K-means聚类分析
K-means聚类分析
K-means聚类分析⼀、原理1. 先确定簇的个数,K2. 假设每个簇都有⼀个中⼼点centroid3. 将每个样本点划分到距离它最近的中⼼点所属的簇中选择K个点做为初始的中⼼点while(1){将所有点分配个K个中⼼点形成K个簇重新计算每个簇的中⼼点if(簇的中⼼点不再改变)break;}⽬标函数:定义为每个样本与其簇中⼼点的距离的平⽅和(theSum of Squared Error, SSE) – µk 表⽰簇Ck 的中⼼点(或其它能代表Ck的点) – 若xn被划分到簇Ck则rnk=1,否则rnk= 0• ⽬标:找到簇的中⼼点µk及簇的划分rnk使得⽬标函数SSE最⼩初始中⼼点通常是随机选取的(收敛后得到的是局部最优解)不同的中⼼点会对聚类结果产⽣不同的影响:1、2、此时你⼀定会有疑问:如何选取"较好的"初始中⼼点?1. 凭经验选取代表点2. 将全部数据随机分成c类,计算每类重⼼座位初始点3. ⽤“密度”法选择代表点4. 将样本随机排序后使⽤前c个点作为代表点5. 从(c-1)聚类划分问题的解中产⽣c聚类划分问题的代表点 结论:若对数据不够了解,可以直接选择2和4⽅法需要预先确定K Q:如何选取K SSE⼀般随着K的增⼤⽽减⼩A:emmm你多尝试⼏次吧,看看哪个合适。
斜率改变最⼤的点⽐如k=2总结:简单的来说,K-means就是假设有K个簇,然后通过上⾯找初始点的⽅法,找到K个初始点,将所有的数据分为K个簇,然后⼀直迭代,在所有的簇⾥⾯找到找到簇的中⼼点µk及簇的划分rnk使得⽬标函数SSE最⼩或者中⼼点不变之后,迭代完成。
成功把数据分为K类。
预告:下⼀篇博⽂讲K-means代码实现。
k-means聚类和fcm聚类的原理概念
k-means聚类和fcm聚类的原理概念摘要:一、聚类分析概述1.定义与作用2.常用的聚类算法二、K-means 聚类原理1.算法基本思想2.计算过程3.特点与优缺点三、FCM 聚类原理1.算法基本思想2.计算过程3.特点与优缺点四、K-means 与FCM 聚类的比较1.相似之处2.不同之处3.适用场景正文:一、聚类分析概述聚类分析是一种无监督学习方法,通过将相似的数据对象归为一类,从而挖掘数据集的潜在结构和模式。
聚类分析在数据挖掘、模式识别、图像处理、生物学研究等领域具有广泛应用。
常用的聚类算法有K-means 聚类和FCM 聚类等。
二、K-means 聚类原理1.算法基本思想K-means 聚类是一种基于划分的聚类方法,通过迭代计算数据点与当前中心点的距离,将数据点分配到距离最近的中心点所属的簇,然后更新中心点。
这个过程持续进行,直到满足停止条件。
2.计算过程(1)随机选择k 个数据点作为初始中心点。
(2)计算其他数据点与初始中心点的距离,将数据点分配到距离最近的簇。
(3)计算每个簇的中心点。
(4)重复步骤2 和3,直到中心点不再发生变化或达到最大迭代次数。
3.特点与优缺点特点:简单、易于实现,适用于大规模数据集。
优点:可以处理大规模数据集,对噪声数据具有一定的鲁棒性。
缺点:对初始中心点敏感,可能导致局部最优解;计算过程中需要反复计算距离,计算量较大。
三、FCM 聚类原理1.算法基本思想FCM 聚类是一种基于模糊划分的聚类方法,通过计算数据点与当前中心点的模糊距离,将数据点分配到距离最近的簇。
模糊距离是基于隶属度函数计算的,可以反映数据点对簇的隶属程度。
2.计算过程(1)随机选择k 个数据点作为初始中心点。
(2)计算其他数据点与初始中心点的模糊距离,将数据点分配到距离最近的簇。
(3)计算每个簇的中心点。
(4)重复步骤2 和3,直到中心点不再发生变化或达到最大迭代次数。
3.特点与优缺点特点:考虑了数据点对簇的隶属程度,具有更好的全局优化性能。
Python中的聚类分析方法和应用
Python中的聚类分析方法和应用聚类分析是一种数据挖掘技术,在数据分析、机器学习、人工智能等领域都有广泛的应用。
它的基本思想是将相似的样本归为同一类,不同的样本归为不同的类,从而实现对数据的分类和整理。
Python作为一种强大的编程语言,也提供了多种聚类分析算法的实现,以下是聚类分析在Python中的应用及其方法。
一、K-Means算法K-Means算法是一种经典的聚类算法,常用于分析数量较大的数据集。
K-Means算法通过不断迭代的方式,将数据集中的每一个样本归为k个簇中的某一个。
它的基本流程如下:首先从数据集中随机选取k个样本作为簇的中心点,然后计算数据集中其他样本与这k个簇中心点的距离,并将距离最近的样本分配给它所对应的簇。
接着重新计算每个簇的中心点,并重复这个过程,直到目标函数收敛或达到指定的迭代次数。
在Python中,K-Means算法的实现非常简单,主要依托于scikit-learn库。
引入sklearn.cluster包,并使用KMeans类即可。
以下是一个简单的Python代码示例:```from sklearn.cluster import KMeansimport numpy as npdata = np.random.rand(1000, 2)kmeans = KMeans(n_clusters=3, random_state=0).fit(data) labels = bels_centers = kmeans.cluster_centers_```其中,随机生成1000个二维数据作为数据集,然后使用KMeans 类进行聚类,将数据集划分为3个簇。
最后,通过labels和centers 变量获取分类信息和中心点坐标。
二、层次聚类算法层次聚类算法是另一种经典的聚类算法,在Python中同样得到了广泛的应用。
层次聚类算法又被称为自底向上聚类(bottom-up clustering)或自上而下聚类(top-down clustering),它的基本思想是不断合并距离最近的样本,直到所有的样本都被归为一类为止。
聚类算法:K-Means和DBSCAN的比较
聚类算法:K-Means和DBSCAN的比较聚类是一种无监督学习的方法,它将数据分组成具有相似特征的集合,称为簇(cluster)。
簇分析是统计学、计算机科学、机器学习和数据挖掘等领域中的常用技术之一。
目前,聚类算法已广泛应用于用户行为分析、市场营销、图像处理、生物信息学、搜索引擎、社交网络等领域。
在聚类算法中,K-Means和DBSCAN是两种具有代表性的算法。
本文将从算法原理、优缺点、适用场景等方面对它们进行比较分析。
一、K-Means算法K-Means算法是一种基于距离的聚类算法。
它的基本思想是从数据集中选取k个初始聚类中心,不断迭代,把每个数据点归为距离最近的聚类中心所在的簇。
K-Means算法的优点是计算简单、速度快、可并行计算,适用于处理大规模数据集。
但是K-Means算法的聚类结果受初始聚类中心的影响较大,算法的性能对于簇的形状、大小和分布较为敏感。
算法流程:1.选择k个聚类中心2.对于每个数据点,计算距离最近的聚类中心,将其划分到相应的簇中3.对于每个簇,重新计算该簇的聚类中心4.重复步骤2和步骤3,直到聚类中心不再变化或达到最大迭代次数二、DBSCAN算法DBSCAN算法是一种基于密度的聚类算法。
它的基本思想是将密度高于某一阈值的数据点定义为核心点(Core Points),将与核心点距离不超过一定距离的数据点归为同一个簇(Cluster),将距离较远的数据点称为噪声点(Noise)。
DBSCAN算法的优点是可以自动识别任意形状的簇,对初始聚类中心不敏感,适用于处理稠密数据集。
但是DBSCAN算法的聚类结果对于数据点密度分布的敏感度较高,平均时间复杂度较高。
算法流程:1.对于每个数据点,计算其邻域(Neighborhood)内的数据点个数,如果邻域内的数据点个数大于等于密度阈值,则该点为核心点,否则该点为噪声点2.将所有核心点加入到一个簇中,对每个核心点进行扩展,将邻域内的数据点加入到该簇中,直到不能再扩展3.继续处理下一个未被归类的核心点,直到所有核心点都在某个簇中或被标记为噪声点三、K-Means和DBSCAN的比较1.聚类精度K-Means算法适用于簇形状较为规则且大小相似的数据集,但对于不规则形状、大小差异较大的数据集,其聚类效果并不理想。
kmeans 聚类算法
kmeans 聚类算法Kmeans聚类算法Kmeans聚类算法是一种基于距离的无监督机器学习算法,它可以将数据集分为多个类别。
Kmeans算法最初由J. MacQueen于1967年提出,而后由S. Lloyd和L. Forgy独立提出。
目前,Kmeans算法已经成为了机器学习领域中最常用的聚类算法之一。
Kmeans算法的基本思想是将数据集划分为k个不同的簇,每个簇具有相似的特征。
簇的数量k是由用户指定的,算法会根据数据集的特征自动将数据集分成k个簇。
Kmeans算法通过迭代的方式来更新每个簇的中心点,以此来不断优化簇的划分。
Kmeans算法的步骤Kmeans算法的步骤可以概括为以下几个步骤:1. 随机选择k个点作为中心点;2. 将每个数据点与离它最近的中心点关联,形成k个簇;3. 对于每个簇,重新计算中心点;4. 重复2-3步骤,直到簇不再变化或达到最大迭代次数。
Kmeans算法的优缺点Kmeans算法的优点包括:1. 算法简单易实现;2. 能够处理大规模数据集;3. 可以处理多维数据。
Kmeans算法的缺点包括:1. 需要用户指定簇的数量;2. 对于不规则形状的簇,效果不佳;3. 对于包含噪声的数据集,效果不佳。
Kmeans算法的应用Kmeans算法在机器学习和数据挖掘中有着广泛的应用。
以下是Kmeans算法的一些应用:1. 图像分割:将图像分为多个不同的区域;2. 文本聚类:将文本数据划分为多个主题;3. 市场分析:将消费者分为不同的群体,以便进行更好的市场分析;4. 生物学研究:将生物数据分为不同的分类。
总结Kmeans聚类算法是一种基于距离的无监督机器学习算法,它可以将数据集分为多个类别。
Kmeans算法的步骤包括随机选择中心点、形成簇、重新计算中心点等。
Kmeans算法的优缺点分别是算法简单易实现、需要用户指定簇的数量、对于不规则形状的簇效果不佳等。
Kmeans算法在图像分割、文本聚类、市场分析和生物学研究等领域有着广泛的应用。
聚类分析及k-means算法
举例应用
中国男足近几年到底在亚洲处于几流水平?下 图是采集的亚洲15只球队在2005年-2010年间大 型杯赛的战绩
对数据做了如下预处理:对于世界杯,进入决赛 圈则取其最终排名,没有进入决赛圈的,打入预 选赛十强赛赋予40,预选赛小组未出线的赋予50。 对于亚洲杯,前四名取其排名,八强赋予5,十六 强赋予9,预选赛没出现的赋予17。这样做是为了 使得所有数据变为标量,便于后续聚类。
处理后的数据如下:
数据变换:进行[0,1]规格化得到
初始类个数的选择; 初始类中心的选择;
设k=3,即将这15支球队分成三个集团。现 抽取日本、巴林和泰国的值作为三个类的种子, 即初始化三个类的中心为
A:{0.3, 0, 0.19}; B:{0.7, 0.76, 0.5}; C:{1, 1, 0.5};
相似性度量指标
空间距离 相似系数(similarity coefficient)
空间距离
假使每个样品有p个变量,则每个样品都 可以看成p维空间中的一个点,n个样品 就是p维空间中的n个点,则第i样品与第
j 样品之间的距离记为 dij
样品距离必须满足的条件
➢ 对称性 dij d ji 0 ➢ 三角不等式 dij dik d jk ➢ dij 0 则样品i与样品j不相等
样品到类中心的距离; 归类;
计算所有球队分别对三个中心点的欧氏 距离。下面是用程序求取的结果:
第一次聚类结果: A:日本,韩国,伊朗,沙特; B:乌兹别克斯坦,巴林,朝鲜; C:中国,伊拉克,卡塔尔,阿联酋,泰
国,越南,阿曼,印尼。
重新计算类中心;
下面根据第一次聚类结果,采用k-均值法调整各个类 的中心点。
斜交空间距离
相似系数
数据聚类分析方法
数据聚类分析方法
数据聚类分析方法是一种将数据分组或分类的技术。
聚类分析的目标是将相似的数据聚集在一起,同时将不相似的数据分开。
以下是常见的数据聚类分析方法:
1. K-means聚类算法:K-means算法是一种迭代的聚类算法。
它将数据集分为预先指定的K个簇,其中每个数据点属于距离该数据点最近的簇。
该算法通过不断迭代更新簇的中心来优化聚类结果。
2. 层次聚类算法:层次聚类算法通过以下两种方法进行聚类分析:聚合和分裂。
聚合方法将每个数据点作为一个单独的簇,并逐渐将相似的簇合并在一起。
分裂方法则是从一个包含所有数据点的簇开始,并逐渐将不相似的数据点分离开来。
3. 密度聚类算法:密度聚类算法将数据点密度作为聚类的基础。
该算法通过确定数据点周围的密度来划分不同的簇。
常见的密度聚类算法有DBSCAN和OPTICS。
4. 基于网格的聚类算法:基于网格的聚类算法将数据空间划分为网格,并将数据点分配到各个网格中。
该算法通常适用于高维数据集,可以减少计算复杂度。
5. 谱聚类算法:谱聚类算法将数据点表示为一个图的拉普拉斯矩阵,并通过谱分解将数据点分配到不同的簇中。
该算法通常用于非线性可分的数据集。
需要根据具体的数据集和分析目标来选择适合的数据聚类分析方法。
K-means算法详解
算法实例
O x y
1
2 3 4 5Βιβλιοθήκη 00 1.5 5 5
2
0 0 0 2
数据对象集合S见表1,作为一个聚类分析的二 维样本,要求的簇的数量k=2。 O (1)选择 O1 0,2 , 2 0,0 为初始的簇中心, 即 M 1 O1 0,2 , M 2 O2 0,0 。 (2)对剩余的每个对象,根据其与各个簇中心的 距离,将它赋给最近的簇。 对 O3 : 2 2
0 5
0 5
2
2 2
2
2
5
29
1
5
5
2
0 2
• 因为 d M 1 , O 5 d M 2 , O 5 所以将 O 5分配给 C
• 更新,得到新簇
E1 0 0
2 2
C1 O1 ,O5
和
2
C 2 O 2 , O 3 , O 4
xi1,xi2,„xid和xj1,xj2,„xjd分别是样本xi和xj对应d个描 述属性A1,A2,„Ad的具体取值。 • 样本xi和xj之间的相似度通常用它们之间的距离d(xi,xj) 来表示,距离越小,样本xi和xj越相似,差异度越小;距
离越大,样本xi和xj越不相似,差异度越大。
欧式距离公式如下:
d xi , x j
x
d k 1
ik
x jk
2
平均误差准则函数
• K-means聚类算法使用误差平方和准则函数来评价聚类 性能。给定数据集X,其中只包含描述属性,不包含类别
属性。假设X包含k个聚类子集X1,X2,„XK;各个聚类子集
中的样本数量分别为n1,n2,„,nk;各个聚类子集的均值代 表点(也称聚类中心)分别为m1,m2,„,mk。 • 误差平方和准则函数公式为:
K-means聚类分析
4.1KBAC算法描述
Initialcenterset=Co mputeMinCover (simlarityGraph, aa)
record culster intinalcenter to corecanditidateset
E(Ai )
v j 1
X1, j
X2, j N
X m, j * I ( X1, j , X 2, j ,
, Xm, j )
6. I ( X1, j , X 2, j , , X m, j ) 为子集Xj的熵,计算公式为:
m
I ( X1, j , X 2, j , , X m, j ) pi, j log2 pi, j i 1
m
I (C) P(Ci ) log2 P(Ci ) i 1
P(Ci ) | Ci | / N,| Ci | 为类别Ci中样本数量,| |返回 集合中元素个数运算
4.特征属性Ai的信息增益计算公式:
Gain分成子集的熵,计算公式:
其中pi,j为Xj中的属于Ci的概率,计算公式: pi,j =|Xi,j|/Xj
7.属性Ai的信息增益比例公式为:
GainRation( Ai ) Gain( Ai ) / Spilt( Ai )
其中Spilt(Ai)计算公式:
v
Spilt( Ai ) p j * log2 Pj , 其中Pj | X j | / X j 1
每时每刻大量数据都在产生
1. 引言
目前有的聚类经典算法 1)k-means算法 2)k-原型算法 3)模糊聚类算法 4)基于粗糙的k-model算法
2. K-means聚类方法的简单分析
聚类分析方法
优缺点
缺点
对初始点的选择敏感:K-means算法的初始点选择对结果有很大影响,可能会导致不同 的初始点导致不同的聚类结果 需要预设k值:使用K-means算法需要预先设定k值,而最佳的k值可能并不容易确定
不适合大规模数据集:对于大规模数据集,K-means算法可能需要很长时间才能收敛
means||等
第1部分 算法步骤
算法步骤
以下是K-means算法的 基本步骤
算法步骤
初始化:选择k个点作为初始的聚类中心。这些点可以 是数据集中的实际数据点,也可以是随机生成的数据点
分配数据点到最近的聚类中心:对于数据集中的每个点,计 算它与k个聚类中心的距离,并将其分配到最近的聚类中心。 这一步通常使用欧氏距离来计算两点之间的距离
聚类分析—— Kmeans方法
-
目录
CONTENTS
1
算法步骤
2
优缺点
3
应用场景
2
聚类分析——Kmeans方法
聚类分析是一种无监督学习方法,用于将对象分组,使得同一组(或簇)内的对象相互之间 相似(按照某些度量方式),而不同组之间的对象相互之间不相似。其中,K-means算法是 一种常用的聚类算法,以其发明者Arthur James和Donald Fisher的名字来命名
特征选择和降维:在聚类之前,可以 进行特征选择和降维,以减少数据的 维度和噪声,提高聚类的效果
可视化:可以将聚类结果进行可视化, 以更直观地展示聚类的效果和结果
优缺点
通过以上改进方向,可以 进一步提高K-means算法的 性能和适用性,使其在更 多的实际应用中得到广泛
应用
第3部分 应用场景
应用场景
应用场景
聚类分析案例
K-Means聚类分析一、实验方法K-Means聚类分析二、实验目的根据2001年全国31省市自治区各类小康和现代化指数的数据,用Spass对地区进行K-Means 聚类分析。
三、实验数据综合指数社会结构经济与技术发展人口素质生活质量法制与治安北京93.2 100 94.7 108.4 97.4 55.5上海92.3 95.1 92.7 112 95.4 57.5天津87.9 93.4 88.7 98 90 62.7浙江80.9 89.4 85.1 78.5 86.6 58广东79.2 90.4 86.9 65.9 86.5 59.4江苏77.8 82.1 74.8 81.2 75.9 74.6辽宁76.3 85.8 65.7 93.1 68.1 69.6福建72.4 83.4 71.7 67.7 76 60.4山东71.7 70.8 67 75.7 70.2 77.2黑龙江70.1 78.1 55.7 82.1 67.6 71吉林67.9 81.1 51.8 85.8 56.8 68.1湖北65.9 73.5 48.7 79.9 56 79陕西65.9 71.5 48.2 81.9 51.7 85.8河北65 60.1 52.4 75.6 66.4 76.6山西64.1 73.2 41 73 57.3 87.8海南64.1 71.6 46.2 61.8 54.5 100重庆64 69.7 41.9 76.2 63.2 77.9内蒙古63.2 73.5 42.2 78.2 50.2 81.4湖南60.9 60.5 40.3 73.9 56.4 84.4青海59.9 73.8 43.7 63.9 47 80.1四川59.3 60.7 43.5 71.9 50.6 78.5宁夏58.2 73.5 45.9 67.1 46.7 61.6新疆64.7 71.2 57.2 75.1 57.3 64.6安徽56.7 61.3 41.2 63.5 52.5 72.6云南56.7 59.4 49.8 59.8 48.1 72.3甘肃56.6 66 36.6 66.2 45.8 79.4 四、分析方法与结果表一31个省市自治区小康和现代化指数的K-Means聚类分析结果(一)初始聚类中心聚类1 2 3综合指数79.20 92.30 51.10社会结构90.40 95.10 61.90经济与技术发展86.90 92.70 31.50人口素质65.90 112.00 56.00生活质量86.50 95.40 41.00法制与治安59.40 57.50 75.60ANOVA聚类误差均方自由度均方自由度F 显著性综合指数1633.823 2 22.518 28 72.556 .000 社会结构1539.872 2 47.312 28 32.547 .000 经济与技术发展4381.296 2 56.760 28 77.190 .000 人口素质1817.856 2 74.363 28 24.446 .000 生活质量3315.174 2 59.276 28 55.928 .000 法制与治安530.188 2 76.284 28 6.950 .004由于已选择聚类以使不同聚类中个案之间的差异最大化,因此 F 检验只应该用于描述目的。
k-means聚类法_标准化数值_概述及解释说明
k-means聚类法标准化数值概述及解释说明1. 引言1.1 概述在数据分析和机器学习领域中,聚类算法是一种常用的无监督学习方法,它可以将具有相似特征的数据点划分为不同的组或簇。
其中,k-means聚类法是一种经典且广泛使用的聚类算法。
它通过迭代计算数据点与各个簇中心之间的距离,并将数据点划分到距离最近的簇中心。
k-means聚类法在数据挖掘、图像处理、模式识别等领域有着广泛的应用。
1.2 文章结构本文主要围绕着k-means聚类法以及标准化数值展开讨论。
首先介绍了k-means聚类法的原理和应用场景,详细解释了其算法步骤和常用的聚类质量评估指标。
接下来对标准化数值进行概述,并阐述了常见的标准化方法以及标准化所具有的优缺点。
随后,文章从影响因素分析角度探讨了k-means聚类算法与标准化数值之间的关系,并深入剖析了标准化在k-means中的作用及优势。
最后,通过实例解释和说明,对文中所述的理论和观点进行了验证与分析。
1.3 目的本文旨在向读者介绍k-means聚类法及其在数据分析中的应用,并深入探讨标准化数值在k-means聚类算法中扮演的重要角色。
通过本文的阐述,希望读者能够理解k-means聚类法的基本原理、运行步骤以及质量评估指标,并认识到标准化数值对于提高聚类算法性能以及结果准确性的重要性。
最终,通过结论与展望部分,给出对未来研究方向和应用领域的展望和建议,为相关领域研究者提供参考和启示。
2. k-means聚类法:2.1 原理及应用场景:k-means聚类算法是一种常用的无监督学习方法,主要用于将数据集划分为k 个不同的簇(cluster)。
该算法基于距离度量来确定样本之间的相似性,其中每个样本被划分到距离最近的簇。
它的主要应用场景包括图像分割、文本分类、市场细分等。
2.2 算法步骤:k-means聚类算法具有以下几个步骤:1. 初始化: 选择k个随机点作为初始质心。
2. 分配: 对于每个数据点,计算其与各个质心之间的距离,并将其分配到最近的质心所属的簇中。
Matlab中的聚类分析工具简介
Matlab中的聚类分析工具简介聚类分析作为一种常用的数据分析方法,在不同领域和应用中发挥着重要的作用。
而Matlab作为一种支持数值计算和数据可视化的软件,为用户提供了方便且强大的聚类分析工具。
本文将介绍Matlab中几个常用的聚类分析工具及其使用方法。
一、K-means聚类分析工具K-means是一种常见的划分聚类算法,它的基本思想是将n个样本划分为K个不相交的簇,以使得簇内的样本之间的相似度最大化,而簇间的相似度最小化。
在Matlab中,我们可以使用`kmeans`函数来实现K-means聚类分析。
使用`kmeans`函数时,我们需要提供待聚类的样本数据矩阵以及聚类的簇数K作为输入参数。
函数将返回每个样本所属的簇的索引,以及簇的中心点坐标。
我们可以根据簇的索引和中心点坐标进行进一步的分析和可视化。
二、层次聚类分析工具层次聚类是一种基于距离的聚类算法,其基本思想是根据样本之间的相似性将它们逐步地合并为更大的簇,从而形成一个层次化的聚类结果。
在Matlab中,我们可以使用`linkage`函数和`cluster`函数来实现层次聚类分析。
首先,我们可以使用`linkage`函数计算样本之间的距离,并得到一个距离矩阵。
然后,我们可以使用`cluster`函数基于距离矩阵进行聚类,指定簇数或者距离阈值。
该函数将返回每个样本所属的簇的索引。
通过层次聚类分析工具,我们可以获得一个层次化的聚类结果,以及聚类过程中形成的类别树图。
这些结果可以帮助我们更好地理解数据的相似性和结构。
三、密度聚类分析工具与划分和层次聚类不同,密度聚类不依赖于簇的形状和个数的先验知识,而是通过找寻高密度区域来划分数据。
在Matlab中,我们可以使用`dbscan`函数来实现基于密度的聚类分析。
`dbscan`函数需要提供待聚类的样本数据矩阵、邻域半径和邻域密度阈值作为输入参数。
函数将返回每个样本所属的簇的索引,以及噪音点的索引。
密度聚类可以有效地处理数据中的噪音和离群点,并且适用于各种形状和密度不均的数据集。
python_一维数据的k-means算法_概述及解释说明
python 一维数据的k-means算法概述及解释说明1. 引言1.1 概述本文将介绍K-means算法在处理一维数据上的应用。
K-means算法是一种常用的聚类分析方法,可帮助我们将数据集划分为不同的簇。
聚类分析是一种无监督学习方法,通过找到数据中的相似性来对其进行分类,从而提取出隐藏在数据背后的模式和特征。
1.2 文章结构本文共包含以下几个部分:引言、K-means算法概述、一维数据的K-means 算法解释、示例与实现讲解以及结论与展望。
在引言部分,我们将提供一个简要介绍并概括本文所要讨论的主题。
接下来,在K-means算法概述中,我们将详细解释该算法的原理、步骤说明以及适用的场景。
然后,我们会详细探讨如何在一维数据上应用K-means算法,并对其中涉及到的数据预处理、聚类中心计算与更新以及聚类结果评估与迭代调整进行解释。
紧接着,在示例与实现讲解部分,我们将通过具体示例来演示如何使用Python 编写代码实现一维数据的K-means算法,并给出结果可视化和分析解读。
最后,在结论与展望部分,我们将总结本文的主要观点和发现,并展望未来关于K-means算法在一维数据上的研究方向和应用场景的拓展。
1.3 目的本文的目标是为读者提供对K-means算法在处理一维数据时的全面了解和应用指导。
通过阅读本文,读者将了解K-means算法的基本原理、步骤说明以及适用场景,并能够根据具体需求编写代码实现该算法并进行结果分析和解释。
同时,我们还希望通过本文对一维数据的K-means算法进行详细讲解,加深读者对该算法在实际问题中的应用理解和掌握能力。
2. K-means算法概述:2.1 算法原理:K-means算法是一种基于聚类的机器学习算法,主要用于将一组数据分成k 个不同的簇。
该算法通过计算数据点与各个簇中心之间的距离来确定每个数据点所属的簇,并且不断迭代更新簇中心以优化聚类结果。
其核心思想是最小化数据点到其所属簇中心的欧氏距离平方和。
k-means聚类算法简介
k-means聚类算法简介k-means 算法是一种基于划分的聚类算法,它以k 为参数,把n 个数据对象分成k 个簇,使簇内具有较高的相似度,而簇间的相似度较低。
1. 基本思想k-means 算法是根据给定的n 个数据对象的数据集,构建k 个划分聚类的方法,每个划分聚类即为一个簇。
该方法将数据划分为n 个簇,每个簇至少有一个数据对象,每个数据对象必须属于而且只能属于一个簇。
同时要满足同一簇中的数据对象相似度高,不同簇中的数据对象相似度较小。
聚类相似度是利用各簇中对象的均值来进行计算的。
k-means 算法的处理流程如下。
首先,随机地选择k 个数据对象,每个数据对象代表一个簇中心,即选择k 个初始中心;对剩余的每个对象,根据其与各簇中心的相似度(距离),将它赋给与其最相似的簇中心对应的簇;然后重新计算每个簇中所有对象的平均值,作为新的簇中心。
不断重复以上这个过程,直到准则函数收敛,也就是簇中心不发生明显的变化。
通常采用均方差作为准则函数,即最小化每个点到最近簇中心的距离的平方和。
新的簇中心计算方法是计算该簇中所有对象的平均值,也就是分别对所有对象的各个维度的值求平均值,从而得到簇的中心点。
例如,一个簇包括以下 3 个数据对象{(6,4,8),(8,2,2),(4,6,2)},则这个簇的中心点就是((6+8+4)/3,(4+2+6)/3,(8+2+2)/3)=(6,4,4)。
k-means 算法使用距离来描述两个数据对象之间的相似度。
距离函数有明式距离、欧氏距离、马式距离和兰氏距离,最常用的是欧氏距离。
k-means 算法是当准则函数达到最优或者达到最大的迭代次数时即可终止。
当采用欧氏距离时,准则函数一般为最小化数据对象到其簇中心的距离的平方和,即。
其中,k 是簇的个数,是第i 个簇的中心点,dist(,x)为X 到的距离。
2. Spark MLlib 中的k-means 算法Spark MLlib 中的k-means 算法的实现类KMeans 具有以下参数。
k-means聚类数的确定方法
k-means 聚类数的确定是一个重要且困难的问题。
以下是一些常用的方法:
1. 观察数据的可视化效果。
通过绘制数据的散点图等可视化方法,尝试找到最佳的聚类数。
如果聚类数太少,可能会使得聚类结果信息不够丰富; 如果聚类数太多,则可能造成噪声点也被分到簇中。
具体使用的方法可以是肘部法则、轮廓系数法等。
2. 手肘法则(Elbow Method)。
在聚类数逐渐增加时,对应的误差开始缓慢下降,直到达到一个拐点,之后误差下降的速度减缓。
通过这个拐点的位置来确定最佳的聚类数。
3. 轮廓系数法(Silhouette method)。
这是一种基于内部聚合度和分散度的度量方法,用于判断聚类结果的质量。
可以通过绘制轮廓系数随聚类数变化的曲线图,找到最佳的聚类数。
轮廓系数越大,表示聚类结果越好。
4. 基于统计学习理论的方法。
使用基于统计学习理论的数据分析方法、特征选择方法或其他交叉验证方法来优化聚类数使得聚类精度最优。
5. 专家经验法。
人工或专家经验对聚类数的选取能够提供直观或主观的指导,但是其准确性和普适性不够理想。
总的来说,k-means 聚类数的确定需要综合考虑多种因素,在具体应用中根据实际情况和经验来确定最佳的聚类数。
kmeans聚类算法与熵聚类算法
K-means聚类算法与熵聚类算法是机器学习和数据挖掘领域常用的无监督学习方法。
它们都是通过对数据进行分组来寻找数据内在的结构和模式。
一、 K-means聚类算法的原理和流程1.1 K-means算法的原理K-means聚类算法是一种基于中心点的聚类算法。
它的基本思想是将数据集划分为K个簇,每个簇内的数据点与该簇的中心点具有最小的距离,而不同簇之间的数据点的距离较大。
K-means算法的目标是最小化簇内数据点与其对应中心点之间的距离之和。
1.2 K-means算法的流程K-means算法的流程大致可以分为以下几步:(1)初始化K个中心点,可以随机选择数据集中的K个样本作为中心点;(2)对每个样本,计算其与K个中心点的距离,并将其归类到距离最近的簇中;(3)更新每个簇的中心点,将其设置为该簇内所有样本的平均值;(4)重复步骤(2)和(3),直到簇内数据点的分配不再发生变化或达到预设的迭代次数。
1.3 K-means算法的优缺点K-means算法的优点包括简单易实现、计算效率高等。
但其也存在一些缺点,例如K值需事先确定、对初始中心点敏感等。
二、熵聚类算法的原理和流程2.1 熵聚类算法的原理熵聚类算法是一种基于信息论的聚类方法。
其基本思想是通过最小化簇内数据点的信息熵来进行聚类。
熵聚类算法可以分为两种:簇内熵最小化算法和簇间熵最大化算法。
2.2 簇内熵最小化算法簇内熵最小化算法的目标是使得每个簇内的数据点相似度较高,即簇内的数据点之间的差异较小。
这可以通过最小化每个簇的熵来实现。
2.3 簇间熵最大化算法簇间熵最大化算法的目标是使得不同簇之间的差异较大,即簇之间的数据点之间的差异较大。
这可以通过最大化不同簇之间的信息熵来实现。
2.4 熵聚类算法的流程熵聚类算法的流程主要包括以下几步:(1)计算簇内每个数据点的信息熵;(2)将数据点归类到信息熵最小的簇中;(3)重复步骤(1)和(2),直到满足停止条件。
2.5 熵聚类算法的优缺点熵聚类算法的优点包括不需要预先设定簇的个数、对初始值不敏感等。
如何使用K均值算法进行聚类分析(五)
K均值算法(K-means clustering)是一种经典的聚类分析方法,它能够将数据集中的观测值按照它们的特征进行分组。
这种算法在数据挖掘、模式识别和机器学习等领域中被广泛应用。
在本文中,我们将介绍如何使用K均值算法进行聚类分析,并探讨一些相关的技巧和注意事项。
数据预处理在使用K均值算法进行聚类分析之前,首先需要对数据进行预处理。
这包括对数据进行清洗、标准化和降维处理。
清洗数据是为了去除异常值和缺失值,以保证数据的准确性和完整性。
标准化数据是为了使不同特征的数据具有相同的尺度,以便在计算距离时能够进行比较。
而降维处理则是为了减少数据的维度,以便降低计算复杂度和提高算法的效率。
确定聚类数在使用K均值算法进行聚类分析时,需要事先确定分成的聚类数。
这是一个非常重要的步骤,因为聚类数的选择会直接影响到最终的聚类效果。
一般来说,可以通过肘部法则(elbow method)或者轮廓系数(silhouette score)等方法来确定最佳的聚类数。
肘部法则是指随着聚类数的增加,聚类内部的平方和误差(SSE)会逐渐减小,而当聚类数达到一个临界点时,SSE的下降幅度会急剧减小,形成一个“肘部”,这个肘部对应的聚类数即为最佳聚类数。
而轮廓系数则是通过计算每个观测值的轮廓系数来评估聚类的紧密度和分离度,从而确定最佳的聚类数。
初始化聚类中心在确定了聚类数之后,接下来需要初始化聚类中心。
一般来说,可以随机选择一些观测值作为初始的聚类中心,或者通过一些启发式算法来确定初始的聚类中心。
这个步骤是非常关键的,因为初始的聚类中心会直接影响到最终的聚类结果。
迭代优化一旦确定了初始的聚类中心,K均值算法就会开始进行迭代优化。
在每一次迭代中,算法会根据观测值与聚类中心的距离来更新每个观测值所属的聚类,并重新计算每个聚类的中心。
这个过程会一直进行下去,直到达到了预定的迭代次数或者收敛到了一个稳定的状态。
评估聚类结果最后,需要对聚类结果进行评估。
聚类分析算法参考模板
Part 9
轮廓系数聚类
轮廓系数聚类
轮廓系数聚类是一种基于数据点间相似性和数据点与聚类中心间距离的聚类方法。它通过计算每个数
1 据点的轮廓系数(即其与相邻数据点间的平均距离与到所属聚类中心的距离之比),并将轮廓系数低于
某个阈值的点视为噪声点,从而进行聚类
2
轮廓系数聚类的优点是可以发现任意形状的聚类,并且对噪声具有较高的鲁棒性。然而,它需要预先 确定轮廓系数的计算方式和噪声点的阈值。## 11. 均值漂移聚类
DBSCAN可以发现任意 形状的聚类,并且对噪
声具有高度的鲁棒性
然而,它需要预先确定 邻域的大小和MinPts 的值
Part 3
层次聚类(Hierarchical Clustering)
层次聚类(Hierarchical Clustering)
层次聚类是一种基于距离的聚类算法,它以一 种自下而上的或自上而下的方式逐层进行聚类 。主要有两种类型:凝聚的和分裂的。凝聚的 层次聚类从每个单独的对象开始,然后合并最 接近的一对聚类,直到所有的对象都在一个聚 类中。分裂的层次聚类则相反,开始时所有的 对象都在一个聚类中,然后分裂为两个子聚类 ,直到每个对象都是一个单独的聚类
对拉普拉斯矩阵进行特征分解:并选取 最小的k个特征向量构成矩阵
将上一步得到的矩阵的每一行视作一个 点:对这些点进行k-means聚类
将k-means聚类的结果作为最终的光谱聚 类结果
2024/9/17
17
光谱聚类(Spectral Clustering)
光谱聚类适用于处理非凸、非线性的数据分布和具有不同规模的聚类问题。 然而,它对相似性矩阵的选择很敏感,并且需要进行特征分解,计算复杂 度较高。## 6. 二分K-Means聚类
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i
E 是一个数据集中所有对象的误差平方和,P 是一个对象,mi 是聚类 Ci 的质心, 即 mi
qC i
q
Ci
k‐means 聚类算法的具体步骤如下: ①从数据集中选择 k 个质心 C1,C2,…,Ck 作为初始的聚类中心; ②把每个对象分配到与之最相似的聚合。每个聚合用其中所有对象的均值来 代表, “最相似”就是指距离最小。对于每个点 Vi,找出一个质心 Cj,使它与其 间 的距离 d(Vi,Cj)最小,并把 Vi 分配到第 j 组; ③把所有的点都分配到相应的组之后重新计算每个组的质心 Cj; ④循环执行第②步和第③步,直到数据的划分不再发生变化。 该算法具有很好的可伸缩性,其计算复杂度为 O(nkt),其中,t 是循环的次数。 K‐means 聚类算法的不足之处在于它要多次扫描数据库,此外,它只能找出球形 的 类, 而不能发现任意形状的类。 还有, 初始质心的选择对聚类结果有较大的影响, 该算法对噪声很敏感。
K‐means 聚类分析
主要的聚类算法可以分为以下几种:划分聚类、层次聚类、密度型聚类、网 格型聚类和基于模型的聚类。 划分聚类算法把数据点集分为 k 个划分,每个划分作为一个聚类。它一般从 一个初始划分开始,然后通过重复的控制策略,使某个准则函数最优化,而每个 聚类由其质心来代表(k‐means 算法),或者由该聚类中最靠近中心的一个对象来 代 表(k‐medoids 算法)。 划分聚类算法收敛速度快, 缺点在于它倾向于识别凸形分布 大小相近、密度相近的聚类,不能发现分布形状比较复杂的聚类,它要求类别数 目 k 可以合理地估计,并且初始中心的选择和噪声会对聚类结果产生很大影响。 主要的划分聚类算法有 k‐means,EM,k‐medoids,CLARA,CLARANS 等。 下面主要介绍 K‐means 聚类方法。 k‐means 算法首先随机选择 k 个对象,每个对象代表一个聚类的质心。对于其 余的每一个对象,根据该对象与各聚类质心之间的距离,把它分配到与之最相似 的聚类中。然后,计算每个聚类的新质心。重复上述过程,直到准则函数会聚。 通常采用的准则函数是平方误差准则函数(squared‐error criterion),即 E i 1 pC p m
自组织特征神经网络简介
在人类的神经系统及脑的研究中,人们发现:人脑的某些区域对某种信息或 感觉敏感,如人脑的某一部分进行机械记忆特别有效;而某一部分进行抽象思维 特别有效。这种情况使人们对大脑的作用的整体性与局部性特征有所认识。对大 脑的研究说明,大脑是由大量协同作用的神经元群体组成的。大脑的神经网络是 一个十分复杂的反馈系统;在这个系统中含有各种反馈作用,有整体反馈,局部 反馈:另外,还有化学交互作用。在大脑处理信息的过程中,聚类是极其重要的 功能。大脑通过聚类过程从而识别外界的信号,并产生自组织过程。根据大脑对 信号的处理特点,在 1981 年,T.Kohonen 提出了一种神经网络模型,也就是自 组织特征映射 SOM(Self 一 orzanizingFeatureMap)。 SOM 网络算法是一种聚类算法,它能根据其学习规则对输入的模式进行自 动分类,即再在无监督的情况下,对输入模式进行自组织学习,通过反复地调整 连接权重系数,最终使得这些系数反映出输入样本之间地相互关系,并在竞争层 将分类结果表示出来。因此,SOM 神经网络在结构上模拟了大脑皮层中神经元 旱二维空间点阵的结构,并在功能上通过网学习功能。该算法被广泛应用于 各种模式识别和分类问题中。
问题探究
近年来,数据挖掘成为越来越热的一个研究方向,而聚类(clustering)作为数 据挖掘的主要方法之一,也越来越引起人们的关注。所谓聚类,就是把大量的 d 维数据对象(n 个)聚集成 k 个聚类(k<n), 使同一聚类内对象的相似性尽可能最大,
而不同聚类内对象的相似性尽量达到最小。也就是说,形成聚类之后,同一个聚 类内对象具有很高的相似性, 而与不属于该聚类的对象有迥然的差异(即不相似)。 聚类与分类相比,分类算法分析的是类别已知的数据集,而聚类算法分析的是类 别未知的数据。 聚类的输入是一组未分类的记录,而且事先也不知道要分成几类,它通过分 析数据,根据一定的分类准则,合理划分记录集合,从而确定每个记录所属的类 别。不同的聚类算法中,用于描述相似性的函数也有所不同,有的采用欧氏距离 或马氏距离,有的采用向量夹角的余弦,也有的采用其他的度量方法。 当预先不知道类型数目, 或者用参数估计和非参数估计难以分辨不同类型的 类概率密度函数时,就需要采用聚类分析。有些聚类分析算法可以自动地确定类 型的数目 k,而不必以预知 k 为前提条件,也可以给定 k 作为算法的终止条件若 没有给定 k,那么如何在聚类过程中自动地确定 k,这是聚类分析中的一个关键 问题。 确定 k 值的方法很多,具体哪种较好还有待探究。基于自组织特征神经网络 (SOM)的聚类分析是其中的一种解决方案。
通过计算结果作图分析可以确定 k 值。再结合 k‐means 算法快速分类。 参考文献: 【1】 基于 SOM 神经网络和 K‐均值聚类的分类器设计 曹金平 【2】 基于自组织映射神经网络的低压故障电弧聚类分析 邹云峰,吴吴为麟李智勇 【3】 基于自组织特征映射网络的聚类算法研究 吴红艳 附录: k‐mean 和 SOM 神经网络 matlab 程序(未调试) 。