K-means聚类实验
K-means聚类分析
K-means聚类分析⼀、原理1. 先确定簇的个数,K2. 假设每个簇都有⼀个中⼼点centroid3. 将每个样本点划分到距离它最近的中⼼点所属的簇中选择K个点做为初始的中⼼点while(1){将所有点分配个K个中⼼点形成K个簇重新计算每个簇的中⼼点if(簇的中⼼点不再改变)break;}⽬标函数:定义为每个样本与其簇中⼼点的距离的平⽅和(theSum of Squared Error, SSE) – µk 表⽰簇Ck 的中⼼点(或其它能代表Ck的点) – 若xn被划分到簇Ck则rnk=1,否则rnk= 0• ⽬标:找到簇的中⼼点µk及簇的划分rnk使得⽬标函数SSE最⼩初始中⼼点通常是随机选取的(收敛后得到的是局部最优解)不同的中⼼点会对聚类结果产⽣不同的影响:1、2、此时你⼀定会有疑问:如何选取"较好的"初始中⼼点?1. 凭经验选取代表点2. 将全部数据随机分成c类,计算每类重⼼座位初始点3. ⽤“密度”法选择代表点4. 将样本随机排序后使⽤前c个点作为代表点5. 从(c-1)聚类划分问题的解中产⽣c聚类划分问题的代表点 结论:若对数据不够了解,可以直接选择2和4⽅法需要预先确定K Q:如何选取K SSE⼀般随着K的增⼤⽽减⼩A:emmm你多尝试⼏次吧,看看哪个合适。
斜率改变最⼤的点⽐如k=2总结:简单的来说,K-means就是假设有K个簇,然后通过上⾯找初始点的⽅法,找到K个初始点,将所有的数据分为K个簇,然后⼀直迭代,在所有的簇⾥⾯找到找到簇的中⼼点µk及簇的划分rnk使得⽬标函数SSE最⼩或者中⼼点不变之后,迭代完成。
成功把数据分为K类。
预告:下⼀篇博⽂讲K-means代码实现。
实验三-K-均值聚类算法实验报告
实验三K-Means聚类算法一、实验目的1) 加深对非监督学习的理解和认识2) 掌握动态聚类方法K-Means 算法的设计方法二、实验环境1) 具有相关编程软件的PC机三、实验原理1) 非监督学习的理论基础2) 动态聚类分析的思想和理论依据3) 聚类算法的评价指标四、算法思想K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。
实验代码function km(k,A)%函数名里不要出现“-”warning off[n,p]=size(A);%输入数据有n个样本,p个属性cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性%A(:,p+1)=100;A(:,p+1)=0;for i=1:k%cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心m=i*floor(n/k)-floor(rand(1,1)*(n/k))cid(i,:)=A(m,:);cid;endAsum=0;Csum2=NaN;flags=1;times=1;while flagsflags=0;times=times+1;%计算每个向量到聚类中心的欧氏距离for i=1:nfor j=1:kdist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离end%A(i,p+1)=min(dist(i,:));%与中心的最小距离[x,y]=find(dist(i,:)==min(dist(i,:)));[c,d]=size(find(y==A(i,p+1)));if c==0 %说明聚类中心变了flags=flags+1;A(i,p+1)=y(1,1);elsecontinue;endendiflagsfor j=1:kAsum=0;[r,c]=find(A(:,p+1)==j);cid(j,:)=mean(A(r,:),1);for m=1:length(r)Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2));endCsum(1,j)=Asum;endsum(Csum(1,:))%if sum(Csum(1,:))>Csum2% break;%endCsum2=sum(Csum(1,:));Csum;cid; %得到新的聚类中心endtimesdisplay('A矩阵,最后一列是所属类别'); Afor j=1:k[a,b]=size(find(A(:,p+1)==j));numK(j)=a;endnumKtimesxlswrite('data.xls',A);五、算法流程图六、实验结果>>Kmeans6 iterations, total sum of distances = 204.82110 iterations, total sum of distances = 205.88616 iterations, total sum of distances = 204.8219 iterations, total sum of distances = 205.886........9 iterations, total sum of distances = 205.8868 iterations, total sum of distances = 204.8218 iterations, total sum of distances = 204.82114 iterations, total sum of distances = 205.88614 iterations, total sum of distances = 205.8866 iterations, total sum of distances = 204.821Ctrs =1.0754 -1.06321.0482 1.3902-1.1442 -1.1121SumD =64.294463.593976.9329七、实验心得初始的聚类中心的不同,对聚类结果没有很大的影响,而对迭代次数有显著的影响。
K-Means聚类算法的研究
Ab t a t Th l o t m fK- s r c : e a g r h o me n so e k n f ca sc l se n l o t m ,i c u i g b t n o n s a d as h r g s F r i a s i n i d o l s ia c u tr g ag r h l i i n ld n o h ma y p i t n lo s o t e . o a
Th s a c bo us e i g rt m f K -M e ns e Re e r h a ut Cl t rng Al o ih o a
ZHOU —wu.YU —f i Ai Ya e
( ol eo o ue cec n eh ooy A hi nvr t, ee 2 03 ,hn ) C lg f mp t S i eadTcn lg , n u U i sy H fi 30 9 C ia e C r n ei
第2 卷 1
第 2期
计 算 机 技 术 与 发 展
COMP UTER T : ECHNOLOGY AND DEVE LOP MENT
21 0 1年 2月
V0 . No. 1 2l 2 Fe . 2 b 011
K Me n — a s聚 类 算 法 的 研 究
周 爱武 , 于亚 飞
降低 , 而且 聚类结果 更接近 实际数 据分 布。
关键词 : — e n 算法 ; K M as 初始 聚类 中心 ; 孤立 点
中图 分类号 : P 0 . T 3 16 文献标 识码 : A 文章编 号 :6 3 6 9 2 1 ) 2 0 6 - 4 1 7 — 2 X( 0 1 0 — 0 2 0
《数据挖掘实验》---K-means聚类及决策树算法实现预测分析实验报告
实验设计过程及分析:1、通过通信企业数据(USER_INFO_M.csv),使用K-means算法实现运营商客户价值分析,并制定相应的营销策略。
(预处理,构建5个特征后确定K 值,构建模型并评价)代码:setwd("D:\\Mi\\数据挖掘\\")datafile<-read.csv("USER_INFO_M.csv")zscoredFile<- na.omit(datafile)set.seed(123) # 设置随机种子result <- kmeans(zscoredFile[,c(9,10,14,19,20)], 4) # 建立模型,找聚类中心为4round(result$centers, 3) # 查看聚类中心table(result$cluster) # 统计不同类别样本的数目# 画出分析雷达图par(cex=0.8)library(fmsb)max <- apply(result$centers, 2, max)min <- apply(result$centers, 2, min)df <- data.frame(rbind(max, min, result$centers))radarchart(df = df, seg =5, plty = c(1:4), vlcex = 1, plwd = 2)# 给雷达图加图例L <- 1for(i in 1:4){legend(1.3, L, legend = paste("VIP_LVL", i), lty = i, lwd = 3, col = i, bty = "n")L <- L - 0.2}运行结果:2、根据企业在2016.01-2016.03客户的短信、流量、通话、消费的使用情况及客户基本信息的数据,构建决策树模型,实现对流失客户的预测,F1值。
聚类分析算法实验报告(3篇)
第1篇一、实验背景聚类分析是数据挖掘中的一种重要技术,它将数据集划分成若干个类或簇,使得同一簇内的数据点具有较高的相似度,而不同簇之间的数据点则具有较低相似度。
本实验旨在通过实际操作,了解并掌握聚类分析的基本原理,并对比分析不同聚类算法的性能。
二、实验环境1. 操作系统:Windows 102. 软件环境:Python3.8、NumPy 1.19、Matplotlib 3.3.4、Scikit-learn0.24.03. 数据集:Iris数据集三、实验内容本实验主要对比分析以下聚类算法:1. K-means算法2. 聚类层次算法(Agglomerative Clustering)3. DBSCAN算法四、实验步骤1. K-means算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的KMeans类进行聚类,设置聚类数为3。
(3)计算聚类中心,并计算每个样本到聚类中心的距离。
(4)绘制聚类结果图。
2. 聚类层次算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的AgglomerativeClustering类进行聚类,设置链接方法为'ward'。
(3)计算聚类结果,并绘制树状图。
3. DBSCAN算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的DBSCAN类进行聚类,设置邻域半径为0.5,最小样本数为5。
(3)计算聚类结果,并绘制聚类结果图。
五、实验结果与分析1. K-means算法实验结果显示,K-means算法将Iris数据集划分为3个簇,每个簇包含3个样本。
从聚类结果图可以看出,K-means算法能够较好地将Iris数据集划分为3个簇,但存在一些噪声点。
2. 聚类层次算法聚类层次算法将Iris数据集划分为3个簇,与K-means算法的结果相同。
从树状图可以看出,聚类层次算法在聚类过程中形成了多个分支,说明该算法能够较好地处理不同簇之间的相似度。
kmeans聚类算法实验心得
kmeans聚类算法实验心得
Kmeans聚类算法是一种常见的无监督学习算法,用于将数据样
本分成不同的类别。
本次实验我们使用Python语言编写了实现Kmeans算法的代码,并在自己定义的数据集上进行了实验,下面是
我的实验心得:
1. Kmeans算法需要确定聚类的数量K,不同的K值会得到不同的聚
类结果,因此在实验中需要尝试不同的K值,并选择最优的聚类结果。
2. 初始聚类中心的选择对于聚类结果的影响很大,如果初始聚类中
心选取不好,可能会导致算法陷入局部最优解而无法得到全局最优解。
因此,实验中可以尝试多种初始聚类中心的选择方式,如随机选择、均匀分布选择等。
3. Kmeans算法的收敛速度较快,通常在几十次迭代内就可以得到较好的聚类结果。
但也有可能因为数据的特殊性质导致算法收敛速度较慢,需要调整参数来加速算法的收敛。
4. Kmeans算法在处理大数据集时可能会面临效率问题,因为每次迭代都需要计算每个数据样本和聚类中心的距离,这对于大数据集来说非常耗时。
因此,在处理大数据集时需要考虑优化算法,如使用Kmeans++算法等。
总的来说,Kmeans算法是一种简单而有效的聚类算法,可以在很短的时间内得到较好的聚类结果。
但在使用时需要注意算法的参数选择和优化,才能得到最好的聚类结果。
聚类的实验报告
一、实验目的1. 理解聚类算法的基本原理和过程。
2. 掌握K-means算法的实现方法。
3. 学习如何使用聚类算法对数据集进行有效划分。
4. 分析不同聚类结果对实际应用的影响。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 库:NumPy、Matplotlib、Scikit-learn三、实验内容本次实验主要使用K-means算法对数据集进行聚类,并分析不同参数设置对聚类结果的影响。
1. 数据集介绍实验所使用的数据集为Iris数据集,该数据集包含150个样本,每个样本包含4个特征(花瓣长度、花瓣宽度、花萼长度、花萼宽度),以及对应的分类标签(Iris-setosa、Iris-versicolor、Iris-virginica)。
2. K-means算法原理K-means算法是一种基于距离的聚类算法,其基本思想是将数据集中的对象划分为K个簇,使得每个对象与其所属簇的质心(即该簇中所有对象的平均值)的距离最小。
3. 实验步骤(1)导入数据集首先,使用NumPy库导入Iris数据集,并提取特征值和标签。
(2)划分簇使用Scikit-learn库中的KMeans类进行聚类,设置聚类个数K为3。
(3)计算聚类结果计算每个样本与对应簇质心的距离,并将样本分配到最近的簇。
(4)可视化结果使用Matplotlib库将聚类结果可视化,展示每个样本所属的簇。
(5)分析不同参数设置对聚类结果的影响改变聚类个数K,观察聚类结果的变化,分析不同K值对聚类效果的影响。
四、实验结果与分析1. 初始聚类结果当K=3时,K-means算法将Iris数据集划分为3个簇,如图1所示。
图1 K=3时的聚类结果从图1可以看出,K-means算法成功地将Iris数据集划分为3个簇,每个簇对应一个Iris物种。
2. 不同K值对聚类结果的影响(1)当K=2时,K-means算法将Iris数据集划分为2个簇,如图2所示。
IBM SPSS MODELER 实验一、聚类分析
IBM SPSS Modeler 实验一、聚类分析在数据挖掘中,聚类分析关注的内容是一些相似的对象按照不同种类的度量构造成的群体。
聚类分析的目标就是在相似的基础上对数据进行分类。
IBM SPSS Modeler提供了多种聚类分析模型,其中主要包括两种聚类分析,K-Mean 聚类分析和Kohonen聚类分析,下面对各种聚类分析实验步骤进行详解。
1、K-Means聚类分析实验首先进行K-Means聚类实验。
(1)启动SPSS Modeler 14.2。
选择“开始”→“程序”→“IBM SPSS Modeler 14.2”→“IBM SPSS Modeler 14.2”,即可启动SPSS Modeler程序,如图1所示。
图1 启动SPSS Modeler程序(2)打开数据文件。
首先选择窗口底部节点选项板中的“源”选项卡,再点击“可变文件”节点,单击工作区的合适位置,即可将“可变文件”的源添加到流中,如图2所示。
右键单击工作区的“可变文件”,选择“编辑”,打开如图3的编辑窗口,其中有许多选项可供选择,此处均选择默认设定。
点击“文件”右侧的“”按钮,弹出文件选择对话框,选择安装路径下“Demos”文件夹中的“DRUG1n”文件,点击“打开”,如图4所示。
单击“应用”,并点击“确定”按钮关闭编辑窗口。
图2 工作区中的“可变文件”节点图3 “可变文件”节点编辑窗口图4 文件选择对话框图5 工作区中的“表”节点(3)借助“表(Table)”节点查看数据。
选中工作区的“DRUG1n”节点,并双击“输出”选项卡中的“表”节点,则“表”节点出现在工作区中,如图5所示。
运行“表”节点(Ctrl+E或者右键运行),可以看到图6中有关病人用药的数据记录。
该数据包含7个字段(序列、年龄(Age)、性别(Sex)、血压(BP)、胆固醇含量(Cholesterol)、钠含量(Na)、钾含量(K)、药类含量(Drug)),共200条信息记录。
聚类算法_实验报告
一、实验背景随着大数据时代的到来,数据量呈爆炸式增长,如何有效地对海量数据进行处理和分析成为了一个重要课题。
聚类算法作为一种无监督学习方法,在数据挖掘、模式识别等领域有着广泛的应用。
本实验旨在通过实际操作,了解聚类算法的基本原理、实现方法及其在实际问题中的应用。
二、实验目的1. 理解聚类算法的基本原理和流程;2. 掌握K-means、层次聚类、DBSCAN等常用聚类算法;3. 分析不同聚类算法在处理不同类型数据时的优缺点;4. 学会使用聚类算法解决实际问题。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 数据库:Pandas4. 机器学习库:Scikit-learn四、实验内容1. K-means聚类算法(1)数据准备本实验使用的数据集为Iris数据集,包含150个样本,每个样本有4个特征。
(2)算法实现使用Scikit-learn库中的KMeans类实现K-means聚类算法。
(3)结果分析通过绘制样本分布图,观察聚类效果。
根据聚类结果,将样本分为3类,与Iris数据集的类别标签进行对比。
2. 层次聚类算法(1)数据准备本实验使用的数据集为鸢尾花数据集,包含150个样本,每个样本有4个特征。
(2)算法实现使用Scikit-learn库中的AgglomerativeClustering类实现层次聚类算法。
(3)结果分析通过绘制树状图,观察聚类过程。
根据聚类结果,将样本分为3类,与鸢尾花数据集的类别标签进行对比。
3. DBSCAN聚类算法(1)数据准备本实验使用的数据集为Iris数据集。
(2)算法实现使用Scikit-learn库中的DBSCAN类实现DBSCAN聚类算法。
(3)结果分析通过绘制样本分布图,观察聚类效果。
根据聚类结果,将样本分为3类,与Iris 数据集的类别标签进行对比。
五、实验结果与分析1. K-means聚类算法K-means聚类算法在Iris数据集上取得了较好的聚类效果,将样本分为3类,与真实标签一致。
K-Means聚类算法的研究
K-Means聚类算法的研究周爱武;于亚飞【摘要】The algorithm of K-means is one kind of classical clustering algorithm, including both many points and also shortages.For example must choose the initial clustering number.The choose of initial clustering centre has randomness.The algorithm receives locally optimal solution easily, the effect of isolated point is serious.Mainly improved the choice of initial clustering centre and the problem of isolated point.First of all ,the algorithm calculated distance between all data and eliminated the effect of isolated point.Then proposed one new method for choosing the initial clustering centre and compared the algorithm having improved and the original algorithm using the experiment.The experiments indicate that the effect of isolated point for algorithm having improved reduces obviously, the results of clustering approach the actual distribution of the data.%K-Means算法是一种经典的聚类算法,有很多优点,也存在许多不足.比如初始聚类数K要事先指定,初始聚类中心选择存在随机性,算法容易生成局部最优解,受孤立点的影响很大等.文中主要针对K-Means算法初始聚类中心的选择以及孤立点问题加以改进,首先计算所有数据对象之间的距离,根据距离和的思想排除孤立点的影响,然后提出了一种新的初始聚类中心选择方法,并通过实验比较了改进算法与原算法的优劣.实验表明,改进算法受孤立点的影响明显降低,而且聚类结果更接近实际数据分布.【期刊名称】《计算机技术与发展》【年(卷),期】2011(021)002【总页数】4页(P62-65)【关键词】K-Means算法;初始聚类中心;孤立点【作者】周爱武;于亚飞【作者单位】安徽大学,计算机科学与技术学院,安徽,合肥,230039;安徽大学,计算机科学与技术学院,安徽,合肥,230039【正文语种】中文【中图分类】TP301.6聚类分析是数据挖掘领域中重要的研究课题,用于发现大规模数据集中未知的对象类。
kmeans聚类算法实验心得
kmeans聚类算法实验心得
kmeans聚类算法是一种常用的无监督学习算法,可以将数据集分成多个类别。
在实验中,我使用Python语言实现了kmeans聚类算法,并对其进行了测试和分析。
我使用Python中的sklearn库中的make_blobs函数生成了一个随机数据集,该数据集包含了1000个样本和4个特征。
然后,我使用kmeans算法对该数据集进行了聚类,将其分成了4个类别。
通过可视化的方式,我发现kmeans算法能够很好地将数据集分成4个类别,并且每个类别的中心点都能够很好地代表该类别。
接着,我对kmeans算法进行了参数调优。
我发现,kmeans算法的聚类效果很大程度上取决于初始中心点的选择。
因此,我尝试了多种不同的初始中心点选择方法,包括随机选择、均匀分布选择和kmeans++选择。
通过实验,我发现kmeans++选择方法能够获得最好的聚类效果。
我对kmeans算法进行了性能测试。
我使用Python中的time库对kmeans算法的运行时间进行了统计,并且将其与sklearn库中的kmeans算法进行了比较。
结果显示,我实现的kmeans算法的运行时间比sklearn库中的kmeans算法要长,但是两者的聚类效果相当。
总的来说,kmeans聚类算法是一种非常实用的无监督学习算法,可以用于数据集的聚类和分类。
在实验中,我通过对kmeans算法的实现、参数调优和性能测试,深入了解了该算法的原理和应用,对于以后的数据分析工作有很大的帮助。
对数据进行聚类分析实验报告
对数据进行聚类分析实验报告数据聚类分析实验报告摘要:本实验旨在通过对数据进行聚类分析,探索数据点之间的关系。
首先介绍了聚类分析的基本概念和方法,然后详细解释了实验设计和实施过程。
最后,给出了实验结果和结论,并提供了改进方法的建议。
1. 引言数据聚类分析是一种将相似的数据点自动分组的方法。
它在数据挖掘、模式识别、市场分析等领域有广泛应用。
本实验旨在通过对实际数据进行聚类分析,揭示数据中的隐藏模式和规律。
2. 实验设计与方法2.1 数据收集首先,我们收集了一份包含5000条数据的样本。
这些数据涵盖了顾客的消费金额、购买频率、地理位置等信息。
样本数据经过清洗和预处理,确保了数据的准确性和一致性。
2.2 聚类分析方法本实验采用了K-Means聚类算法进行数据分析。
K-Means算法是一种迭代的数据分组算法,通过计算数据点到聚类中心的距离,将数据点划分到K个不同的簇中。
2.3 实验步骤(1)数据预处理:对数据进行归一化和标准化处理,确保每个特征的权重相等。
(2)确定聚类数K:通过执行不同的聚类数,比较聚类结果的稳定性,选择合适的K值。
(3)初始化聚类中心:随机选取K个数据点作为初始聚类中心。
(4)迭代计算:计算数据点与聚类中心之间的距离,将数据点划分到距离最近的聚类中心所在的簇中。
更新聚类中心的位置。
(5)重复步骤(4),直到聚类过程收敛或达到最大迭代次数。
3. 实验结果与分析3.1 聚类数选择我们分别执行了K-Means算法的聚类过程,将聚类数从2增加到10,比较了每个聚类数对应的聚类结果。
通过对比样本内离差平方和(Within-Cluster Sum of Squares, WCSS)和轮廓系数(Silhouette Coefficient),我们选择了最合适的聚类数。
结果表明,当聚类数为4时,WCSS值达到最小,轮廓系数达到最大。
3.2 聚类结果展示根据选择的聚类数4,我们将数据点划分为四个不同的簇。
K-means实验报告
目录1. 问题描述 (2)2. 设计要求 (2)3. 需求分析 (3)4. 详细设计 (3)5. 测试及运行结果 (4)6. 程序源码及注释 (5)7. 课程设计心得体会 (15)1.问题描述k-means 算法是根据聚类中的均值进行聚类划分的聚类算法。
输入:聚类个数k ,以及包含n 个数据对象的数据。
输出:满足方差最小标准的k 个聚类。
处理流程:Step 1. 从n 个数据对象任意选择k 个对象作为初始聚类中心;Step 2. 循环Step 3到Step 4直到每个聚类不再发生变化为止;Step 3. 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离,并根据最小距离重新对相应对象进行划分;Step 4. 重新计算每个(有变化)聚类的均值(中心对象)k-means 算法的工作过程说明如下:首先从n 个数据对象任意选择k 个对象作为初始聚类中心,而对于所剩下的其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类。
然后,再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值),不断重复这一过程直到标准测度函数开始收敛为止。
一般都采用均方差作为标准测度函数,具体定义如下:21∑∑=∈-=k i i i E C p m p (1)其中E 为数据库中所有对象的均方差之和,p 为代表对象的空间中的一个点,m i 为聚类C i 的均值(p 和m i 均是多维的)。
公式(1)所示的聚类标准,旨在使所获得的k 个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
2.设计要求 首先从n 个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然 后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。
《基于改进K-means聚类和WKNN算法的WiFi室内定位方法研究》范文
《基于改进K-means聚类和WKNN算法的WiFi室内定位方法研究》篇一一、引言随着无线通信技术的快速发展,室内定位技术在诸多领域如智能建筑、物流管理、智慧城市等扮演着日益重要的角色。
其中,WiFi因其覆盖面广、布网方便和低成本等优势,已成为室内定位的主流技术之一。
然而,传统的WiFi室内定位方法在面对复杂多变的室内环境时,仍存在定位精度不高、稳定性差等问题。
因此,本文提出了一种基于改进K-means聚类和WKNN(加权k近邻)算法的WiFi室内定位方法,旨在提高定位精度和稳定性。
二、K-means聚类算法的改进K-means聚类算法是一种常用的无监督学习方法,通过迭代优化将数据划分为K个聚类,使得每个聚类内部的样本具有较高的相似性。
在WiFi室内定位中,我们可以将WiFi信号强度作为数据特征,利用K-means算法对不同位置点的WiFi信号强度进行聚类。
然而,传统的K-means算法在处理大规模数据时存在计算复杂度高、易陷入局部最优等问题。
因此,本文提出了一种改进的K-means算法。
该算法通过引入密度峰值检测技术,能够在迭代过程中自动识别并剔除噪声数据和异常值,从而提高聚类的准确性和稳定性。
此外,我们还采用了一种基于质心的初始化方法,以减少算法陷入局部最优的可能性。
三、WKNN算法的引入WKNN算法是一种基于距离度量的分类与回归方法,通过计算待测样本与已知样本之间的距离,并赋予不同的权重,以实现对未知样本的分类或预测。
在WiFi室内定位中,我们可以将WKNN算法应用于计算用户设备(UE)与各个接入点(AP)之间的距离,进而确定UE的位置。
相比传统的KNN算法,WKNN算法通过引入权重因子,能够更好地处理不同特征之间的差异性,提高定位精度。
此外,WKNN算法还可以通过调整权重的计算方式,灵活地适应不同的应用场景和需求。
四、基于改进K-means和WKNN的WiFi室内定位方法本文将改进的K-means聚类算法和WKNN算法相结合,提出了一种新的WiFi室内定位方法。
k-means聚类算法实验总结
K-means聚类算法实验总结在本次实验中,我们深入研究了K-means聚类算法,对其原理、实现细节和优化方法进行了探讨。
K-means聚类是一种无监督学习方法,旨在将数据集划分为K个集群,使得同一集群内的数据点尽可能相似,不同集群的数据点尽可能不同。
实验步骤如下:1. 数据准备:选择合适的数据集,可以是二维平面上的点集、图像分割、文本聚类等。
本实验中,我们采用了二维平面上的随机点集作为示例数据。
2. 初始化:随机选择K个数据点作为初始聚类中心。
3. 迭代过程:对于每个数据点,根据其与聚类中心的距离,将其分配给最近的聚类中心所在的集群。
然后,重新计算每个集群的聚类中心,更新聚类中心的位置。
重复此过程直到聚类中心不再发生明显变化或达到预设的迭代次数。
4. 结果评估:通过计算不同指标(如轮廓系数、Davies-Bouldin指数等)来评估聚类效果。
实验结果如下:1. K-means聚类能够有效地将数据点划分为不同的集群。
通过不断迭代,聚类中心逐渐趋于稳定,同一集群内的数据点逐渐聚集在一起。
2. 在实验中,我们发现初始聚类中心的选择对最终的聚类结果有一定影响。
为了获得更好的聚类效果,可以采用多种初始聚类中心并选择最优结果。
3. 对于非凸数据集,K-means算法可能会陷入局部最优解,导致聚类效果不佳。
为了解决这一问题,可以考虑采用其他聚类算法,如DBSCAN、层次聚类等。
4. 在处理大规模数据集时,K-means算法的时间复杂度和空间复杂度较高,需要进行优化。
可以采用降维技术、近似算法等方法来提高算法的效率。
通过本次实验,我们深入了解了K-means聚类算法的原理和实现细节,掌握了其优缺点和适用场景。
在实际应用中,需要根据数据集的特点和需求选择合适的聚类算法,以达到最佳的聚类效果。
k-means聚类算法实验总结 -回复
k-means聚类算法实验总结-回复K-means聚类算法是一种常用的无监督学习算法,广泛应用于数据挖掘、图像分割、文本分类等领域。
本文将基于我对K-means聚类算法的实验总结,分步详细介绍这一算法的原理、实验设置、实验结果及其分析。
希望通过本文的总结,读者能够对K-means算法有一个更全面的了解。
一、算法原理K-means聚类算法的原理比较简单,其基本步骤如下:1. 初始化k个聚类中心,可以是随机选择样本或根据经验预设;2. 对于每个样本,计算其与各个聚类中心的距离,并将其划分到距离最近的聚类中心所属的类别;3. 调整聚类中心的位置,将各个类别内的样本点的均值作为新的聚类中心,重复步骤2,直到聚类中心的位置不再变化或达到预设的最大迭代次数。
二、实验设置为了验证K-means聚类算法的性能,我选择了UCI机器学习库中的Iris 数据集作为实验数据集。
该数据集包含150个样本,每个样本有4个属性。
为了方便可视化,将数据集中的前两个属性作为横纵坐标,将样本点分布在二维平面上。
在实验中,我使用Python编程语言实现了K-means聚类算法,并使用matplotlib库绘制了聚类结果的散点图。
实验中设置聚类的类别数k为3,迭代次数上限为100。
三、实验结果及分析执行K-means聚类算法后,得到了如下图所示的聚类结果:[图1 聚类结果图]根据聚类结果可以看出,三个类别的样本点被分别用不同的颜色表示,并且通过散点图可以很直观地看到各个样本点与聚类中心的距离。
为了更客观地评估K-means的聚类性能,我采用了两项指标:聚类准确率和轮廓系数。
聚类准确率是将聚类结果与原始类别进行对比,计算分类正确的样本数量占总样本数量的比例。
通过计算实验结果,我得到了聚类准确率为85.33。
轮廓系数是一种评价聚类结果的衡量指标,其数值范围在-1到1之间,越接近于1表示聚类越紧密、样本点越相似,越接近于-1表示聚类越分散、样本点越不相似。
kmean算法机器视觉 应用 实验目的和要求
kmean算法机器视觉应用实验目的和要求K-means算法是一种常用的机器学习算法,也广泛应用于机器视觉领域。
本实验的目的是通过K-means算法来实现机器视觉的相关任务,如图像分割、图像压缩、目标追踪等,并了解K-means算法在机器视觉中的应用和效果。
K-means算法是一种聚类算法,其基本思想是通过迭代的方式将数据集划分为K个簇,使得同一个簇内的数据点之间的距离最小化,而不同簇之间的距离最大化。
在机器视觉中,K-means算法可以用于图像分割,将图像中的像素点根据其特征进行聚类,从而分割出图像中的不同区域。
在进行图像分割的实验中,首先需要选择合适的特征来表示图像中的像素点,常用的特征包括RGB颜色值、灰度值、纹理等。
然后,将这些特征作为输入,使用K-means算法将图像像素点进行聚类,得到图像的分割结果。
通过对比分割结果和真实分割结果的差异,可以评估K-means算法在图像分割任务上的效果。
在图像压缩的实验中,K-means算法可以用来对图像中的像素点进行聚类,将相近的像素点归为一类,并使用聚类中心的颜色值来代替该类中的所有像素点。
这样就可以通过去除冗余的颜色信息来实现图像的压缩。
实验中可以通过比较压缩后的图像和原始图像的质量来评估K-means算法在图像压缩任务上的性能。
在目标追踪的实验中,K-means算法可以用来对目标进行聚类,并识别图像中与目标相似的区域。
实验中可以使用预先标注的目标区域作为训练集,通过K-means算法将图像分割为多个类别,并判断每个区域属于目标还是背景。
通过对目标区域的识别效果进行评估,可以了解K-means算法在目标追踪中的适用性和局限性。
总的来说,本实验的目的是通过K-means算法在机器视觉中的应用,对算法的效果和性能进行评估。
通过实验可以深入了解K-means 算法的原理和特点,理解其在机器视觉中的应用场景,为后续研究和应用提供参考和指导。
对数据进行聚类分析实验报告
对数据进行聚类分析实验报告1. 研究背景数据聚类分析是一种将数据根据其相似性进行分组的方法。
通过聚类分析,可以将大量的数据分成相对较小的簇,每个簇内的数据彼此相似,而不同簇之间的数据相差较大。
这有助于我们对数据进行更深入的研究和理解,发现其中的规律和潜在的关联。
2. 实验目的本实验旨在使用聚类分析方法对给定的数据进行分类,以及对不同类别之间的差异和关联进行分析和研究。
通过实验,我们希望揭示数据之间的相似性和差异性,进一步了解其中的规律和潜在的模式。
3. 实验设计与方法3.1 数据收集本次实验使用了某电商网站的销售数据作为实验样本,共包含了1000个样本,每个样本包含了商品的多个属性,如价格、销量、评论数等。
3.2 预处理在进行聚类分析之前,我们首先对数据进行预处理。
预处理包括缺失值处理、数据标准化等步骤。
我们使用均值填充的方法处理缺失值,并对数据进行Z-score标准化,以保证不同属性之间的可比性。
3.3 聚类方法选择在本次实验中,我们选择了K-means算法作为聚类分析的方法。
K-means算法是一种常用且简单的聚类方法,适用于大规模数据集。
3.4 聚类分析过程在聚类分析过程中,我们首先需要确定聚类的簇数K。
为了选择最佳的簇数,我们采用了肘部法则和轮廓系数两种评估指标。
肘部法则通过绘制不同簇数下的聚类误差图来确定最佳簇数,而轮廓系数则通过计算样本与其所在簇以及其他簇的相似性来评估聚类效果。
4. 实验结果与分析4.1 最佳簇数选择通过运用肘部法则和轮廓系数,我们得出了最佳簇数K=4。
聚类误差图显示,随着簇数的增加,聚类误差逐渐减小,但减小速度逐渐减缓,呈现出一个明显的拐点。
轮廓系数分析也显示,在K=4时,轮廓系数达到最大值,说明聚类效果较好。
4.2 聚类结果分析基于最佳簇数K=4,我们进行了聚类分析,将样本分成了4个簇:A、B、C和D。
每个簇内的样本具有相似的属性特征,而不同簇之间的样本则具有较大的差异。
kmeans聚类算法实验心得
kmeans聚类算法实验心得
在机器学习领域,聚类算法是一种无监督学习方法,它可以将相似的数据点归到同一个簇中。
kmeans聚类算法是其中一种最常用的方法之一。
在本次实验中,我学习了如何使用kmeans算法对数据进行聚类,并且了解了一些实用技巧。
首先,我学习了如何选择合适的k值。
k值代表聚类的数量,因此选择正确的k值非常重要。
在实验中,我使用了肘部法则来选择最佳的k值。
该方法基于绘制k值与聚类误差之间的图表。
然后根据图表中的肘部(即误差最大的点),选择最佳的k值。
其次,我学习了如何使用Silhouette分数度量聚类质量。
Silhouette 分数是一种衡量聚类质量的指标,它考虑了每个数据点与其所属簇以及相邻簇之间的距离。
评分介于-1和1之间,1表示簇的质量很高,-1表示簇的质量很差。
最后,我学习了如何使用kmeans算法进行图像压缩。
通过对图像中的像素进行聚类,可以将图像压缩到更小的大小,同时保留图像的主要特征。
在实验中,我通过kmeans算法对图像进行了压缩,可以看出,压缩后的图像与原始图像的区别不大,但是压缩后的图像大小大大减小。
总的来说,通过本次实验,我深入了解了kmeans聚类算法的原理及其应用,同时也掌握了一些实用技巧,这些技巧可以帮助我在实践中更好地应用该算法。
聚类分析实验报告体会(3篇)
第1篇随着大数据时代的到来,数据挖掘技术在各个领域得到了广泛应用。
聚类分析作为数据挖掘中的关键技术之一,对于发现数据中的潜在结构具有重要意义。
近期,我参与了一次聚类分析实验,通过实践操作,我对聚类分析有了更深入的理解和体会。
一、实验背景与目的本次实验旨在通过实际操作,掌握聚类分析的基本原理和方法,并运用SQL Server、Weka、SPSS等工具进行聚类分析。
实验过程中,我们构建了合规的数据集,并针对不同的数据特点,选择了合适的聚类算法进行分析。
二、实验过程与步骤1. 数据准备:首先,我们需要收集和整理实验所需的数据。
数据来源可以是公开数据集,也可以是自行收集的数据。
在数据准备过程中,我们需要对数据进行清洗和预处理,以确保数据的准确性和完整性。
2. 数据探索:对数据集进行初步探索,了解数据的分布特征、数据量、数据类型等。
这一步骤有助于我们选择合适的聚类算法和数据预处理方法。
3. 建立数据模型:根据实验目的和数据特点,选择合适的聚类算法。
常见的聚类算法有K-means、层次聚类、密度聚类等。
在本实验中,我们选择了K-means算法进行聚类分析。
4. 聚类分析:使用所选算法对数据集进行聚类分析。
在实验过程中,我们需要调整聚类参数,如K值(聚类数量)、距离度量方法等,以获得最佳的聚类效果。
5. 结果分析:对聚类结果进行分析,包括分类关系图、分类剖面图、分类特征和分类对比等。
通过分析结果,我们可以了解数据的潜在结构和规律。
6. 实验总结:对实验过程和结果进行总结,反思数据理解、特征选择与预处理、算法选择、结果解释和评估等方面的问题。
三、实验体会与反思1. 数据理解的重要性:在进行聚类分析之前,我们需要对数据有深入的理解。
只有了解数据的背景、分布特征和潜在结构,才能选择合适的聚类算法和参数。
2. 特征选择与预处理:特征选择和预处理是聚类分析的重要步骤。
通过选择合适的特征和预处理方法,可以提高聚类效果和模型的可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验算法K-means聚类实验
【实验名称】
K-means聚类实验
【实验要求】
掌握K-means模型应用过程,根据模型要求进行数据预处理,建模,评价与应用;
【背景描述】
聚类算法是一种典型的无监督学习算法,在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。
【知识准备】
了解K-means模型的使用场景,数据标准。
了解Python/Spark数据处理一般方法。
了解spark 模型调用,训练以及应用方法
【实验设备】
Windows或Linux操作系统的计算机。
部署Spark,Python,本实验提供centos6.8环境。
【实验说明】
采用UCI机器学习库中的wine数据集作为算法数据,除去原来的类别号,把数据看做没有类别的样本,训练K-means模型,对样本进行聚类。
【实验环境】
Spark 2.3.1,Pyrhon3.X,实验在命令行pyspark中进行,或者把代码写在py脚本,由于本次为实验,以学习模型为主,所以在命令行中逐步执行代码,以便更加清晰地了解整个建模流程。
【实验步骤】
第一步:启动pyspark:
命令行中键入pyspark --master local[4],本地模式启动spark与python:
第二步:导入用到的包,并读取数据:
(1).导入所需的包
from pyspark import SparkContext, SQLContext, SparkConf
from math import sqrt
(2).读取数据源,数据源地址为:/opt/algorithm/kmeans/wine.txt
df_wine = sc.textFile(u"file:/opt/algorithm/kmeans/wine.txt").map( lambda x: str(x).split(",")).map(lambda x: [float(z) for z in x])
(3).数据转换为DataFrame
df_wine_rdd = sqlContext.createDataFrame(df_wine)
(4).展示数据
df_wine_rdd.show()
第三步:数据预处理
(1).去掉类别标号那一类
df_wine_rdd = df_wine_rdd.drop("_1")
(2).构建向量
import pyspark.ml.feature as ml_feature
cols = df_wine_rdd.columns
vectorAssembler = ml_feature.VectorAssembler().setInputCols(cols).setOutputCol("cols") wine_Vc = vectorAssembler.transform(df_wine_rdd)
(3).对数据进行标准化
standardScaler=ml_feature.StandardScaler().setInputCol("cols").setOutputCol("cols_st").set WithMean(True).setWithStd(True).fit(wine_Vc)
wine_Vc_St = standardScaler.transform(wine_Vc)
第四步:构建模型并应用,输出聚类后的分类
(1).Kmeans模型,设置输入列,迭代次数,输出列,聚类数
import pyspark.ml.clustering as ml_clustering
clusters = ml_clustering.KMeans(featuresCol="cols_st",
predictionCol="Pred",
initMode="k-means||",
initSteps=5,
tol=1e-4,
maxIter=20,
seed=None
).fit(wine_Vc_St)
wine_Vc_St_clusters = clusters.transform(wine_Vc_St)
(2).打印模型
wine_Vc_St_clusters.show()
第五步:构建模型评估方法
(1).输出聚类中心并合并到数据表
import pyspark.mllib.linalg as linalg
center = zip([0, 1, 2], [linalg.Vectors.dense(z) for z in clusters.clusterCenters()]) centers = sqlContext.createDataFrame(center).toDF("pred", "center")
wine_Vc_St_clusters_centers = wine_Vc_St_clusters.join(centers, on=["pred"])
(2).计算出误差平方和
WSSSE = wine_Vc_St_clusters_centers.select("center", "cols_st").rdd.map( lambda
x:sqrt(linalg.Vectors.squared_distance(linalg.Vectors.dense(list(x.asDict()["center"])),linalg .Vectors.dense(list(x.asDict()
["cols_st"]))))).sum() / wine_Vc_St_clusters_centers.count()
第六步:输出模型效果
(1).打印结果
print("误差平方和= " + str(WSSSE))
第七步:可以通过以下命令执行python文件,查看最终结果
spark-submit /opt/algorithm/kmeans/K-means.py
【问题与回答】
1、Q:K值怎么确定?
A:对于K值的确定,是Kmean的一个最大缺点,往往需要经验判断,统计学上,遍历k[1,样本量,step],刻画不同k的类样本与质心平均距离曲线确定k的取值。
2、Q:类别变量如何处理?
A:Kmeans是基于距离的运算,数据必须标准化,对于无法量化的标称变量,例如地域(东南西北)等需要进行独热编码。