力流与力流模型

合集下载

动量定理中的流体模型

动量定理中的流体模型

动量定理是物理学中的一个重要定理,它描述了物体的动量变化与作用力之间的关系。

在许多实际应用中,动量定理可以用于解决流体动力学问题,特别是在涉及到流体运动的情况。

在流体动力学中,流体模型是一个非常重要的概念,它可以帮助我们更好地理解流体的运动规律。

在动量定理中,流体模型通常指的是将流体视为连续介质,即流体是由无数个微小粒子组成的。

这种模型假设流体具有连续的物理性质,如密度、速度和压力等。

通过使用流体模型,我们可以将复杂的流体运动问题简化为一系列的微分方程,从而更容易地求解。

在流体动力学中,常见的流体模型有欧拉模型和有限差分模型等。

欧拉模型是一种基于欧拉方程的流体模型,它假设流体的密度、速度和压力等物理性质是时间、空间和流速的函数。

有限差分模型则是一种基于有限差分法的流体模型,它通过对流体区域的离散化,将流体的运动过程转化为一系列离散方程,从而更好地模拟流体运动。

对于流体模型的动量定理,我们需要考虑流体中的各个物体的相互作用。

这些相互作用可以表现为作用于物体上的力和作用于流体上的反作用力。

由于流体是连续的,所以流体的动量变化是由物体与流体的相互作用引起的。

在这个过程中,流体的动量定理起着关键作用。

动量定理的基本形式是:作用在物体上的力等于物体动量的变化率。

对于流体模型,这个定理可以表述为:作用于流体上的力等于流体质点的动量变化率。

这意味着,当流体受到外力作用时,流体的动量会发生改变,而这个改变量等于作用在流体上的力与时间间隔的乘积。

在实际应用中,流体模型的动量定理可以用于解决许多实际问题。

例如,在航空航天领域,飞机和火箭的飞行需要精确的计算流体动力学模型来预测气流的流动和阻力。

在水利工程中,工程师需要使用流体模型来模拟水流和波浪的运动,以评估水坝、河流改道等工程的可行性。

在化学工程中,流体模型的动量定理也被广泛应用,例如在管道输送、传热和燃烧等领域。

总之,流体模型的动量定理在许多实际应用中发挥着重要作用。

流体力学的基本理论和模型

流体力学的基本理论和模型

流体力学的基本理论和模型引言:流体力学是研究流体运动及其相互作用的物理学科,广泛应用于工程、天气预报、医学等领域。

本文将探讨流体力学的基本理论和模型,以及其在现实生活中的应用。

一、基本理论1. 流体的性质流体力学研究的是流体,而非固体。

流体与固体相比,其分子结构更加松散,没有固定的形状,易受外力作用产生形变。

流体力学的基础理论主要包含压力、密度、黏度和速度等概念。

其中,压力是指流体作用在单位面积上的力,密度是指单位体积中流体的质量,黏度则描述了流体的内摩擦阻力。

速度是流体运动过程中的关键参数,通过研究速度场的分布情况,可以揭示流体的运动规律。

2. 流体运动方程流体的运动是在力的作用下发生的,流体力学主要研究力对流体运动的影响。

流体力学的基本原理可以归结为流体运动方程。

其中,连续方程描述了流体的质量守恒,动量方程描述了流体的力和加速度之间的关系,能量方程则描述了流体在运动过程中能量的转换。

研究流体运动方程可以揭示流体运动的规律,为流体力学的应用奠定基础。

二、流体模型1. 管道流管道流是流体力学的经典模型之一,研究流体在管道中的流动。

在管道流中,流体会受到摩擦力的作用,形成一定的阻力。

通过研究管道流的特性,可以确定管道内的流速、压力和流量等参数,为管道工程设计提供依据。

2. 湍流湍流是指流体在流动过程中出现的不规则、混乱的运动。

与层流相比,湍流的速度场分布更加复杂,存在大量的涡旋结构。

湍流是流体力学研究中一个重要的课题,探究湍流的发生机制和特性,有助于提高管道和飞行器等设备的性能和安全性。

三、应用实例1. 飞行器设计流体力学在飞行器设计中起着重要的作用。

例如,通过研究飞行器受力情况,可以优化飞翼的结构,减小空气阻力,提高飞行器速度和燃料效率。

此外,流体力学还可以用于分析飞机起飞和降落的气动特性,确保飞机在各种气象条件下的安全性。

2. 石油开采石油开采过程中,流体力学可以帮助工程师预测地层中的油水分布、计算油井的产量,并优化注水和采油的工艺。

流体力学中三个主要力学模型

流体力学中三个主要力学模型

流体力学中三个主要力学模型流体力学是研究流体运动的一门学科,涉及到物理学、数学、工程学等多个领域。

在流体力学中,有三个主要的力学模型,分别是欧拉方程、纳维-斯托克斯方程和边界层方程。

这三个模型在不同的情况下有不同的应用,下面将分别介绍它们的基本原理和应用。

一、欧拉方程欧拉方程是描述流体运动的最基本的方程之一,它是由欧拉在1755年提出的。

欧拉方程是基于质点运动的牛顿第二定律得出的,它描述了流体在不受外力作用时的运动状态。

欧拉方程的基本形式如下:ρ/t + ·(ρu) = 0ρ(dv/dt) = -p其中,ρ是流体的密度,t是时间,u是流体的速度,p是压力,v是速度的随时间的变化率,是向量微分算子。

欧拉方程的应用范围很广,可以用来描述各种不可压缩流体的运动,例如水、油、气体等。

欧拉方程可以用来研究流体的基本运动规律,如速度分布、压力分布等。

欧拉方程还可以用来研究流体的力学性质,如流体的动量、能量守恒等。

二、纳维-斯托克斯方程纳维-斯托克斯方程是描述流体运动的另一个重要方程,它是由纳维和斯托克斯在19世纪提出的。

纳维-斯托克斯方程是基于牛顿第二定律和连续性方程导出的,它描述了流体在受外力作用时的运动状态。

纳维-斯托克斯方程的基本形式如下:ρ(dv/dt) = -p + μ^2v + f·v = 0其中,μ是流体的动力粘度,f是体积力,如重力、电磁力等。

纳维-斯托克斯方程适用于各种流体的运动,包括不可压缩流体和可压缩流体。

它可以用来研究流体的运动规律、流体的力学性质和流体的稳定性等问题。

纳维-斯托克斯方程还可以用来模拟流体在各种工程应用中的运动,如飞机、汽车、船舶等。

三、边界层方程边界层方程是描述流体在边界层内的运动的方程,它是由普拉特在1904年提出的。

边界层是指流体与固体表面接触的区域,它的厚度很小,但是流体的速度和压力在这个区域内发生了显著的变化。

边界层方程是基于牛顿第二定律和连续性方程导出的,它描述了流体在边界层内的运动状态。

第7章 劳动力流动理论

第7章   劳动力流动理论
快,不是以户籍管理制度的改革为主要特征,而是 以开放城乡之间的经济交流,对户籍管理工作进行 试验性改革,积极引导农村工业化与小城镇结合等 为主要特征。
• 第三阶段是2001—现在,在更为市场化的条件下推
进,中央政府和各级地方政府正在酝酿对户籍制度 进行实质性改革。
27
5.1 我国劳动力流动的现状及 问题分析
农业劳动力向工业的转移是两者作为前提条件的。一是人们消费需求的变动,提出了转移的必要性。
二是农业劳动生产率的提高,它提出了转移的可能性。除这两个条件之外,我们也应当看到,我们说 生产的社会化和阶层的变化决定了劳动力转移的现实性。只有在社会化大生产和市场化销售的情况下,
流动才可能发生。

随着生产社会化和经济市场化水平的提高,非农业部门之间的劳动力也不断要求发生转移和流动。
3
• 表5-1 不同年代就业者平均每次工作变动所需的时间(年)
4
• 表5-2 调查城市与其他数据分年龄组工作单位变动次
数均值比较(城市与国家)
5
第一节 劳动力流动的概念与成因
• 劳动力流动的成因可从三方面加以认识:
• 1、生产社会化和经济产业化运动,经济结构的不断变化使劳动力发生较大的流动

随着工农业生产社会化和市场化水平的提高,农业劳动力必然要大规模地向工业和第三产业转移。
中国三大产业比较劳动生产率系数
系数较高说明在该产业中相对于产值比重而言,劳动力的比重 较小,反之,说明劳动力的比重偏高。上表反映了一个不发达 的二元经济社会的特征,即农业存在着大量的过剩余劳动力。 其边际生产率接近于零,需要将其大规模转向工业趋向。
29
5.2 改善我国劳动力流动机制的 对策
• 应降低劳动者偏高的流动成本 • 将劳动力流动作为一种投资行为看待 • 强化劳动者的流动激励,通过财政援助

5劳动经济学讲义第五章

5劳动经济学讲义第五章
3.5 职业和技术等级对劳动力流动的影响
职业也是影响劳动力流动性大小的重要原因。 职业流动率与技术等级成反比。
12
中国人民大学劳动人事学院
第四节 劳动力流动的形式和机制
4.1 劳动力流动的主要形式
地域之间:指劳动力的职业没变,但可能是在地区之间或国家之
间进行流动。
行业之间:指劳动力从一个行业换到另一个行业。这种情况相对
德国政府的资料显示,在2019年,有145,000人离开德国去了其 他国家,例如去南非和西班牙等,是1954年以来的最高数据。法国 也是如此。
联合国教科文组织指出,在2019年到2019年间,全世界出国留学 人员数量增长了141%。留学生们的目的地国主要集中在美国、英国、 德国、法国、加拿大、澳大利亚和日本,此7国共吸收全球67%的留 学生。其中,吸引外国留学生最多的国家是美国,而中国已成为世界 上出国留学人数最多的国家。
8
中国人民大学劳动人事学院
第三节 影响劳动力流动的诸因素分析
3.1 3.2 3.3 3.4 3.5
年龄对劳动力流动的影响 家庭因素对劳动力流动的影响 受教育水平对劳动力流动的影响 迁移的距离与劳动力流动 职业和技术等级对劳动力流动的影响
9
中国人民大学劳动人事学院
第三节 影响劳动力流动的诸因素分析
非法流动和移民对劳动力市场的经济影响。 3、影响劳动力流动的因素主要有哪些?它们是怎样影响
劳动力流动的? 4、怎样看待劳动力流动的成本和收益? 5、你如何看待我国劳动力流动的现状?改善我国劳动
力流动机制应采取什么对策? 6、在其他条件相同的情况下,通常企业希望低辞职率,
劳动经济学
曾湘泉 中国人民大学劳动人事学院
1

流体力学中三个主要力学模型

流体力学中三个主要力学模型

流体力学中三个主要力学模型
流体力学中的三个主要力学模型分别是:
1. 欧拉方程:描述流体的宏观运动,基于连续性方程和动量守恒方程。

该模型假定流体是连续分布的,无黏性、无压缩性和外部力场作用的理想流体。

2. 非牛顿流体模型:描述流体内部粘性特性与剪切速率的关系,包括粘弹性、塑性和黏度剪切等因素。

该模型适用于高浓度悬浮体、聚合物溶液等非牛顿流体。

3. 雾化模型:用于描述将一液滴或者液体流的分离成许多小液滴的现象,在工程领域得到广泛应用。

该模型包括通过理论和实验方法求解流体表面张力、液滴间距和液滴尺寸分布等参数。

劳动经济学 第五章劳动力流动

劳动经济学 第五章劳动力流动
• 职业流动率与技能水平成反比,技术水平越高, 流动率越低,因为改变职业则会丧失专业优势。
• 专业技术人员的地区流动率可能会更高一些:专 业技术人员的家乡观念一般比低技能劳动者淡薄; 专业技术人员越来越专门化,常常需要跨地区寻 找工作;远距离迁移需要一笔可观的费用,低技 能劳动者一般承担不起,只有高工资的专业技术 人员才有能力做到。
• 移民的经济影响:
• 移民有害于当地的体力劳动者:当移民增加了体力
劳动的供给,从事体力劳动的当地劳动者的工资和就业水 平下降下到降W了2。DN如3O图。所示,当地劳动者的工资总额由W1BN1O,
• 移民可能有利于全体本地人:
–“廉价”劳动的移入有利于这类劳动的消费者。
–上重升体到力W劳2动AC的。雇主显然受益,如图所示,利润从W1AB –那些与非熟练移民没有密切替代性的劳动者,受益于
复习思考题
• 1、劳动力流动 • 2、简述劳动力个人流动的经济模型 • 3、移民的经济影响 • 4、影响劳动力流动的因素有哪些? • 5、我国劳动力流动中存在哪些问题?如何
解决?
力市场的经济影响
单个劳动者自愿流动的经济分析
• 单个劳动者自愿流动的经济分析:劳动力的流动实质上是人 力资本在地区之间的迁移。人力资本模型可以被用来理解 和预测自发的劳动力流动。
• 劳动力迁移的公式:如果与流动相联系的收益现值超过了与之
相联系的货币成本和心理成本的总和,那么劳动力的迁移就会发 生。估计劳动力流动净收益的公式为:
• 劳动力流动在很大程度上受劳动力市场化程度的 影响:
• 美国的劳动力流动程度最高 • 中国的劳动力流动率低于发达市场经济国家
• 二、劳动力流动的成因
• 1、区域间劳动力供求不平衡

国际劳动力流动模型

国际劳动力流动模型

国际劳动力流动模型一、概述国际劳动力流动是指人们在不同国家之间进行工作和定居的过程。

随着全球化进程的加速和国际间经济联系的日益紧密,国际劳动力流动已经成为一个备受关注的话题。

国际劳动力流动模型是研究不同国家间劳动者流动的规律和影响因素的理论框架,它对于理解国际劳动力市场的运行机制以及制定相关政策具有重要意义。

二、经典国际劳动力流动模型1. Heckscher-Ohlin模型Heckscher-Ohlin模型是国际贸易理论中的一个经典模型,它也可以用来解释国际劳动力流动。

该模型基于两个国家、两种产品、两种生产要素(劳动力和资本),假设两国之间的生产要素差异是导致国际贸易和劳动力流动的根本原因。

在此模型中,如果两国劳动力的供给情况存在差异,将会导致劳动力的跨国流动。

2. 新经济地理模型新经济地理模型关注的是劳动力在不同地区之间的流动。

这些模型认为,经济发展和城市化是劳动力流动的重要动力。

劳动力会向经济活动和就业机会更多的地区集中,从而形成城市化和区域发展。

这些模型更加注重地区之间的空间联系和差异对劳动力流动的影响。

三、影响国际劳动力流动的因素1. 经济因素经济发展水平、工资差距、就业机会等因素是影响国际劳动力流动的重要因素。

劳动力倾向于向收入较高、就业机会更多的国家流动。

2. 政策因素不同国家的移民政策、劳动力市场政策、社会福利政策等都会直接影响国际劳动力的流动。

政策的开放程度和灵活性对劳动力流动起着至关重要的作用。

3. 文化因素文化和语言的差异也会影响国际劳动力流动。

移民者更倾向于选择与自己文化相似、语言相通的国家。

四、国际劳动力流动的影响1. 对源国的影响国际劳动力流动会造成源国劳动力资源的流失,导致劳动力供给减少,可能引起劳动力市场紧张和工资上涨。

移民者的离开也会减少源国的人口压力、增加外汇收入等。

2. 对目的国的影响国际劳动力流动会对目的国的经济结构、劳动力市场、文化和社会带来影响。

合理的国际劳动力流动能够弥补目的国劳动力短缺、促进技术和文化的交流,推动经济的发展。

劳动经济学第5章 劳动力流动

劳动经济学第5章 劳动力流动
• 只要移民的工资仅仅等于边际产品价值,公民的总收 入不会减少。
• 非法移民往往没有资格享受当地政府的福利计划,直 接或间接支付着税收,可能增加当地人口的总收入。
• 总的来说,移民因迁入这个发达的区域而获益,当地 居民人口也收益。
第三节 我国劳动力流动方面存在 的问题与对策
• 我国劳动力流动的现状及问题分析 • 改善我国劳动力流动机制的对策分
(五)年龄
劳动力流动的高峰年龄是在20岁-24岁之 间。因为首先一个人越年轻,那么他从人力资 本投资中所能够获得的潜在收益也就会越高。 其次,年轻人的心理迁移成本相对较低。
(六)教育
较高的教育水平确实有较高的迁移率。
30岁-34岁的美国公民的迁移率(%),1993-1994年
教育水平 在同一州内部的各县 在各州之间迁移的
(年) 之间迁移的人员比例 人员比例
9-11
3.9
2.7
12
4.4
2.6
13-15
4.8
3.3
16
4.9
4.4
17 及其以上
6.7
5.0
26
(七)职业与技术等级
• 职业流动性的高低可用职业流动率大小来表 示。
• 职业流动率是某两年中改变职业的就业人数 与总的就业人数之比。流动率与技术等级成 反比。
经济因素是影响人口迁移的重要原因 “推-拉”理论 迁出地的经济收入因素对人口迁移产生的激发机制 经济因素的另一方面是区域经济规模水平,决定了其人 口承载力和劳动就业容量。
(三)失业率
市场宽松的时候,辞职率上升;反之,辞职率 下降
(四)家庭
许多经验研究发现:未婚比已婚更容易流动; 妻子就业阻碍流动;妻子就业时间越长,家庭 越不容易流动;有学龄儿童的家庭不易流动。

流体力学基本原理 连续介质模型

流体力学基本原理 连续介质模型

(3)混合物的密度
1)液体混合物的密度ρ m 取1kg液体,令液体混合物中各组分的质量分率分别为:
xwA、xwB、 、xwn ,
假设混合后总体积不变,
当m总 1 kg时,xwi mi
mi 其中xwi m总
V总
xwA
1

xwB
2


xwn
n

m总
m

1
m

xwA
1
xwB
du

du mm / s . kg / m3 0 0 0 Re m kg s 2 N .s / m
Re是一个没有单位,没有因次的纯数 。 在计算Re时,一定要注意各个物理量的单位必须统一。
雷诺准数可以判断流型


流体在圆形直管内流动时:
当Re 2000 时,流体的流动类型属于滞流 ;
(2)气体 —
为可压缩性的流体,通常(压力不太高, 温度不太低)时可按理想气体处理,否 则按真实气体状态方程处理。
MP RT

0T0 P
TP0
第一节 流体静力学基本方程式
研究外力作用下的平衡规律 一、密度 1.定义:单位体积流体所具有的质量。 ρ= m / V [ kg / m3] 流体中某点密度: 2、影响因素:温度和压力 (1)液体 — 认为不可压缩的流体,与压力无关,温度升 高,密度降低。
0.6 0.5 0.4 0.3 0.2 0.1 0.05 3 104 105 106
A0 A1
再随Re1而变C0=const,此时
流量就与压差计读数的平方 根成正比,因此,在孔板的
设计和使用中,希望Re1大于
界限值。

劳动经济学第六章人力资本投资

劳动经济学第六章人力资本投资
(一)人力资本投资的成本与收益分析
(1)人力资本投资的成本。
总的来说,人力资本投资中可能会产生的成本会有三部分: 一是实际投入的成本或直接费用。 二是机会成本或间接费用。 三是心理成本。
(2)人力资本投资的收益
人力资本投资的预期收益最主要的表现是在未来能够获得 到更高水平的工资性报酬,这是一种经济收益或货币收益。但 是人力资本投资同样可能会带来相应的心理收益。
人力资本投资
内容简介 第一节 人力资本投资及其理论模型 第二节 教育投资 第三节 在职培训投资 第四节 劳动力流动
本章学习要点
人力资本投资的理论模型 高等教育投资的相关决策 一般培训与特殊培训投资决策 劳动力流动的基本模型
一、人力资本投资理论的基本内容
(一)人力资本投资理论的发展及其意义 人力资本理论是20世纪60年代以来西方经济学
贝克尔对人力资本投资的主要贡献在于,他对人力资本的形成、正 规学校教育、在职培训投资以及年龄收入剖面曲线等都进行了分析,提 出了估算人力资本投资的若干方法,并且运用统计资料进行了实证检验, 此外他还将在职培训划分为一般在职培训和特殊在职培训。
明塞尔的人力资本思想
①借鉴斯密的“补偿原理”,首先建立了人力投资收 益率模型。
“三个杰出人物”:亚当·斯密、H.冯·杜能和欧文·费 雪,论证了人力资本的思想
威廉·配第:1676年提出人力资本的思想 马克思:比较全面地论及了人力资本问题 舒尔茨:人力资本理论的创立者
贝克尔、明塞尔:进一步发挥人力资本理论
舒尔茨人力资本理论的主要观点
第一,经济增长和发展取决于物力资本和人力资本两个方 面的投资。

t
Ci
i 1 (1 r )i

第五章_劳动力流动

第五章_劳动力流动


其他因素:流入地的语言、政治环境、文
化背景、气候和环境质量等
刘易斯模型

Hale Waihona Puke 对于经济发展过程中形成的结构性劳动力流动,在现代
发展经济学中有两个基本解释:一是刘易斯(A•Lewis)的
“劳动无限供给条件下的二元经济发展模型”,二是托达 罗(M•P•Todaro) “关于乡村到城市的移民模型”。

前者强调剩余劳动力向城市转移;后者强调农村城镇化就 地吸收农业游离出来的劳动力,进而把农村剩余劳动力问 题与农村城市化的分析统一起来 。
来自劳动力市场的证据:
单身的青年劳动力跳槽频率高 已婚且有孩子的工人相对稳定 对四川劳动力的研究表明,移民中已婚者为 49.8%,,而非移民已婚者的百分比为81.3%

因素三:受教育水平
受教育水平越高,人们获得劳动力市场信 息的能 力越强,信息搜寻成本等流动成本越低, 因而越容易流动。
19


(2)劳动力的无限供给 相对于资本和自然资源来说,人口如此众多, 以至于在这种经济部门里,劳动的边际生产率很 小或等于零,甚至为负数的国家里,劳动力的无 限供给是存在的。 在现行的两部门工资存在明显差异条件下,传 统农业部门对现代部门的劳动力供给会远远超过 需求。不仅如此,如果现代部门预期收入提高, 不仅传统部门的过剩劳动力会转移到现代部门, 就连就业于传统部门的必要劳动力也会向现代部 门转移。因为这时,他们将不满足于自己在传统 部门的收入,我国近年来所出现的大量土地撂荒 20 就足以证明这一点。


刘易斯的二元经济结构模型 拉尼斯—费景汉模型 托达罗模型 哈里斯对托达罗模型的修订
促进我国劳动力城乡流动机制的对策

工程中的力学模型

工程中的力学模型

工程中的力学模型引言在工程领域中,力学模型是研究和分析物体运动和变形的基础。

通过建立合适的力学模型,可以帮助工程师更好地理解和预测结构的行为,为工程设计和优化提供指导。

本文将介绍几种常见的力学模型及其应用。

一、刚体模型刚体模型是最简单的力学模型之一。

在刚体模型中,物体被假设为不可变形且没有内部应力的理想化物体。

刚体模型常用于分析和设计静力学系统,如桥梁、机械零件等。

通过对刚体模型的力学分析,可以确定结构的受力情况,从而确保结构的稳定性和安全性。

二、弹性模型弹性模型是一种用于描述物体弹性变形的力学模型。

在弹性模型中,物体被假设为能够恢复其原始形状和尺寸的理想化物体。

弹性模型常用于研究和设计需要考虑物体变形的系统,如弹簧、悬挂系统等。

通过对弹性模型的力学分析,可以确定物体的变形程度、应力分布及其对结构性能的影响,为结构设计提供依据。

三、塑性模型塑性模型用于描述物体在受力作用下发生塑性变形的力学模型。

在塑性模型中,物体被假设为能够永久性变形的理想化物体。

塑性模型常用于研究和设计需要考虑物体塑性变形的系统,如金属材料、塑料构件等。

通过对塑性模型的力学分析,可以确定物体在超过其弹性极限时的行为,为结构的强度和可靠性评估提供依据。

四、流体力学模型流体力学模型是研究和分析流体运动和变形的力学模型。

在流体力学模型中,流体被假设为连续可变形的理想化介质。

流体力学模型常用于研究和设计与液体和气体流动相关的系统,如管道、泵站、风力发电机组等。

通过对流体力学模型的力学分析,可以确定流体的速度、压力分布及其对系统性能的影响,为流体系统的设计和优化提供依据。

五、有限元模型有限元模型是一种近似解决复杂力学问题的数值方法。

在有限元模型中,物体被划分为有限个小区域,每个小区域被称为有限元。

通过对每个有限元的力学行为进行分析和计算,可以得到整个结构的力学行为。

有限元模型广泛应用于工程领域中的结构分析、热传导、流体流动等问题。

有限元模型的优点在于能够处理各种非线性和复杂边界条件,为工程设计和优化提供了强大的工具。

流体力学中的流体流动的物理模型与流动状态

流体力学中的流体流动的物理模型与流动状态

流体力学中的流体流动的物理模型与流动状态引言流体力学是研究流体运动和流动行为的分支学科。

流体流动是指流体在外力驱使下的运动过程,包括了流体的速度、压力、密度等特性的变化。

流体流动的物理模型与流动状态的研究,对于理解各种工程问题和自然现象起着重要的作用。

本文将介绍流体力学中的流体流动的物理模型以及不同流动状态的特点与应用。

1. 流体流动的物理模型流体流动的物理模型是对流体流动过程中各种因素的定量描述。

根据流体的性质和运动状态,可以建立不同的物理模型。

主要有以下几种:1.1. 理想流体模型理想流体模型是指忽略流体黏性和压缩性的假设,并通过连续介质力学的基本方程来描述流体的运动。

在理想流体模型中,流体可以看作是由无数微小粒子组成的连续介质,其速度场和压力场满足欧拉方程和连续方程。

1.2. 粘性流体模型粘性流体模型考虑了流体的黏性,即流体分子间相互作用引起的内摩擦力。

粘性流体模型可以通过把连续介质力学的基本方程加上黏性项来描述流体流动。

1.3. 可压缩流体模型可压缩流体模型考虑了流体的压缩性,即流体在受到外力作用时可以发生密度变化。

可压缩流体模型可以通过加上状态方程来描述流体流动。

1.4. 多相流模型多相流模型用于描述多种物质或多种相态的流体混合在一起的复杂流动过程。

多相流模型可以应用于研究气液两相流、气固两相流、液固两相流等多种多相流动。

2. 流动状态的分类与特点流体流动可以分为不同的状态,根据流动性质的不同可以进行分类。

常见的流动状态有以下几种:2.1. 局部稳定流动局部稳定流动指流体在一定范围内保持稳定的流动状态。

在局部稳定流动中,流体的速度、压力等物理量可能随位置和时间的变化而发生改变,但整体上保持稳定。

局部稳定流动可以通过纳维-斯托克斯方程或雷诺平均-纳维-斯托克斯方程进行数值模拟和分析。

2.2. 局部非稳定流动局部非稳定流动指流体在一定范围内不保持稳定的流动状态。

在局部非稳定流动中,流体的速度、压力等物理量会出现大幅度变化或者产生涡流等现象。

河流水力学中的水流动力学与水动力学模型

河流水力学中的水流动力学与水动力学模型

河流水力学中的水流动力学与水动力学模型河流水力学是研究河流中水的运动、变化和影响的学科。

水流动力学(Hydrodynamics)和水动力学 (Hydraulics) 是河流水力学中的两个重要分支。

水流动力学主要研究液体无限接近于静止状态而而不是由于静水压力而流动时的力学性质和变化规律。

它包括流体静力学、流体动力学和流体水动力学等内容。

水动力学附着于水文学的领域中,探讨流量与河床之间的互动问题,是应用力学在水文学的一个分支。

在水流动力学的研究中,常用雷诺数来描述流体的流动状态。

雷诺数(Re)是流场中惯性力与粘性力的比值,即Re=惯性力/粘性力,通俗点说,就是比较“快”和比较“慢”两种液体在运动时,惯性力和摩擦力占的比例。

雷诺数越大,惯性力越强,粘性力越弱,流体的速度分布、流线轮廓会发生很大的变化,出现旋力、涡旋、湍流等等。

水流动力学通常研究的对象是静止水体中的水流,比如飞机飞过湖面,水面随之波动形成涟漪、浪花、气泡等图案。

水流动力学的研究不仅和地球上的河流、湖泊、海洋等水域有关,同样应用在航空飞行、化工加工、水电利用、环境污染、生态保护等领域。

而水动力学则是将力学原理用于研究水在管道、水库、持滞池、水闸等设施中的流动规律和相应的物理量时进行研究。

水力学主要通过建立水动力学模型来进行研究,大多数研究通过物理实验来模拟实际情况,得到相关数据进行计算分析。

这些实验中一般会建立两种模型,即放大模型和原型模型。

放大模型将大型水力结构物缩小成比例减小的模型进行配制,以模拟实际工程中的设计。

原型模型则是尽可能地模拟实际情况所建立的模型,往往使用原材料制成,并实际测量水流运动的各种参数。

这种方法一般用于大型水利工程的实验验证,如水坝、堤防等大型设施。

通过对这些模型的实验数据进行计算处理,水动力学研究人员可以对水流动的各项参数进行分析,包括速度、流量、压力、粘度等。

水流动力学和水动力学模型的运用带来了很多好处。

比如,在水力学建模中,通常需要加入其他一些因素,比如气候和水文变化。

力流最短路径准则

力流最短路径准则

力流最短路径准则
"力流最短路径准则"通常涉及到网络流问题中的一个概念,特别是在流网络中,力流模型用于描述流体、电流等在网络中的传输过程。

最短路径准则则是指寻找从源节点到目标节点的路径中,通过网络边的权重之和最小的路径。

在网络流中,最短路径问题是一个常见的优化问题,具体的形式可以用迪杰斯特拉算法(Dijkstra's algorithm)或贝尔曼-福特算法(Bellman-Ford algorithm)等来解决。

具体来说,力流最短路径准则可以描述如下:
1.节点表示位置: 网络中的节点可以表示物理位置,例如城市、路口、交叉点等。

2.边表示路径: 网络中的边表示两个节点之间的连接路径,边上的权重表示在该路径上流体(如电流、液体等)的消耗或阻力。

3.力流模型: 考虑在网络中传输流体的过程,力流模型会考虑流体在路径上所受到的阻力,即路径上边的权重。

4.最短路径准则: 在力流模型中,最短路径准则是寻找从源节点到目标节点的路径,使得路径上边的权重之和最小。

在实际应用中,力流最短路径准则可以用于优化网络中的传输过程,例如在通信网络中选择最短路径可以减少信号传输的时延,或者在交通网络中选择最短路径可以减少行车时间。

需要注意的是,力流最短路径准则并不一定局限于实际流体传输,它可以被抽象为各种网络中的最短路径问题,根据具体情况选择适当的模型和算法。

1/ 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1996年7月加固
2014/7/4
6.桥梁总体布局:力的平衡与力流传递
1996年9月倒塌
6.桥梁总体布局:力的平衡与力流传递
加固,改变了传力体系? 混凝土截面抗剪失效?
Babeldaob Side
Koror Side
6.桥梁总体布局:力的平衡与力流传递
例3:丫髻沙大桥
平衡:外部&内部
2000年通车,2006年发现桥面系钢横梁陆续出现较多结构裂缝,且有发展趋势
4. D区内的力流传递
不同剪跨比:力流传递
4. D区内的力流传递
预应力筋的锚固区
应力迹线
应力分布
拉压杆模型
5
2014/7/4
4. D区内的力流传递
齿板锚固区
Bursting
P Spalling
Tendon deviation
(a)
Tie-back
Local bending
D A
d
a
e
α C
B
(b)
1. 引言
竖向力的平衡
1. 引言
力三角形
封闭力三角形 → 非共线力的平衡
1. 引言
多个非共线力的合力?
力多边形
力多边形 → 合力大小与方向
但作用点还是未知? 6
1
1. 引言
1. 引言
力的极多边形:(也称力的极矢量图)
在力多边形外,任取一点O,从该点向力多边形各顶点作连线。
7
1. 引言
1. 引言
2014/7/4
P/2
P/2
TR
Tb
P/2 P/2
Tet
Ts
应力分布 力流线
拉压杆模型
4. D区内的力流传递
桥墩/墩帽
拉压杆模型
5.力流传递与构Βιβλιοθήκη 细节先张预应力钢筋:粘结与握裹锚固
5.力流传递与构造细节
钢筋粘结与握裹锚固
(a)锚固端力流
基本锚固长度lab 最小锚固长度la
(b)直筋锚固长度
钢筋锚固端的力流
基本锚固长度lab la=0.6lab
8
2014/7/4
6.桥梁总体布局:力的平衡与力流传递
焊趾水平开裂
端部往腹板延伸
在考虑竖向力流平衡的同时,不可忽视纵向和横向力流传递的合理性!
6.桥梁总体布局:力的平衡与力流传递
例4:某中承式拱桥
悬挂孔
悬挂孔
伸缩缝
伸缩缝
6.桥梁总体布局:力的平衡与力流传递
伸缩缝
伸缩缝
6.桥梁总体布局:力的平衡与力流传递
(c)螺栓锚头锚固长度
5.力流传递与构造细节
箍筋闭合构造
5.力流传递与构造细节
牛腿部位力流与配筋

6
5.力流传递与构造细节
体外束转向块构造
外环筋 F’ F’
5.力流传递与构造细节
腹板传剪的构造考虑
2014/7/4
5.力流传递与构造细节
腹板传剪的构造考虑
6.桥梁总体布局:力的平衡与力流传递
例1:哈尔滨阳明滩大桥
6.桥梁总体布局:力的平衡与力流传递
漂浮体系─柔性桥面系: 桥面板+钢横梁+钢纵梁
竖向力流传递:桥面荷载→桥面板→钢横梁→吊杆或立柱→传递给拱肋
6.桥梁总体布局:力的平衡与力流传递
反复的纵向伸缩
纵向力流传递: 柔性系杆在平衡温度、荷载等作用的同时→纵向变形→横梁受扭 各个横梁的弯曲变形不均衡→小纵梁受扭
北京顺义悬索桥
57
6.桥梁总体布局:力的平衡与力流传递
销轴转动方向→关系到位移释放→关系到力流传递的合理性
7. 结语
(1) 桥梁设计,从某种意义上:
结构体系 细部构造
力的平衡 力流的传递
“外部的受力平衡”与“内部力流传递”同等重要!
60
10
2014/7/4
7. 结语
7. 结语
(2)解析公式与数值分析固然重要,但不可忘却“力流分析”
15
利用“极多边形”和“索多边形”,求弯矩图:
从K点作水平线,止于O’ 作出极多边形 参照极多边形作索多边形,即弯矩图
f
16


O’点可任取 按比例画图
M=f ×s
17
18
3
2014/7/4
2. 力流的图解表达

极多边形 → 索多边形
2. 力流的图解表达

索多边形 → 合理拱轴
3跨,边上双柱墩,中央两个独柱墩 侧向刚体倾覆——受力平衡中的低级错误!?
6.桥梁总体布局:力的平衡与力流传递
例2:帕劳共和国K-B桥
边跨短配重 中跨设铰-允许轴向位移与转动
1977年建成 L=240.8m
铰缝
温度作用
6.桥梁总体布局:力的平衡与力流传递
至1996年,跨中下挠1.2m
下挠
7
6.桥梁总体布局:力的平衡与力流传递
例5:某桁架式梁-拱组合梁桥
在不明确的接缝变形中,维持受力平衡
6.桥梁总体布局:力的平衡与力流传递
力流叠加:连续梁与系杆拱
用力流原理,可判定截面尺寸的相对合理性
9
6.桥梁总体布局:力的平衡与力流传递
重庆菜园坝大桥:力的平衡与传递
2006年12月6日 在成桥荷载试验时倒塌
2014/7/4
6.桥梁总体布局:力的平衡与力流传递
2
2
1. 引言
牛顿:自然哲学的数学原理(1687)
Isaac Newton: Mathematical Principles of Natural Philosophy (1687)
第一定律
v =const.
运动学
第二定律 第三定律
F = ma F=R
动力学 静力学
桥梁设计的一块基石!
3
例6:北京顺义悬索桥
跨长120m,宽5m,设计荷载为5kN/m2。 桥南北侧各有一索塔,索塔由两个梭形钢支架组成,索塔高约30m。 每个钢支架由三根直径300mm的空钢管组成,中间用5组缀管连接 桥塔支架底部铰接,销轴转动方向平行于桥的横向。 主缆在桥跨中间分开,在塔顶汇合。
6.桥梁总体布局:力的平衡与力流传递
2014/7/4
2014年研究生暑期学校及桥梁工程国际网络课程
桥梁概念设计:力流与力流模型
刘钊 东南大学土木工程学院 教授 Email: mr.liuzhao@ 2014年7月 南京
内容提要
1.引言 2.力流的图解表达 3.梁体内的力流传递 4.D 区内的力流传递 5.力流传递与构造细节 6.桥梁总体布局:力的平衡与力流传递 7.结语
3. 梁体内的力流传递
钢筋混凝土梁内的力流传递——桁架模型
力流路径 钢筋:拉杆 混凝土: 压杆
25
26
3. 梁体内的力流传递
桁架模型
连续体内的力流传递 ——更复杂,更难把握!
4. D区内的力流传递
D区:混凝土桥梁中不符合平截面假定的区域
集中力作用
几何尺寸突变
小剪跨区:支座附近 预应力锚固区 箱梁横隔板 径向力作用区 墩帽与盖梁 承台 ……
8
1. 引言
力的索多边形
9
10
1. 引言
O
可任意取O点的位置,不影响合力的求解结果。
11
12
2
1. 引言
至此,引入了3个图形概念: 力多边形 力的极多边形 力的索多边形

2014/7/4
2. 力流的图解表达

封闭线
力的索多边形
13
14

利用“极多边形”和“索多边形”,求支座反力:
与o点位置无关
从极多边形原点,作一条与索多边形封闭线平行的线,交于K点 → K点分割力矢量(F1+F2)→支座反力(V1+V2)
7. 结语
(4)可靠的力流传递 受弯与受剪 锚固区承压与力流传递 小剪跨区力流与配筋 几何尺寸突变的应力集中区 ……
63
Thanks!
11
19
20
2. 力流的图解表达

2. 力流的图解表达

与o点位置无关?
索多边形 → 悬链线 悬索桥,斜拉桥
21
22
2. 力流的图解表达

力多边形

力的极多边形
力流传递

力的索多边形
力的平衡
23
3. 梁体内的力流传递
弯曲力流
从截面看正应力流 24
4
2014/7/4
3. 梁体内的力流传递
剪切力流
从竖直/水平截面的切向看剪应力流
解析公式 数值分析
力的平衡 力流的传递
大到结构布局,小到细部配筋,力流模型均“大有作为”!
(3)可靠的受力平衡
避免刚体侧倾 避免拉力支座 稳固的外部边界 温度应力与变形的考虑 位移的释放与约束:纵向vs横向 足够的冗余度 传力路径与造型统一 ……
61
62
相关文档
最新文档