质解有关问题。
二、重点难点教学重点:对数函数的概念,图像和性质教学难点:利用数形结合的方法从具体到一般地探究,理解对数函数的图象及其性质。
三、教学过程(一)复习引入2.2.1例6 生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代。
死亡年数t 就是要得到的碳14的含量P 的函数。
这个函数写成对数的形式是 。
(二)讲授新课 1. 对数函数的定义:函数y =log ax (a >0且a ≠1)叫做对数函数,定义域为(0,+∞),值域为(-∞,+∞)。
提问:①.在函数的定义中,为什么要限定a >0且a ≠1。
②.为什么对数函数log a y x =(a >0且a ≠1)的定义域是(0,+∞).组织学生充分讨论、交流,使学生更加理解对数函数的含义,从而加深对对数函数的理解。
判断下列函数是不是对数函数:例1 求下列函数的定义域:2. 对数函数的图象: P t 573021log =x y 2log )1(2=x y 2log )2(-=1log )3(2+=x y 2log )1(x y a =)4(log )2(x y a -=)9(log )3(2x y a -=通过列表、描点、连线作x y 2log =与x y 21log =的图像。
思考:两图像有什么关系?因为x x y x 2log log log log 212221-===,所以两图像关于x 轴对称。
课题对数函数及其性质
课题:对数函数及其性质(1)
大同中学王培
一、教案设计的指导思想:
本教案依据洋思中学教学模式,以及根据本校的实际情况进行设计,废弃陈旧的“一堂课”、“满堂灌”的教学方式。
使学生始终把握教学方向,领悟教学全过程,并以互动的方式完成教学任务,力求突出学生的主体地位,体现教师的主导作用,使学生在知识的发生、发展过程中,自然获得思维、能力、心理,思想品德诸方面的提高。
同时,借助多媒体的教育技术手段,为学生营造一个平等、竞争、自主、创新的学习氛围.
二、三维目标
(一)知识与技能
使学生理解对数函数的定义并了解其图象的特征及对应函数性质;
(二)过程与方法
培养学生动手操作的能力以及自主探究数学问题的素养;
(三)情感态度与价值观
构造和谐的教学氛围,增加互动,促进师生情感交流。
三、【教学重点】掌握对数函数的图象和性质;
【教学难点】底数对对数函数值变化的影响.
【教学方法】启发、引导、讨论.
四、课前准备:布置学生课前预习和发放预习稿.
五、教学过程设计及意图
引导学生通过观察图形得出结论:当两个对数函数的底为
轴对称。
并提出问题:能否
x的图象关于x轴对称
然后利用几何画板在同一坐标系中画出当①a=3、4、5、
……的对数函数的图象。
让学生在感
由教师引导学生,学生互相讨论,。
高中数学:2.2.2对数函数及其性质 (1)
2.2.2对数函数及其性质第二课时对数函数及其性质的应用(习题课)比较对数值的大小[例1]比较下列各组数中两个值的大小:(1)log23.4,log28.5;(2)log0.31.8,log0.32.7;(3)log a5.1,log a5.9(a>0,且a≠1).[解](1)考察对数函数y=log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4<log28.5.(2)考察对数函数y=log0.3x,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,于是log0.31.8>log0.32.7.(3)当a>1时,y=log a x在(0,+∞)上是增函数,于是log a5.1<log a5.9;当0<a<1时,y=log a x在(0,+∞)上是减函数,于是log a5.1>log a5.9.比较对数值大小时常用的4种方法(1)同底的利用对数函数的单调性.1.比较下列各题中两个值的大小: (1)lg 6,lg 8; (2)log 0.56,log 0.54; (3)log 132与log 152;(4)log 23与log 54.解:(1)因为函数y =lg x 在(0,+∞)上是增函数,且6<8,所以lg 6<lg 8. (2)因为函数y =log 0.5x 在(0,+∞)上是减函数,且6>4,所以log 0.56<log 0.54. (3)由于log 132=1log 213,log 152=1log 215. 又∵对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,∴0>log 2 13>log 2 15,∴1log 213<1log 215.∴log 132<log 152. (4)取中间值1,∵log 23>log 22=1=log 55>log 54,∴log 23>log 54.[例2] (1)已知log a 12>1,求a 的取值范围;(2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围. [解] (1)由log a 12>1得log a 12>log a a .求解对数不等式①当a >1时,有a <12,此时无解.②当0<a <1时,有12<a ,从而12<a <1.∴a 的取值范围是⎝⎛⎭⎫12,1.(2)∵函数y =log 0.7x 在(0,+∞)上为减函数, ∴由log 0.72x <log 0.7(x -1) 得⎩⎪⎨⎪⎧2x >0,x -1>0,2x >x -1,解得x >1.∴x 的取值范围是(1,+∞).常见对数不等式的2种解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解.2.已知log a (3a -1)恒为正,求a 的取值范围. 解:由题意知log a (3a -1)>0=log a 1. 当a >1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧ 3a -1>1,3a -1>0,解得a >23,∴a >1;当0<a <1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧3a -1<1,3a -1>0,解得13<a <23.∴13<a <23. 综上所述,a 的取值范围是⎝⎛⎭⎫13,23∪(1,+∞).有关对数型函数的值域与最值问题[例3] 求下列函数的值域.(1)y =log 2(x 2+4);(2)y =log 12(3+2x -x 2).[解] (1)y =log 2(x 2+4)的定义域是R. 因为x 2+4≥4,所以log 2(x 2+4)≥log 24=2, 所以y =log 2(x 2+4)的值域为[2,+∞). (2)设u =3+2x -x 2=-(x -1)2+4≤4. 因为u >0,所以0<u ≤4.又y =log 12u 在(0,+∞)上为减函数,所以log 12u ≥log 124=-2,所以y =log 12(3+2x -x 2)的值域为[-2,+∞).(1)求对数型函数的值域,一般需根据对数函数的单调性及真数的取值范围求解. (2)求函数的值域时,一定要注意定义域对它的影响,结合函数的单调性求解,当函数中含有参数时,有时需讨论参数的取值.3.已知f (x )=2+log 3x ,x ∈[1,9],求函数y =[f (x )]2+f (x 2)的最大值及此时x 的值. 解:y =[f (x )]2+f (x 2)=(2+log 3x )2+log 3x 2+2=(log 3x )2+6log 3x +6=(log 3x +3)2-3. ∵f (x )的定义域为[1,9], ∴y =[f (x )]2+f (x 2)中,x必须满足⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴1≤x ≤3,∴0≤log 3x ≤1,∴6≤y ≤13. ∴当x =3时,y 取得最大值,为13.[例4] 已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),其中(a >0且a ≠1),设h (x )=f (x )-g (x ).求函数h (x )的定义域,判断h (x )的奇偶性,并说明理由. [解] ∵f (x )=log a (1+x )的定义域为{x |x >-1}, g (x )=log a (1-x )的定义域为{x |x <1},∴h (x )=f (x )-g (x )的定义域为{x |x >-1}∩{x |x <1}={x |-1<x <1}. ∵h (x )=f (x )-g (x )=log a (1+x )-log a (1-x ),∴h (-x )=log a (1-x )-log a (1+x )=-[log a (1+x )-log a (1-x )]=-h (x ), ∴h (x )为奇函数. [一题多变]1.[变条件]若f (x )变为log a 1+x1-x (a >1):求f (x )的定义域.解:因为f (x )=log a 1+x1-x,需有1+x1-x >0,即⎩⎪⎨⎪⎧ 1+x >0,1-x >0,或⎩⎪⎨⎪⎧1+x <0,1-x <0,所以-1<x <1.所以函数f (x )的定义域为(-1,1).2.[变设问]在本例条件下,若f (3)=2,求使h (x )<0成立的x 的集合. 解:∵f (3)=log a (1+3)=log a 4=2,∴a =2. ∴h (x )=log 2(1+x )-log 2(1-x ), ∴h (x )<0等价于log 2(1+x )<log 2(1-x ),对数函数性质的综合应用∴⎩⎪⎨⎪⎧1+x <1-x ,1+x >0,1-x >0,解得-1<x <0.故使h (x )<0成立的x 的集合为{x |-1<x <0}.层级一 学业水平达标1.若lg(2x -4)≤1,则x 的取值范围是( ) A .(-∞,7] B .(2,7] C .[7,+∞)D .(2,+∞)解析:选B ∵lg(2x -4)≤1,∴0<2x -4≤10,解得2<x ≤7,∴x 的取值范围是(2,7],故选B.2.已知log 12m <log 12n <0,则( )A .n <m <1B .m <n <1C .1<m <nD .1<n <m解析:选D 因为0<12<1,log 12m <log 12n <0,所以m >n >1,故选D.3.函数f (x )=|log 12x |的单调递增区间是( )A.⎝⎛⎦⎤0,12 B .(0,1] C .(0,+∞)D .[1,+∞)解析:选D f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.已知实数a =log 45,b =⎝⎛⎭⎫120,c =log 30.4,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <a <bD .c <b <a解析:选D 由题知,a =log 45>1,b =⎝⎛⎭⎫120=1,c =log 30.4<0,故c <b <a . 5.函数f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1+x 是( ) A .奇函数 B .偶函数 C .既奇又偶函数D .非奇非偶函数解析:选A f (x )定义域为R ,f (-x )+f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1-x +lg ⎝ ⎛⎭⎪⎫1x 2+1+x =lg1(x 2+1)-x 2=lg 1=0,∴f (x )为奇函数,故选A. 6.比较大小: (1)log 22______log 23; (2)log 3π______log π3.解析:(1)因为函数y =log 2x 在(0,+∞)上是增函数,且2>3,所以log 22>log 2 3. (2)因为函数y =log 3x 增函数,且π>3,所以log 3π>log 33=1. 同理1=log ππ>log π3,所以log 3π>log π3. -=-=答案=-=-:(1)> (2)>7.不等式log 13(5+x )<log 13(1-x )的解集为________.解析:由⎩⎪⎨⎪⎧5+x >0,1-x >0,5+x >1-x ,得-2<x <1.-=-=答案=-=-:{x |-2<x <1}8.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________.解析:∵a >1,∴f (x )=log a x 在[a,2a ]上递增, ∴log a (2a )-log a a =12,即log a 2=12,∴a 12=2,a =4. -=-=答案=-=-:49.已知对数函数f (x )的图象过点(4,2),试解不等式f (2x -3)>f (x ). 解:设f (x )=log a x (a >0且a ≠1), 因为f (4)=2,所以log a 4=2,所以a =2,所以f (x )=log 2x ,所以f (2x -3)>f (x )⇒log 2(2x -3)>log 2x ⇒⎩⎪⎨⎪⎧2x -3>0,x >0,2x -3>x ⇒x >3,所以原不等式的解集为(3,+∞).10.求函数y =log 12(1-x 2)的单调增区间,并求函数的最小值.解:要使y =log 12(1-x 2)有意义,则1-x 2>0,∴x 2<1,则-1<x <1,因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =log 12t 减小,∴x ∈(-1,0]时,y =log 12(1-x 2)是减函数;同理当x ∈[0,1)时,y =log 12(1-x 2)是增函数.故函数y =log 12(1-x 2)的单调增区间为[0,1),且函数的最小值y min =log 12(1-02)=0.层级二 应试能力达标1.若a >0,且log 0.25(a 2+1)>log 0.25(a 3+1),则实数a 的取值范围是( )A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D .[1,+∞)解析:选C ∵log 0.25(a 2+1)>log 0.25(a 3+1),∴a 2<a 3,即a 2(1-a )<0,∴a >1,故选C.2.设a =log 54,b =log 53,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <cD .b <a <c解析:选D 由于b =log 53<a =log 54<1<log 45=c ,故b <a <c . 3.关于函数f (x )=log 12(1-2x )的单调性的叙述正确的是( )A .f (x )在⎝⎛⎭⎫12,+∞内是增函数 B .f (x )在⎝⎛⎭⎫12,+∞内是减函数 C .f (x )在⎝⎛⎭⎫-∞,12内是增函数 D ..f (x )在⎝⎛⎭⎫-∞,12内是减函数 解析:选C 由于底数12∈(0,1),所以函数f (x )=log 12(1-2x )的单调性与y =1-2x 的单调性相反.由1-2x >0,得x <12,所以f (x )=log 12(1-2x )的定义域为(-∞,12).因为y =1-2x 在(-∞,+∞)内是减函数,所以f (x )在⎝⎛⎭⎫-∞,12内是增函数,故选C. 4.(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)解析:选D 由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).5.若y =log (2a -3)x 在(0,+∞)上是增函数,则实数a 的取值范围为________. 解析:由y =log (2a -3)x 在(0,+∞)上是增函数,所以2a -3>1,解得a >2. -=-=答案=-=-:(2,+∞)6.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f ⎝⎛⎭⎫13=0,则不等式f (log 18x )>0的解集为________________.解析:∵f (x )是R 上的偶函数,∴它的图象关于y 轴对称.∵f (x )在[0,+∞)上为增函数,∴f (x )在(-∞,0]上为减函数,做出函数图象如图所示.由f ⎝⎛⎭⎫13=0,得f ⎝⎛⎭⎫-13=0. ∴f (log 18x )>0⇒log 18x <-13或log 18x >13⇒x >2或0<x <12, ∴x ∈⎝⎛⎭⎫0,12∪(2,+∞). -=-=答案=-=-:⎝⎛⎭⎫0,12∪(2,+∞) 7.求函数f (x )=log 2(4x )·log 14x 2,x ∈⎣⎡⎦⎤12,4的值域. 解:f (x )=log 2(4x )·log 14x 2 =(log 2x +2)·⎣⎡⎦⎤-12(log 2x -1) =-12[](log 2x )2+log 2x -2. 设log 2x =t .∵x ∈⎣⎡⎦⎤12,4,∴t ∈[-1,2],则有y =-12(t 2+t -2),t ∈[-1,2], 因此二次函数图象的对称轴为t =-12, ∴它在⎣⎡⎦⎤-1,-12上是增函数,在⎣⎡⎦⎤-12,2上是减函数, ∴当t =-12时,有最大值,且y max =98. 当t =2时,有最小值,且y min =-2.∴f (x )的值域为⎣⎡⎦⎤-2,98.8.已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1.(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-4,求a 的值.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0, 解得-3<x <1,所以函数的定义域为(-3,1).(2)函数可化为:f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4], 因为-3<x <1,所以0<-(x +1)2+4≤4. 因为0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )min =log a 4,由log a 4=-4,得a -4=4,所以a =4-14=22.。
对数函数及其性质
当 0 < a < 1 时, y loga x 是减函 数. (4)当 a >1 时
x >1,则 loga x >0
(4)当 a >1 时,函数图象在(1, 0< x <1, loga x <0 0)点右边的纵坐标都大于 0,在(1, 0)点左边的纵坐标都小于 0. 当 0 当 0< a <1 时 < a <1 时,图象正好相反,在(1, x >1,则 loga x <0 0)点右边的纵坐标都小于 0,在(1, 0)点左边的纵坐标都大于 0 . 0< x <1, loga x <0
对数函数及其性质(一)
1. 画出 y 2x 、 y ( ) x 的图像,并以这两个函数为例,说说指数函数的性质. 讲授新课: 1.对数函数的图象和性质: ① 定义:一般地,当 a>0 且 a≠1 时,函数 y=loga x 叫做对数函数(logarithmic function). 自变量是 x; 函数的定义域是(0,+∞) ② 辨析: 对数函数定义与指数函数类似,都是形式定义,注意辨别,如: y 2log 2 x , y log5 (5 x) 都 不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 (a 0 ,且 a 1) .
5.1
0.9
)
二、填空题 3 -3 3 -3 4 -4 -1 13.化简:(a +a )(a -a )÷[(a +a +1)(a-a )]=_____. 2 x x 14.f(x)=x -bx+c 满足 f(1+x)=f(1-x)且 f(0)=3,则 f(b )与 f(c )的大小关系是_. 1 |x+1|+|x-2| 15.y=( ) 的递增区间是____递减区间是___. 3 16.(2005.北京)对于函数 f(x)定义域中任意的 x1≠x2,有如下结论: ①f(x1+x2)=f(x1)·f(x2) ②f(x1·x2)=f(x1)+f(x2) f(x1)-f(x2) x1+x2 (x1)+f(x2) ③ >0 ④f( )< x1-x2 2 2 当 f(x)=lgx 时,上述结论中正确的序号是______. 三、解答题 a -1 17.已知函数 f(x)= x (a>0 且 a≠1) a +1 ①求 f(x)的定义域和值域.②讨论 f(x)的单调性.
对数函数及其图象与性质(一)1课件人教新课标
1、类比思想 2、数形结合的思想 3、分类讨论思想
作业设置: 学案中【课后作业】
分别以y log2 x 和 y log 1 x 为例,用描点法画图.
y2
x y log2 x
1 -1
2
10 21
42 6 2.6 83
1
3
y log 2 x
2
0
1
-1
0 1 2 3 45678x
-2
-1
-2.6 -2
-3
-3
y log 1 x
2
知识探究:对数函数y=logax(a>0且a≠1)的图象和性质
3. 指数函数的图象和性质
y=ax
图 象
定义域
a>1
y y=ax
(0,1)
y=1
O
x
R
0<a<1
y=ax y (0,1) y=1 Ox
值域
定点 单调性 函数值 的符号
(0,+∞)
过点(0,1),即x=0时,y=1
在R上是增函数
x>0时,y>1; x<0时,0<y<1
在R上是减函数
x>0时,0<y<1; x<0时,y>1
所以,t 是关于P的函数。
知识探究:
1、对数函数定义:形如 y loga x(a 0, 且a 1) 的函数叫
做对数函数,其中 x 是自变量;
定义域是(0, +∞). 对数函数的情势:
练习:1、判断下列函数是否是对数函数(1)系数为1
(1)y
lo2)底数是大于0且不等于
课堂导学:求对数函数定义域问题
应用一:求下列函数的定义域
课堂导学:求对数函数定义域问题
应用一:求下列函数的定义域
对数函数及其性质(1)
2.2.2 对数函数及其性质(1)学习目标1.理解对数函数的概念,知道对数函数是一类重要的函数模型;2.理解对数函数的单调性,掌握对数函数图像通过的特殊点;重点难点重点:对数函数的定义、图象及其性质;难点:由对数函数图象总结归纳出对数函数性质。
自主学案预习学案1. 定义:一般地,我们把函数log (0a y x a =>,且1)a ≠叫做对数函数,其中 是自变量,函数的定义域是2. 对数函数图象与性质a>10<a<1图 象 y0 xy0 x性 质①定义域: ②值域: ③过定点: ④增区间:④减区间:预习思考1. 函数log (0a y x a =>,且1)a ≠的图象过定点2.函数2()log 2f x x =-的定义域3.函数5()2+log f x x =(1x ≥)值域是合作探究探究点一:对数函数的概念 一、概念一般地,我们把函数log (0a y x a =>,且1)a ≠叫做对数函数,其中x 是自变量,函数的定义域是()0+∞,. 二、概念理解1、在函数的定义中,为什么要限定0,a >且1a ≠?2、为什么对数函数log (0a y x a =>且1)a ≠的定义域是()0+∞,?3、下列函数是不是对数函数?①2-log y x =,②212log y x =,③3log (1)y x =+,④31log y x=,⑤log 5x y = 三、典例剖析例1. 求下列函数的定义域(1)22log (45)y x x =-- (2) log (22)y x =-(5-x)类题突破2 (1) 23log (31)2x y x x +=++-2 (2)0.5log (43)y x =-探究点二:对数函3数的图象和性质 一、对数函数2log y x =与12log y x =的图象请用描点法分别作出两个函数图象! “列表——描点——连线”x121 2 4 8 162log y x =12log y x =y y2log y x = 12log y x =0 1 x 0 1 x思考:函数2log y x =与12log y x =的图象有什么关系?y 1.注意结合x 、y 对应值表以及2log y x = 函数图象观察分析!关系:2.如何证明这种关系?1 x12log y x =二、探究对数函数的性质在同一直角坐标系下分别作出函数13log y x =,12log y x =,2log y x =,3log y x =的图象,观察图象,你能发现它们有哪些共同特征?y0 1 x三、对数函数log (0a y x a =>,且1)a ≠的图象及性质a>1 0<a<1图 象性 质①定义域: ②值域:③过定点 ,即当x= 时,y= ④在(0,+∞)上是 函数④在(0,+∞)上是 函数四、典例剖析例3、比较大小:①2log 3与2log 4;②12log 5与12log 3;③log 2a 与log 5a .例4、已知下述4个函数图象是底数分别为 A 、B 、C 、D 的对数函数图象,试比较 A 、B 、C 、D 的大小.例5、若函数log (34)a y x =+(0<a<1)的函数值恒大于0,求x 的取值范围?类题突破6 求使函数log (34)a y x =+的值恒为负值的x 的取值范围?概括整合1、对数函数的概念,底数、真数的取值范围;2、对数函数的图象及其性质的应用;3、用数形结合的方法解决问题.4、。
2.2.2对数函数及其性质(1) (2)
例6.函数y 2 loga x 1, x [2,4](a 0, 且a 1) 最大值比最小值大 1, 求a的取值.
1 练习、(1)若loga <1,求实数aห้องสมุดไป่ตู้取值范围; 2
(2)若loga2<logb2<0,则(
A、0<a<b<1 C、0<b<a<1 B、a>b>1 D、b>a>1
(1) log2 3 , log2 3.5 (3) log3 2 , log3.5 2 (2) log0.7 1.6 , log0.7 1.8 (4) log1.6 0.7 , log1.8 0.7
解: (3) 0 log2 3
log2 3.5 ,
1 1 即 0 , log3 2 log3.5 2 log3 2 log3.5 2 .
x=log2y
如果用x表示自变量,y表示函 数,这个函数就是 y=log2x.
1.对数函数的定义: 一般地,我们把函数 y=logax (a>0且 a≠1)叫做对数函数,其中x是自变量,函数的
定义域是 (0,+∞).
对数函数模型(一)
火箭的最大速度v和燃料质 量M、火箭质量m的函数关 系是:
M v 2000 ln(1 ) m
a
)
D.y=4lg x
答案: C
1.已知下列函数: ①y=log1(-x)(x<0);
2
②y=2log4(x-1)(x>1); ③y=ln x(x>0); ④y=log(a2+a)x(x>0,a 是常数). ③ .(只填序号) 其中,是对数函数的是________
函数y=logax(a>0,且a≠1)叫做对数函数,
对数函数及性质 (1)
高一提高班 对数函数的图象及性质1.已知下列函数:①y =log 12(-x )(x <0);②y =2log 4(x -1)(x >1);③y =ln x (x >0);④y =log (a 2+a )x (x >0,a 是常数).其中为对数函数的个数是( )A .1B .2C .3D .4底数a 2+a =⎝⎛⎭⎫a +122-14,当a =-12时,底数小于0,故④不是对数函数. 【答案】 A2.(2016·重庆高一检测)函数y =1+log 12(x -1)的图象一定经过点( )A .(1,1)B .(1,0)C .(2,1)D .(2,0)【答案】 C3.(2016·漳州高一检测)函数y =1log 2(x -2)的定义域为( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞) 【答案】 C4.已知0<a <1,函数y =a x 与y =log a (-x )的图象可能是( )【答案】 D5.函数f (x )=log a (x +2)(0<a <1)的图象必不过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】 A 6.函数f (x )=log 12(3x -2)的定义域是________. 【答案】 ⎝ ⎛⎦⎥⎤23,17.函数y =log 2(x 2-6x +8)的增区间为________.8.已知函数y =log 22-x2+x,下列说法:①关于原点对称;②关于y 轴对称;③过原点.其中正确的是________. 【答案】 ①③9.若函数f (x )为定义在R 上的奇函数,且x ∈(0,+∞)时,f (x )=lg(x +1),求f (x )的表达式,并画出大致图象.【解】 ∵f (x )为R 上的奇函数,∴f (0)=0. 又当x ∈(-∞,0)时,-x ∈(0,+∞),∴f (-x )=lg(1-x ).又f (-x )=-f (x ),∴f (x )=-lg(1-x ),∴f (x )的解析式为f (x )=⎩⎨⎧lg (x +1),x >00,x =0-lg (1-x ),x <0,∴f (x )的大致图象如图所示:[能力提升]1.满足“对定义域内任意实数x ,y ,f (x ·y )=f (x )+f (y )”的函数可以是( )A .f (x )=x 2B .f (x )=2xC .f (x )=log 2xD .f (x )=e ln x【答案】 C2.(2016·台州高一检测)已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如图222所示,则函数g (x )=a x +b 的图象大致为( )图222【答案】 A3.(2016·长春模拟)已知函数y =f (x )(x ∈R )满足f (x +2)=f (x ),且当x ∈[-1,1]时,f (x )=x 2,则y =f (x )与y =log 7x 的图象的交点的个数为( )A .3B .4C .5D .6【答案】 D4.(1)已知函数y =lg(x 2+2x +a )的定义域为R ,求实数a 的取值范围;(2)已知函数f (x )=lg [(a 2-1)x 2+(2a +1)x +1],若f (x )的定义域为R ,求实数a 的取值范围.【解】 (1)因为y =lg(x 2+2x +a )的定义域为R ,所以x 2+2x +a >0恒成立,所以Δ=4-4a <0,所以a >1.故a 的取值范围是(1,+∞).(2)依题意(a 2-1)x 2+(2a +1)x +1>0对一切x ∈R 恒成立. 当a 2-1≠0时,⎩⎨⎧a 2-1>0Δ=(2a +1)2-4(a 2-1)<0, 解得a <-54.当a 2-1=0时,显然(2a +1)x +1>0,对x ∈R 不恒成立.所以a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-54. 对数函数及其性质的应用1.(2016·荆州高一检测)若a =20.2,b =log 4(3.2),c =log 2(0.5),则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a【答案】 A2.设函数f (x )在(0,+∞)上是增函数,则a =f ⎝ ⎛⎭⎪⎫232,b =f ⎝ ⎛⎭⎪⎫log 232的大小关系是( ) A .a >b B .a <b C .a ≥b D .a ≤b 【答案】 A3.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( )A.14 B.12 C .2 D .4 【答案】 B4.已知log a 13>log b 13>0,则下列关系正确的是( )A .0<b <a <1B .0<a <b <1C .1<b <aD .1<a <b 【答案】 A5.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A .(2,2)B .(1,2) C.⎝ ⎛⎭⎪⎫22,1 D.⎝⎛⎭⎪⎫0,22【答案】 C6.函数y =log 0.4(-x 2+3x +4)的值域是________.【答案】 [-2,+∞)7.(2016·东莞高一检测)已知函数f (x )=m +log 2x 2的定义域是[1,2],且f (x )≤4,则实数m 的取值范围是________.【答案】 (-∞,2] 8.关于函数f (x )=lgxx 2+1有下列结论: ①函数f (x )的定义域是(0,+∞); ②函数f (x )是奇函数; ③函数f (x )的最小值为-lg 2;④当0<x <1时,函数f (x )是增函数;当x >1时,函数f (x )是减函数. 其中正确结论的序号是________. 【答案】 ①④9.已知定义域为[1,2]的函数f (x )=2+log a x (a >0,a ≠1)的图象过点(2,3).(1)求实数a 的值;(2)若g (x )=f (x )+f (x 2),求函数g (x )的值域.【解】 (1)∵函数f (x )=2+log a x (a >0,a ≠1)的图象过点(2,3), ∴3=2+log a 2,即log a 2=1,解得a =2. (2)∵g (x )=f (x )+f (x 2)=4+3log 2x ,故g (x )的定义域满足⎩⎨⎧1≤x ≤21≤x 2≤2⇒1≤x ≤2,且函数g (x )在定义域[1,2]上为增函数,由g (1)=4,g (2)=112, 故g (x )的值域为⎣⎢⎡⎦⎥⎤4,112.10.已知函数f (x )=ln(3+x )+ln(3-x ).(1)求函数y =f (x )的定义域; (2)判断函数y =f (x )的奇偶性;(3)若f (2m -1)<f (m ),求m 的取值范围.【解】 (1)要使函数有意义,则⎩⎨⎧3+x >03-x >0,解得-3<x <3,故函数y =f (x )的定义域为(-3,3).(2)由(1)可知,函数y =f (x )的定义域为(-3,3),关于原点对称. 对任意x ∈(-3,3),则-x ∈(-3,3), ∵f (-x )=ln(3-x )+ln(3+x )=f (x ),∴由函数奇偶性可知,函数y =f (x )为偶函数. (3)∵函数f (x )=ln(3+x )+ln(3-x )=ln(9-x 2),由复合函数单调性判断法则知,当0≤x <3时,函数y =f (x )为减函数. 又函数y =f (x )为偶函数,∴不等式f (2m -1)<f (m ),等价于|m |<|2m -1|<3, 解得-1<m <13或1<m <2.[能力提升]1.函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)【答案】 D2.若log a 34<1(a >0且a ≠1),则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34B.⎝ ⎛⎭⎪⎫0,34∪(1,+∞) C .(1,+∞) D .(0,1) 【答案】 B3.若函数f (x )=log (a 2-3)(ax +4)在[-1,1]上是单调增函数,则实数a 的取值范围是________.【解析】 设t =g (x )=ax +4,则y =f (x )=log (a 2-3)t ,若a >0,则函数t =ax +4递增,要使函数f (x )=log (a 2-3)(ax +4)在[-1,1]上是单调增函数,则有y =log (a 2-3)t 递增,所以有⎩⎨⎧ a 2-3>1g (-1)=-a +4>0,即⎩⎨⎧a >2或a <-2a <4,所以2<a <4.若a <0,则函数t =ax +4递减,要使函数f (x )=log (a 2-3)(ax +4)在[-1,1]上是单调增函数,则有y =log (a 2-3)t 递减,所以有⎩⎨⎧ 0<a 2-3<1g (1)=a +4>0,即⎩⎨⎧3<a 2<4a >-4,解得-2<a <- 3.综上,实数a 的取值范围是(-2,-3)∪(2,4). 【答案】 (-2,-3)∪(2,4) 4.设函数f (x )=lg(ax )·lg ax 2.(1)当a =0.1时,求f (1 000)的值; (2)若f (10)=10,求a 的值;(3)若对一切正实数x 恒有f (x )≤98,求a 的范围. 【解】 (1)当a =0.1时,f (x )=lg(0.1x )·lg 110x 2, ∴f (1 000)=lg 100·lg 1107=2×(-7)=-14.(2)∵f (10)=lg(10a )·lg a100=(1+lg a )(lg a -2)=lg 2a -lg a -2=10, ∴lg 2a -lg a -12=0,∴(lg a -4)(lg a +3)=0, ∴lg a =4或lg a =-3,即a =104或a =10-3. (3)∵对一切正实数x 恒有f (x )≤98, ∴lg(ax )·lg a x 2≤98对一切正实数恒成立. 即(lg a +lg x )(lg a -2lg x )≤98,∴2lg 2x +lg a lg x -lg 2a +98≥0对任意正实数x 恒成立,∵x >0,∴lg x ∈R ,由二次函数的性质可得,Δ=lg 2a -8⎝ ⎛⎭⎪⎫98-lg 2a ≤0, ∴lg 2a ≤1,∴-1≤lg a ≤1,∴110≤a ≤10.。
2.2.2对数函数及其性质教案(1)
2.2.2对数函数及其性质教案(1)2.2.2对数函数及其性质(一)教学目标(一)教学知识点1.对数函数的概念;2.对数函数的图象与性质.(二)能力训练要求1.认知对数函数的概念;2.掌握对数函数的图象、性质;3.培养学生数形结合的意识.(三)德育渗透目标1.重新认识事物之间的广泛联系与相互转变;2.用联系的观点看看问题;3.了解对数函数在生产生活中的简单应用.教学重点对数函数的图象、性质.教学难点对数函数的图象与指数函数的关系.教学过程一、复习引入:1、对数的概念:如果ax=n,那么数x叫作以a为底n的对数,记作logan=x(a>0,a≠1)2、指数函数的定义:函数y=ax(a>0,且a≠1)叫作指数函数,其中x就是自变量,函数的定义域就是r.3、我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数y就是对立次数x的函数,这个函数可以用指数函数y=2则表示.现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个??细胞,那么,分裂次数x就是要得到的细胞个数y的函数.根据对数的定义,这个函数可以写成对数的形式就是x?log2y.如果用x则表示自变量,y则表示函数,这个函数就是y?log2x.带出新课--对数函数.二、新授内容:1.对数函数的定义:函数y?logax(a?0且a?1)叫做对数函数,定义域为(0,??),值域为(??,??).x第1页共11页例1.求下列函数的定义域:(1)y?logax2;(2)y?loga(4?x);(3)y?loga(9?x2).分析:此题主要利用对数函数y?logax的定义域(0,+∞)解.求解:(1)由x>0得x?0,∴函数y?logax2的定义域就是?x|x?0?;2(2)由4?x?0得x?4,∴函数y?loga(4?x)的定义域是?x|x?4?;2(3)由9?x?0得-3?x?3,∴函数y?loga(9?x2)的定义域是?x|?3?x?3?.2.对数函数的图象:通过列表、描点、连线作y?log2x与y?log1x的图象:232.532.5221.51-11.510.51110.50-0.512345678-101-0.512345678-1-1-1.5-1.5-2-2-2.5-2.5思索:y?log2x与y?log1x的图象存有什么关系?23.练习:教材第73页练习第1题.1.图画出来函数y=log3x及y=log1x的图象,并且表明这两个函数的相同性质和相同性质.3解:相同性质:两图象都位于y轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且当x=1,y=0.不同性质:y=log3x的图象是上升的曲线,y=log1x的图象3就是上升的曲线,这表明前者在(0,+∞)上就是增函数,后者在(0,+∞)上就是减至函数.4.对数函数的性质由对数函数的图象,观察得出对数函数的性质.32.52a>132.520<a<11.51.5图象1-111110.50.50-0.512345678-101-0.512345678-1-1-1.5-1.5-2-2-2.5-2.5性定义域:(0,+∞)第2页共11页质值域:r过点(1,0),即当x=1时,y=0x?(0,1)时y?0x?(1,??)时y?0在(0,+∞)上是增函数三、讲解范例:基准2.比较以下各组数中两个值的大小:x?(0,1)时y?0x?(1,??)时y?0在(0,+∞)上是减函数⑴log23.4,log28.5;⑵log0.31.8,log0.32.7;⑶loga5.1,loga5.9(a?0,a?1).解:⑴考查对数函数y?log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4?log28.5.⑵考查对数函数y?log0.3x,因为它的底数0<0.3<1,所以它在(0,+∞)上就是减至函数,于是log0.31.8?log0.32.7.小结1:两个同底数的对数比较大小的一般步骤:①确认所必须考查的对数函数;②根据对数底数推论对数函数多寡性;③比较真数大小,然后利用对数函数的多寡性推论两对数值的大小.⑶当a?1时,y?logax在(0,+∞)上就是增函数,于是loga5.1?loga5.9;当0?a?1时,y?logax在(0,+∞)上就是减至函数,于是loga5.1?loga5.9.小结2:分类探讨的思想.对数函数的单调性取决于对数的底数是大于1还是小于1.而已知条件并未指明,因此需要对底数a进行讨论,体现了分类讨论的思想,要求学生逐步掌握.四、练1。
2.2.2对数函数及其性质(一)
质
x∈(0, 1)时,y<0; x∈(1, +∞)时,y>0.
3. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.
质
x∈(0, 1)时,y<0; x∈(1, +∞)时,y>0.
x∈(0, 1)时,y>0 x∈(1, +∞)时,y<0.
2
思 考:
y
y log2 x
两图象有什么
关系?
O
x
y log 1 x
2
练习 教材P.73练习第1题
画出函数 y log3 x 及 y log 1 x
的图象,并且说明这两个函数的3 相
同点和不同点.
3. 对数函数的性质:
a>1
图 象
0<a<1
性 质
3. 对数函数的性质:
图y 象O
a>1
x
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
象
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1 质 在R上是增函数 在 R 上是减函数
x>0时,ax>1;
x<0时,0<ax<1
2. 指数函数的图象和性质
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
2.2.2对数函数 及其性质
云阳中学高一数学组
复习引入
对数函数及其性质(1)(精)
对数函数及其性质(1)一、教材分析本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。
对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。
学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。
虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。
二、学生学习情况分析刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。
由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。
教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。
三、设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。
四、教学目标1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。
五、教学重点与难点重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.六、教学过程设计教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结(一)熟悉背景、引入课题1.让学生看材料:材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。
高中数学对数函数及其性质(一)
高中数学对数函数及其性质(一)课 型:新授课教学目标:通过具体实例,直观了解对数函数模型所刻画的数量关系,初步明白得对数函数的概念,体会对数函数是一类重要的函数模型.能够用描点法画出对数函数的图象.能依照对数函数的图象和性质进行值的大小比较.培养学生数形结合的意识.用联系的观点分析咨询题. 教学重点:对数函数的图象和性质教学难点:对数函数的图象和性质及应用教学过程:一、复习预备:1. 画出2x y =、1()2x y =的图像,并以这两个函数为例,讲讲指数函数的性质. 2.讨论:t 与P 的关系?〔对每一个碳14的含量P 的取值,通过对应关系log P =,生物死亡年数t 都有唯独的值与之对应,从而t 是P 的函数〕二、讲授新课:1.教学对数函数的图象和性质:① 定义:一样地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function).自变量是x ; 函数的定义域是〔0,+∞〕② 辨析: 对数函数定义与指数函数类似,差不多上形式定义,注意辨不,如:22log y x =,5log (5)y x = 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 0(>a ,且)1≠a .③ 探究:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、专门点、单调性、最大〔小〕值、奇偶性.④ 练习:同一坐标系中画出以下对数函数的图象 x y 2log =;0.5log y x =⑤ 讨论:依照图象,你能归纳出对数函数的哪些性质?列表归纳:分类 → 图象 → 由图象观看〔定义域、值域、单调性、定点〕引申:图象的分布规律?2、总结出的表格1. 教学例题例1:〔P71例7〕求以下函数的定义域〔1〕2log a y x = 〔2〕log (4)a y x =- 〔a >0且a ≠1〕例2. 〔P72例8〕比较以下各组数中的两个值大小〔1〕22log 3.4,log 8.5 〔2〕0.30.3log 1.8,log 2.7 〔3〕log 5.1,log 5.9a a 〔a >0,且a ≠1〕三.巩固练习:1、P73页3、4题2.求以下函数的定义域: 0.2log (6)y x =--; y =.3.比较以下各题中两个数值的大小:22log 3log 3.5和; 0.30.2log 4log 0.7和;0.70.7log 1.6log 1.8和; 23log 3log 2和.4. 以下不等式,比较正数m 、n 的大小:3log m <3log n ; 3.0log m >3.0log n ; a log m >a log n (a >1)5. 探究:求定义域y =y =四.小结:对数函数的概念、图象和性质; 求定义域;利用单调性比大小.五、作业P74页7、8、10后记:。
《对数函数及其性质》教学设计(精品)
对数函数及其性质(一)(一)教学目标1.知识技能(1)理解对数函数的概念.(2)掌握对数函数的性质.了解对数函数在生产实际中的简单应用.2.过程与方法(1)培养学生数学交流能力和与人合作精神.(2)用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.3.情感、态度与价值观(1)通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.(2)在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.(二)教学重点、难点1、重点:(1)对数函数的定义、图象和性质;(2)对数函数性质的初步应用.2、难点:底数a对图象的影响.(三)教学方法通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点.(四)教学过程组织学生充分讨论、交流,使≠1..师:用多媒体演示函数图象,对数函数图象有以下特征相同点:图象都在y轴的右侧,都过点(1,0).不同点:y=log3x的图象是上升的,y=log x的图象是下降的备选例题例1 求函数)416(log )1(x x y -=+的定义域.【解析】由⎪⎩⎪⎨⎧≠+>+>-11010416x x x ,得⎪⎩⎪⎨⎧≠-><012x x x . ∴所求函数定义域为{x | –1<x <0或0<x <2}.【小结】求与对数函数有关的定义域问题,首先要考虑真数大于零,底数大于零且不等于1.例2 求函数y = log 2|x |的定义域,并画出它的图象. 【解析】函数的定义域为{x |x ≠0,x ∈R }. 函数解析式可化为y =⎪⎩⎪⎨⎧<->)0()(log )0(log 22x x x x ,其图象如图所示(其特征是关于y 轴对称).对数函数及其性质(二)(一)教学目标 1.知识技能(1)掌握对数函数的单调性.x(2)会进行同底数对数和不同底数的对数的大小比较.2.过程与方法(1)通过师生双边活动使学生掌握比较同底对数大小的方法.(2)培养学生的数学应用的意识.3.情感、态度与价值观(1)用联系的观点分析、解决问题.(2)认识事物之间的相互转化.(二)教学重点、难点1、重点:利用对数函数单调性比较同底对数大小.2、难点:不同底数的对数比较大小.(三)教学方法启发式教学利用对数函数单调性比较同底对数的大小,而对数函数的单调性对底数分1a>和a<<两种情况,学生应能根据题目的具体形式确定所要考查的对数函数;如果题目中含有01字母,即对数底数不确定,则应该分两种情形讨论.对于不同底数的对数大小的比较,应插入中间数,转化为两组同底数的对数大小的比较,从而使问题得以解决.(四)教学过程备选例题例1 比较下列各组数的大小:(1)log0.7 1.3和log0.71.8;(2)log35和log64.(3)(lg n)1.7和(lg n)2 (n>1);【解析】(1)对数函数y= log0.7x在(0, +∞)内是减函数. 因为1.3<1.8,所以log0.71.3>log0.71.8.(2)log35和log64的底数和真数都不相同,需找出中间量“搭桥”,再利用对数函数的单调性即可求解.因为log35>log33 = 1 = log66>log64,所以log35>log64.(3)把lg n看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lg n讨论.若1>ln n>0,即1<n<10时,y = (lg n)x在R上是减函数,所以(lg n)1.7>(lg n)2;若lg n>1,即n>10时,y = (lg n)2在R上是增函数,所以(lg n)1.7<(lg n)2.若ln n = 1,即n = 10时,(ln n)1.7 = (ln n)2.【小结】两个值比较大小,如果是同一函数的函数值,则可以利用函数的单调性来比较.在比较时,一定要注意底数所在范围对单调性的影响,即a >1时是增函数,0<a <1时是减函数,如果不是同一个函数的函数值,就可以对所涉及的值进行变换,尽量化为可比较的形式,必要时还可以“搭桥”——找一个与二者有关联的第三量,以二者与第三量(一般是–1、0、1)的关系,来判断二者的关系,另外,还可利用函数图象直观判断,比较大小方法灵活多样,是对数学能力的极好训练.例2 求证:函数f (x ) =xx-1log 2在(0, 1)上是增函数. 【分析】根据函数单调性定义来证明. 【解析】设0<x 1<x 2<1, 则f (x 2) – f (x 1) = 212221log log 11x xx x --- 21221(1)log (1)x x x x -=-=.11log 21122x x x x --⋅ ∵0<x 1<x 2<1, ∴12x x >1,2111x x -->1.则2112211log x x x x --⋅>0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数.对数函数及其性质(三)(一)教学目标 1.知识与技能(1)了解反函数的概念,加深对函数思想的理解.(2)能根据对数函数的图象,画出含有对数式的函数的图象,并研究它们的有关性质. 2.过程与方法(1)熟练利用对数函数的性质进行演算,通过交流,使学生学会共同学习. (2)综合提高指数、对数的演算能力.(3)渗透运用定义、数形结合、分类讨论等数学思想.3.情感、态度、价值观(1)用联系的观点分析、解决问题.(2)认识事物之间的相互转化.(3)加深对对数函数和指数函数的性质的理解,深化学生对函数图象变化规律的理解,培养学生数学交流能力.(二)教学重点、难点重点:对数函数的特性以及函数的通性在解决有关问题中的灵活应用.难点:反函数概念的理解.(三)教学方法通过对应关系与图象的对称性,理解同底的对数函数与指数函数互为反函数.(四)教学过程设计课堂练习答案备选例题例1 函数log (1)a y x =-(01)a a >≠且的反函数的图象经过点(1,4),求a 的值. 【解析】根据反函数的概念,知函数log (1)a y x =-(01)a a >≠且的反函数的图象经过点(4,1),∴1log 3a =, ∴3a =.【小结】若函数()y f x =的图象经过点(,)a b ,则其反函数的图象经过点(,)b a .例2 求函数y = log 4 (7 + 6 x – x 2)的单调区间和值域.【分析】考虑函数的定义域,依据单调性的定义确定函数的单调区间,同时利用二次函数的基本理论求得函数的值域.【解析】由7 + 6 x – x 2>0,得(x – 7) (x + 1)<0,解得–1<x <7. ∴函数的定义域为{x |–1<x <7}.设g (x ) = 7 + 6x – x 2 = – (x – 3)2 + 16. 可知,x <3时g (x )为增函数,x >3时,g (x )为减函数.因此,若–1<x 1<x 2<3. 则g (x 1)<g (x 2) 即7 + 6x 1 – x 12<7 + 6x 2 – x 22, 而y = log 4x 为增函数.∴log(7 + 6 x1–x12)<log4 (7 + 6x2–x22),4即y1<y2.故函数y = log4 (7 + 6x–x2)的单调增区间为(–1, 3),同理可知函数y = log4 (7 + 6x–x2)的单调减区间为(3, 7).又g (x) = – (x– 3)2 + 16在(–1, 7)上的值域为(0, 16].所以函数y = log4(7 + 6x–x2)的值域为(–∞, 2].【小结】我们应明白函数的单调区间必须使函数有意义. 因此求函数的单调区间时,必先求其定义域,然后在定义域内划分单调区间. 求函数最值与求函数的值域方法是相同的,应用函数的单调性是常用方法之一.。
《对数函数及其性质(第1课时)》教学设计
《对数函数及其性质(第1课时)》教学设计有了学习指数函数的图象和性质的学习经历,以及对数知识的知识准备,对数函数概念的引入,对数函数图象和和性质的研究便水到渠成。
对数函数的概念是通过一个关于细胞分裂次数的确定的实际问题引入的,既说明对数函数的概念来自于实践,又便于学生接受。
在教学中,学生往往容易忽略对数函数的定义域,因此在进行定义教学时,要结合指数式强调说明对数爱护念书的定义域,加强对数函数的定义域为()0,+∞的理解。
在理解对数函数概念的基础上掌握对数函数的图象和性质,是本节的教学重点,而理解底数a的值对于函数值变化的影响(即对对数函数单调性的影响)是教学的一个重点,教学时要充分利用图象,数形结合,帮助学生理解。
研究了对数函数的图象和性质之后,可以将对数函数的图象和性质与指数函数的图象和性质进行比较,以便加深学生对对数函数的概念、图象和性质的理解,同时也可以为反函数的概念的引出作一些准备。
三维目标1.知识技能①理解对数函数的概念,熟悉对数函数的图象与性质;②掌握对数函数的性质.2.过程与方法引导学生结合图象,类比指数函数的性质,探索研究对数函数的性质. 3.情感、态度与价值观培养学生数形结合的思想以及分析推理的能力;培养学生严谨的科学态度.学法与教学用具1.学法:通过让学生观察、思考、讨论、交流、发现对数函数的性质;2.教学用具:直尺、挂图、黑板笔教学重点、难点重点:理解对数函数的定义,掌握对数函数的图象和性质.难点:对数函数的性质第一课时教学过程一、复习导入:(1)知识方法准备我们在前面学习了指数函数及其性质,那么指数函数具有哪些性质呢?下面我和同学们一起来借助指数函数的图象来复习它的性质.引导学生复习指数函数的性质,适时的把性质在挂图上补充完整,完成后表扬学生,激发学生学习新知识的兴趣.(2)引例:在58P 练习题3中,我们知道某种细胞分裂时,由1个分裂成2个,2个分裂成4个……不难得出下表:由对数的意义可知,当分裂后细胞个数为2时,细胞分裂次数为21log 2=次;当分裂后细胞个数为4时,细胞分裂次数为22log 4=次;当分裂后细胞个数为8时,细胞分裂次数为23log 8=次……当分裂后细胞个数为x 时,细胞分裂次数为2log y x =次,我们发现对于每一个分裂后细胞个数x ,通过对应关系2log y x =,细胞分裂次数y 都有唯一的值与之对应,从而y 是关于x 的函数,这是一个什么样的函数呢?这就是我们今天要研究的对数函数. 二、推进新课 1、对数函数的概念一般地,我们把函数()log 01a y x a a =>≠且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:① 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:()log 1a y x =+,22log y x = 都不是对数函数,而只能称其为对数型函数.②对数函数对底数的限制:01a a >≠且2、在同一坐标系中画出下列对数函数的图象: (1)①2log y x =; ②12log y x =;做图步骤:列表、描点、用平滑曲线连结起来(2)③ 3log y x = ④13log y x =思考:这些函数的图象有什么关系?类比底数互为倒数的两个指数函数的图象关于y轴对称,得出底数互为倒数的两个对数函数的图象关于x轴对称同理我们也可以画出底数为152a=……等等的对数函数图象,4,,,425我们不难发现如下共同特征:3、类比指数函数图象和性质,研究对数函数图象和性质学生以大组为单位讨论对数函数的性质,5分钟后每一组推举一名表达较好的代表来描述对数函数性质,对于拿不准的同学给予鼓励,对于描述正确的同学予以表扬.三、课堂小节1、对数函数的概念.2、对数函数的图象与性质.3、数形结合的数学思想.四、作业预习课本P例7~例9,为下次课的对数函数性质的应用做71好准备五、板书设计设计感想本节课是在前面研究了对数及常用对数、指数函数的基础上,研究的第二类具体初等函数,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习的基础,鉴于这种情况,安排教学时,要充分利用函数图象,数形结合,无论是导入还是概念得出的过程,都比较的详细,通俗易懂,因此课堂容量教大,要提高学生互动的积极性特别是归纳出对数函数的图象和性质后,要与指数函数的图象和性质进行比较,加深学生对对数函数的概念、图象和性质的理解,要提高课堂的效率和节奏,多运用信息化的教学手段,顺利完成本节课的任务。
对数函数及其性质(一)
定义域 : ( 0,+∞) 值 域 :
R
自左向右看图象逐渐上升 在(0,+∞)上是: 增函数
探究:对数函数:y = loga x (a>0,且a≠ 1) 图象与性质
探索发现:认 真观察函数
y 2
y log1
2
x
1 11
42
的图象填写 下表
图象特征
0 -1 -2
1 2 3 4
x
函数性质
图象位于y轴右方 图象向上、向下无限延伸
y log 3 x
0
1 2 3
4
x
y log 1 x
y log 1 x
2
-1 -2
3
练习
1.求下列函数的定义域:
(1) y
log 5 (1 x)
(,1) (0,1) (1,)
1 (2) y log 2 x
y=logax
例2. 比较下列各组数中两个值的大小:
定义域 : 值 域 :
( 0,+∞) R
自左向右看图象逐渐下降 在(0,+∞)上是:减函数
对数函数y=logax (a>0,且a≠1)
的图象与y
x =1
y l oga x (a 1)
0<a<1
(1,0)
O
X
O
(1,0)
y l oga (0 a 1)
函数 y log a x, y log b x, y log c x, y log d x 的图像如图所示, 则下列式子中正确的是(
1
7
x
∴ log 2 7 > log 5 7
例4:比较下列各组数中两个值的大小: log 6 7 > log 7 6 log 6 7 > log 6 6 = 1 log 7 6 < log 7 7 = 1 log 6 7 > log 7 6
2.2.2对数函数及其性质(一) 新课标高中数学人教A版 必修一 教案
2.2.2 对数函数及其性质(一)(一)教学目标1.知识技能(1)理解对数函数的概念.(2)掌握对数函数的性质.了解对数函数在生产实际中的简单应用.2.过程与方法(1)培养学生数学交流能力和与人合作精神.(2)用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.3.情感、态度与价值观(1)通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.(2)在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.(二)教学重点、难点1、重点:(1)对数函数的定义、图象和性质;(2)对数函数性质的初步应用.2、难点:底数a对图象的影响.(三)教学方法通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点.(四)教学过程一般式吗?.概念.质,.的图象之间有什么关系?对数函数图象有以下特征对数函数有以下性质相同点:图象都在y轴的右侧,都过点(1,0).不同点:y=log3x的图象是上升=log x的图象是下降的.备选例题例1 求函数)416(log )1(x x y -=+的定义域. 【解析】由⎪⎩⎪⎨⎧≠+>+>-11010416x x x ,得⎪⎩⎪⎨⎧≠-><012x x x . ∴所求函数定义域为{x | –1<x <0或0<x <2}.【小结】求与对数函数有关的定义域问题,首先要考虑真数大于零,底数大于零且不等于1.例2 求函数y = log 2|x |的定义域,并画出它的图象. 【解析】函数的定义域为{x |x ≠0,x ∈R }. 函数解析式可化为y =⎪⎩⎪⎨⎧<->)0()(log )0(log 22x x xx ,其图象如图所示(其特征是关于y 轴对称).x。
对数函数及其性质(1)
Ⅰ Ⅱ
Ⅳ
Ⅲ
2、对数函数的图象与性质:
函数 y = log a x ( a>0 且 a≠1 ) 1
0 loga N 0 图象 0
底数
a N 0 < a,> 1 (0,1)或a, N (1,a) <
y y
o
N 1 a, N中一个在(0,1),另一个在(1, )中
1
1
0.5
0
1
-0.5
1
2
3
4
5
6
7
8
-1
log0.3 1.8 log0.3 2.7
-1.5
-2
-2.5
(3) log 3 3.4, log 2
解:(3)
0 .5
3.4 0.5
(4)
1
log 2 1.5, log 3 8.5
3 2.5 2 1.5
log 3 log 3 0 log 2 log 2 0
求解对数函数定义域问题的关键是要 (2) y loga (4 x)
∴函数 y loga (4 x) 的定义域是 x | x 4 时,可将其看作一个整体单独提出来,
(3) y log (49 7 x ) 求其大于零的解集,即该函数的定义域.
( x1)
【练习】 求下列函数的定义域:
y log2 x
-1
3
2.5
2
1.5
因为它的底数2>1,所以它在 (0,+∞)上是增函数,于是
1 0
1
0.5
1
-0.5
1
2
3
4
5
6
7
8
-1
高中数学课件-2 对数函数及性质(1)
; 1
(3)y loga (x2 1) 2x 1
义的x的取值范围, 其中需真数大于0, 底数大于0且不等 于1
例3.计算函数值
(1)计算对数函数 y log 3 x对应于x取1,3,27时得函数值;
解: 当 x 1 时,y log3 x log3 1 0,
当 x 2 时,y log3 x log3 3 1, 当x 27 时,y log3 x log3 27 3,
1
1
0
a
h(x) logb x
b
x
(2)左右比较:比较图像 与直线y=1的交点,交点 的横坐标越大,对应的对 数函数的底数越大。
思考:
a<1
c,d的大小与图像的 关系。
(1)上下比较:在 直线x=1的右侧, 0<a<1时,a越小, 图像越靠近x轴。
y (2)左右比较:比较图像 与直线y=1的交点,交点 的横坐标越大,对应的对 数函数的底数越大。
例1.判断下列函数是否为对数函数
(1) y 2 log3 x (3) y log2 x 1
(2)y log3(x 1)
(4) y log x x
判断依据:①形如 y log a x; ②底数 a 满足 a 0, a 1 ;
③真数为 x ,而不是x的函数;
④定义域为 (0,) .
例2:求下列函数的定义域 :
对数函数的概念及其性质[1]1
对数函数的概念及其性质教学内容《普通高中课程标准数学教科书数学(必修1)》(人教版)P77-78页对数函数及其性质(第一课时)。
设计理念:以素质教育理论为指导,体现新课标要求和“学生是课堂活动的主体,教师是学生活动的引导者、组织者、帮助者”的教学理念。
基于“人人有份”的数学教学思想,坚持面向全体学生,引导学生积极主动地参与获取知识的全部过程,体现了学生为中心的教育教学理念。
以恰时恰点的问题引导数学活动,培养学生的问题意识,孕育创新精神。
学情与教材分析对数函数是我们高中学生必须掌握的又一新的函数模型,它在我们的现实生活中有着重要的作用。
学习难点在于得到对数函数图像和性质及其应用。
学生是在学完对数式的基础上来进一步学习对数函数的,同时又有了指数函数的学习基础和学习思路。
因此我们在学习对数函数时可借助指数函数的学习经验,采用类比的方法来学习对数函数。
同时利用创设问题情境、分组讨论、自由发言等方法激发学生的学习兴趣。
三维目标:一、知识与技能1. 掌握对数函数的概念和图象,理解并记忆对数函数的规律;2. 把握指数函数与对数函数关系的实质.二、过程与方法1.培养学生的数学交流能力和与人合作的精神.2.用联系的观点分析问题,通过对对数函数的学习,渗透数形结合、分类讨论等数学思想.三、情感态度与价值观1.通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.2.在教学过程中,培养学生观察能力、逻辑思维能力、归纳能力,分析探究能力和解决实际问题的能力;培养学生倾听,接受别人意见的优良品质,体验数形结合的和谐美。
教学重点:理解对数函数的定义,掌握对数函数的图象和性质。
[解决方法] 注重指数函数与对数函数的图象和性质的对比,遵循特殊到一般的认知规律,利用特殊函数增加感性认识。
教学难点:⑴底数a对对数函数的影响;解决方法:对比分析⑵定义域对对数函数的影响; 解决方法:例题剖析教学用具:多媒体课件(对数函数的图形变化及性质的动态演示)三角板(列表总结性质)学法指导:对比研究法、发现法、归纳法、讲练结合法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.2 对数函数及其性质(1)
教学目标:
1、理解对数函数的概念;
2、掌握对数函数的性质,了解对数学函数初步应用;
3、通过师生间,学生与学生之间互相交流,使学生逐步学会共同学习;
4、通过探究、思考、培养学生思维迁移能力和主动参予能力。
教学重点:
1、对数函数的定义、图象和性质;
2、对数函数性质的初步应用。
教学难点:
底数a 对对数函数性质的影响
教具准备:多媒体课件、投影仪
教学过程:
一、创设情景,引入新课
古谚云:一尺之木,日截其半,万世不竭……若设木长为x ,则其与经过的天数y 存在着一种关系,这个关系应如何表示呢?
(师):则x 与y 的关系式为x=(2
1)y …… 那能否根据(*)式把经过天数y 表示出来?(学生讨论并回答) (师):经过的天数y 可以表示为y=2
1log x
研究发现:在关系式y=2
1log x 中,把木长x 看作自变量,则每一个确定x
值,都有唯一一个经过的天数y 的值与之对应,由函数的定义,经过的天数y 就可以看作木长x 的函数,这样的函数称作为对数函数,即为本节课所要研究的内容。
(引入新课,书写课题:对数函数)
二、讲解新课
(一)对数函数的概念
问题1.1:由实例一我们是不否能得到对数函数的一般式吗? 问题1.2 :y=x
a log 式中的底数a 有什么具体限制条件吗?请给合指数式给以解释。
问题1.3:你能否根据指数函数的定义给出对数函数的定义吗?
(生交流,师结合学生回答总结、归纳并多媒体显示对数函数定义) 定义:一般地,函数y=x a log (a>0,且a ≠1)叫做对数函数,由对数概念可知,对数函数y=x a log 的定义域是(0,+∞),值域为R 。
问题1.4:为什么对数函数的定义域是(0,+∞)?
问题1.5:函数y=x a log 和函数y=x a log (a>0,a ≠1)的定义域,值域之间有什么关系?
(二)对数函数的图象和性质
(1)讨论对数函数的图象
1、利用“几何画板4.03”软件在同一坐标系中画出下列两组函灵敏图象并观察图象,探究它们之间关系。
(1)y=2x (2)y=x
a log (3)y=(21)x y=x 21log 2、当a>0、a ≠1时,函数y=a x 、y=x a log 的图象之间有何种关系?
(多媒体函数图像,提示(1)(2)两组图象之间的关系,由老师引导,学生讨论总结。
)
Ⅱ对数函数的性质
分析两组函数的图象,对照指数函数的性质,总结归纳对数函数性质。
(老师引导,学生相互讨论交流总结、归纳)
问题2.1 对数函数x a log (a>0,a ≠1)是否具有奇偶性?为什么? 问题2.2对数函数x a log (a>0,a ≠1),当a>1时,x 取何值,y>0?x 取何值,y<0?当0<a<1时呢?
问题2.3 对数式b a log 的值符号与a 、b 的取值之间有什么关系?请一句话来叙述。
(三)例题选讲
[例1]求下列函数的定义域
(1)3log x a (2)y=x a -4log
(师生共同完成该题解答,师规范板书或多媒体显示解题过程) 解:(1)由x 3>0得x>3
∴正数y=logx 2的定义域为{x|x >0}
(2)由题意可得04x >-,又∵偶次根号下为非负
∴4-x >0 即x <4 ∴函数x y a -=4log (a >0,a ≠1)的定义域为{x|x <4=
例2、比较下列各组数中两个值的大小
(1)021.1log 023.1log 023.1023.1,,
(2)9859.0log 9861.0log 9861.09861.0,
(3)09.5log 01.5log a a ,(a >0,且a ≠1)
解:(1)因为函数y =log 1.023x 在(0,+∞)上是增函数,且1.023>1.021
∴021.1log 023.1log 023.1023.1>
(2)因为函数y =log 0.9861x 在(0,+∞)上是减函数,且0.9861>0.9859 ∴9859.0log 9861.0log 9861.09861.0<
(3)对数函数的增减性决定于对数的底数a 是大于1还是小于1,因此需要对底数a 进行讨论
(i )当a >1时,因为函数y=log a x 在(0,+∞)上是增函数,且5.01<5.09 ∴09.5log 01.5log a a <
(ii )当0<a <1时,因为函数y=log a x 在(0,+∞)上是减函数,且5.01<5.09
>
∴09
log
.5
01
log
.5
a
a
(四)课堂练习(由学生来完成)
课本P81-练习题2,3
三、课堂小结
1、对数函数的定义
2、对数函数的图象和性质
3、利用对数函数的性质比较大小的一般方法和步骤
四、布置作业
课本P81-练习1,P86习题2 2.A组第7、8、10题
板书设计。