聚类分析及k-means算法
数据挖掘聚类方法
数据挖掘聚类方法数据挖掘是从大量数据中发现有用的信息和模式的过程。
聚类是数据挖掘中的一种重要方法,它将数据对象划分为一组相似的子集,称为簇。
聚类方法可以为数据分析和决策提供有用的信息,有助于理解数据之间的关系,以及发现数据中隐藏的模式和结构。
在数据挖掘中,有许多聚类方法可以选择,下面将简要介绍几种常见的聚类方法。
1. K-means聚类算法:K-means是最常用的聚类算法之一、它将数据划分为K个簇,其中K是用户定义的参数。
该算法通过计算每个数据点和簇中心之间的距离来确定每个数据点属于哪个簇。
迭代地更新簇中心直到达到停止准则,例如簇中心不再改变或达到最大迭代次数。
2.层次聚类算法:层次聚类是一种自底向上或自顶向下的聚类方法。
自底向上的层次聚类从每个数据点开始,并将其合并到形成类似的数据点的簇中,最终形成一个完整的层次聚类树。
自顶向下的层次聚类从所有数据点开始,将其划分为较小的簇,并逐渐进行合并,最终形成一个完整的层次聚类树。
层次聚类可以通过不同的相似度度量方法来执行,例如单连接和完整连接。
3. 密度聚类算法:密度聚类是一种根据数据点之间的密度将数据划分为不同簇的方法。
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种常见的密度聚类算法。
DBSCAN基于定义半径内存在最小数量数据点的密度来确定核心点,并通过核心点之间的连通性来形成簇。
4. 基于模型的聚类算法:基于模型的聚类方法假设数据是从特定概率分布生成的,并试图通过对数据进行建模来识别簇。
混合高斯模型(Gaussian Mixture Model,GMM)是基于模型的聚类方法的一个例子。
GMM假设数据是由多个高斯分布组成的,通过最大似然估计来确定每个数据点属于哪个高斯分布。
在选择合适的聚类方法时,需要考虑数据的特性、问题的目标以及算法的优缺点。
不同聚类方法适用于不同类型的数据和问题。
Python中的聚类分析方法和应用
Python中的聚类分析方法和应用聚类分析是一种数据挖掘技术,在数据分析、机器学习、人工智能等领域都有广泛的应用。
它的基本思想是将相似的样本归为同一类,不同的样本归为不同的类,从而实现对数据的分类和整理。
Python作为一种强大的编程语言,也提供了多种聚类分析算法的实现,以下是聚类分析在Python中的应用及其方法。
一、K-Means算法K-Means算法是一种经典的聚类算法,常用于分析数量较大的数据集。
K-Means算法通过不断迭代的方式,将数据集中的每一个样本归为k个簇中的某一个。
它的基本流程如下:首先从数据集中随机选取k个样本作为簇的中心点,然后计算数据集中其他样本与这k个簇中心点的距离,并将距离最近的样本分配给它所对应的簇。
接着重新计算每个簇的中心点,并重复这个过程,直到目标函数收敛或达到指定的迭代次数。
在Python中,K-Means算法的实现非常简单,主要依托于scikit-learn库。
引入sklearn.cluster包,并使用KMeans类即可。
以下是一个简单的Python代码示例:```from sklearn.cluster import KMeansimport numpy as npdata = np.random.rand(1000, 2)kmeans = KMeans(n_clusters=3, random_state=0).fit(data) labels = bels_centers = kmeans.cluster_centers_```其中,随机生成1000个二维数据作为数据集,然后使用KMeans 类进行聚类,将数据集划分为3个簇。
最后,通过labels和centers 变量获取分类信息和中心点坐标。
二、层次聚类算法层次聚类算法是另一种经典的聚类算法,在Python中同样得到了广泛的应用。
层次聚类算法又被称为自底向上聚类(bottom-up clustering)或自上而下聚类(top-down clustering),它的基本思想是不断合并距离最近的样本,直到所有的样本都被归为一类为止。
聚类算法介绍(K-means+DBSCAN+典型案例)
排序,速度相对于K-Means较慢,一般只适合小数据量。
二,DBSCAN
在DBSCAN算法中将数据点分为一下三类:
01
核心点:在半径r内含有超过minPoints数目的点
边界点:在半径r内点的数量小于minPoints,但是落在核心点的邻域内
噪音点:既不是核心点也不是边界点的点
算密度单元的计算复杂度大,
每一簇内较大的点代表核心对象,较
小的点代表边界点(与簇内其他点密
度相连,但是自身不是核心对象)。
黑色的点代表离群点或者叫噪声点。
三,凝聚层级聚类(HAC)
HAC是自下而上的一种聚类算法。
1
HAC首先将每个数据点视为一个单一的簇,然后计算所有簇之间的距离来合并
簇,直到所有的簇聚合成为一个簇为止。
之间具有更多的相似性。
是一种探索性的分析。聚类分析所
使用方法的不同,常常会得到不同
的结论。不同研究者对于同一组数
据进行聚类分析,所得到的聚类数
未必一致。
从机器学习的角度讲,簇相当
于隐藏模式。聚类是搜索簇的
无监督学习过程。
01
02
04
03
05
06
从统计学的观点看,聚类分析
是通过数据建模简化数据的一
种方法。
典型的应用案例
例3:基于DBSCAN算法的交通事故读法点段排查方法
核心思想:对于构成交通事故多发点段的每个交通事敌,其发生的地点半径e(邻域)公里范围以内的其它交通
事故的个数,必须不小于一个给定的阈值(MinPts),也就是说其邻域的密度必须不小于某个阈值。
下面是DBSCAN算法的交通事故多发点段排查方法在交通事故黑点排查中的一些定义:
聚类算法:K-Means和DBSCAN的比较
聚类算法:K-Means和DBSCAN的比较聚类是一种无监督学习的方法,它将数据分组成具有相似特征的集合,称为簇(cluster)。
簇分析是统计学、计算机科学、机器学习和数据挖掘等领域中的常用技术之一。
目前,聚类算法已广泛应用于用户行为分析、市场营销、图像处理、生物信息学、搜索引擎、社交网络等领域。
在聚类算法中,K-Means和DBSCAN是两种具有代表性的算法。
本文将从算法原理、优缺点、适用场景等方面对它们进行比较分析。
一、K-Means算法K-Means算法是一种基于距离的聚类算法。
它的基本思想是从数据集中选取k个初始聚类中心,不断迭代,把每个数据点归为距离最近的聚类中心所在的簇。
K-Means算法的优点是计算简单、速度快、可并行计算,适用于处理大规模数据集。
但是K-Means算法的聚类结果受初始聚类中心的影响较大,算法的性能对于簇的形状、大小和分布较为敏感。
算法流程:1.选择k个聚类中心2.对于每个数据点,计算距离最近的聚类中心,将其划分到相应的簇中3.对于每个簇,重新计算该簇的聚类中心4.重复步骤2和步骤3,直到聚类中心不再变化或达到最大迭代次数二、DBSCAN算法DBSCAN算法是一种基于密度的聚类算法。
它的基本思想是将密度高于某一阈值的数据点定义为核心点(Core Points),将与核心点距离不超过一定距离的数据点归为同一个簇(Cluster),将距离较远的数据点称为噪声点(Noise)。
DBSCAN算法的优点是可以自动识别任意形状的簇,对初始聚类中心不敏感,适用于处理稠密数据集。
但是DBSCAN算法的聚类结果对于数据点密度分布的敏感度较高,平均时间复杂度较高。
算法流程:1.对于每个数据点,计算其邻域(Neighborhood)内的数据点个数,如果邻域内的数据点个数大于等于密度阈值,则该点为核心点,否则该点为噪声点2.将所有核心点加入到一个簇中,对每个核心点进行扩展,将邻域内的数据点加入到该簇中,直到不能再扩展3.继续处理下一个未被归类的核心点,直到所有核心点都在某个簇中或被标记为噪声点三、K-Means和DBSCAN的比较1.聚类精度K-Means算法适用于簇形状较为规则且大小相似的数据集,但对于不规则形状、大小差异较大的数据集,其聚类效果并不理想。
第二讲聚类Kmeans算法跟运用(K-meanscluster)
第⼆讲聚类Kmeans算法跟运⽤(K-meanscluster)CLEMENTINE 1212 CLEMENTINE--SEGMENTATION(K-MEANS)何谓集群分析何谓集群分析((CLUSTERING ANALYSIS )集群分析是⼀种将样本观察值进⾏分析,具有某些共同特性者予以整合在⼀起,再将之分配到特定的群体,最后形成许多不同集群的⼀种分析⽅法。
Clementine 12.0中提供的集群分析⽅法有三种:1. K-means2. Two-step3. KohonenK-MEANS的理论背景K-Means是集群分析(Cluster Analysis)中⼀种⾮阶层式((Nonhierarchical))的演算⽅法,由J. B. Mac Queen于1967年正式发表,也是最早的组群化计算技术。
其中,⾮阶层式则是指在各阶段分群过程中,将原有的集群予以打散,并重新形成新的集群。
K-Means是⼀种前设式群集算法,也就是说必须事前设定群集的数量,然后根据此设定找出最佳群集结构。
⽽K-Means算法最主要的概念就是以集群内资料平均值为集群的中⼼。
计算距離并分群的中⼼点重新计算新的距離并分群不断重复步骤三四,直到所设计的停⽌条件发⽣。
⼀般是以没有任何对象变换所属集群为停⽌绦件,也就是所谓的s q u a r e -e r r o r c r i t e r i o n :代表集群的中⼼(平均数),是集群内的物件,则代表集群。
210iKi p CiE p m =∈=?=∑∑i m i p i iC iK-MEANS的基本需求与优缺点建⽴K-means模型的要求:需要⼀个以上的In字段。
⽅向为Out、Both、None的字段将被忽略。
优点:建⽴K-means模型不需要分组数据。
对于⼤型数据集,K-means模型常常是最快的分群⽅法。
缺点:对于初始值的选择相当敏感,选择不同的初始值,可能会导致不同的分群结果。
数据科学中的聚类分析方法使用教程
数据科学中的聚类分析方法使用教程聚类分析是数据科学领域中常用的一种方法,它能够将数据集中的观测对象分成若干个互相独立的组或簇,组内的对象相似性较高,组间的对象相似性较低。
这种方法可以帮助我们从大量的数据中找出相似的群体,以便进行更有效的数据分析和决策。
本文将介绍三种常用的聚类分析方法:K-means、层次聚类和DBSCAN,并讨论它们的使用方法和注意事项。
1. K-means聚类算法K-means算法是最常见且易于理解的聚类算法之一。
它将数据集中的观测对象划分为K个簇,其中K是一个预先设定的参数。
算法的步骤如下:1. 随机选择K个中心点作为初始簇中心。
2. 计算每个观测对象与各个簇中心的距离,并将其归类到离它最近的簇中心。
3. 更新每个簇的中心点,将其设为簇中所有观测对象的均值。
4. 重复步骤2和步骤3,直到触发终止条件(例如簇中心不再发生变化)。
K-means算法的优点是简单易懂,并且在处理大规模数据时效率较高。
然而,它的缺点是对初始簇中心的选择较为敏感,可能会得到不理想的聚类结果。
2. 层次聚类算法层次聚类算法通过逐步合并或分割观测对象来构建聚类结构。
它有两种主要类型:凝聚型层次聚类和分裂型层次聚类。
凝聚型层次聚类从每个观测对象作为一个簇开始,然后不断合并最相似的簇,直到满足终止条件为止。
分裂型层次聚类的过程则相反,从所有观测对象作为一个簇开始,然后不断拆分最不相似的簇,直到满足终止条件为止。
层次聚类算法的优点是它不需要预先设定聚类的数量K,并且它可以生成树状的聚类结构,帮助我们理解数据的层次关系。
然而,层次聚类算法的计算复杂度较高,特别是处理大型数据集时。
3. DBSCAN聚类算法DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法是一种基于密度的聚类方法,它能够识别出任意形状的聚类,并且能够将离群点识别为噪声。
聚类分析方法
优缺点
缺点
对初始点的选择敏感:K-means算法的初始点选择对结果有很大影响,可能会导致不同 的初始点导致不同的聚类结果 需要预设k值:使用K-means算法需要预先设定k值,而最佳的k值可能并不容易确定
不适合大规模数据集:对于大规模数据集,K-means算法可能需要很长时间才能收敛
means||等
第1部分 算法步骤
算法步骤
以下是K-means算法的 基本步骤
算法步骤
初始化:选择k个点作为初始的聚类中心。这些点可以 是数据集中的实际数据点,也可以是随机生成的数据点
分配数据点到最近的聚类中心:对于数据集中的每个点,计 算它与k个聚类中心的距离,并将其分配到最近的聚类中心。 这一步通常使用欧氏距离来计算两点之间的距离
聚类分析—— Kmeans方法
-
目录
CONTENTS
1
算法步骤
2
优缺点
3
应用场景
2
聚类分析——Kmeans方法
聚类分析是一种无监督学习方法,用于将对象分组,使得同一组(或簇)内的对象相互之间 相似(按照某些度量方式),而不同组之间的对象相互之间不相似。其中,K-means算法是 一种常用的聚类算法,以其发明者Arthur James和Donald Fisher的名字来命名
特征选择和降维:在聚类之前,可以 进行特征选择和降维,以减少数据的 维度和噪声,提高聚类的效果
可视化:可以将聚类结果进行可视化, 以更直观地展示聚类的效果和结果
优缺点
通过以上改进方向,可以 进一步提高K-means算法的 性能和适用性,使其在更 多的实际应用中得到广泛
应用
第3部分 应用场景
应用场景
应用场景
K-means-聚类算法研究综述
K -means 聚类算法研究综述摘要:总结评述了K -means 聚类算法的研究现状,指出K -means 聚类算法是一个NP 难优化问题,无法获得全局最优。
介绍了K -means 聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K ,初始聚类中心选取,相似性度量和距离矩阵为K -means 聚类算法的3个基本参数。
总结了K -means 聚类算法存在的问题及其改进算法,指出了K -means 聚类的进一步研究方向。
关键词:K -means 聚类算法;NP 难优化问题;数据子集的数目K ;初始聚类中心选取;相似性度量和距离矩阵Review of K-means clustering algorithmAbstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal , main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K , cluster initialization , and distance metric. Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means clustering algorithm are pointed at last.Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metricK -means 聚类算法是由Steinhaus 1955年、Lloyed 1957年、Ball & Hall 1965年、McQueen 1967年分别在各自的不同的科学研究领域独立的提出。
k-means聚类法_标准化数值_概述及解释说明
k-means聚类法标准化数值概述及解释说明1. 引言1.1 概述在数据分析和机器学习领域中,聚类算法是一种常用的无监督学习方法,它可以将具有相似特征的数据点划分为不同的组或簇。
其中,k-means聚类法是一种经典且广泛使用的聚类算法。
它通过迭代计算数据点与各个簇中心之间的距离,并将数据点划分到距离最近的簇中心。
k-means聚类法在数据挖掘、图像处理、模式识别等领域有着广泛的应用。
1.2 文章结构本文主要围绕着k-means聚类法以及标准化数值展开讨论。
首先介绍了k-means聚类法的原理和应用场景,详细解释了其算法步骤和常用的聚类质量评估指标。
接下来对标准化数值进行概述,并阐述了常见的标准化方法以及标准化所具有的优缺点。
随后,文章从影响因素分析角度探讨了k-means聚类算法与标准化数值之间的关系,并深入剖析了标准化在k-means中的作用及优势。
最后,通过实例解释和说明,对文中所述的理论和观点进行了验证与分析。
1.3 目的本文旨在向读者介绍k-means聚类法及其在数据分析中的应用,并深入探讨标准化数值在k-means聚类算法中扮演的重要角色。
通过本文的阐述,希望读者能够理解k-means聚类法的基本原理、运行步骤以及质量评估指标,并认识到标准化数值对于提高聚类算法性能以及结果准确性的重要性。
最终,通过结论与展望部分,给出对未来研究方向和应用领域的展望和建议,为相关领域研究者提供参考和启示。
2. k-means聚类法:2.1 原理及应用场景:k-means聚类算法是一种常用的无监督学习方法,主要用于将数据集划分为k 个不同的簇(cluster)。
该算法基于距离度量来确定样本之间的相似性,其中每个样本被划分到距离最近的簇。
它的主要应用场景包括图像分割、文本分类、市场细分等。
2.2 算法步骤:k-means聚类算法具有以下几个步骤:1. 初始化: 选择k个随机点作为初始质心。
2. 分配: 对于每个数据点,计算其与各个质心之间的距离,并将其分配到最近的质心所属的簇中。
聚类分析方法比较
聚类分析方法比较聚类分析是一种数据挖掘技术,用于将一组样本分为具有相似特征的组或簇。
聚类分析方法有很多种,包括层次聚类、K-means、DBSCAN、SOM等。
这些方法在不同的领域和应用中可能有不同的优势和适用性。
下面将对几种常见的聚类分析方法进行比较。
1. 层次聚类(Hierarchical Clustering)层次聚类是一种自下而上的聚类方法,将样本逐步合并形成层次聚类树。
层次聚类的优点是可视化效果好,可以根据聚类树划分不同的组别。
然而,层次聚类的计算复杂度高,适用于小样本量的情况。
2. K-meansK-means是一种常用的聚类算法,通过计算样本间的欧式距离将样本划分为K 个簇。
K-means的优点是计算速度快,对大规模数据集效果好。
然而,K-means 对初始质心的选择敏感,并且需要预先设定簇的个数。
3. DBSCAN(Density-Based Spatial Clustering of Applications with Noise) DBSCAN是一种基于密度的聚类方法,通过设定样本周围邻域的密度阈值,将稠密区域划分为簇,将稀疏区域划分为噪声。
DBSCAN的优点是对初始参数不敏感,可以发现任意形状的簇。
然而,DBSCAN对数据分布的要求较高,对密度差异较大的数据集不适用。
4. SOM(Self-Organizing Maps)SOM是一种无监督学习方法,通过将多维样本映射到低维的神经网络空间中,实现样本的聚类。
SOM的优点是可以保留样本的拓扑结构,并且对噪声具有较好的鲁棒性。
然而,SOM的计算复杂度较高,需要预先设定神经网络的参数。
除了以上几种聚类分析方法,还有许多其他的方法,如谱聚类、模糊聚类等。
这些方法的选择应根据具体应用的需求和数据特征来确定。
在选择聚类方法时,需要考虑以下几个因素:1. 数据类型:不同的聚类方法适用于不同类型的数据,如数值型数据、类别型数据、文本数据等。
Kmeans聚类算法ppt课件
(5)对于“噪声”和孤立点数据敏感。
精选版课件ppt
8
K-means缺点以及改进 (1)要求用户必须事先给出要生成的簇的数目k。这个k并不是最好的。 解决:肘部算法 肘部算法是一种启发式方法来估计最优聚类数量,称为肘部法则(Elbow Method)。
各个类畸变程度(distortions)之和;每个类的畸变程度等于该类重心与其内 部成员位置距离的平方和;最优解以成本函数最小化为目标,其中uk是第k个 类的重心位置
第一次
第二次
精选版课件ppt
17
八、K-means聚类算法
在第五次迭代时,得到的三个簇与第四迭代结果相同,而且准则函数E收敛,迭代 结束,结果如下表所示:
k为迭代次数
精选版课件ppt
18
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
精选版课件ppt
精选版课件ppt
3
八、K-means聚类算法
2. K-means聚类算法原理 K-Means算法的工作框架:
(1)给出 n 个数据样本,令 I 1,随机选择 K 个初始聚类中心 Z j (I) , j 1, 2,3,, K ;
(2)求解每个数据样本与初始聚类中心的距离 D xi , Z j I ,i 1, 2,3,, n
假设A、B、C、D的D(x)如上图所示,当算法取值Sum(D(x))*random 时,该值会以较大的概率落入D(x)较大的区间内,所以对应的点会以 较大的概率被选中作为新的聚类中心。
精选版课件ppt
10
八、K-means聚类算法
3 K-means聚类算法特点及应用 3.2 K-means聚类算法应用
i=1,2
精选版课件ppt
K-均值聚类算法2类
samp1(n1)=samp(i);
cl1=cl1+samp(i);n1=n1+1;
c11=cl1/n1;
else
samp2(n2)=samp(i);
cl2=cl2+samp(i);n2=n2+1;
c22=cl2/n2;
end
end
if c11==c1 && c22==c2
在聚类分析中,K-均值聚类算法(k-means algorithm)是无监督分类中的一种基本方法,其也称为C-均值算法,其基本思想是:通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
假设要把样本集分为c个类别,算法如下:
(1)适当选择c个类的初始中心;
(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类,
t=1;
end
cl1=c11;cl2=c22;
c1=c11;c2=c22;
end %samp1,samp2为聚类的结果。
初始中心值这里采用均值的办法,也可以根据问题的性质,用经验的方法来确定,或者将样本集随机分成c类,计算每类的均值。
k-均值算法需要事先知道分类的数量,这是其不足之处。
n1=0;n2=0;
c1=0.0;
c1=double(c1); cຫໍສະໝຸດ =c1; for i=1:l
if samp(i)<th0
c1=c1+samp(i);n1=n1+1;
else
c2=c2+samp(i);n2=n2+1;
end
end
c1=c1/n1;c2=c2/n2; %初始聚类中心
python_一维数据的k-means算法_概述及解释说明
python 一维数据的k-means算法概述及解释说明1. 引言1.1 概述本文将介绍K-means算法在处理一维数据上的应用。
K-means算法是一种常用的聚类分析方法,可帮助我们将数据集划分为不同的簇。
聚类分析是一种无监督学习方法,通过找到数据中的相似性来对其进行分类,从而提取出隐藏在数据背后的模式和特征。
1.2 文章结构本文共包含以下几个部分:引言、K-means算法概述、一维数据的K-means 算法解释、示例与实现讲解以及结论与展望。
在引言部分,我们将提供一个简要介绍并概括本文所要讨论的主题。
接下来,在K-means算法概述中,我们将详细解释该算法的原理、步骤说明以及适用的场景。
然后,我们会详细探讨如何在一维数据上应用K-means算法,并对其中涉及到的数据预处理、聚类中心计算与更新以及聚类结果评估与迭代调整进行解释。
紧接着,在示例与实现讲解部分,我们将通过具体示例来演示如何使用Python 编写代码实现一维数据的K-means算法,并给出结果可视化和分析解读。
最后,在结论与展望部分,我们将总结本文的主要观点和发现,并展望未来关于K-means算法在一维数据上的研究方向和应用场景的拓展。
1.3 目的本文的目标是为读者提供对K-means算法在处理一维数据时的全面了解和应用指导。
通过阅读本文,读者将了解K-means算法的基本原理、步骤说明以及适用场景,并能够根据具体需求编写代码实现该算法并进行结果分析和解释。
同时,我们还希望通过本文对一维数据的K-means算法进行详细讲解,加深读者对该算法在实际问题中的应用理解和掌握能力。
2. K-means算法概述:2.1 算法原理:K-means算法是一种基于聚类的机器学习算法,主要用于将一组数据分成k 个不同的簇。
该算法通过计算数据点与各个簇中心之间的距离来确定每个数据点所属的簇,并且不断迭代更新簇中心以优化聚类结果。
其核心思想是最小化数据点到其所属簇中心的欧氏距离平方和。
k-means聚类算法原理简析
k-means聚类算法原理简析k-means聚类算法原理简介概要K-means算法是最普及的聚类算法,也是⼀个⽐较简单的聚类算法。
算法接受⼀个未标记的数据集,然后将数据聚类成不同的组,同时,k-means算法也是⼀种⽆监督学习。
算法思想k-means算法的思想⽐较简单,假设我们要把数据分成K个类,⼤概可以分为以下⼏个步骤:1.随机选取k个点,作为聚类中⼼;2.计算每个点分别到k个聚类中⼼的聚类,然后将该点分到最近的聚类中⼼,这样就⾏成了k个簇;3.再重新计算每个簇的质⼼(均值);4.重复以上2~4步,直到质⼼的位置不再发⽣变化或者达到设定的迭代次数。
算法流程图解下⾯我们通过⼀个具体的例⼦来理解这个算法(我这⾥⽤到了Andrew Ng的机器学习教程中的图):假设我们⾸先拿到了这样⼀个数据,要把它分成两类:我们⼈眼当然可以很快的分辨出来,可以在两个聚类间找到⼀条合理的分界线,那么⽤k-means算法来解决这个问题会是怎样的呢?⾸先我们随机选取两个点作为聚类中⼼(因为已经明确是分为两类):接下来就可以开始计算每个点到红点和蓝点的距离了,离红点近就标记为红⾊,离蓝点近就标记为蓝⾊。
结果为下图:很明显,这样完全不是我们想要的结果,接下来我们进⾏第三步,重新计算聚类中⼼的位置。
红X和蓝X都向中间靠拢了⼀点。
我们可以看到,聚类中⼼发⽣改变后,其他点离两个聚类中⼼的距离也跟随着发⽣了变化。
然后我们重复第⼆步,根据每个点到两个聚类中⼼的距离远近来进⾏重新分类,离红X近的归为红类,离蓝X近的归为蓝类。
之前站错了队伍的⼀些点重新进⾏了调整,现在的分类离我们的⽬标越来越近了,但还没有达到最佳的分类效果。
接下来继续重复上⾯的步骤,重新计算聚类中⼼的位置,再重新分类,不断迭代,直⾄聚类中⼼的位置不再变化(变化范围达到设定值)或达到迭代次数为⽌。
这样我们就利⽤k-means算法把这个数据很好的分为两类啦。
我们可以看到,在整个过程中,我们都没有去监督算法,告诉他具体是分错了还是对了,只是在开始的时候告诉他要把这个数据分成多少类,然后后⾯的操作都是由他⾃⼰完成,完全没有⼈为的让他进⾏分类的学习,也没有帮助他纠正错误,所以k-means算法也是⼀种⽆监督学习⽅法。
机器学习--K均值聚类算法原理、方法及代码实现
机器学习--K均值聚类算法原理、⽅法及代码实现⼀、K-means算法原理 k-means算法是⼀种简单的迭代型聚类算法,采⽤距离作为相似性指标,从⽽发现给定数据集中的K个类,且每个类的中⼼是根据类中所有值的均值得到,每个类⽤聚类中⼼来描述。
对于给定的⼀个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式距离作为相似度指标,聚类⽬标是使得各类的聚类平⽅和最⼩,即最⼩化: 结合最⼩⼆乘法和拉格朗⽇原理,聚类中⼼为对应类别中各数据点的平均值,同时为了使得算法收敛,在迭代过程中,应使最终的聚类中⼼尽可能的不变。
⼆、算法实现⼀般流程 K-means是⼀个反复迭代的过程,算法分为四个步骤: 1)选取数据空间中的K个对象作为初始中⼼,每个对象代表⼀个聚类中⼼; 2)对于样本中的数据对象,根据它们与这些聚类中⼼的欧⽒距离,按距离最近的准则将它们分到距离它们最近的聚类中⼼(最相似)所对应的类; 3)更新聚类中⼼:将每个类别中所有对象所对应的均值作为该类别的聚类中⼼,计算⽬标函数的值; 4)判断聚类中⼼和⽬标函数的值是否发⽣改变,若不变,则输出结果,若改变,则返回2)。
三、算法应⽤实例--鸢尾花分类问题 1.Iris数据集 Iris也称鸢尾花卉数据集,是⼀类多重变量分析的数据集。
数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。
可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪⼀类。
代码实现:import mathfrom collections import defaultdictimport numpy as npdataname = "data.txt"def loadIRISdata(filename):data = []with open(filename, mode="r", encoding="utf-8") as rf:for line in rf:if line == '\n':continuedata.append(list(map(float, line.split(""))))return datadef generateCenters(data):'''求解初始聚类中⼼'''centers = []'''已知维度为4''''''分三类,取第0,50,100的三个向量作为分界'''centers.append(data[0])centers.append(data[50])centers.append(data[100])return centersdef distance(a ,b):'''欧式距离'''sum = 0for i in range(4):sq = (a[i]-b[i])*(a[i]-b[i])sum += sqreturn math.sqrt(sum)def point_avg(points):'''对维度求平均值'''new_center = []for i in range(4):sum = 0for p in points:sum += p[i]new_center.append(float("%.8f" % (sum/float(len(points)))))return new_centerdef updataCenters(data, assigments):new_means = defaultdict(list)centers = []for assigment, point in zip(assigments, data):new_means[assigment].append(point)'''将同⼀类的数据进⾏整合'''for i in range(3):points = new_means[i]centers.append(point_avg(points))return centersdef assignment(data, centers):assignments = []'''对应位置显⽰对应类群'''for point in data:'''遍历所有数据'''shortest = float('inf')shortestindex = 0for i in range(3):'''遍历三个中⼼向量,与哪个类中⼼欧⽒距离最短就将其归为哪类''' value = distance(point, centers[i])if value < shortest:shortest = valueshortestindex = iassignments.append(shortestindex)return assignmentsdef kmeans(data):k_data = generateCenters(data)assigments = assignment(data, k_data)old_assigments = Nonewhile assigments != old_assigments:new_centers = updataCenters(data, assigments)old_assigments = assigmentsassigments = assignment(data, new_centers)result = list(zip(assigments, data))return resultdef acc(result):sum = 0all = 0for i in range(50):if result[i][0] == 0:sum += 1all += 1for i in range(50):if result[i+50][0] == 1:sum += 1all += 1for i in range(50):if result[i+100][0] == 2:sum += 1all += 1print('sum:', sum, 'all:', all)return sum, allif__name__ == "__main__":data = loadIRISdata(dataname)result = kmeans(data)for i in range(3):tag = 0print('\n')print("第%d类数据有:" % (i+1))for tuple in range(len(result)):if(result[tuple][0] == i):print(tuple, end='')tag += 1if tag > 20 :print('\n')tag = 0#print(result)print('\n')sum, all = acc(result)print('c-means准确度为:%2f%%' % ((sum/all)*100))运⾏结果:。
k-means聚类算法简介
k-means聚类算法简介k-means 算法是一种基于划分的聚类算法,它以k 为参数,把n 个数据对象分成k 个簇,使簇内具有较高的相似度,而簇间的相似度较低。
1. 基本思想k-means 算法是根据给定的n 个数据对象的数据集,构建k 个划分聚类的方法,每个划分聚类即为一个簇。
该方法将数据划分为n 个簇,每个簇至少有一个数据对象,每个数据对象必须属于而且只能属于一个簇。
同时要满足同一簇中的数据对象相似度高,不同簇中的数据对象相似度较小。
聚类相似度是利用各簇中对象的均值来进行计算的。
k-means 算法的处理流程如下。
首先,随机地选择k 个数据对象,每个数据对象代表一个簇中心,即选择k 个初始中心;对剩余的每个对象,根据其与各簇中心的相似度(距离),将它赋给与其最相似的簇中心对应的簇;然后重新计算每个簇中所有对象的平均值,作为新的簇中心。
不断重复以上这个过程,直到准则函数收敛,也就是簇中心不发生明显的变化。
通常采用均方差作为准则函数,即最小化每个点到最近簇中心的距离的平方和。
新的簇中心计算方法是计算该簇中所有对象的平均值,也就是分别对所有对象的各个维度的值求平均值,从而得到簇的中心点。
例如,一个簇包括以下 3 个数据对象{(6,4,8),(8,2,2),(4,6,2)},则这个簇的中心点就是((6+8+4)/3,(4+2+6)/3,(8+2+2)/3)=(6,4,4)。
k-means 算法使用距离来描述两个数据对象之间的相似度。
距离函数有明式距离、欧氏距离、马式距离和兰氏距离,最常用的是欧氏距离。
k-means 算法是当准则函数达到最优或者达到最大的迭代次数时即可终止。
当采用欧氏距离时,准则函数一般为最小化数据对象到其簇中心的距离的平方和,即。
其中,k 是簇的个数,是第i 个簇的中心点,dist(,x)为X 到的距离。
2. Spark MLlib 中的k-means 算法Spark MLlib 中的k-means 算法的实现类KMeans 具有以下参数。
kmeans聚类算法的 步骤
一、介绍K-means聚类算法是一种常见的无监督学习算法,用于将数据集划分成多个不相交的子集,从而使每个子集内的数据点都彼此相似。
这种算法通常被用于数据挖掘、模式识别和图像分割等领域。
在本文中,我们将介绍K-means聚类算法的步骤,以帮助读者了解该算法的原理和实现过程。
二、算法步骤1. 初始化选择K个初始的聚类中心,这些聚类中心可以从数据集中随机选择,也可以通过一些启发式算法进行选择。
K表示用户事先设定的聚类个数。
2. 聚类分配对于数据集中的每个数据点,计算其与K个聚类中心的距离,并将其分配到距离最近的聚类中心所属的子集中。
3. 更新聚类中心计算每个子集中所有数据点的均值,将均值作为新的聚类中心。
4. 重复第二步和第三步重复进行聚类分配和更新聚类中心的步骤,直到聚类中心不再发生变化,或者达到预设的迭代次数。
5. 收敛当聚类中心不再发生变化时,算法收敛,聚类过程结束。
三、算法变体K-means算法有许多不同的变体,这些变体可以根据特定的场景和需求进行调整。
K-means++算法是K-means算法的一种改进版本,它可以更有效地选择初始的聚类中心,从而提高聚类的准确性和效率。
对于大规模数据集,可以使用Mini-batch K-means算法,它可以在迭代过程中随机选择一部分数据进行计算,从而加快算法的收敛速度。
四、总结K-means聚类算法是一种简单而有效的聚类算法,它在各种领域都得到了广泛的应用。
然而,该算法也存在一些局限性,例如对初始聚类中心的选择比较敏感,对异常值比较敏感等。
在实际使用时,需要根据具体情况进行调整和改进。
希望本文对读者有所帮助,让大家对K-means聚类算法有更深入的了解。
K-means聚类算法作为一种经典的无监督学习算法,在进行数据分析和模式识别时发挥着重要作用。
在实际应用中,K-means算法的步骤和变体需要根据具体问题进行调整和改进。
下面我们将进一步探讨K-means聚类算法的步骤和变体,以及在实际应用中的注意事项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
举例应用
中国男足近几年到底在亚洲处于几流水平?下 图是采集的亚洲15只球队在2005年-2010年间大 型杯赛的战绩
对数据做了如下预处理:对于世界杯,进入决赛 圈则取其最终排名,没有进入决赛圈的,打入预 选赛十强赛赋予40,预选赛小组未出线的赋予50。 对于亚洲杯,前四名取其排名,八强赋予5,十六 强赋予9,预选赛没出现的赋予17。这样做是为了 使得所有数据变为标量,便于后续聚类。
处理后的数据如下:
数据变换:进行[0,1]规格化得到
初始类个数的选择; 初始类中心的选择;
设k=3,即将这15支球队分成三个集团。现 抽取日本、巴林和泰国的值作为三个类的种子, 即初始化三个类的中心为
A:{0.3, 0, 0.19}; B:{0.7, 0.76, 0.5}; C:{1, 1, 0.5};
相似性度量指标
空间距离 相似系数(similarity coefficient)
空间距离
假使每个样品有p个变量,则每个样品都 可以看成p维空间中的一个点,n个样品 就是p维空间中的n个点,则第i样品与第
j 样品之间的距离记为 dij
样品距离必须满足的条件
➢ 对称性 dij d ji 0 ➢ 三角不等式 dij dik d jk ➢ dij 0 则样品i与样品j不相等
样品到类中心的距离; 归类;
计算所有球队分别对三个中心点的欧氏 距离。下面是用程序求取的结果:
第一次聚类结果: A:日本,韩国,伊朗,沙特; B:乌兹别克斯坦,巴林,朝鲜; C:中国,伊拉克,卡塔尔,阿联酋,泰
国,越南,阿曼,印尼。
重新计算类中心;
下面根据第一次聚类结果,采用k-均值法调整各个类 的中心点。
斜交空间距离
相似系数
相似系数表示作为对 象的两个分类单位 (所进行的分类单位) 间相似程度的指标。
相似系数通常介于0 cij 和1 之间,相似系数等 于1 ,说明两个样品完 全相同;相似系数等 于0,说明样品完全不 同。
n
t 1
xti
xi
xtj
xj
n
2
t1 xti xi
2
n
t1 xtj x j
有序样品聚类法
开始将所有样品看成一类,然后根据某种最优 准则将它们分割为二类、三类,一直分到K类 为止。这种方法适用于有序样品的分类问题。 又称为最优分割法。
模糊聚类法
利用模糊集理论来处理分类问题,它对经济领 域中具有模糊特征的两态数据或多态数据具有 明显的分类效果。
K-means聚类法
首先对n个对象初步分类,然后根据分类的损 失函数尽可能小的原则对分类进行调整,直到 分类合理为止。又称为动态聚类法、逐步聚类 法.
p
dij xi x j
(xik x jk )2
k 1
3. 切比雪夫距离(Chebyshev)
dij
xi x j
max k
xik
x jk
其它计算方法
兰氏距离:
dij
1 m
m t 1
xit x jt xit x jt
马氏(Mahalanobis) 距离 Williams距离
C: {1, 0.94, 0.40625}。
用调整后的中心点再次进行聚类,得到: 第二次迭代后的结果为:
A类:日本,韩国,伊朗,沙特; B类:乌兹别克斯坦,巴林,朝鲜; C类:伊拉克,卡塔尔,阿联酋,中国,
泰国,越南,阿曼 ,印尼;
结果无变化,说明结果已收敛,于是给出最终 聚类结果:
亚洲一流:日本,韩国,伊朗,沙特 亚洲二流:乌兹别克斯坦,巴林,朝鲜 亚洲三流:中国,伊拉克,卡塔尔,阿联酋,
聚类分析常用方法
1. 直接聚类法 2. 有序样品聚类法 3. 模糊聚类法 4. K-means聚类法 5. 系统聚类法 6. 图论聚类法
直接聚类法
先把各个分类对象单独视为一类,然后根据距 离最小的原则,依次选出一对分类对象,并成 新类。如果其中一个分类对象已归于一类,则 把另一个也归入该类;如果一对分类对象正好 属于已归的两类,则把这两类并为一类。每一 次归并,都划去该对象所在的列与列序相同的 行。经过m-1次就可以把全部分类对象归为一 类,这样就可以根据归并的先后顺序作出聚类 谱系图。
聚类分析及k-means算法
聚类分析概念
聚类分析指将物理或抽象对象的集合 分组成为由类似的对象组成的多个类 的分析过程。
聚类分析的基本思想
把相似程度较大的样品聚合为一类,把另 外一些彼此之间相似程度较大的样品又聚 合为另一类,直到把所有的样品聚合完毕。
聚类分析的原则是同一类中的个体有较 大的相似性,不同类中的个体差异很大。
系统聚类法
开始每个对象自成一类,然后每次 将最相似 的两类合并,合并后重新计算新类与其他类之 间的距离或相似系数。
图论聚类法
利用图论中最小支撑树的概念来处理分类问题, 创造了独具风格的方法。
K-means 聚类算法
K-means算法是聚类分析众多算法的一 种。
K-means算法是输入聚类个数k,以及包 含 n个数据对象的数据库,输出满足方差 最小标准的k个聚类
常见距离计算方法
明式(Minkowski)距离
p
r1
dij xi x j ( xik x jk ) r
k 1
明, r=2时为欧氏距离。
r= 时为切比雪夫距离。
2.绝对距离
m
dij
xit x jt
t 1
2. 欧氏(Euclidian)距离
A类的新中心点为:{(0.3+0+0.24+0.3)/4=0.21, (0+0.15+0.76+0.76)/4=0.4175, (0.19+0.13+0.25+0.06)/4=0.1575} = {0.21, 0.4175, 0.1575} (算术平均数。)
用同样的方法计算得到B和C类的新中心点分别为 B:{0.7, 0.7333, 0.4167},
K-means算法流程
1. 从 n个数据对象任意选择 k 个对象作为初 始聚类中心;
2. 根据每个聚类对象的均值(中心对象), 计算每个对象与这些中心对象的距离; 并根据最小距离重新对相应对象进行划 分;
3. 重新计算每个(有变化)聚类的均值 (中心对象);
4. 循环(3)到(4)直到每个聚类不再发生变化 为止 ;