第三讲--线段的和差倍分问题

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

(3)解:BE+DF=EF;理由如下:

延长AB至点N,使BN=DF,连接CN,如图3所示:

∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,

∴∠NBC=∠D,

在△NBC和△FDC中,,

∴△NBC≌△FDC(SAS),

∴CN=CF,∠NCB=∠FCD,

∵∠BCD=140°,∠ECF=70°,

∴∠BCE+∠FCD=70°,

∴∠ECN=70°=∠ECF,

在△NCE和△FCE中,,

∴△NCE≌△FCE(SAS),

∴EN=EF,

∵BE+BN=EN,

∴BE+DF=EF.

26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C 向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.

(1)当点P与点O重合时如图1,易证OE=OF(不需证明)

(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.

【考点】四边形综合题.

【分析】(1)由△AOE≌△COF即可得出结论.

(2)图2中的结论为:CF=OE+AE,

延长EO交CF于点G,只要证明

△EOA≌△GOC,△OFG是等边三角

形,即可解决问题.

图3中的结论为:CF=OE﹣AE,延长

EO交FC的延长线于点G,证明方法

类似.

【解答】解:(1)∵AE⊥PB,CF⊥BP,

∴∠AEO=∠CFO=90°,

在△AEO和△CFO中,

∴△AOE≌△COF,

∴OE=OF.

(2)图2中的结论为:CF=OE+AE.

图3中的结论为:CF=OE﹣AE.

选图2中的结论证明如下:

延长EO交CF于点G,

∵AE⊥BP,CF⊥BP,

∴AE∥CF,

∴∠EAO=∠GCO,

在△EOA和△GOC中,

∴△EOA≌△GOC,

∴EO=GO,AE=CG,

在RT△EFG中,∵EO=OG,

∴OE=OF=GO,

∵∠OFE=30°,

∴∠OFG=90°﹣30°=60°,

∴△OFG是等边三角形,

∴OF=GF,

∵OE=OF,

∴OE=FG,

∵CF=FG+CG,

∴CF=OE+AE.

选图3的结论证明如下:

延长EO交FC的延长线于点G,

∵AE⊥BP,CF⊥BP,

∴AE∥CF,

∴∠AEO=∠G,

在△AOE和△COG中,

∴△AOE≌△COG,

∴OE=OG,AE=CG,

在RT△EFG中,∵OE=OG,

∴OE=OF=OG,

∵∠OFE=30°,

∴∠OFG=90°﹣30°=60°,

∴△OFG是等边三角形,

∴OF=FG,

∵OE=OF,

∴OE=FG,

∵CF=FG﹣CG,

∴CF=OE﹣AE.

26.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.

【解答】解:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.

∵四边形ABCD为正方形,

∴∠BAD=90°.

又∵∠EAF=45°,

∴∠BAE+∠DAF=45°.

∴∠BAG+∠BAE=45°.

∴∠GAE=∠FAE.

在△GAE和△FAE中,

∴△GAE≌△FAE.

②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,

∴AB=AH,GE=EF=5.

设正方形的边长为x,则EC=x﹣2,FC=x﹣3.

在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.

解得:x=6.

∴AB=6.

∴AH=6.

(3)如图所示:将△ABM逆时针旋转90°得△ADM′.

∵四边形ABCD为正方形,

∴∠ABD=∠ADB=45°.

由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.

∴∠NDM′=90°.

∴NM′2=ND2+DM′2.

∵∠EAM′=90°,∠EAF=45°,

∴∠EAF=∠FAM′=45°.

在△AMN和△ANM′中,,

∴△AMN≌△ANM′.

∴MN=NM′.

又∵BM=DM′,

∴MN2=ND2+BM2.

25.已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.

①求证:PG=PF;②探究:DF、DG、DP之间有怎样的

数量关系,并证明你的结论.

(2)拓展:如图2,若点F在CD的延长线上(不与D重合),

过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、

DG、DP之间的数量关系是否仍然成立?若成立,给出证明;

若不成立,请写出它们所满足的数量关系式,并说明理由.

【考点】四边形综合题.

【分析】(1)①若证PG=PF,可证△HPG≌△DPF,已知∠DPH=∠HPG,由旋转可知∠GPF=∠HPD=90°及DE平分∠ADC 得△HPD为等腰直角三角形,即∠DHP=∠PDF=45°、PD=PH,即可得证;

②由△HPD为等腰直角三角形,△HPG≌△DPF知HD=DP,HG=DF,根据DG+DF=DG+GH=DH即可得;

(2)过点P作PH⊥PD交射线DA于点H,先证△HPD为等腰直角三角形可得PH=PD,HD=DP,再证△HPG≌△DPF 可得HG=DF,根据DH=DG﹣HG=DG﹣DF可得DG﹣DF=DP.

【解答】解:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,

∴∠GPH=∠FPD,

∵DE平分∠ADC,

∴∠PDF=∠ADP=45°,

∴△HPD为等腰直角三角形,

∴∠DHP=∠PDF=45°,

在△HPG和△DPF中,

∵,

∴△HPG≌△DPF(ASA),

∴PG=PF;

相关文档
最新文档