2017~2018学年广东广州番禺区初一上学期期末数学试卷(解析)

合集下载

2017-2018学年广州市黄埔区七年级上期末数学试卷(有答案)【最佳】

2017-2018学年广州市黄埔区七年级上期末数学试卷(有答案)【最佳】

2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣x y+xy=0 D.a4+a2=a65.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=36.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=27.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B.C.D.9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为.12.(3分)若∠α=50°,则它的余角是°.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是(填序号).14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD的长为.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]=.三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.21.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣【解答】解:3倒数等于,故选:B.2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|【解答】解:A、|﹣2|=2,正确;B、﹣2=﹣|﹣2|,正确;C、﹣(﹣2)=|﹣2|,正确;D、﹣|2|=﹣2,|﹣2|=2,错误;故选D3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x【解答】解:a3与b3所含的字母不同,不是同类项;2a2b与﹣a2b是同类项;﹣ab2c与﹣5b2c所含字母不同,不是同类项;x2与2x相同字母的指数不相同,不是同类项.故选B.4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣xy+xy=0 D.a4+a2=a6【解答】解:A、3m+3n=6mn,错误;B、4x3﹣3x3=1,错误,4x3﹣3x3=x3;C、﹣xy+xy=0,正确;D、a4+a2=a6,错误;故选C.5.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=3【解答】解:方程两边都乘以﹣3得,x=﹣27.故选A.6.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2 C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=2【解答】解:A、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;B、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;C、3x+2=4x移项,得3x﹣4x=﹣2,故本选项错误;D、3x+2=4x移项,得3x﹣4x=﹣2,所以,4x﹣3x=2,故本选项正确.故选D.7.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【解答】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;故选:C.8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B.C.D.【解答】解:从正面看易得此几何体的主视图是一个梯形.故选C9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b【解答】解:A、依题意得:2a+1,故本选项不符合题意;B、依题意得:﹣a+b,故本选项不符合题意;C、依题意得:a2﹣1,故本选项不符合题意;D、依题意得:3(2a﹣b),故本选项符合题意;故选:D.10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为 2.35×108.【解答】解:235 000 000为2.35×108,故答案为:2.35×108.12.(3分)若∠α=50°,则它的余角是40°.【解答】解:∵∠α=50°,∴它的余角是90°﹣50°=40°.故答案为:40.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是①②(填序号).【解答】解:∵﹣3﹣2=﹣5,故①正确,∵﹣3×(﹣2)=3×2=6,故②正确,∵(﹣2)2=4,故③错误,故答案为:①②.14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD的长为2.【解答】解:∵C为线段AB的中点,AB=12,∴BC=AB=6,∵DB=8,∴CD=BD﹣BC=8﹣6=2,故答案为:2.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=1.【解答】解:∵4x2y3+2ax2y3=4bx2y3,∴4+2a=4b,则2a﹣4b=﹣4,a﹣2b=﹣2,∴3+a﹣2b=3﹣2=1,故答案为:1.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]=﹣27.【解答】解:根据题中的新定义得:原式=[(﹣1)▽1]▽[2▽(﹣5)]=(﹣3)▽12=﹣3﹣24=﹣27,故答案为:﹣27三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)【解答】解:如图,线段AD即为所求18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.【解答】解:(1)将各数表示在数轴上,如图所示:(2)根据题意得:﹣1<﹣1<2<5.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.【解答】解:(1)原式=14+16﹣9﹣13=30﹣22=8;(2)原式=﹣﹣=﹣.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.【解答】解:(1)﹣3x2+3x+1+2x2﹣2x=﹣x2+x+1当x=﹣1时,原式=﹣(﹣1)2﹣1+1=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7)=a2﹣ab﹣7+4a2﹣2ab﹣7=5a2﹣3ab﹣14当a=2,b=时,原式=5×22﹣3×2×﹣14=20﹣9﹣14=﹣321.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.【解答】解:(1)7x﹣4x=5+4,3x=9,x=3;(2)4(2x﹣1)=12﹣3(x+2),8x﹣4=12﹣3x﹣6,8x+3x=12﹣6+4,11x=10,x=22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?【解答】解:设A种教具买了x件,则B两种教具买了(138﹣x)件,由题意得,30x+50(138﹣x)=5400,解得:x=75,138﹣75=63,答:A、B两种教具各买了75件,63件.23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.【解答】解:(1)∵OC平分∠AOD,∠AOC=35°,∴∠AOD=70°,∴∠BOD=180°﹣70°=110°;(2)设∠COD=x,则∠AOD=2x,∵∠AOE=∠DOE,∴,解得,x=()°,∴∠BOD=180°﹣2x=()°.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?【解答】解:(1)﹣3+4=1.故点N所对应的数是1;(2)(5﹣4)÷2=0.5,①﹣3﹣0.5=﹣3.5,②1+0.5=1.5.故点P所对应的数是﹣3.5或1.5.(3)①(4+2×5﹣2)÷(3﹣2)=12÷1=12(秒),点P对应的数是﹣3+12×2=21,点Q对应的数是21﹣2=19;②(4+2×5+2)÷(3﹣2)=16÷1=16(秒);点P对应的数是﹣3+16×2=29,点Q对应的数是29﹣2=27.。

2017-2018学年广东省广州市黄埔区七年级上期末数学试卷含答案解析

2017-2018学年广东省广州市黄埔区七年级上期末数学试卷含答案解析

2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2| 3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣x y+xy=0 D.a4+a2=a65.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=36.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=27.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B.C.D.9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为.12.(3分)若∠α=50°,则它的余角是°.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是(填序号).14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD 的长为.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]=.三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.21.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣【解答】解:3倒数等于,故选:B.2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|【解答】解:A、|﹣2|=2,正确;B、﹣2=﹣|﹣2|,正确;C、﹣(﹣2)=|﹣2|,正确;D、﹣|2|=﹣2,|﹣2|=2,错误;故选D3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x【解答】解:a3与b3所含的字母不同,不是同类项;2a2b与﹣a2b是同类项;﹣ab2c与﹣5b2c所含字母不同,不是同类项;x2与2x相同字母的指数不相同,不是同类项.故选B.4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣xy+xy=0 D.a4+a2=a6【解答】解:A、3m+3n=6mn,错误;B、4x3﹣3x3=1,错误,4x3﹣3x3=x3;C、﹣xy+xy=0,正确;D、a4+a2=a6,错误;故选C.5.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=3【解答】解:方程两边都乘以﹣3得,x=﹣27.故选A.6.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2 C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=2【解答】解:A、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;B、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;C、3x+2=4x移项,得3x﹣4x=﹣2,故本选项错误;D、3x+2=4x移项,得3x﹣4x=﹣2,所以,4x﹣3x=2,故本选项正确.故选D.7.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【解答】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;故选:C.8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B.C.D.【解答】解:从正面看易得此几何体的主视图是一个梯形.故选C9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b【解答】解:A、依题意得:2a+1,故本选项不符合题意;B、依题意得:﹣a+b,故本选项不符合题意;C、依题意得:a2﹣1,故本选项不符合题意;D、依题意得:3(2a﹣b),故本选项符合题意;故选:D.10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为 2.35×108.【解答】解:235 000 000为2.35×108,故答案为:2.35×108.12.(3分)若∠α=50°,则它的余角是40°.【解答】解:∵∠α=50°,∴它的余角是90°﹣50°=40°.故答案为:40.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是①②(填序号).【解答】解:∵﹣3﹣2=﹣5,故①正确,∵﹣3×(﹣2)=3×2=6,故②正确,∵(﹣2)2=4,故③错误,故答案为:①②.14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD 的长为2.【解答】解:∵C为线段AB的中点,AB=12,∴BC=AB=6,∵DB=8,∴CD=BD﹣BC=8﹣6=2,故答案为:2.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=1.【解答】解:∵4x2y3+2ax2y3=4bx2y3,∴4+2a=4b,则2a﹣4b=﹣4,a﹣2b=﹣2,∴3+a﹣2b=3﹣2=1,故答案为:1.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]=﹣27.【解答】解:根据题中的新定义得:原式=[(﹣1)▽1]▽[2▽(﹣5)]=(﹣3)▽12=﹣3﹣24=﹣27,故答案为:﹣27三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)【解答】解:如图,线段AD即为所求18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.【解答】解:(1)将各数表示在数轴上,如图所示:(2)根据题意得:﹣1<﹣1<2<5.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.【解答】解:(1)原式=14+16﹣9﹣13=30﹣22=8;(2)原式=﹣﹣=﹣.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.【解答】解:(1)﹣3x2+3x+1+2x2﹣2x=﹣x2+x+1当x=﹣1时,原式=﹣(﹣1)2﹣1+1=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7)=a2﹣ab﹣7+4a2﹣2ab﹣7=5a2﹣3ab﹣14当a=2,b=时,原式=5×22﹣3×2×﹣14=20﹣9﹣14=﹣321.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.【解答】解:(1)7x﹣4x=5+4,3x=9,x=3;(2)4(2x﹣1)=12﹣3(x+2),8x﹣4=12﹣3x﹣6,8x+3x=12﹣6+4,11x=10,x=22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?【解答】解:设A种教具买了x件,则B两种教具买了(138﹣x)件,由题意得,30x+50(138﹣x)=5400,解得:x=75,138﹣75=63,答:A、B两种教具各买了75件,63件.23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.【解答】解:(1)∵OC平分∠AOD,∠AOC=35°,∴∠AOD=70°,∴∠BOD=180°﹣70°=110°;(2)设∠COD=x,则∠AOD=2x,∵∠AOE=∠DOE,∴,解得,x=()°,∴∠BOD=180°﹣2x=()°.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?【解答】解:(1)﹣3+4=1.故点N所对应的数是1;(2)(5﹣4)÷2=0.5,①﹣3﹣0.5=﹣3.5,②1+0.5=1.5.故点P所对应的数是﹣3.5或1.5.(3)①(4+2×5﹣2)÷(3﹣2)=12÷1=12(秒),点P对应的数是﹣3+12×2=21,点Q对应的数是21﹣2=19;②(4+2×5+2)÷(3﹣2)=16÷1=16(秒);点P对应的数是﹣3+16×2=29,点Q对应的数是29﹣2=27.。

番禺区2016-2017学年第一学期期末数学科试卷答案

番禺区2016-2017学年第一学期期末数学科试卷答案

番禺区2016学年第一学期期末测试题七年级数学答案一、选择题(本大题共有10小题,每小题3分,满分30分)二、填空题(本大题共有6小题,每小题3分,满分18分)11、2017 12、4n -2m 13、2x+1(x+2或其他合适的整式) 14、125°25′ 15、1cm 或7cm 16、正方体(球或其他合适的几何体)三、解答题(本大题共9小题,满分102 分.解答应写出文字说明、证明过程或演算步骤) 17. (1)−14×(+5)÷(−12)3 (2)1712×19+(-2.5)÷(−3)2解: =−54÷(−18) =17.5×19−2.5×19 =10 =(17.5-2.5)×19=15×19 =5318、(本小题满分8分)解方程:(1)3(x -2)=x -(2x -1) (2)1-x−14=2x+16解: 3x -6 =x -2x+1 解:12-3(x -1)=2(2x+1) 3x -x+2x=6+1 12-3x+3 =4x+2 4x=7 -3x -4x =2-12-3 x=74 -7x=-13x =13719、(本小题满分6分)先化简后求值。

3(3a 2b −ab 2)-2(2a 2b +ab 2)+2b ,其中a=2,b=15解:原式=9a 2b −3ab 2−4a 2b −2ab 2+2b =9a 2b −4a 2b −(3ab 2+2ab 2)+2b=5a 2b −5 ab 2+2b将a=2,b=15代入,得到5×4×15−5×2×125+2×15=4-25+25=4 20、解:(1)∵|0.25|=0.25,|0.17|=0.17,|-0.30|=0.30 ,|+0.03|=0.03,|-0.25|=0.25,0.30>0.25>0.17>0.03最标准的球重:5+0.03=5.03(g ) 最不标准的球重:5-0.30=4.70(g )答:其中最标准的羽毛球重5.03g ,最不标准的羽毛球重4.70g ;(2)这5个羽毛球共重:(0.25+0.17-0.30+0.03-0.25)+5×5=24.9(g ), 平均每个羽毛球重:24.9+÷5=4.98(g )答:这5个羽毛球共重24.9g ,平均每个羽毛球重4.98g 。

2017-2018学年广东省广州市番禺区七年级第一学期期末数学试卷带答案

2017-2018学年广东省广州市番禺区七年级第一学期期末数学试卷带答案

2017-2018学年广东省广州市番禺区初一(上)期末数学试卷一.选择题1-5:BCCDB6-10:ACABD二.填空题11.2ab(答案不唯一)12.<13.60°14.4a+1615.22.5°16.16三.解答题17.解:(1)原式=7135 () 66143⨯-⨯⨯=572-4850.7 4400.74.74035.3=-⨯+=-+=-=-(2)原式18.解:(1)2x+16=3x-3 2x-3x=-3-16-x=-19x=19(2)3(3y-1)-12=2(5y-7)9y-3-12=10y-14-y=1y=-122222222232241,2=21=41=3x xy y x xy y y x x y =+---+=-=-=---19.解:原式当时原式()20.解:(1)+30-25-30+28-29-16-15=-57答:经过7天,仓库里的存有的水泥减少了57吨;(2)200+57=257(吨)答:7天前,仓库里的存有的水泥有257吨;(3)进库装卸费为:(30+28)a=58a (元) 出库装卸费为:2530291615-+-+-+-+-()b=115b (元)共(58a+115b) 元答:这7天要付装卸费(58a+115b) 元.21.解:如图(1)点E 为所求(2)点M 为所求.22.解:(1)AB 20103030=--=-=∴A ,B 两点的距离为30.(2)d a b =-(3)设经过x 秒两点相遇,则:2x+x=30x=10∴10-1×10=0∴两点相遇点所表示的数是0.23. 解:(1)设七年级收到的征文为x 篇,则八年级收到的征文为(118-x )篇,则: 1(118)22x x --= x=38答:七年级收到的征文为38篇(2)设第一件的成本是x元,x<480,则:480-x=20%xx=400赚了480-400=80元;设第二件的成本是y元, 则:y>480,则:y- 480=20%yy=600亏了600-480=120元;两件衣服共亏了120-80=40元答:卖出这两件衣服亏了40元。

广东省广州市番禺区七年级上学期期末考试数学试卷

广东省广州市番禺区七年级上学期期末考试数学试卷
2019-2020学年广东省广州市番禺区七年级上学期期末考试
数学试卷解析版
一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选择项中,只有一项是符合题目要求的)
1.2的相反数是( )
A. B.2C.﹣2D.
【解答】解:﹣2的相反数是2.
故选:C.
2.2018年10月23日,世界上最长的跨海大桥﹣港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为( )
D、 ,正确;
故选:C.
5.下列关于几何画图的语句,正确的是( )
A.延长射线AB到点C,使BC=2AB
B.点P在线段AB上,点Q在直线AB的反向延长线上
C.将射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时形成平角
D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b
A.5.5×103B.55×103C.5.5×104D.6×104
【解答】解:55000=5.5×104.
故选:C.
3.如果a<0,b>0,那么( )
A.ab>0B.a﹣b>0C. D.a﹣b<0
【解答】解:∵a<0,b>0,
∴ab<0,
∴选项A不符合题意;
∵a<0,b>0,
∴a﹣b<0,
∴选项B不符合题意;
所以D选项错误,不符合题意.
故选:C.
6.下列说法中,正确的是( )
A.若x,y互为倒数,则(﹣xy)2020=﹣1
B.如果|x|=2,那么x的值一定是2
C.与原点的距离为4个单位的点所表示的有理数一定是4
D.若﹣7x6y4和3x2myn是同类项,则m+n的值是7

2017-2018学年广州市黄埔区七年级上期末数学试卷(有答案)【经典】

2017-2018学年广州市黄埔区七年级上期末数学试卷(有答案)【经典】

2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣x y+xy=0 D.a4+a2=a65.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=36.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=27.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B.C.D.9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为.12.(3分)若∠α=50°,则它的余角是°.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是(填序号).14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD的长为.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]=.三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.21.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣【解答】解:3倒数等于,故选:B.2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|【解答】解:A、|﹣2|=2,正确;B、﹣2=﹣|﹣2|,正确;C、﹣(﹣2)=|﹣2|,正确;D、﹣|2|=﹣2,|﹣2|=2,错误;故选D3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x【解答】解:a3与b3所含的字母不同,不是同类项;2a2b与﹣a2b是同类项;﹣ab2c与﹣5b2c所含字母不同,不是同类项;x2与2x相同字母的指数不相同,不是同类项.故选B.4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣xy+xy=0 D.a4+a2=a6【解答】解:A、3m+3n=6mn,错误;B、4x3﹣3x3=1,错误,4x3﹣3x3=x3;C、﹣xy+xy=0,正确;D、a4+a2=a6,错误;故选C.5.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=3【解答】解:方程两边都乘以﹣3得,x=﹣27.故选A.6.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2 C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=2【解答】解:A、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;B、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;C、3x+2=4x移项,得3x﹣4x=﹣2,故本选项错误;D、3x+2=4x移项,得3x﹣4x=﹣2,所以,4x﹣3x=2,故本选项正确.故选D.7.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【解答】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;故选:C.8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B.C.D.【解答】解:从正面看易得此几何体的主视图是一个梯形.故选C9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b【解答】解:A、依题意得:2a+1,故本选项不符合题意;B、依题意得:﹣a+b,故本选项不符合题意;C、依题意得:a2﹣1,故本选项不符合题意;D、依题意得:3(2a﹣b),故本选项符合题意;故选:D.10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为 2.35×108.【解答】解:235 000 000为2.35×108,故答案为:2.35×108.12.(3分)若∠α=50°,则它的余角是40°.【解答】解:∵∠α=50°,∴它的余角是90°﹣50°=40°.故答案为:40.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是①②(填序号).【解答】解:∵﹣3﹣2=﹣5,故①正确,∵﹣3×(﹣2)=3×2=6,故②正确,∵(﹣2)2=4,故③错误,故答案为:①②.14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD的长为2.【解答】解:∵C为线段AB的中点,AB=12,∴BC=AB=6,∵DB=8,∴CD=BD﹣BC=8﹣6=2,故答案为:2.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=1.【解答】解:∵4x2y3+2ax2y3=4bx2y3,∴4+2a=4b,则2a﹣4b=﹣4,a﹣2b=﹣2,∴3+a﹣2b=3﹣2=1,故答案为:1.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]=﹣27.【解答】解:根据题中的新定义得:原式=[(﹣1)▽1]▽[2▽(﹣5)]=(﹣3)▽12=﹣3﹣24=﹣27,故答案为:﹣27三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)【解答】解:如图,线段AD即为所求18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.【解答】解:(1)将各数表示在数轴上,如图所示:(2)根据题意得:﹣1<﹣1<2<5.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.【解答】解:(1)原式=14+16﹣9﹣13=30﹣22=8;(2)原式=﹣﹣=﹣.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.【解答】解:(1)﹣3x2+3x+1+2x2﹣2x=﹣x2+x+1当x=﹣1时,原式=﹣(﹣1)2﹣1+1=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7)=a2﹣ab﹣7+4a2﹣2ab﹣7=5a2﹣3ab﹣14当a=2,b=时,原式=5×22﹣3×2×﹣14=20﹣9﹣14=﹣321.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.【解答】解:(1)7x﹣4x=5+4,3x=9,x=3;(2)4(2x﹣1)=12﹣3(x+2),8x﹣4=12﹣3x﹣6,8x+3x=12﹣6+4,11x=10,x=22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?【解答】解:设A种教具买了x件,则B两种教具买了(138﹣x)件,由题意得,30x+50(138﹣x)=5400,解得:x=75,138﹣75=63,答:A、B两种教具各买了75件,63件.23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.【解答】解:(1)∵OC平分∠AOD,∠AOC=35°,∴∠AOD=70°,∴∠BOD=180°﹣70°=110°;(2)设∠COD=x,则∠AOD=2x,∵∠AOE=∠DOE,∴,解得,x=()°,∴∠BOD=180°﹣2x=()°.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?【解答】解:(1)﹣3+4=1.故点N所对应的数是1;(2)(5﹣4)÷2=0.5,①﹣3﹣0.5=﹣3.5,②1+0.5=1.5.故点P所对应的数是﹣3.5或1.5.(3)①(4+2×5﹣2)÷(3﹣2)=12÷1=12(秒),点P对应的数是﹣3+12×2=21,点Q对应的数是21﹣2=19;②(4+2×5+2)÷(3﹣2)=16÷1=16(秒);点P对应的数是﹣3+16×2=29,点Q对应的数是29﹣2=27.。

2017_2018学年广东广州天河区初一上学期期末数学试卷答案

2017_2018学年广东广州天河区初一上学期期末数学试卷答案

1 2考点.的解为..的解为.方程与不等式一元一次方程一元一次方程的解答案解析考点A.与 B.与 C.与 D.与下列选项中,两个单项式属于同类项的是( ).3D .底数不同,故错误..底数不同,故错误..相同底数的指数不同,故错误..底数相同,相同底数上指数相同.式整式同类项同类项的基本概念答案A. B. C. D.据统计,到年底,广州市的常住人口将达到人,这个人口数据用科学记数法表示为( ).4C解析考点用科学记数法表示为.数有理数科学记数法:表示较大的数答案解析考点A.条 B.条 C.条 D.条如图,在直线上有、、三点,则图中线段共有( ).5C 图中线段有、、这条.几何初步直线、射线、线段直线、射线、线段的基本概念答案解析A.B.C. D.下列变形中,不正确的是( ).6A .,故错误.、、去括号均正确,故选.考点式整式去括号与添括号去括号法则答案解析考点A.系数是,次数是B.系数是,次数是 C.系数是,次数是 D.系数是,次数是下列关于单项式的正确说法是( ).7B 的系数是,次数是.式整式单项式答案A. B. C. D.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( ).8C解析考点四个方格形成的“田”字的,不能组成正方体,错.出现“”字的,不能组成正方体,错.以横行上的方格从上往下看:选项组成正方体.几何初步几何图形展开图折叠成几何体答案解析考点A. B. C. D.若,互为补角,且,则的余角是( ).9C 根据题意得,,∴的余角为:.故选.几何初步角余角和补角如图是含的代数式按规律排列的前行,依此规律,若第行第项的值为.则此时的值为( ).10答案解析考点A. B. C. D.B 由题知,第行的系数为.第行第项的常数项为.所以第行第项为.∴.式探究规律数字的变化类数字找规律答案解析考点南京市月份的平均气温是零下,用负数表示这个温度是 .11低于为负,所以零下为.数有理数正数和负数二、填空题(本大题共6小题,每小题3分,共18分)答案解析考点若,则 .12∵.∴与为同类项.∴,..式整式同类项合并同类项答案解析考点若代数式和的值互为相反数,则 .13∵与互为相反数.∴..数有理数相反数答案解析考点已知,那么的补角等于 .14∵.∴的补角为.几何初步角余角和补角互余与互补答案解析从处看处的方向是北偏东,反过来,从看的方向是 .15南偏西如图所示.从看的方向是南偏西.考点几何初步角方位角答案解析考点如图,把一张长方形纸片沿折叠后,若,则 .16由折叠性质可知.与互补.∵.∴.∴..几何初步角角的计算与证明有图形的角的计算几何变换图形的对称翻折变换(折叠问题)其它翻折问题答案解析考点计算:.17.原式.数有理数有理数的加减混合运算有理数加减混合运算答案解析考点计算:.18.原式.数有理数有理数的混合运算有理数综合运算三、解答题(本大题共11小题,共102分)答案解析考点解方程:.19.....方程与不等式一元一次方程解一元一次方程常规方法解一元一次方程答案解析考点解方程:.20.,,,,,.方程与不等式一元一次方程解一元一次方程常规方法解一元一次方程答案解析考点如图,已知线段的长度是,线段的长度比线段的长度的倍多,线段的长度比线段的长度的倍少,求线段,和的长.21,,.∵.∴.又∵比长度倍少.∴.∵.∴,,.几何初步直线、射线、线段线段的和差有图形的线段的计算答案先化简,再求值:,其中,.22.解析考点原式.∵,.∴原式.式整式整式加减的化简求值先化简再求值答案解析根据图中情景信息,解答下列问题:23购买根跳绳需 元,购买根跳绳需 元.(1)小红比小明多买根,付款时小红反而比小明少元,你认为有这种可能吗?请结合方程知识说明理由.(2)1:2:(1)小明买根时,小红买根时,小红比小明少用元钱.(2)根跳绳所用钱数为元.根跳绳所用钱数为元.(1)考点可能,设小红买的根数为.则小明买的根数为.由题意可知:...则.即小明买根时,小红买根时,小红比小明少用元钱.(2)数有理数有理数的乘法有理数乘法运算方程与不等式一元一次方程一元一次方程的应用经济利润问题答案解析解答下面问题:24若代数式的值为,求代数式的值.(1)已知,,求当时的值.(2).(1).(2)∵.(1)考点∴.∴.∴原式.∵,.∴.∴当时..(2)式整式整式加减的化简求值整体思想求值先化简再求值答案如图,已知直线和相交于点,在的内部作射线.25若,,求的度数.(1)若,求的度数.(2).(1)解析考点.(2)由图得..∵,.∴.(1)∵.设,,.∴.∴.∵.∴.(2)几何初步角角的计算与证明有图形的角的计算如图的长方形是广州某市民健身广场的平面示意图,它是由个正方形拼成的(分别用,,,,,六个字母表示),已知中间最小的正方形的边长是米,设正方形的边长是米.26请用含的代数式分别表示出正方形、和的边长.(1)观察图形的特点,找出两个等量关系,分别用两种方法列出方程求出的值.(2)现沿着长方形广场的四条边铺设下水管道,若甲、乙两个工程队单独铺设分别需要天和天完成,如果两队从处开始,分别沿两个不同方向同时施工天后,因甲队另有任务,余下的工程由乙队单独施工天完成,求的值.(3)正方形的边长为.正方形的边长为.正方形的边长为或.(1).(2)值为.(3)由题意得.正方形的边长为.正方形的边长为.正方形的边长为或.(1)由()可知:..∵.∴..(2)由题意得:.解得:.答:值为.(3)考点式整式列代数式方程与不等式一元一次方程一元一次方程的应用工程问题图形方程27,,为数轴上三点,若点在、之间,且到点的距离是点到点的距离的倍,我们就称点是【,】的和谐点,例如:图中,点表示的数为,点表示的数为,表示的点到点的距离是,到点的距离是,那么点是【,】的和谐点;又如,表示的点到点的距离是,到点的距离是,那么点就不是【,】的和谐点,但点是【,】的和谐点.若数轴上,两点所表示的数分别为,,且,满足,请求(1)出【,】的和谐点表示的数.(2)如图,,在数轴上表示的数分别为和,现有一点从点出发向左运动.若点到达点停止,则当点运动多少个单位时,,,中恰有一个点为其余1两点的和谐点?2若点到达点后继续向左运动,是否存在使得,,中恰有一个点为其余两点的和谐点的情况?若存在,请直接写出此时的距离;若不存在,请说明理由..(1)(2)当点运动或或个单位时,,和恰有一点为另两点的和谐点.1的距离为,,单位时,,和恰有一点为其余两点的和谐点.2∵.∴,.设所求数为,由题意得:.解得.(1)(2)①设点表示的数为,分四种情况.()为【,】的和谐点.得..∴运动个单位.()为【,】的和谐点.得...∴运动个单位.()为【,】和谐点.得...∴运动个单位.综上可知,当点运动或或个单位时,1,和恰有一点为另两点的和谐点.设点为,分四种情况讨论.()为【,】的和谐点....∴.()为【,】和谐点....∴.()为【,】和谐点....∴.()为【,】和谐点...∴.综上:的距离为,,单位时,,和恰有一点为令两点的和谐点.2数有理数数轴数轴上点的移动问题数轴动点问题非负数的性质:绝对值绝对值的非负性非负数的性质:偶次方完全平方非负性方程与不等式一元一次方程解一元一次方程常规方法解一元一次方程。

2017-2018学年广东省广州市番禺区六校联合体七年级(上)期中数学试卷含答案解析

2017-2018学年广东省广州市番禺区六校联合体七年级(上)期中数学试卷含答案解析

2017-2018学年七年级(上)期中数学试卷一、选择题(本题有10个小题,每小题2分,满分20分,下面每小题给出的四个选项中,只有一个是正确的.1.实数﹣2的绝对值是()A.2B.C.D.﹣22.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5B.﹣1,6C.﹣3π,6D.﹣3,73.﹣1230000用科学记数法表示为()A.1.23×106B.﹣1.23×106 C.1.23×10﹣6 D.﹣0.123×107 4.代数式:,﹣xy,,0,x+2y,中,属于单项式的个数为()A.1个B.2个C.3个D.4个5.去括号后等于a﹣b+c的是()A.a﹣(b+c)B.a+(b﹣c)C.a﹣(b﹣c)D.a+(b+c)6.某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.A.a B.0.99a C.1.21a D.0.81a7.下列各题正确的是()A.3x+3y=6xy B.x+x=x2C.﹣9y2+6y2=﹣3D.9a2b﹣9a2b=08.已知x=3是方程2x﹣m=﹣1的解,则m的值是()A.﹣7B.﹣5C.5D.79.已知代数式x﹣2y的值是3,则代数式1﹣2x+4y的值是()A.﹣5B.﹣4C.7D.﹣610.一组按规律排列的式子:m2,,,,…,则第2017个式子是()A.B.C.D.二、填空题(本题有6个小题,每小题2分,满分12分)11.某天最低气温是﹣1℃,最高气温比最低气温高9℃,则这天的最高气温是℃.12.若|a|=8,|b|=5,且a+b>0,那么a﹣b=.13.若单项式﹣3x4a y与是同类项,则a=b=.14.若a、b互为相反数,c、d互为倒数,则a+b+cd+1=.15.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)=.16.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有个小圆•(用含n的代数式表示)三、解答题(共7小题,满分68分)17.(16分)计算:(1)﹣2﹣1+(﹣16)﹣(﹣13);(2)25÷5×(﹣)÷(﹣);(3)(﹣+)×(﹣18);(4)﹣42+1÷|﹣|×(﹣2)2.18.(9分)化简(1)化简:﹣2x2﹣5x+3﹣3x2+6x﹣1.(2)先化简,后求值:3(a2﹣ab+7)﹣2(3ab﹣a2+1)+3,其中a=2,b=.19.(8分)解方程(1)4(2x﹣1)﹣3(5x+1)=14;(2)﹣=2.20.(8分)已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1;(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值.21.(9分)某校班级篮球联赛中,每场比赛都要分胜负,每队胜1场得3分,负1场得1分,如果某班在第一轮的28场比赛中得48分,那么这个班胜了多少场?22.(9分)“十一”黄金周期间,贵州省锦屏县隆里古城在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间隆里古城门票收入是多少元?23.(9分)如图,四边形ABCD与四边形CEFG是两个正方形,边长分别为a、b.其中B、C、E在一条直线上,G在线段CD上.三角形AGE的面积为S.(1)①当a=5,b=3时,求S的值;②当a=7,b=3时,求S的值;(2)从以上结果中,请你猜想S与a、b中的哪个量有关?用字母a,b表示S,并对你的猜想进行证明.2017-2018学年六校联合体七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题2分,满分20分,下面每小题给出的四个选项中,只有一个是正确的.1.实数﹣2的绝对值是()A.2B.C.D.﹣2解:实数﹣2的绝对值是2,故选:A.2.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5B.﹣1,6C.﹣3π,6D.﹣3,7解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选:C.3.﹣1230000用科学记数法表示为()A.1.23×106B.﹣1.23×106 C.1.23×10﹣6 D.﹣0.123×107解:将﹣1230000用科学记数法表示为:﹣1.23×106.故选:B.4.代数式:,﹣xy,,0,x+2y,中,属于单项式的个数为()A.1个B.2个C.3个D.4个解:代数式:,﹣xy,,0,x+2y,中,属于单项式的有:,﹣xy,0共3个,故选:C.5.去括号后等于a﹣b+c的是()A.a﹣(b+c)B.a+(b﹣c)C.a﹣(b﹣c)D.a+(b+c)解:A、a﹣(b+c)=a﹣b﹣c,故本选项错误;B、a+(b﹣c)=a+b﹣c,故本选项错误;C、a﹣(b﹣c)=a﹣b+c,故本选项正确;D、a+(b+c)=a+b+c,故本选项错误;故选:C.6.某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.A.a B.0.99a C.1.21a D.0.81a解:由题意得a(1+10%)(1﹣10%)=0.99a(元).故选:B.7.下列各题正确的是()A.3x+3y=6xy B.x+x=x2C.﹣9y2+6y2=﹣3D.9a2b﹣9a2b=0解:A、3x和3y不是同类项,不能合并,故本选项错误;B、x+x=2x,计算错误,故本选项错误;C、﹣9y2+6y2=﹣3y2,计算错误,故本选项错误;D、9a2b﹣9a2b=0,计算正确,故本选项正确.故选:D.8.已知x=3是方程2x﹣m=﹣1的解,则m的值是()A.﹣7B.﹣5C.5D.7解:把x=3代入方程2x﹣m=﹣1得:6﹣m=﹣1,解得:m=7.故选:D.9.已知代数式x﹣2y的值是3,则代数式1﹣2x+4y的值是()A.﹣5B.﹣4C.7D.﹣6解:∵代数式x﹣2y的值是3,∴代数式1﹣2x+4y=1﹣2(x﹣2y)=1﹣2×3=﹣5.故选:A.10.一组按规律排列的式子:m2,,,,…,则第2017个式子是()A.B.C.D.解:分子为m,其指数为2,4,6,8,…,其次数规律为2n,分母为1,3,5,7,…,其规律为2n﹣1,分数符号为+,﹣,+,﹣…,故第2017个式子是:=.故选:C.二、填空题(本题有6个小题,每小题2分,满分12分)11.某天最低气温是﹣1℃,最高气温比最低气温高9℃,则这天的最高气温是8℃.解:根据题意得:﹣1+9=8(℃),则这天得最高气温是8℃.故答案为:8.12.若|a|=8,|b|=5,且a+b>0,那么a﹣b=3或13.解:∵|a|=8,|b|=5,∴a=±8,b=±5;∵a+b>0,∴a=8,b=±5.当a=8,b=5时,a﹣b=3;当a=8,b=﹣5时,a﹣b=13;故a﹣b的值为3或13.13.若单项式﹣3x4a y与是同类项,则a=2b=﹣3.解:由同类项的定义,得,解得:a=2,b=﹣3.14.若a、b互为相反数,c、d互为倒数,则a+b+cd+1=2.解:若a,b互为相反数,则a+b=0,c,d互为倒数,则cd=1,则a+b+cd+1=1+0+1=2.故答案为:2.15.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)=16.解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.16.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有4+n(n+1)个小圆•(用含n的代数式表示)解:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,∵6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5…,∴第n个图形有:4+n(n+1).故答案为:4+n(n+1),三、解答题(共7小题,满分68分)17.(16分)计算:(1)﹣2﹣1+(﹣16)﹣(﹣13);(2)25÷5×(﹣)÷(﹣);(3)(﹣+)×(﹣18);(4)﹣42+1÷|﹣|×(﹣2)2.解:(1)原式=﹣2﹣1﹣16+13=﹣6;(2)原式=25×××=;(3)原式=﹣14+15﹣5=﹣4;(4)原式=﹣16+××=﹣16+=﹣14.18.(9分)化简(1)化简:﹣2x2﹣5x+3﹣3x2+6x﹣1.(2)先化简,后求值:3(a2﹣ab+7)﹣2(3ab﹣a2+1)+3,其中a=2,b=.解:(1)原式=﹣5x2+x+2;(2)原式=3a2﹣3ab+21﹣6ab+2a2﹣2+3=5a2﹣9ab+22,当a=2,b=时,原式=5×4﹣9×2×+22=36.19.(8分)解方程(1)4(2x﹣1)﹣3(5x+1)=14;(2)﹣=2.解:(1)去括号得:8x﹣4﹣15x﹣3=14,移项合并得:﹣7x=21,解得:x=﹣3;(2)去分母得:3(x+2)﹣2(2x﹣3)=24,去括号得:3x+6﹣4x+6=24,移项合并得:﹣x=12,解得:x=﹣12.20.(8分)已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1;(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值.解:(1)原式=3(2x2+3xy﹣2x﹣1)+6(﹣x2+xy﹣1)=6x2+9xy﹣6x﹣3﹣6x2+6xy﹣6=15xy﹣6x﹣9(2)原式=(15y﹣6)x﹣9由题意可知:15y﹣6=0y=21.(9分)某校班级篮球联赛中,每场比赛都要分胜负,每队胜1场得3分,负1场得1分,如果某班在第一轮的28场比赛中得48分,那么这个班胜了多少场?解:设这个班胜了x场,则负(28﹣x)场,由题意得,3x+(28﹣x)=48,解得:x=10.答:这个班胜了10场.22.(9分)“十一”黄金周期间,贵州省锦屏县隆里古城在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间隆里古城门票收入是多少元?解:(1)a+2.4(万人);(2)七天内游客人数分别是a+1.6,a+2.4,a+2.8,a+2.4,a+1.6,a+1.8,a+0.6,所以3日人最多.(3)(a+1.6)+(a+2.4)+(a+2.8)+(a+2.4)+(a+1.6)+(a+1.8)+(a+0.6)=7a+13.2=7×2+13.2=27.2(万人),∴黄金周期间该公园门票收入是27.2×10000×10=2.72×106(元).23.(9分)如图,四边形ABCD与四边形CEFG是两个正方形,边长分别为a、b.其中B、C、E在一条直线上,G在线段CD上.三角形AGE的面积为S.(1)①当a=5,b=3时,求S的值;②当a=7,b=3时,求S的值;(2)从以上结果中,请你猜想S与a、b中的哪个量有关?用字母a,b表示S,并对你的猜想进行证明.解:(1)①∵四边形ABCD与四边形CEFG是两个正方形,AB=5,EC=3,∴DG=CD﹣CG=5﹣3=2,∴S△AEG=S正方形ABCD+S正方形ECGF﹣S△ABE﹣S△ADG﹣S△EFG=25+9﹣×8×5﹣×5×2﹣×3×3=4.5,②)①∵四边形ABCD与四边形CEFG是两个正方形,AB=7,EC=3,∴DG=CD﹣CG=7﹣3=4,∴S△AEG=S正方形ABCD+S正方形ECGF﹣S△ABE﹣S△ADG﹣S△EFG=49+9﹣×10×7﹣×7×4﹣×3×3=4.5.(2)结论S=b2.证明:∵S△AEG=S正方形ABCD+S正方形ECGF﹣S△ABE﹣S△ADG﹣S△EFG=a2+b2﹣(a+b)•a﹣•a(a﹣b)﹣b2=a2+b2﹣a2﹣ab﹣a2+ab﹣b2=b2.∴S=b2.。

2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析

2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析

B.最大的负整数是﹣ 1
C.有理数包括正有理数和负有理数
D.一个有理数的平方总是正数
3.(2017?扬州)若数轴上表示﹣ 1 和 3 的两点分别是点 A 和点 B,则点 A 和点 B
之间的距离是(

A .﹣ 4
B.﹣ 2
C.2
D. 4
4.( 2017?长春) 3 的相反数是(

A .﹣ 3
B.﹣
C.
A .90°B. 120° C. 160° D. 180° 【分析】 因为本题中∠ AOC 始终在变化,因此可以采用 “设而不求 ”的解题技巧进 行求解. 【解答】 解:设∠ AOD=a ,∠ AOC=9°0 +a,∠ BOD=9°0 ﹣a, 所以∠ AOC +∠ BOD=9°0 +a+90°﹣a=180°. 故选 D. 二.填空题(每小题 3 分,共 24 分) 13.(2017?冷水滩区一模)若∠ α补角是∠ α余角的 3 倍,则∠ α= 45° . 【分析】 分别表示出∠ α补角和∠ α余角,然后根据题目所给的等量关系, 列方程 求出∠ α的度数. 【解答】 解:∠ α的补角 =180°﹣ α, ∠α的余角 =90°﹣α, 则有: 180°﹣ α=3(90°﹣α), 解得: α=45°. 故答案为: 45°. 14.(2017?枣庄阴平质检)已知∠ AOB=70°,∠ BOC=20°,OE 为∠ AOB 的平分
25.(12 分)(2017?岳阳) 我市某校组织爱心捐书活动,准备将一批捐赠的书打包
寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的
,结果打了
16 个包还多 40 本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书 一起,刚好又打了 9 个包,那么这批书共有多少本?

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

【期末试卷】人教版 2017-2018学年 七年级数学上册 期末模拟题 四(含答案)

【期末试卷】人教版 2017-2018学年 七年级数学上册 期末模拟题 四(含答案)

2017-2018学年七年级数学上册期末模拟题一、选择题:1.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米.A.0.34×108B.3.4×106 C.34×106D.3.4×1072.如图是一个正方体,则它的表面展开图可以是()3.一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( )A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.下列方程中,以-2为解的方程是( )A.3x-2=2x B.4x-1=2x+3 C.5x-3=6x-2 D.3x+1=2x-15.计算1-(-2)的正确结果是( )A.-2 B.-1 C.1 D.36.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xy C.3y2﹣2y2=1 D.3x2+2x=5x37.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.A.1个B.2个C.3个D.4个8.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°9.钟表在3点30分时,它的时针和分针所成的角是()A.75°B.80°C.85°D.90°10.如图,在数轴上有A.B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A.E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A,-2B.-1 C,0 D,211.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是()A.盈利50元B.盈利100元C.亏损150元D.亏损100元12.有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是()A.2015 B.1036 C.518 D.259二、填空题:13.x,y,z在数轴上的位置如图所示,则化简|x-y|+|z-y|的结果是______.14.18.36°= °′″.15.如图,在自来水株管道AB的两旁有两个住宅小区C,D,现要在住管道上开一个接口P往C,D两小区铺设水管,为节约材料,接口P应开在主管AB的什么位置可以用学过的数学知识来解决这个问题。

广州市初一级上学期期末考试数学试卷含答案(共3套)

广州市初一级上学期期末考试数学试卷含答案(共3套)

广东省广州市越秀区七年级(上册)期末考试数学试卷一、选择题:本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.实数﹣2的绝对值是()A.2 B.C. D.﹣22.下列运算正确的是()A.3a2+a=4a3B.﹣3(a﹣b)=﹣3a+bC.5a﹣4a=1 D.a2b﹣2a2b=﹣a2b3.单项式的次数是()A.2 B.3 C.5 D.64.已知x=3是方程2x﹣m=﹣1的解,则m的值是()A.﹣7 B.﹣5 C.5 D.75.如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD6.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.7.如图,下列关于数m、n的说法正确的是()A.m>n B.m=n C.m>﹣n D.m=﹣n8.某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.A.a B.0.99a C.1.21a D.0.81a9.观察下列图形:它们是按一定规律排列的,依照此规律,第2016个图形共有()个★.A.6049 B.6050 C.6051 D.605210.如图,是由若干个大小相同的正方体搭成的几何体的俯视图,其中小正方形中的数字表示该位置上的正方体的个数,则这个几何体的左视图是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,满分18分11.某天最低气温是﹣1℃,最高气温比最低气温高9℃,则这天的最高气温是℃.12.水星和太阳的平均距离约为57900000km,则57900000用科学记数法表示是.13.如果一个角是70°39′,那么它的补角的大小是.14.若x,y互为相反数,a、b互为倒数,则代数式3x+3y﹣的值是.15.一艘船从甲码头顺流而行,用了2小时到达乙码头,该船从乙码头返回甲码头逆流而行,用了2.5小时,已知水流速度是3千米/小时,则船在静水中的速度是千米/小时.16.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)=.三、解答题:本大题共7小题,满分72分,解答须写出文字说明、推理过程和盐酸步骤17.计算下列各题:(1)﹣12×4﹣(﹣6)×5 (2)(﹣1)5+×(﹣1)÷(﹣3)2(3)﹣5﹣12×()18.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.19.解方程:(1)19﹣3(1+x)=2(2x+1)(2)﹣1=.20.先化简,再求值:(1)(5x2+4﹣3x2)﹣(2x2﹣5x)﹣(6x+9),其中x=2;(2)5(a+b)2﹣7(a+b)﹣8(a+b)2+6(a+b),其中a+b=﹣.21.如图,C、D两点将线段AB分成2:3:4三部分,E为线段AB的中点,CB=14cm,求:(1)线段AB的长;(2)线段ED的长.22.已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求EOF的度数;(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“OE平分∠BOC,OF平分∠AOC”的条件改为“∠EOB=∠BOC,∠COF=∠AOC”,且∠AOB=α,求∠EOF的度数(用含α的式子表示)23.某公司生产一种产品,每件产品成本价是400元,销售价为510元,第一季度销售了5000件.(1)求该产品第一季度的销售总利润(销售利润=销售价﹣成本价)是多少元?(2)为进一步扩大市场,公司决定降低生产成本,经过市场凋研,在降低生产成本后,第二季度这种产品每件销售价降低了4%,销售量比第一季度提高了10%,销售总利润比第一季度提高了20%.求该产品每件的成本价降低了多少元?参考答案与试题解析一、选择题:本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.实数﹣2的绝对值是()A.2 B.C. D.﹣2【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:实数﹣2的绝对值是2,故选:A.【点评】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.2.下列运算正确的是()A.3a2+a=4a3B.﹣3(a﹣b)=﹣3a+bC.5a﹣4a=1 D.a2b﹣2a2b=﹣a2b【考点】合并同类项;去括号与添括号.【分析】根据同类项,合并同类项,去括号法则判断即可.【解答】解:A、3a2和a不能合并,故本选项错误;B、结果是﹣3a+3b,故本选项错误;C、结果是a,故本选项错误;D、结果是﹣a2b,故本选项正确;故选D.【点评】本题考查了同类项,合并同类项,去括号法则的应用,能熟记法则是解此题的关键.3.单项式的次数是()A.2 B.3 C.5 D.6【考点】单项式.【分析】根据单项式的次数的概念求解.【解答】解:单项式的次数为2+3=5.故选C.【点评】本题考查了单项式的知识,一个单项式中所有字母的指数的和叫做单项式的次数.4.已知x=3是方程2x﹣m=﹣1的解,则m的值是()A.﹣7 B.﹣5 C.5 D.7【考点】一元一次方程的解.【分析】把x=3代入方程2x﹣m=﹣1,即可得出关于m的方程,求出方程的解即可.【解答】解:把x=3代入方程2x﹣m=﹣1得:6﹣m=﹣1,解得:m=7.故选D.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出关于m的一元一次方程是解此题的关键.5.如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD【考点】方向角.【分析】根据方向角的概念进行解答即可.【解答】解:由图可知,射线OC表示南偏西60°.故选C.【点评】本题考查的是方向角,熟知用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西是解答此题的关键.6.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.【考点】余角和补角.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选C.【点评】本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.7.如图,下列关于数m、n的说法正确的是()A.m>n B.m=n C.m>﹣n D.m=﹣n【考点】有理数大小比较;数轴.【分析】由图可知:点m表示的数是﹣2,点n表示的数是2,2与﹣2互为相反数,即可解答.【解答】解:由图可知:点m表示的数是﹣2,点n表示的数是2,2与﹣2互为相反数,∴m=﹣n,故选:D.【点评】本题考查了有理数,解决本题的关键是由数轴得到点m,n所表示的数.8.某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.A.a B.0.99a C.1.21a D.0.81a【考点】列代数式.【专题】销售问题.【分析】原价提高10%后商品新单价为a(1+10%)元,再按新价降低10%后单价为a(1+10%)(1﹣10%),由此解决问题即可.【解答】解:由题意得a(1+10%)(1﹣10%)=0.99a(元).故选:B.【点评】本题主要考查列代数式的应用,属于应用题型,找到相应等量关系是解答此题的关键.9.观察下列图形:它们是按一定规律排列的,依照此规律,第2016个图形共有()个★.A.6049 B.6050 C.6051 D.6052【考点】规律型:图形的变化类.【分析】把五角星分成两部分,顶点处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第n个图形中五角星的个数的关系式即可.【解答】解:观察发现,第1个图形五角星的个数是,1+3=4,第2个图形五角星的个数是,1+3×2=7,第3个图形五角星的个数是,1+3×3=10,第4个图形五角星的个数是,1+3×4=13,…依此类推,第n个图形五角星的个数是,1+3×n=1+3n;故第2016个图形共有:2016×3+1=6049.故选A.【点评】本题考查了图形变化规律的问题,把五角星分成两部分进行考虑,并找出第n个图形五角星的个数的表达式是解题的关键.10.如图,是由若干个大小相同的正方体搭成的几何体的俯视图,其中小正方形中的数字表示该位置上的正方体的个数,则这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图;由三视图判断几何体.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.由图示可得左视图有3列,每列小正方形数目分别为3,2,1.【解答】解:从左面看易得第一层有3个正方形,第二层最左边有2个正方形,第三层左边有1个正方形.故选B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.二、填空题:本大题共6小题,每小题3分,满分18分11.某天最低气温是﹣1℃,最高气温比最低气温高9℃,则这天的最高气温是8℃.【考点】有理数的加法.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:﹣1+9=8(℃),则这天得最高气温是8℃.故答案为:8.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.12.水星和太阳的平均距离约为57900000km,则57900000用科学记数法表示是 5.79×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将57900000用科学记数法表示为:5.79×107.故答案为:5.79×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.如果一个角是70°39′,那么它的补角的大小是109°21′.【考点】余角和补角;度分秒的换算.【分析】根据互补的概念进行计算即可.【解答】解:∵180°﹣70°39′=109°21′,∴这个角的补角的大小是109°21′.故答案为:109°21′.【点评】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.14.若x,y互为相反数,a、b互为倒数,则代数式3x+3y﹣的值是﹣.【考点】代数式求值;相反数;倒数.【专题】计算题;推理填空题.【分析】根据只有符号不同的两个数互为相反数,可得(x+y)的值,根据乘积为1的两个数互为倒数,可得ab的乘积,根据代数式求值,可得答案.【解答】解:由x,y互为相反数,a、b互为倒数,得x+y=0,ab=1.当x+y=0,ab=1时,3x+3y﹣3(x+y)﹣=0﹣=﹣,故答案为:﹣.【点评】本题考查了代数式求值,利用相反数的定义得出(x+y)的值,倒数的定义得出ab的值是解题关键.15.一艘船从甲码头顺流而行,用了2小时到达乙码头,该船从乙码头返回甲码头逆流而行,用了2.5小时,已知水流速度是3千米/小时,则船在静水中的速度是27千米/小时.【考点】一元一次方程的应用.【分析】设船在静水中的速度为x千米/小时,分别求出顺水和逆水的速度,根据题意可得,顺水速度×2=逆水速度×2.5,据此列方程求解.【解答】解:设船在静水中的速度为x千米/小时,由题意得,2(x+3)=2.5(x﹣3),解得:x=27.故答案为:27.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.16.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)=16.【考点】有理数的混合运算.【专题】新定义.【分析】根据题中的新定义a*b=3a﹣2b,将a=2,b=﹣5代入计算,即可求出2*(﹣5)的值.【解答】解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.【点评】此题考查了有理数混合运算的应用,属于新定义题型,弄清题中的新定义是解本题的关键.三、解答题:本大题共7小题,满分72分,解答须写出文字说明、推理过程和盐酸步骤17.计算下列各题:(1)﹣12×4﹣(﹣6)×5(2)(﹣1)5+×(﹣1)÷(﹣3)2(3)﹣5﹣12×()【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘法运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式第二项利用乘法分配律计算,即可得到结果.【解答】解:(1)原式=﹣48+30=﹣18;(2)原式=﹣1﹣××=﹣1﹣=﹣1;(3)原式=﹣5﹣4+3﹣6=﹣12.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.【考点】直线、射线、线段.【专题】作图题.【分析】(1)根据直线是向两方无限延伸的,射线是向一方无限延伸的画图即可;(2)找出线段AB的中点E,画射线DE与射线CB交于点O;(3)画线段AD,然后从A向D延长使DF=AD.【解答】解:如图所示:.【点评】此题主要考查了直线、射线和线段,关键是掌握直线是向两方无限延伸的,射线是向一方无限延伸的,线段不能向任何一方无限延伸.19.解方程:(1)19﹣3(1+x)=2(2x+1)(2)﹣1=.【考点】解一元一次方程.【分析】(1)先去括号,然后移项,化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:(1)去括号,得19﹣3﹣3x=4x+2,移项,得﹣4x﹣3x=2﹣19+3,合并同类项,得﹣7x=﹣14,系数化为1得:x=2;(3)去分母,得3(3x﹣1)﹣12=2(5x﹣7),去括号,得9x﹣3﹣12=10x﹣14,移项,得9x﹣10x=﹣14+3+12,合并同类项得﹣x=1,系数化为1得x=﹣1.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20.先化简,再求值:(1)(5x2+4﹣3x2)﹣(2x2﹣5x)﹣(6x+9),其中x=2;(2)5(a+b)2﹣7(a+b)﹣8(a+b)2+6(a+b),其中a+b=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式合并后,将a+b的值代入计算即可求出值.【解答】解:(1)原式=5x2+4﹣3x2﹣2x2+5x﹣6x﹣9=﹣x﹣5,当x=2时,原式=﹣2﹣5=﹣7;(2)原式=﹣3(a+b)2﹣(a+b),当a+b=﹣时,原式=﹣+=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,C、D两点将线段AB分成2:3:4三部分,E为线段AB的中点,CB=14cm,求:(1)线段AB的长;(2)线段ED的长.【考点】两点间的距离.【分析】(1)设AC=2x,用x表示出CD、DB,根据题意列方程,解方程即可;(2)根据线段中点的定义解答即可.【解答】解:(1)设AC=2x,则CD=3x,DB=4x,∵CB=CD+DB,∴3x+4x=14,解得,x=2,∴AB=AC+CD+DB=18cm;(2)∵E为线段AB的中点,∴EB=AB=9cm,∴ED=EB﹣DB=1cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想和方程思想是解题的关键.22.已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求EOF的度数;(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“OE平分∠BOC,OF平分∠AOC”的条件改为“∠EOB=∠BOC,∠COF=∠AOC”,且∠AOB=α,求∠EOF的度数(用含α的式子表示)【考点】角的计算;角平分线的定义.【分析】(1)首先求得∠BOC的度数,然后根据角的平分线的定义和角的和差可得∠EOF=∠EOC+∠COF 即可求解;(2)根据角的平分线的定义和角的和差可得∠EOF=∠EOC+∠COF=∠BOC+∠AOC=(∠BOC+∠AOC),即可求解;(3)根据角的等分线的定义可得∠EOF=∠EOC+∠COF=∠BOC+∠AOC=(∠BOC+∠AOC)=∠AOB,即可求解.【解答】解:(1)∠BOC=∠AOB﹣∠AOC=90°﹣30°=60°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=∠BOC=×60°=30°,∠COF=∠AOC=×30°=15°,∴∠EOF=∠EOC+∠COF=30°+15°=45°;(2)∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=∠BOC,∠COF=∠AOC,∴∠EOF=∠EOC+∠COF=∠BOC+∠AOC=(∠BOC+∠AOC)=∠AOB=a;(3)∵∠EOB=∠BOC,∴∠EOC=∠BOC,又∵∠COF=∠AOC,∴∠EOF=∠EOC+∠COF=∠BOC+∠AOC=(∠BOC+∠AOC)=∠AOB=a.【点评】本题考查了角度的计算,理解角的平分线的定义以及角度的和、差之间的关系是关键.23.某公司生产一种产品,每件产品成本价是400元,销售价为510元,第一季度销售了5000件.(1)求该产品第一季度的销售总利润(销售利润=销售价﹣成本价)是多少元?(2)为进一步扩大市场,公司决定降低生产成本,经过市场凋研,在降低生产成本后,第二季度这种产品每件销售价降低了4%,销售量比第一季度提高了10%,销售总利润比第一季度提高了20%.求该产品每件的成本价降低了多少元?【考点】一元一次方程的应用.【专题】应用题.【分析】(1)用每件的利润乘以第一季度销售量5000件即可得到第一季度的销售总利润;(2)设该产品每件的成本价降低了x元,则第二季度的成本为元,第二季度每件销售价为510(1﹣4%),第二季度的销售量为5000•(1+10%),然后利用第二季度的销售总利润比第一季度提高了20%列方程得[510×(1﹣4%)﹣]•5000•(1+10%)=550000•(1+20%),再解方程即可.【解答】解:(1)5000×=550000(元).答:该产品第一季度的销售总利润是550000元;(2)设该产品每件的成本价降低了x元,根据题意得[510×(1﹣4%)﹣]•5000•(1+10%)=550000•(1+20%),解得x=30.4(元).答:该产品每件的成本价降低了30.4元.【点评】本题考查了解一元一次方程的应用::首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.解决本题的关键是表示出第二季度每件得销售价和成本.广东省广州市荔湾区七年级(上册)期末考试数学试卷一、选择题:本大题共有10小题,每小题2分,共20分.1.的相反数是()A.﹣B.C.﹣2 D.22.﹣6的绝对值等于()A.6 B.C.﹣D.﹣63.多项式3x2﹣xy2是()A.二次四项式B.三次三项式C.四次四项式D.三次四项式4.已知下列方程:其中一元一次方程有()①x﹣2=;②0.2x﹣2=1;③;④x2﹣3x﹣4=0;⑤2x=0;⑥x﹣y=6.A.2个B.3个C.4个D.5个5.方程3x+2(1﹣x)=4的解是()A.x=B.x=C.x=2 D.x=16.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b7.若关于x的方程2x﹣4=3m与方程=﹣5有相同的解,则m的值是()A.10 B.﹣8 C.﹣10 D.88.下列几何语言描述正确的是()A.直线mn与直线ab相交于点D B.点A在直线M上C.点A在直线AB上 D.延长直线AB9.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A.106元B.105元C.118元D.108元10.如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.11.2013年4月20日,四川省雅安市芦山县发生7.0级地震.我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学记数法可表示为元.12.计算:﹣(﹣1)2=.13.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为册(用含a、b的代数式表示).14.已知在月历中竖列上三个数的和是45,则这三个数中最小的数是.15.如图,C、D为线段AB上的任意两点,那么图中共有条线段.16.如图,射线OA表示的方向是.三、解答题:本题共7题,共62分.17.计算:(1)12+(﹣17)﹣(﹣23)(2).18.计算:(1)﹣72+2×(2)﹣14.19.化简:(1)5a2+3ab﹣4﹣2ab﹣5a2 (2)﹣x+2(2x﹣2)﹣3(3x+5)20.计算:(1)7(3﹣x)﹣5(x﹣3)=8 (2).21.已知线段AC=8cm,点B是线段AC的中点,点D是线段BC的中点,求线段AD的长.22.汽车上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?23.如图,已知同一平面内,∠AOB=90゜,∠AOC=60゜.(1)填空:∠COB=;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为;(3)试问在(2)的条件下,如果将题目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.广东省广州市荔湾区七年级(上册)期末数学试卷参考答案与试题解析一、选择题:本大题共有10小题,每小题2分,共20分.1.的相反数是()A.﹣B.C.﹣2 D.2【考点】相反数.【专题】常规题型.【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:的相反数是﹣.故选A.【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.﹣6的绝对值等于()A.6 B.C.﹣D.﹣6【考点】绝对值.【专题】计算题.【分析】根据绝对值的性质解答即可.【解答】解:根据绝对值的性质,|﹣6|=6,故选:A.【点评】本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.3.多项式3x2﹣xy2是()A.二次四项式B.三次三项式C.四次四项式D.三次四项式【考点】多项式.【分析】根据多项式的项和次数的概念解题即可.【解答】解:多项式3x2﹣xy2是三次四项式,故选D【点评】此题主要考查了多项式,此类题目时要明确以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.4.已知下列方程:其中一元一次方程有()①x﹣2=;②0.2x﹣2=1;③;④x2﹣3x﹣4=0;⑤2x=0;⑥x﹣y=6.A.2个B.3个C.4个D.5个【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:①x﹣2=是分式方程;②0.2x﹣2=1是一元一次方程;③是一元一次方程;④x2﹣3x﹣4=0是一元二次方程;⑤2x=0是一元一次方程;⑥x﹣y=6是二元一次方程;故选:B.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.方程3x+2(1﹣x)=4的解是()A.x=B.x=C.x=2 D.x=1【考点】解一元一次方程.【专题】计算题.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:3x+2﹣2x=4,解得:x=2,故选C.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【考点】实数与数轴.【分析】根据数轴判断出a、b、c的正负情况,然后根据不等式的性质解答.【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.【点评】本题考查了实数与数轴,不等式的基本性质,根据数轴判断出a、b、c的正负情况是解题的关键.7.若关于x的方程2x﹣4=3m与方程=﹣5有相同的解,则m的值是()A.10 B.﹣8 C.﹣10 D.8【考点】同解方程.【分析】先求出方程x=﹣5的解,然后把x的值代入方程2x﹣4=3m,求出m值.【解答】解:解方程x=﹣5得,x=﹣10,把x=﹣10代入方程2x﹣4=3m,得﹣20﹣4=3m,解得:m=﹣8,故选:B.【点评】本题考查了同解方程,解答本题的关键是能够求解关于x的方程,要正确理解方程解的含义.8.下列几何语言描述正确的是()A.直线mn与直线ab相交于点D B.点A在直线M上C.点A在直线AB上 D.延长直线AB【考点】相交线.【专题】存在型.【分析】分别根据直线的表示方法及直线的特点对四个选项进行逐一分析.【解答】解:A、因为直线可以用一个小写字母表示,所以说直线mn与直线ab是错误的,只能说直线a、直线b、直线m、直线n,故本选项错误;B、直线可用表示直线上两点的大写字母表示,而不能只用一个大写字母表示,故本选项错误;C、直线可用表示直线上两点的大写字母表示,故此说法正确,故本选项正确;D、由于直线向两方无限延伸,故本选项错误.故选C.【点评】本题考查的是直线的特点及表示方法,是一道较为简单的题目.9.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A.106元B.105元C.118元D.108元【考点】一元一次方程的应用.【专题】销售问题;压轴题.【分析】本题等量关系:利润=售价﹣进价.【解答】解:设这件衣服的进价为x元,则132×0.9=x+10%x解得:x=108故选D.【点评】注意售价有两种表示方式:标价×折数;进价+利润.10.如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】利用三棱柱及其表面展开图的特点解题.三棱柱上、下两底面都是三角形.【解答】解:A、折叠后有二个侧面重合,不能得到三棱柱;B、折叠后可得到三棱柱;C、折叠后有二个底面重合,不能得到三棱柱;D、多了一个底面,不能得到三棱柱.故选B.【点评】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且都是三角形.二、填空题:本大题共6小题,每小题3分,共18分.11.2013年4月20日,四川省雅安市芦山县发生7.0级地震.我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学记数法可表示为 1.4×106元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1 400 000=1.4×106,故答案为:1.4×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.计算:﹣(﹣1)2=﹣1.【考点】有理数的乘方.【分析】根据有理数的乘方的定义解答.【解答】解:﹣(﹣1)2=﹣1.故答案为:﹣1.【点评】本题考查了有理数的乘方的定义,是基础题,计算时要注意符号的处理.13.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为册(用含a、b的代数式表示).【考点】列代数式.【分析】首先根据题意可得这批图书共有ab册,它的一半就是册.【解答】解:由题意得:这批图书共有ab册,则图书的一半是:册.故答案为:.【点评】此题主要考查了列代数式,关键是弄清题目的意思,表示出这批图书的总数量,注意代数式的书写方法,除法要写成分数形式.14.已知在月历中竖列上三个数的和是45,则这三个数中最小的数是8.【考点】一元一次方程的应用.【分析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于45求解即可.【解答】解:设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=45,解得x=15,∴x﹣7=8;x+7=22.故答案为8.【点评】考查一元一次方程的应用;得到日历中一竖列3个数之间的关系是解决本题的难点.15.如图,C、D为线段AB上的任意两点,那么图中共有6条线段.【考点】直线、射线、线段.【分析】根据线段的特点即可得出结论.【解答】解:∵线段有两个端点,∴图中的线段有:线段AC,线段AD、线段AB、线段CD、线段CB、线段DB,共6条.故答案为:6.【点评】本题考查的是直线、射线和线段,熟知线段有两个端点是解答此题的关键.16.如图,射线OA表示的方向是北偏东60°.【考点】方向角.【分析】先求出∠AOC的度数,再由方向角的定义即可得出结论.【解答】解:∵∠AOB=30°,∴∠AOC=90°﹣30°=60°,∴射线OA表示的方向是北偏东60°.故答案为:北偏东60°.【点评】本题考查的是方向角,熟知方向角的定义是解答此题的关键.。

2017~2018学年广东广州黄埔区初一上学期期末数学试卷(解析)

2017~2018学年广东广州黄埔区初一上学期期末数学试卷(解析)
、N出发,均沿数轴向左运动,点P 每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单
位长度,当P 、Q两点相距2个单位长度时,点P 、Q对应的数各是多少?
答 案 点P 对应的数是−45,点Q对应的数是−47.
解析
①(4 + 2 × 5 − 2) ÷ (3 − 2)
= 12 ÷ 1
目录
选择题 填空题 解答题
学生版
选择题
教师版
答案版
1. 实数3的倒数是( ).
A.
1 −
3
B. 1
3
答案 B
解 析 3的倒数是 1 .
3
C. −3
2. 下列各式不正确的是( ).
A. |−2| = 2
B. −2 = − |−2|
/12/11 答 案 D 2018 解 析 A选项:|−2| = 2,正确.
答 案 8.
解析
原式 . = 14 + 16 − 9 − 13 = 30 − 22 = 8
(2) . 3
5
1
−1 ×

÷8
4
7
2
答案
. 21
− 16
解析
原式 . 5
1
21
=− −
=−
4
16
16
20. 先化简,再求值:
(1) ,其中 . 2
2
−3x + 3x + 1 + 2x − 2x
x = −1
答 案 . −1
12/11 学生版
答教案师版 图画见答解案析版.
018/ 解 析 2 (2)
将上列各数从小到大排列,并用“<”符号连接. hi.izhik 答 案 图画见解析. jiaos 解 析 根据题意得:−1 1 < − 1 < 2 < 5 .

2017-2018学年广东省广州市黄埔区七年级上期末数学试卷及答案

2017-2018学年广东省广州市黄埔区七年级上期末数学试卷及答案

2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2| C.﹣(﹣2)=|﹣2| D.﹣|2|=|﹣2| 3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣x y+xy=0 D.a4+a2=a65.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=36.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=27.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B. C.D.9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为.12.(3分)若∠α=50°,则它的余角是°.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是(填序号).14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD的长为.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b= .16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]= .三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)18.(6分)下列有理数:﹣1,2,5,﹣1[Zxxk](1)将上列各数在如上图的数轴上表示出;(2)将上列各数从小到大排列,并用“<”符号连接.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.21.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?[Z_xx_k]23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M 点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣【解答】解:3倒数等于,故选:B.2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2| C.﹣(﹣2)=|﹣2| D.﹣|2|=|﹣2| 【解答】解:A、|﹣2|=2,正确;B、﹣2=﹣|﹣2|,正确;C、﹣(﹣2)=|﹣2|,正确;D、﹣|2|=﹣2,|﹣2|=2,错误;故选D3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x【解答】解:a3与b3所含的字母不同,不是同类项;2a2b与﹣a2b是同类项;﹣ab2c与﹣5b2c所含字母不同,不是同类项;x2与2x相同字母的指数不相同,不是同类项.故选B.4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣xy+xy=0 D.a4+a2=a6【解答】解:A、3m+3n=6mn,错误;B、4x3﹣3x3=1,错误,4x3﹣3x3=x3;C、﹣xy+xy=0,正确;D、a4+a2=a6,错误;故选C.5.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=3【解答】解:方程两边都乘以﹣3得,x=﹣27.故选A.6.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2 C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=2【解答】解:A、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;B、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;C、3x+2=4x移项,得3x﹣4x=﹣2,故本选项错误;D、3x+2=4x移项,得3x﹣4x=﹣2,所以,4x﹣3x=2,故本选项正确.故选D.7.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【解答】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B. C.D.【解答】解:从正面看易得此几何体的主视图是一个梯形.故选C9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b【解答】解:A、依题意得:2a+1,故本选项不符合题意;B、依题意得:﹣a+b,故本选项不符合题意;C、依题意得:a2﹣1,故本选项不符合题意;D、依题意得:3(2a﹣b),故本选项符合题意;故选:D.10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为 2.35×108.【解答】解:235 000 000为2.35×108,故答案为:2.35×108.12.(3分)若∠α=50°,则它的余角是40 °.【解答】解:∵∠α=50°,∴它的余角是90°﹣50°=40°.故答案为:40.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是①②(填序号).【解答】解:∵﹣3﹣2=﹣5,故①正确,∵﹣3×(﹣2)=3×2=6,故②正确,∵(﹣2)2=4,故③错误,故答案为:①②.14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD的长为 2 .【解答】解:∵C为线段AB的中点,AB=12,∴BC=AB=6,∵DB=8,∴CD=BD﹣BC=8﹣6=2,故答案为:2.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b= 1 .【解答】解:∵4x2y3+2ax2y3=4bx2y3,∴4+2a=4b,则2a﹣4b=﹣4,a﹣2b=﹣2,∴3+a﹣2b=3﹣2=1,故答案为:1.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]= ﹣27 .【解答】解:根据题中的新定义得:原式=[(﹣1)▽1]▽[2▽(﹣5)]=(﹣3)▽12=﹣3﹣24=﹣27,故答案为:﹣27三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)【解答】解:如图,线段AD即为所求18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出;(2)将上列各数从小到大排列,并用“<”符号连接.【解答】解:(1)将各数表示在数轴上,如图所示:(2)根据题意得:﹣1<﹣1<2<5.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.【解答】解:(1)原式=14+16﹣9﹣13=30﹣22=8;(2)原式=﹣﹣=﹣.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.【解答】解:(1)﹣3x2+3x+1+2x2﹣2x=﹣x2+x+1当x=﹣1时,原式=﹣(﹣1)2﹣1+1=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7)=a2﹣ab﹣7+4a2﹣2ab﹣7=5a2﹣3ab﹣14当a=2,b=时,原式=5×22﹣3×2×﹣14=20﹣9﹣14=﹣321.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.【解答】解:(1)7x﹣4x=5+4,3x=9,x=3;(2)4(2x﹣1)=12﹣3(x+2),8x﹣4=12﹣3x﹣6,8x+3x=12﹣6+4,11x=10,x=[学.科.网Z.X.X.K]22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?[学&科&网Z&X&X&K] 【解答】解:设A种教具买了x件,则B两种教具买了(138﹣x)件,由题意得,30x+50(138﹣x)=5400,解得:x=75,138﹣75=63,答:A、B两种教具各买了75件,63件.23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.【解答】解:(1)∵OC平分∠AOD,∠AOC=35°,∴∠AOD=70°,∴∠BOD=180°﹣70°=110°;(2)设∠COD=x,则∠AOD=2x,∵∠AOE=∠DOE,∴,解得,x=()°,∴∠BOD=180°﹣2x=()°.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M 点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?【解答】解:(1)﹣3+4=1.故点N所对应的数是1;(2)(5﹣4)÷2=0.5,①﹣3﹣0.5=﹣3.5,②1+0.5=1.5.故点P所对应的数是﹣3.5或1.5.(3)①(4+2×5﹣2)÷(3﹣2)=12÷1[学*科*网Z*X*X*K]=12(秒),点P对应的数是﹣3+12×2=21,点Q对应的数是21﹣2=19;②(4+2×5+2)÷(3﹣2)=16÷1=16(秒);点P对应的数是﹣3+16×2=29,点Q对应的数是29﹣2=27.。

2018-2019学年广东省广州市番禺区七年级(上)期末数学试卷

2018-2019学年广东省广州市番禺区七年级(上)期末数学试卷

广东省广州市番禺区七年级(上)期末数学试卷一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的1.(2分)(2019•江岸区校级模拟)有理数的相反数是( )A.B.3C.﹣3D.2.(2分)(泸州一模)同志在十九大报告中指出:农业农村农民问题是关系到国计民生的根本性问题,我国现有农村人口约为589 730 000人,将589 730 000用科学记数法表示为( )A.589 73×104B.589.73×106C.5.8973×108D.0.58973×1083.(2分)(2018秋•番禺区期末)下列运算结果为负数的是( )A.|﹣3|B.(﹣3)4C.﹣(﹣3)D.﹣|﹣3|4.(2分)(2018秋•番禺区期末)若3a=2b,下列各式进行的变形中,不正确的是( )A.3a+1=2b+1B.3a﹣1=2b﹣1C.9a=4b D.5.(2分)(2018秋•番禺区期末)质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是( )A.﹣2B.﹣1C.0.5D.1.36.(2分)(2018秋•番禺区期末)多项式x3﹣x2+2x﹣3的常数项是( )A.x3B.﹣x2C.2x D.﹣37.(2分)(2018秋•番禺区期末)若x=2是关于x的方程ax+6=2ax的解,则a的值为( )A.3B.2C.1D.8.(2分)(2018秋•番禺区期末)如图所示的正方体中,Q,R,S是棱PB上的点,一只蚂蚁从A点出发,沿着正方体的侧面爬行,经过PB上一点,爬行到C点,若此蚂蚁所爬行的路线最短,那么P,Q,R,S四个点中,它最有可能经过的点是( )A.P B.Q C.R D.S9.(2分)(2018秋•番禺区期末)如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )A.12 cm2B.14cm2C.16cm2D.18 cm210.(2分)(2018秋•番禺区期末)在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+c<0,则下列式子一定成立的是( )A.a+c>0B.a+c<0C.abc<0D.|b|<|c|二、填空题:本大题共6小题,每小题3分,共18分11.(3分)(2018秋•番禺区期末)单项式﹣3ax3的次数是 .12.(3分)(2019秋•呼伦贝尔期末)若x、y互为倒数,则(﹣xy)2018= .13.(3分)(2018秋•番禺区期末)如图,将甲,乙两个尺子拼在一起,两端重合.若甲尺经校订是直的,那么乙尺就一定不是直的;用数学知识解释这种生活现象为 .14.(3分)(2018秋•番禺区期末)如图(图中长度单位:m),阴影部分的面积是 m2.15.(3分)(2018秋•番禺区期末)如图所示的五角星中,每相邻两角中心线间的夹角都相等,则夹角α= 度.16.(3分)(2018秋•番禺区期末)100kg杨桃,含水量(100%)为90%,为制杨桃干,风干一段时间后,杨桃的含水量为80%,此时杨桃的重量为 kg.三、解答题:本大题共62分,解答应写出文宇说明、推理过程或演算步骤17.(8分)(2018秋•番禺区期末)计算下列各式的值:(1)(﹣125)÷(﹣5)(2)﹣52+2×(﹣3)2+(﹣6)+()218.(8分)(2018秋•番禺区期末)解方程:(1)2(10﹣0.5x)=﹣(1.5x+2);(2)219.(6分)(2018秋•番禺区期末)先化简,再求值:(4x2y﹣5xy2+2xy)﹣3(x2yxy2+yx),其中x=2,y.20.(6分)(2018秋•番禺区期末)当温度每上升1℃时,某种金属丝伸长0.002mm;反之,当温度下降1℃时,金属丝就缩短0.002mm.把15℃的这种金属丝加热到60℃,再使它冷却降温到5℃,金属丝的长度经历了怎么样的变化?金属丝最后的长度比原来的长度伸长多少?21.(4分)(2018秋•番禺区期末)如图,一艘货轮位于O地,发现灯塔A在它的正北方向上,这艘货轮沿正东方向航行50千米,到达B地,此时用雷达测得灯塔A与货轮的距离为100千米.(1)在图中作出灯塔A的位置,并作射线BA;(2)以正北,正南方向为基准,借助量角器,描述灯塔A在B地的什么方向上(精确到1°)22.(8分)(2018秋•番禺区期末)如图,在数轴上有两点A、B,点B在点A的右侧,且AB=10,点A表示的数为﹣6.动点P从点A出发,以每秒4个单位长度的速度沿数轴向右匀速运动.(1)写出数轴上点B表示的数;(2)经过多少时间,线段AP和BP的长度之和为18?23.(10分)(2018秋•番禺区期末)列方程解应用题(1)某车间32名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母5000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?(2)一家游泳馆每年6~8月份出售夏季会员证,每张会员证80元,只限本人使用凭证购人场券每张1元,不凭证购人场卷每张3元,请用所学数学知识分析,什么情况下购会员证更合算?24.(12分)(2018秋•番禺区期末)已知正方形的每个角等于90°,请解决下列问题:(1)如图1,将两个正方形的一个顶点O重合放置,若∠AOD=50°,求∠COB的度数;(2)如图2,将三个正方形的一个顶点O重合放置,若∠EOC=40°,∠BOF=30°,求∠AOD的度数;(3)如图3,将三个正方形的一个顶点O重合放置,若OF平分∠DOB,那么OE平分∠AOC吗?为什么?广东省广州市番禺区七年级(上)期末数学试卷答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的1.(2分)(2019•江岸区校级模拟)有理数的相反数是( )A.B.3C.﹣3D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.解:的相反数是,故选:D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(2分)(泸州一模)同志在十九大报告中指出:农业农村农民问题是关系到国计民生的根本性问题,我国现有农村人口约为589 730 000人,将589 730 000用科学记数法表示为( )A.589 73×104B.589.73×106C.5.8973×108D.0.58973×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:将589 730 000用科学记数法表示为:5.8973×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)(2018秋•番禺区期末)下列运算结果为负数的是( )A.|﹣3|B.(﹣3)4C.﹣(﹣3)D.﹣|﹣3|【考点】正数和负数;相反数;绝对值;有理数的乘方.【分析】A.|﹣3|=3,结果为正数,故A错误;(﹣3)4=81,结果为正数,故B错误;﹣(﹣3)=3,结果为正数,故C错误;﹣|﹣3|=﹣3,结果为负数,故D正确.解:A.|﹣3|=3,结果为正数,故A错误;B.(﹣3)4=81,结果为正数,故B错误;C.﹣(﹣3)=3,结果为正数,故C错误;D.﹣|﹣3|=﹣3,结果为负数,故D正确.故选:D.【点评】本题考查了有理数的绝对值、有理数的乘法、相反数等,解题的关键是正确理解有理数的绝对值、有理数的乘法以及相反数的意义.4.(2分)(2018秋•番禺区期末)若3a=2b,下列各式进行的变形中,不正确的是( )A.3a+1=2b+1B.3a﹣1=2b﹣1C.9a=4b D.【考点】等式的性质.【分析】直接利用等式的基本性质分别判断得出答案.解:A、∵3a=2b,∴3a+1=2b+1,正确,不合题意;B、∵3a=2b,∴3a﹣1=2b﹣1,正确,不合题意;C、∵3a=2b,∴9a=6b,故此选项错误,符合题意;D、∵3a=2b,∴,正确,不合题意;故选:C.【点评】此题主要考查了等式的性质,正确掌握等式的基本性质是解题关键.5.(2分)(2018秋•番禺区期末)质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是( )A.﹣2B.﹣1C.0.5D.1.3【考点】正数和负数.【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.解:∵|0.5|<|﹣1|<|1.2|<|﹣2|,∴0.5最接近标准,故选:C.【点评】本题考查了正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.6.(2分)(2018秋•番禺区期末)多项式x3﹣x2+2x﹣3的常数项是( )A.x3B.﹣x2C.2x D.﹣3【考点】多项式.【分析】根据多项式的定义解答.解:多项式x3﹣x2+2x﹣3的常数项是﹣3.故选:D.【点评】考查了多项式,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.7.(2分)(2018秋•番禺区期末)若x=2是关于x的方程ax+6=2ax的解,则a的值为( )A.3B.2C.1D.【考点】一元一次方程的解.【分析】把x=2代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.解:把x=2代入方程ax+6=2ax得:2a+6=4a,解得:a=3,故选:A.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.8.(2分)(2018秋•番禺区期末)如图所示的正方体中,Q,R,S是棱PB上的点,一只蚂蚁从A点出发,沿着正方体的侧面爬行,经过PB上一点,爬行到C点,若此蚂蚁所爬行的路线最短,那么P,Q,R,S四个点中,它最有可能经过的点是( )A.P B.Q C.R D.S【考点】平面展开﹣最短路径问题.【分析】根据立方体的展开图中从A点到C点最短路径共3种距离相同,进而画图得出答案.解:如图所示:一只蚂蚁从A点出发,沿着正方体的侧面爬行,经过PB上一点,爬行到C点,若此蚂蚁所爬行的路线最短,那么P,Q,R,S四个点中,它最有可能经过的点是R点.故选:C.【点评】此题主要考查了平面展开图的最短路径,正确掌握立方体的性质是解题关键.9.(2分)(2018秋•番禺区期末)如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )A.12 cm2B.14cm2C.16cm2D.18 cm2【考点】几何体的表面积;由三视图判断几何体.【分析】首先根据三视图确定该几何体的形状,然后确定其表面积即可.解:易得第一层有2个小正方体,第二层有1个小正方体,一共有3个,表面积为:2×(2+2+3)=14cm2.故选:B.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.10.(2分)(2018秋•番禺区期末)在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+c<0,则下列式子一定成立的是( )A.a+c>0B.a+c<0C.abc<0D.|b|<|c|【考点】数轴;绝对值.【分析】由图中数轴上表示的a,b,c得出a<b<c的结论,再根据已知条件ac<0,b+c<0判断字母a,b,c表示的数的正负性即可.解:由图知a<b<c.又∵ac<0∴a<0,c>0又∵b+c<0∴|b|>|c|故D错误.由|b|>|c|∴b<0∴abc>0故C错误.∵a<b<c,a<0,b<0,c>0∴a+c<0故A错误,B正确.故选:B.【点评】本题考查了通过数轴比较数的大小和去绝对值的能力.二、填空题:本大题共6小题,每小题3分,共18分11.(3分)(2018秋•番禺区期末)单项式﹣3ax3的次数是 4 .【考点】单项式.【分析】单项式中所有字母的指数和叫做这个单项式的次数.解:单项式﹣3ax3的次数是:1+3=4.故答案是:4.【点评】考查了确定单项式的定义,单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.(3分)(2019秋•呼伦贝尔期末)若x、y互为倒数,则(﹣xy)2018= 1 .【考点】倒数;有理数的乘方.【分析】根据乘积是1的两个数互为倒数,可得xy=1,根据﹣1的偶次幂,可得(﹣xy)2018.解:∵x、y互为倒数,∴(﹣xy)2018=(﹣1)2018=1,故1.【点评】本题考查了倒数,注意﹣1的2018次幂是正数.13.(3分)(2018秋•番禺区期末)如图,将甲,乙两个尺子拼在一起,两端重合.若甲尺经校订是直的,那么乙尺就一定不是直的;用数学知识解释这种生活现象为 两点确定一条直线 .【考点】直线的性质:两点确定一条直线.【分析】直接利用直线的性质,两点确定一条直线,由此即可得出结论.解:∵甲尺是直的,两尺拼在一起两端重合,∴甲尺经校订是直的,那么乙尺就一定不是直的,用数学知识解释这种生活现象为:两点确定一条直线.故两点确定一条直线.【点评】本题考查的是直线的性质,熟知两点确定一条直线是解答此题的关键.14.(3分)(2018秋•番禺区期末)如图(图中长度单位:m),阴影部分的面积是 (x2+3x+6) m2.【考点】列代数式.【分析】首先表示出3个阴影部分面积,再求和即可.解:阴影部分的面积:x2+3x+3×2=x2+3x+6.故(x2+3x+6).【点评】此题主要考查了列代数式,关键是正确表示出每个阴影部分面积.15.(3分)(2018秋•番禺区期末)如图所示的五角星中,每相邻两角中心线间的夹角都相等,则夹角α= 72 度.【考点】多边形内角与外角.【分析】由于5个夹角的和组成一个周角,而每相邻两角中心线间的夹角都相等,所以这个夹角的度数为360°÷5,计算即可.解:∵一个五角星中,有5个夹角α,每相邻两角中心线间的夹角都相等,∴这个夹角α的度数为360°÷5=72°.故72.【点评】本题考查了角在实际生活中的运用,根据题意列出算式360°÷5是解题的关键.16.(3分)(2018秋•番禺区期末)100kg杨桃,含水量(100%)为90%,为制杨桃干,风干一段时间后,杨桃的含水量为80%,此时杨桃的重量为 50 kg.【考点】一元一次方程的应用.【分析】设此时杨桃的重量为xkg,根据杨桃干的质量不变列出方程并解答.解:设此时杨桃的重量为xkg,根据题意,得x(1﹣80%)=100×(1﹣90%)解得x=50故答案是:50.【点评】考查了一元一次方程的应用,解题的关键是弄懂题意,找到等量关系,列出方程.三、解答题:本大题共62分,解答应写出文宇说明、推理过程或演算步骤17.(8分)(2018秋•番禺区期末)计算下列各式的值:(1)(﹣125)÷(﹣5)(2)﹣52+2×(﹣3)2+(﹣6)+()2【考点】有理数的混合运算.【分析】(1)根据有理数的除法法则计算即可求解;(2)先算乘方,再算乘法,最后算加减法;同级运算,应按从左到右的顺序进行计算.解:(1)(﹣125)÷(﹣5)=25;(2)﹣52+2×(﹣3)2+(﹣6)+()2=﹣25+2×9﹣6=﹣25+18﹣6=﹣12.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.(8分)(2018秋•番禺区期末)解方程:(1)2(10﹣0.5x)=﹣(1.5x+2);(2)2【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.解:(1)去括号得:20﹣x=﹣1.5x﹣2,移项合并得:0.5x=﹣22,解得:x=﹣44;(2)去分母得:20y+16+3y﹣3=24﹣5y+5,移项合并得:28y=16,解得:y.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.(6分)(2018秋•番禺区期末)先化简,再求值:(4x2y﹣5xy2+2xy)﹣3(x2yxy2+yx),其中x=2,y.【考点】整式的加减—化简求值.【分析】先根据整式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.解:原式=4x2y﹣5xy2+2xy﹣3x2y+4xy2﹣3yx=x2y﹣xy2﹣xy,当x=2,y时,原式=22×()﹣2×()2﹣2×()=﹣21=﹣1.【点评】本题主要考查整式的加减﹣化简求值,解题的关键是掌握整式加减混合运算顺序和运算法则.20.(6分)(2018秋•番禺区期末)当温度每上升1℃时,某种金属丝伸长0.002mm;反之,当温度下降1℃时,金属丝就缩短0.002mm.把15℃的这种金属丝加热到60℃,再使它冷却降温到5℃,金属丝的长度经历了怎么样的变化?金属丝最后的长度比原来的长度伸长多少?【考点】有理数的混合运算.【分析】设15℃时金属丝的长度为lmm,根据“温度上升1℃,金属丝伸长0.002mm;温度下降1℃,金属丝缩短0.002mm”求出经加热和冷却后的金属丝的长度,继而即可求出金属丝最后的长度与原来的长度之差.解:金属丝的长度先伸长,再缩短;设15℃时金属丝的长度为lmm,根据题意得:金属丝最后的长度=l+(60﹣15)×0.002﹣(60﹣5)×0.002=(l﹣0.02)mm.金属丝最后的长度﹣原来的长度=(l﹣0.02)﹣l=﹣0.02(mm).即金属丝最后的长度比原来的长度伸长﹣0.02mm,也即是缩短了0.02mm.【点评】本题考查有理数的混合运算,解题关键是读懂题意,另外本题也可通过金属丝上升1℃然后下降1℃后长度不变,而金属丝总的温度变化为下降15﹣5=10℃,也可求出答案.21.(4分)(2018秋•番禺区期末)如图,一艘货轮位于O地,发现灯塔A在它的正北方向上,这艘货轮沿正东方向航行50千米,到达B地,此时用雷达测得灯塔A与货轮的距离为100千米.(1)在图中作出灯塔A的位置,并作射线BA;(2)以正北,正南方向为基准,借助量角器,描述灯塔A在B地的什么方向上(精确到1°)【考点】近似数和有效数字;方向角;作图—应用与设计作图.【分析】(1)依据OB=50,AB=100,即可得到点A的位置;(2)依据∠BAO=30°,即可得到灯塔A在B地的北偏西30°方向.解:(1)如图所示,取点A使得AB=2OB,作射线BA,则点A即为所求;(2)∵Rt△ABO中,AB=2OB,∴∠BAO=30°,∴灯塔A在B地的北偏西30°方向.【点评】本题主要考查了应用于设计作图,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.22.(8分)(2018秋•番禺区期末)如图,在数轴上有两点A、B,点B在点A的右侧,且AB=10,点A表示的数为﹣6.动点P从点A出发,以每秒4个单位长度的速度沿数轴向右匀速运动.(1)写出数轴上点B表示的数;(2)经过多少时间,线段AP和BP的长度之和为18?【考点】数轴;两点间的距离.【分析】(1)利用两点间的距离表示即可(2)利用两点间的距离表示AP,BP的长度,在根据线段AP和BP的长度之和为18列出方程,即可算出时间解:(1)设B对应的数为:a,a﹣(﹣6)=10,a=4数轴上点B表示的数为4.(2)设:经过t秒时间,线段AP和BP的长度之和为18.AP=4t,(i)P在AB中间时:AP+BP=10不可能为18(ii)P在B的右侧:BP=4t﹣10,4t+4t﹣10=18t=3.5答:经过3.5s,线段AP和BP的长度之和为18.【点评】本题难度较小,考查了的数轴上动点问题,关键在于将数轴上的线段计算转换为点之间的距离,再来例方程即可.23.(10分)(2018秋•番禺区期末)列方程解应用题(1)某车间32名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母5000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?(2)一家游泳馆每年6~8月份出售夏季会员证,每张会员证80元,只限本人使用凭证购人场券每张1元,不凭证购人场卷每张3元,请用所学数学知识分析,什么情况下购会员证更合算?【考点】一元一次方程的应用.【分析】(1)设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,根据题意列出方程,求出方程的解即可得到结果;(2)当80+x<3x时购证更划算,然后解不等式.解:(1)设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(32﹣x)名工人生产螺母,根据题意得:1500x×2=5000(32﹣x),解得:x=20,则为了使每天的产品刚好配套,应该分配20名工人生产螺钉;(2)假设游泳x次,则购证后花费为(80+x)元,不购证花费3x元,根据题意得:80+x<3x解得:x>40,答:6﹣8月游泳次数大于40的话,购证更划算.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.24.(12分)(2018秋•番禺区期末)已知正方形的每个角等于90°,请解决下列问题:(1)如图1,将两个正方形的一个顶点O重合放置,若∠AOD=50°,求∠COB的度数;(2)如图2,将三个正方形的一个顶点O重合放置,若∠EOC=40°,∠BOF=30°,求∠AOD的度数;(3)如图3,将三个正方形的一个顶点O重合放置,若OF平分∠DOB,那么OE平分∠AOC吗?为什么?【考点】角的计算.【分析】(1)根据正方形各角等于90°,得出∠COD+∠AOB=180°,再根据∠AOD=50°,∠COB=∠COD+∠AOB﹣∠AOD,即可得出答案;(2)根据已知得出∠1+∠2,∠1+∠3的度数,再根据∠1+∠2+∠3=90°,最后用∠1+∠2+∠1+∠3﹣(∠1+∠2+∠3),即可求出∠1的度数;(3)根据∠COD=∠AOB和等角的余角相等得出∠COA=∠DOB,∠EOA=∠FOB,再根据角平分线的性质得出∠DOF=∠FOB∠DOB和∠EOA∠DOB∠COA,从而得出答案.解:(1)∵两个图形是正方形,∴∠COD=90°,∠AOB=90°,∴∠COD+∠AOB=180°,∵∠AOD=50°,∴∠COB=∠COD+∠AOB﹣∠AOD=130°;(2)如图,由题意知,∠1+∠2=60°①,∠1+∠3=50°②,又∠1+∠2+∠3=90°③,①+②﹣③得∠1=20°;(3)OE平分∠AOC,理由如下:∵∠COD=∠AOB,∴∠COA=∠DOB(等角的余角相等),同理:∠EOA=∠FOB,∵OF平分∠DOB,∴∠DOF=∠FOB∠DOB,∴∠EOA∠DOB∠COA,∴OE平分∠AOC.【点评】此题主要考查了角的计算,用到的知识点是余角和补角,根据所给出的图形,找到角与角的关系是本题的关键.。

广东省广州市番禺区七年级数学上学期期末试卷(含解析) 北师大版-北师大版初中七年级全册数学试题

广东省广州市番禺区七年级数学上学期期末试卷(含解析) 北师大版-北师大版初中七年级全册数学试题

2015-2016学年某某省某某市番禺区七年级(上)期末数学试卷一、选择题(共10小题,每小题2分,满分20分)1.﹣3的倒数为()A.﹣ B.C.3 D.﹣32.十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A.146×107×107×109×10103.“一个数a的3倍与2的和”用代数式可表示为()A.3(a+2) B.(3+a)a C.2a+3 D.3a+24.如果x=是关于x的方程2x+m=2的解,那么m的值是()A.1 B.C.﹣1 D.5.下列运算正确的是()A.a3+a3=26a B.3a﹣2a=aC.3a2b﹣4b2a=﹣a2b D.(﹣a)2=﹣a26.把弯曲的河道改直,能够缩短航程,这样做的道理是()A.两点之间,射线最短B.两点确定一条直线C.两点之间,直线最短D.两点之间,线段最短7.多项式x2y﹣xy2+3xy﹣1的次数与常数项分别是()A.2,﹣1 B.3,1 C.3,﹣1 D.2,18.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32015的个位数字是()A.3 B.9 C.7 D.19.如图,数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=﹣2,那么,原点应是点()A.P B.Q C.S D.T10.如图是一个正方体包装盒的表面积展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C内的三个数依次为()A.0,﹣2,1 B.0,1,2 C.1,0,﹣2 D.﹣2,0,1二、填空题(本大题共有6小题,每小题3分,共18分)11.若单项式﹣4a2b的系数为x,次数为y,则x+y=.12.若∠α=25°40′,则∠α的补角大小为..14.已知|x|=2,|y|=3,且xy<0,x+y>0,则x﹣y=.15.已知关于x的方程kx=5﹣x,有正整数解,则整数k的值为.16.如图,用大小相等的小正方形拼成大正方形网格.在1×1的网格中,有一个正方形;在1×1的网格中,有1个正方形;在2×2的网格中,有5个正方形;在3×3的网格中,有14个正方形;…,依此规律,在4×4的网格中,有个正方形,在n×n的网格中,有个正方形.三、解答题(共62分)17.计算下列各式的值:(1)20﹣(﹣7)﹣|﹣2|;(2)(﹣1)3﹣×[2﹣(﹣3)2].18.解方程:(1)9﹣3x=7+5x;(2)﹣=1.19.已知A=3ax3﹣bx,B=﹣ax3﹣2bx+8.(1)求A+B;(2)当x=﹣1时,A+B=10,求代数式3b﹣2a的值.20.某支股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“﹣”表示股票比前一天下跌)上周末收盘价周一周二周三周四周五+ + +(1)周一至周五这支股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了?.(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?.21.如图,∠A+∠B=90°,点D在线段AB上,点E在线段AC上,作直线DE,DF平分∠BDE,DF与BC交于点F.(1)依题意补全图形;(2)当∠B+∠BDF=90°时,∠A与∠EDF是否相等?说明理由.22.如图,C,D两点把线段AB分成1:5:2三部分,M为AB的中点,MD=2cm,求CM和AB的长.23.列方程解应用题.(1)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?(2)加工一批零件,X师傅单独加工需要40天完成,李师傅单独加工需要60天完成.现在由于工作需要,X师傅先单独加工了10天,李师傅接着单独加工了30天后,剩下的部分由X、李二位师傅合作完成,这样完成这批零件一共用了多长时间?24.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.2015-2016学年某某省某某市番禺区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.﹣3的倒数为()A.﹣ B.C.3 D.﹣3【考点】倒数.【专题】存在型.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选A.【点评】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.2.十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A.146×107×107×109×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 460 000 000有10位,所以可以确定n=10﹣1=9.×109.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.“一个数a的3倍与2的和”用代数式可表示为()A.3(a+2) B.(3+a)a C.2a+3 D.3a+2【考点】列代数式.【分析】a的3倍表示为3a,与2的和,再相加即可.【解答】解:由题意列代数式得:3a+2,故选D.【点评】本题是根据题意列代数式,列代数式时要注意:①书写要规X,用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写;②在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数;③含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.4.如果x=是关于x的方程2x+m=2的解,那么m的值是()A.1 B.C.﹣1 D.【考点】一元一次方程的解.【分析】将x=代入方程2x+m=2,即可得出答案.【解答】解:∵x=是关于x的方程2x+m=2的解,∴2×+m=2,∴m=1,故选A.【点评】本题考查了一元一次方程的解,方程的解就是能够使方程左右两边相等的未知数的值.5.下列运算正确的是()A.a3+a3=26a B.3a﹣2a=aC.3a2b﹣4b2a=﹣a2b D.(﹣a)2=﹣a2【考点】幂的乘方与积的乘方;合并同类项.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a3+a3=2a3,故A错误;B、3a﹣2a=a,故B正确;C、3a2b,4b2a不是同类项不能合并,故C错误;D、(﹣a)2=a2,故D错误.故选:B.【点评】本题考查合并同类项、积的乘方,熟练掌握运算性质和法则是解题的关键.6.把弯曲的河道改直,能够缩短航程,这样做的道理是()A.两点之间,射线最短B.两点确定一条直线C.两点之间,直线最短D.两点之间,线段最短【考点】线段的性质:两点之间线段最短.【分析】根据两点之间线段最短即可得出答案.【解答】解:由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故选:D.【点评】本题考查了线段的性质,关键是掌握两点之间线段最短.7.多项式x2y﹣xy2+3xy﹣1的次数与常数项分别是()A.2,﹣1 B.3,1 C.3,﹣1 D.2,1【考点】多项式.【专题】探究型.【分析】根据多项式系数和次数的定义可以得到多项式x2y﹣xy2+3xy﹣1的次数以及它的常数项,本题得以解决.【解答】解:多项式x2y﹣xy2+3xy﹣1的次数与常数项分别是:3,﹣1,故选C.【点评】本题考查多项式,解题的关键是明确多项式的系数和次数的定义,知道多项式的常数项是什么.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32015的个位数字是()A.3 B.9 C.7 D.1【考点】尾数特征.【分析】由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,可知3的乘方的末位数字以3、9、7、1四个数字为一循环,用32015的指数2015除以4得到的余数是几就与第几个数字的末位数字相同,由此解答即可.【解答】解:由题意可知,3的乘方的末位数字以3、9、7、1四个数字为一循环,∵2015÷4=503…3,∴32015的末位数字与33的末位数字相同是7.故选C.【点评】此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.9.如图,数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=﹣2,那么,原点应是点()A.P B.Q C.S D.T【考点】数轴.【专题】推理填空题.【分析】根据数轴可以分别假设原点在P、Q、S、T,然后分别求出p+q+s+t的值,从而可以判断原点在什么位置,本题得以解决.【解答】解:由数轴可得,若原点在P点,则p+q+s+t=10,若原点在Q点,则p+q+s+t=6,若原点在S点,则p+q+s+t=﹣2,若原点在T点,则p+q+s+t=﹣14,∵数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=﹣2,∴原点应是点S,故选C.【点评】本题考查数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答问题.10.如图是一个正方体包装盒的表面积展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C内的三个数依次为()A.0,﹣2,1 B.0,1,2 C.1,0,﹣2 D.﹣2,0,1【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“C”与面“﹣1”相对,面“B”与面“2”相对,“A”与面“0”相对.即A=0,B=﹣2,C=1.故选A.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题(本大题共有6小题,每小题3分,共18分)11.若单项式﹣4a2b的系数为x,次数为y,则x+y= ﹣1 .【考点】单项式.【分析】直接利用单项式的次数与系数的定义得出答案.【解答】解:∵单项式﹣4a2b的系数为x=﹣4,次数为y=3,∴x+y=﹣1.故答案为:﹣1.【点评】此题主要考查了单项式的次数与系数,正确把握相关定义是解题关键.12.若∠α=25°40′,则∠α的补角大小为154°20′.【考点】余角和补角.【专题】计算题.【分析】根据余角的定义计算180°﹣25°40′即可.【解答】解:∠α的补角=180°﹣25°40′=154°20′.故答案为154°20′.【点评】本题考查了余角与补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.等角的补角相等.等角的余角相等.﹣2 .【考点】有理数大小比较.【分析】根据有理数大小比较法则解答即可.【解答】解:根据有理数比较大小的方法,可得﹣2>﹣2.15,∴比﹣2.15大的最小整数是﹣2.故答案为:﹣2.【点评】此题主要考查了有理数大小比较的方法,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.14.已知|x|=2,|y|=3,且xy<0,x+y>0,则x﹣y= ﹣5 .【考点】绝对值.【分析】根据绝对值的意义和性质可知x、y的值,代入即可求出x﹣y的值.【解答】解:因为|x|=2,|y|=3,所以x=±2,y=±3,又因为xy<0,x+y>0,所以x=﹣2,y=3,所以x﹣y=﹣5.故答案为:﹣5.【点评】考查了绝对值,绝对值具有非负性,绝对值是正数的数有两个,且互为相反数.15.已知关于x的方程kx=5﹣x,有正整数解,则整数k的值为0或4 .【考点】一元一次方程的解.【分析】根据方程的解是正整数,可得5的约数.【解答】解:由kx=5﹣x,得x=.由关于x的方程kx=5﹣x,有正整数解,得5是(k+1)的倍数,得k+1=1或k+1=5.解得k=0或k=4,故答案为:0或4.【点评】本题考查了一元一次方程的解,利用方程的解是正整数得出关于k的方程是解题关键.16.如图,用大小相等的小正方形拼成大正方形网格.在1×1的网格中,有一个正方形;在1×1的网格中,有1个正方形;在2×2的网格中,有5个正方形;在3×3的网格中,有14个正方形;…,依此规律,在4×4的网格中,有30 个正方形,在n×n的网格中,有12+22+32+42+…+n2个正方形.【考点】规律型:图形的变化类.【分析】仔细观察图形,找到所有图形中正方形个数的通项公式即可确定正方形的个数.【解答】解:在1×1的网格中,有1=12个正方形;在2×2的网格中,有5=12+22个正方形;在3×3的网格中,有14=12+22+32个正方形;…,依此规律,在4×4的网格中,有12+22+32+42=30个正方形,在n×n的网格中,有12+22+32+42+…+n2个正方形.故答案为:30,12+22+32+42+…+n2【点评】本题考查了图形的变化类问题,解题的关键是能够仔细观察图形并找到图形变化个数的通项公式,难度不大.三、解答题(共62分)17.计算下列各式的值:(1)20﹣(﹣7)﹣|﹣2|;(2)(﹣1)3﹣×[2﹣(﹣3)2].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先利用减法法则及绝对值的代数意义化简,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=20+7﹣2=25;(2)原式=﹣1﹣×(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.解方程:(1)9﹣3x=7+5x;(2)﹣=1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:8x=2,解得:x=0.25;(2)方程整理得:﹣=1,去分母得:10x﹣3﹣20x﹣8=4,移项合并得:﹣10x=15,解得:x=﹣1.5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.已知A=3ax3﹣bx,B=﹣ax3﹣2bx+8.(1)求A+B;(2)当x=﹣1时,A+B=10,求代数式3b﹣2a的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)把A与B代入A+B中,去括号合并即可得到结果;(2)把x=﹣1代入A+B中,使其值为10,求出3b﹣2a的值即可.【解答】解:(1)∵A=3ax3﹣bx,B=﹣ax3﹣2bx+8,∴A+B=3ax3﹣bx﹣ax3﹣2bx+8=2ax3﹣3bx+8;(2)把x=﹣1代入得:A+B=﹣2a+3b+8=10,整理得:3b﹣2a=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.某支股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“﹣”表示股票比前一天下跌)上周末收盘价周一周二周三周四周五+ + +(1)周一至周五这支股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了?下跌.(3)这五天的收盘价中哪天的最高?周一哪天的最低?周二相差多少? 2.36元.【考点】有理数的加减混合运算;正数和负数.【专题】计算题.【分析】(1)根据每天涨跌的情况,分别列出算式并计算;(2)(3)根据(1)的计算结果,分别回答问题.【解答】解:(1)周一收盘价是:10+0.28=10.28(元);周二收盘价是:10.28﹣2.36=7.92(元);+1.80=9.72(元);周四收盘价是:9.72﹣0.35=9.37(元);+0.08=9.45(元);(2)由(1)可知,本周末的收盘价比上周末收盘价是下跌了;(3)由(1)可知,周一最高,周二最低,相差2.36元.故本题答案为:下跌,周一,周二,2.36元.【点评】本题考查了有理数的混合运算的实际应用,关键是理解题意,列出算式.21.如图,∠A+∠B=90°,点D在线段AB上,点E在线段AC上,作直线DE,DF平分∠BDE,DF与BC交于点F.(1)依题意补全图形;(2)当∠B+∠BDF=90°时,∠A与∠EDF是否相等?说明理由.【考点】作图—复杂作图.【分析】(1)直接利用角平分线的作法得出符合题意的图形;(2)直接利用互余的性质结合角平分线的性质得出,∠A与∠EDF的关系.【解答】解:(1)如图所示:(2)∠A与∠EDF相等,理由:∵∠B+∠BDF=90°,∠A+∠B=90°,∴∠A=∠BDF,∵DF平分∠BDE,∴∠BDF=∠EDF,∴∠A=∠EDF.【点评】此题主要考查了复杂作图以及角平分线的作法与性质,正确掌握角平分线的性质是解题关键.22.如图,C,D两点把线段AB分成1:5:2三部分,M为AB的中点,MD=2cm,求CM和AB的长.【考点】两点间的距离.【分析】根据线段中点的性质,可得MB,AM,根据线段的和差,可得关于m的方程,根据解方程,可得m,根据线段的和差,可得答案.【解答】解:由C,D两点把线段AB分成1:5:2三部分,设AC=m,CD=5m,DB=2m.由线段的和差,得AB=AC+CD+DB=m+5m+2m=8m.由M为AB的中点,得AM=MB=4m.由线段的和差,得MB﹣DB=MD,即4m﹣2m=2,解得m=1.CM=AM﹣AC=4m﹣m=3m=3cm;AB=8m=8cm,CM的长为8cm,AB的长为3cm.【点评】本题考查了两点间的距离,利用线段的和差得出关于关于m的方程是解题关键.23.列方程解应用题.(1)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?(2)加工一批零件,X师傅单独加工需要40天完成,李师傅单独加工需要60天完成.现在由于工作需要,X师傅先单独加工了10天,李师傅接着单独加工了30天后,剩下的部分由X、李二位师傅合作完成,这样完成这批零件一共用了多长时间?【考点】一元一次方程的应用.【分析】(1)设美国人均淡水资源占有量为xm3,中国人均淡水资源占有量为xm3,根据题意所述等量关系得出方程,解出即可得出答案.(2)可设完成这批零件共用x天,根据工作总量为1的等量关系列出方程求解即可.【解答】解:(1)设美国人均淡水资源占有量为xm3,中国人均淡水资源占有量为xm3,依题意得:x+x=13800,解得x=11500,则x=2300.答:中、美两国人均淡水资源占有量各为2300m3,11500m3.(2)设完成这批零件共用x天.根据题意,得:10÷40+30÷60+(1÷40+1÷60)(x﹣40)=1,解得:x=46.答:完成这批零件一共用了46天.【点评】此题考查了一元一次方程的应用,解答本题的关键是设出未知数,根据题意所述等量关系得出方程,难度一般.24.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为90 度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.【考点】旋转的性质;角的计算.【分析】(1)根据旋转的性质知,旋转角是∠MON;(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON在∠AOC内部时,旋转角是240°.【解答】解:(1)由旋转的性质知,旋转角∠MON=90°.故答案是:90;(2)如图3,∠AOM﹣∠NOC=30°.设∠AOC=α,由∠AOC:∠BOC=1:2可得∠BOC=2α.∵∠AOC+∠BOC=180°,∴α+2α=180°.解得α=60°.即∠AOC=60°.∴∠AON+∠NOC=60°.①∵∠MON=90°,∴∠AOM+∠AON=90°.②由②﹣①,得∠AOM﹣∠NOC=30°;(3)(ⅰ)如图4,当直角边ON在∠AOC外部时,由OD平分∠AOC,可得∠BON=30°.因此三角板绕点O逆时针旋转60°.此时三角板的运动时间为:t=60°÷15°=4(秒).(ⅱ)如图5,当直角边ON在∠AOC内部时,由ON平分∠AOC,可得∠CON=30°.因此三角板绕点O逆时针旋转240°.此时三角板的运动时间为:t=240°÷15°=16(秒).【点评】本题综合考查了旋转的性质,角的计算.解答(3)题时,需要分类讨论,以防漏解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h (元), = 58a + 115b
jiaos 要付(58a + 115b)元装卸费.
23. 如图,已知四点A,B,C,D,请用尺规作图完成(保留作图痕迹).
学生版
教师版
答案版
目录
选择题(本大题共10小题,每小题3分,… 填空题(本大题共6小题,每小题3分,… 解答题(本大题共10小题,共62分)
吨. 57 + 200 = 257
2018/ (3) 如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?
答 案 要付(58a + 115b)元装卸费.
i.izhika 解 析
(30 + 28)a + (25 + 30 + 29 + 16 + 15)b
(1) 已知数轴上有A,B两点表示的数分别为−20和10,求A,B两点的距离.
答 案 A,B两点的距离为30.
解析
. AB = |−20 − 10| = 30
∴A,B两点的距离为30.
(2) 若AB = d,试写出a,b,d之间的数量关系.
答案
. d = |a − b|
解 析 由题意可得:d = |a − b| .
∵1000000cm = 10km
∴可知,这一高度最接近国际航班飞行高度 故答案为D.
填空题(本大题共6小题,每小题3分,共18分)
11. 请写出一个只含有字母m、n,且次数为3的单项式

答案
2 −m n
解析
由题意可知,只含有字母m
、n,且次数为3的单项式可为−m
. 2 n
12. 比较大小:−2
−3(用“< ,>或=”连接).
A. , , (1) (2) (3) 答案 B
B. , , (2) (3) (1)
C. , , (1) (3) (2)
D. , , (3) (2) (1)
目录
选择题(本大题共10小题,每小题3分,… 填空题(本大题共6小题,每小题3分,… 解答题(本大题共10小题,共62分)
2018/12/11 解 析 由图可得:(1)是俯视图,(2)是主视图,(3)是左视图,故答案选B.
学生版
, 2x − 3x = −3 − 16
教师版
答案版
, −x = −19
. x = 19
2018/12/11
20. 解方程: 3y − 1 − 1 = . 5y − 7
4
6
答 案 . y = −1
解析
, 3y − 1
5y − 7
−1=
4
6
, 3(3y − 1) − 12 = 2(5y − 7)
完,试问大、小和尚各多少人?设大和尚各有x人,依题意列方程得( ).
A. x + 3(100 − x) = 100 3
B. x − 3(100 − x) = 100 3
C. 100 − x
3x +
= 100
3
答案 C
解析
设大和尚有x人,则小和尚有(100 − x) 人,
(3) 在(1)的条件下,若点A以每秒2个单位的速度沿数轴向右匀速运动,同时点B以每秒1个单位向左匀速运动, 求A,B两点相遇点所表示的数.
答 案 A,B两点相遇点所表示的数是0.
学生版
解 析 由题意可得,点A移动时所对应的数是−20 + 2t,
教师版
答案版
点B移动时所对应的数是10 − t ,
当两点相遇时,−20 + 2t = 10 − t ,
B选项:不是同类项,不能合并,
选项: , C
−(a − b) = b − a
选项: . D
2ab − ba = ab
故答案选D.
C. −(a − b) = b + a
D. 2ab − ba = ab
5. 如图,右面三幅图分别是从三个不同方向看这个棱柱得到的,从正面看,从左面看与从上面看, 依次得到的图形序号分别 是( ).
则有 . 100 − x
3x +
= 100
D. 100 − x
3x −
= 100
3
3
10. 如果一些体积为1cm3的小立方体恰好可以组成体积为1m3的大立方体,把所有这些小立方体一个接一个向上摞起来,大概有
学生版
教师版
答案版
编辑
多高呢?以下选项中最接近这一高度的是( ).
A. 莲花山望海观音的高度
学生版
教师版
答案版
编辑
6. 资料显示,目前入驻天猫的商户,销售额中:广告费占比15% ∼ 20%,物流费占比5% ∼ 8%,平台佣金费占比5%,仓库配
货费占比5%,人员工资占比10%.若其它成本占销售额的50%,则商户的利润约为销售额的( ).
A. 2% ∼ 10%
故答案选A.
7. 已知线段AB=10cm,点C在直线AB上,且AC=2cm,则线段BC 的长为( ).
A. 12cm
B. 8cm
C. 或 12cm 8cm
答案 C
解 析 当点C 在线段AB上时, ∵ , AC = 2cm ∴ , BC = AB − AC = 10 − 2 = 8cm 当点C 在BA的延长线上时, , AC = AB + AC = 10 + 2 = 12cm 故答案选C.
解析
原式 2
2
2
2
= x + 2xy − 3y − 2x − 2xy + 4y
, 2
2
= −x + y
∵ , . x = −1 y = 2
∴原式 . 2
2
= −(−1) + 2 = −1 + 4 = 3
22. 某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“−”表示出库): , , , , , , +30 −25 −30 +28 −29 −16 . −15 (1) 经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?
B. 滴水岩森林公园青萝嶂高度
C. 广州塔的高度
D. 国际航班飞行高度
目录
选择题(本大题共10小题,每小题3分,… 填空题(本大题共6小题,每小题3分,… 解答题(本大题共10小题,共62分)
答案 D
解析
∵ , 3
3
1m = 1000000cm
∴可知此大立方体是由1000000个边长为1cm的小立方体组成,
答 案 . −35.93
解析
原式= 4 + (−8) × 5 − (−0.07)
= 4 − 40 + 0.07
. = −35.93
19. 解方程:2(x + 8) = 3(x − . 1)
答 案 . x = 19
解析
, 2x + 16 = 3x − 3
/11
目录
选择题(本大题共10小题,每小题3分,… 填空题(本大题共6小题,每小题3分,… 解答题(本大题共10小题,共62分)
D. 1
2
2. 若2a − 1 = 0,则a的相反数是( ).
A. 2
B. −2
答案 C
C.2− 01128/12/11
D. 1
2
解 析
2a − , 1 = 0 2a , = 1 a = 1 , 1 的相反数是− 1 ,故答案选C.
2
2
2
3. 2017年11月7日,我国成功发射了两颗北斗三号全球组网卫星,它们所使用的原子钟,精度可达到每2000万年才误差1秒, 2000万年用科学记数法可表示为( ).
, 9y − 3 − 12 = 10y − 14
, 9y − 10y = 12 + 3 − 14 − y = 1
, −y = 1
. y = −1
编辑
21. 先化简,再求值: ,其中 , . 2
2
2
2
x + (2xy − 3y ) − 2(x + yx − 2y )
x = −1 y = 2
答 案 化简后得:−x2 − 4xy + y 2 ,代入值后得:3.
D. 以上均不对
8. 若关于x的方程2x + a − 4 = 0的解是x = −2,则a的值等于( ).
A. 8
B. −8
C. 0
D. 2
答案 A
解 析 ∵方程的解为x = −2 , ∴ , 2 × (−2) + a − 4 = 0 解得a = 8 , 故答案选A.
2018/12/11 9. 我国明代珠算家程大位的明珠《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一 个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,正好分
. = 4a + 16
15. 如图,射线OD平分平角AOB,射线OC 平分∠AOD,射线OE平分∠COB,则∠DOE的度数是

学生版
教师版
答案版
编辑
目录
选择题(本大题共10小题,每小题3分,… 填空题(本大题共6小题,每小题3分,… 解答题(本大题共10小题,共62分)
答案
∘ 22.5
解 析 ∵射线OD平分平角AOB,
A. 年 6 20 × 10
B. 年 6 2.0 × 10
C. 年 7 2.0 × 10
D. 年 8 2.0 × 10
答案 C
解析
万 . 7
2000 = 2.0 × 10
4. 下列运算正确的是( ). A. 5a − 3a = 2
相关文档
最新文档