泛函分析知识总结

合集下载

泛函分析知识点总结

泛函分析知识点总结

泛函分析一,距离空间定义1.1.1设X是任一非空集合,对于X中的任意两点x,y,均有一个实数d(x,y)与它对应,且满足:1)d(x,y)≥0(非负性)2)d(x,y)=0当且仅当x=y(严格正)3)d(x,y)=d(y,x)4)d(x,y)≤d(x,z)+d(z,y)(三角不等式)则称d(x,y)为X中的一个距离,定义了距离d的集合称为一个距离空间,记为(X,d),有时简记为X。

1.2设(X,d)是一个距离空间,X中的一个数列,存在X中的任意点,如果当n趋于无穷时,这个数列按照距离收敛到这个点,则称这个数列以这点收敛。

1.3d(x,y)是x,y的二元函数,若当存在一个x的数列收敛到x,存在一个y的数列收敛到y,则这个距离关于x,y的二元函数也收敛。

(利用三角不等式证明)2.1开球的定义(X,d)是一个距离空间,r>0,集合B(x0,r)={x∈X|d(x,x0)<r}则称以x0为中心,r为半径的开球。

有界集:称A为有界集,若存在一个开球,使得A属于这个开球。

内点:称x0为集合G的内点,若存在一个开球B(x0,r)属于G。

开集:称G为开集,若G中的每一个点都是它的内点。

闭集:开集的补集就是闭集。

(若用接触点定义闭集就是,A的接触点的全体称为A的闭包,也就是闭集。

)闭集的等价条件是这个集合中的收敛点列收敛到这个集合中的元素。

全空间和空集即使开集也是闭集。

任意个开集的并是开集,有限个开集的交是开集。

任意个闭集的交是闭集,有限个闭集的并是闭集。

等价距离:两个距离空间称为等价距离,如果它们之间可以互相表示。

连续映射:在两个距离空间之间存在一个映射:T,称T为连续映射。

若在定义域的距离空间中存在一个开集,经过映射T,在另一个距离空间定义的距离下是任意小的。

映射T是连续的等价于值域里的开集的原像仍然是开集。

接触点:点x0称为A的接触点,若存在一个x0的开球与A的交不为空集。

(点x0可以属于A,也可以不属于A)聚点:点x0称为点A的聚点,若存在点x0的任意一个开球与A\{x0}的交不为空集。

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间与赋范线性空间;二、有界线性算子与连续线性泛函;三、内积空间与希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间与赋范线性空间(一)度量空间度量空间在泛函分析中就是最基本的概念,它就是n 维欧氏空间n R (有限维空间)的推广,所以学好它有助于后面知识的学习与理解。

1.度量定义:设X 就是一个集合,若对于X 中任意两个元素x,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)就是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义就是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为就是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 与度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 与2d ,则我们认为(X, 1d )与(X, 2d )就是两个不同的度量空间。

⑶ 集合X 不一定就是数集,也不一定就是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d,而称“度量空间X ” 。

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结泛函分析知识总结与举例、应⽤学习泛函分析主要学习了五⼤主要内容:⼀、度量空间和赋范线性空间;⼆、有界线性算⼦和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算⼦的谱。

本⽂主要对前⾯两⼤内容进⾏总结、举例、应⽤。

⼀、度量空间和赋范线性空间(⼀)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧⽒空间n R (有限维空间)的推⼴,所以学好它有助于后⾯知识的学习和理解。

1.度量定义:设X 是⼀个集合,若对于X 中任意两个元素x ,y,都有唯⼀确定的实数d(x,y)与之对应,⽽且这⼀对应关系满⾜下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (⾮负性) 2°d(x,y)= d(y,x) (对称性)3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常⽤的⽅法)注意:⑴定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满⾜1°、2°、3°都称为度量。

这⾥“度量”这个名称已由现实⽣活中的意义引申到⼀般情况,它⽤来描述X 中两个事物接近的程度,⽽条件1°、2°、3°被认为是作为⼀个度量所必须满⾜的最本质的性质。

⑵度量空间中由集合X 和度量函数d 所组成,在同⼀个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶集合X 不⼀定是数集,也不⼀定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷在称呼度量空间(X,d)时可以省略度量函数d ,⽽称“度量空间X ” 。

(完整)泛函分析知识总结,推荐文档

(完整)泛函分析知识总结,推荐文档

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结泛函分析是数学中一个重要的分支领域,它研究的是无穷维空间和函数的性质。

在泛函分析中,我们考虑的对象是函数空间,而不是具体的函数。

泛函分析广泛应用于数学、物理学、工程学等领域。

1.线性空间与拓扑空间:泛函分析的基础是线性空间的理论。

线性空间是指具有加法和数乘运算,同时满足线性结构条件的集合。

泛函分析还引入了拓扑空间的概念,拓扑空间是指在线性空间的基础上引入了距离、收敛等概念,并给出了一些性质。

2.范数与内积:范数和内积是泛函分析中常用的两个概念。

范数是定义在线性空间上的一种非负实值函数,它满足正定性、齐次性和三角不等式。

范数可以用来度量向量的大小。

内积是将两个向量映射到实数的一个运算,它满足对称性、线性性和正定性。

3.完备性和紧性:完备性是指一个空间中的柯西序列收敛于空间内的一个点。

完备性是一个重要的性质,它可以用来判断一个空间是否是可度量空间,即能够定义距离的空间。

紧性是指一个空间内的每个序列都存在收敛的子序列。

紧性常用于分析序列在空间内的收敛性。

4.泛函空间和对偶空间:泛函分析中经常考虑的是函数空间,函数空间是指由一类满足特定条件的函数构成的空间。

常用的函数空间有连续函数空间、可积函数空间等。

函数空间还可以定义内积、范数等结构。

对偶空间是一个线性空间的对偶空间,它由该线性空间上的线性函数构成。

5.泛函的连续性和收敛性:泛函分析研究的是空间到实数域的映射,所以泛函的连续性和收敛性是一个重要的问题。

在泛函分析中,我们定义了一个泛函的连续性,当且仅当对于任意给定的序列,如果其收敛于一个点,那么其映射的泛函值也会收敛于该泛函值。

类似地,我们还可以定义泛函的收敛性。

6.算子:算子是泛函分析中一个重要的概念,它是一种将一个空间映射到另一个空间的映射。

线性算子是指满足线性性质的映射,而有界算子是指满足一定范围内的性质的映射。

算子可以是线性差分方程、微分算符等。

7.泛函分析在物理学和工程学中的应用:泛函分析在物理学和工程学中有广泛的应用。

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

泛函分析知识点

泛函分析知识点

泛函分析知识点知识体系概述(一)、度量空间与赋范线性空间第一节 度量空间的进一步例子1.距离空间的定义:设X 就是非空集合,若存在一个映射d:X ×X →R,使得∀x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X,d)2、几类空间例1 离散的度量空间例2 序列空间S例3 有界函数空间B(A)例4 可测函数空M(X)例5 C[a,b]空间 即连续函数空间例6 l 2第二节 度量空间中的极限,稠密集,可分空间1. 开球定义 设(X,d)为度量空间,d 就是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域、2. 极限定义 若{x n }⊂X, ∃x ∈X, s 、t 、 ()lim ,0n n d x x →∞= 则称x 就是点列{x n }的极限、 3. 有界集定义 若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义 设X 就是度量空间,E 与M 就是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。

5. 可分空间定义 如果X 有一个可数的稠密子集,则称X 就是可分空间。

第三节 连续映射1、定义 设X=(X,d),Y=(Y , ~d )就是两个度量空间,T 就是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ< 的x,有()~0,d Tx Tx ε<,则称T 在0x 连续、2、定理1 设T 就是度量空间(X,d)到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X ∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3、定理2 度量空间X 到Y 中的映射T 就是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -就是X 中的开集、第四节 柯西(cauchy)点列与完备度量空间1、定义 设X=(X,d)就是度量空间,{}n x 就是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 就是X 中的柯西点列或基本点列。

泛函分析知识点

泛函分析知识点

泛函分析知识点知识体系概述(一)、度量空间和赋范线性空间 第一节 度量空间的进一步例子1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得∀x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y; (2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间例1 离散的度量空间 例2 序列空间S 例3 有界函数空间B(A) 例4 可测函数空M(X)例5 C[a,b]空间 即连续函数空间 例6 l 2第二节 度量空间中的极限,稠密集,可分空间1. 开球定义 设(X,d )为度量空间,d 是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限定义 若{x n }⊂X, ∃x ∈X, . ()lim ,0n n d x x →∞= 则称x 是点列{x n }的极限.3. 有界集定义 若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。

5. 可分空间定义 如果X 有一个可数的稠密子集,则称X 是可分空间。

第三节 连续映射1.定义 设X=(X,d),Y=(Y, ~d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ<的x ,有()~0,d Tx Tx ε<,则称T 在x 连续.2.定理1 设T 是度量空间(X,d )到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3.定理2 度量空间X 到Y 中的映射T 是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -是X 中的开集.第四节 柯西(cauchy )点列和完备度量空间1.定义 设X=(X,d)是度量空间,{}n x 是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 是X 中的柯西点列或基本点列。

泛函分析知识点总结

泛函分析知识点总结

泛函分析知识点总结1.Baire定理定理(Baire纲定理)完备的距离空间是第⼆类型集。

解释:完备的距离空间(X,d),∀x∈X都是内点,因为X在X中是开集。

⼀个⽆处稠密(nowhere dense)的集合就是闭包不含内点的集合不会是整个X,即X不是第⼀类型集,所以只能是第⼆类型集。

注:完备的距离空间是第⼆类型集,那么它的闭包⾄少存在⼀个内点。

这个经常被⽤来证明。

例如,开映射定理、闭图像定理等。

2. 闭包和导集的区别根据定义,集合的闭包是集合的导集和集合的并。

导集是集合所有聚点组成的集合,不包含孤⽴点。

所以闭包是集合导集和孤⽴点组成的集合。

3.闭集在度量空间中,如果⼀个集合所有的极限点都是这个集合中的点,那么这个集合是闭集。

4.不动点定理压缩映射:设(X,d)是距离空间,T是X到X的映射,如果存在⼀个常数θ(0≤θ<1),对于所有的x,y∈X,满⾜下述不等式:d(Tx,Ty)<θd(x,y)则称T是X上的⼀个压缩映射。

不动点定理:设X是完备的距离空间,T是X到X的压缩映射,则T在X上有唯⼀的不动点x∗.即Tx∗=x∗是⽅程Tx=x在X上的唯⼀解。

5.施密特正交化将⼀个线性⽆关的集合{x n}进⾏施密特正交化。

e1=x1 ||x1||e2=x2−<x2,e1>e1 ||x2−<x2,e1>e1||e j+1=x j+1−j∑k=1<x j+1,e k>e k ||x j+1−j∑k=1<x j+1,e k>e k||注:本质上说就是让x j+1减去其在e k,k=0,…,j上的分量,就正交化了。

然后再除以对应范数,进⾏单位化。

6.Hilbert空间的同构n为的实(复)Hilbert空间与R n(C n)同构。

(保距离,保线性,保范数,保内积)⽆限维可分Hilbert空间与l2空间(L2[0,1])等距同构。

7.算⼦的连续性和有界性连续性:对于X中的任何收敛于x0的点列{x n},恒有Tx n→Tx0,n→=∞有界性:存在正常数M,使得对⼀切x∈X,有||Tx||≤M||x||⼀点连续,则处处连续:设X和Y是数域\textbf{F}上的线性赋范空间,T:X→Y是⼀个线性算⼦。

泛函分析报告知识的总结

泛函分析报告知识的总结

泛函分析报告知识的总结泛函分析是数学中的一个重要分支领域,它研究的是无穷维空间上的函数及其性质。

泛函分析的应用广泛,包括函数空间、傅里叶分析、偏微分方程等等。

下面是我对泛函分析的一些知识进行总结。

首先,泛函分析的基础是线性代数和实分析。

线性代数研究的是向量空间及其线性关系,实分析则研究的是实数空间上的函数性质,例如收敛性、极限、连续性等等。

这两个基础学科为泛函分析的理论及应用打下了坚实的基础。

其次,泛函分析的核心是函数空间的研究。

函数空间是指一组函数的集合,其中的函数可以是有界函数、可积函数、连续函数等等。

泛函分析研究的是函数空间上的线性算子及其性质,例如范数、内积、完备性等等。

常见的函数空间有Lp空间、C(X)空间、Sobolev空间等等。

然后,泛函分析的重要工具是算子理论。

算子理论研究的是线性算子的性质和作用。

在泛函分析中,线性算子可以将一个函数映射到另一个函数,例如导数、积分等。

算子理论主要研究线性算子的性质,例如有界算子、紧算子、自伴算子等等。

算子理论在解析、几何等问题中有着广泛的应用。

此外,泛函分析也研究了拓扑结构及度量空间的性质。

拓扑结构是用来描述集合上点的邻域关系的概念,是泛函分析中重要的概念。

度量空间是带有度量函数的拓扑空间,度量函数可以度量空间中两个点之间的距离。

拓扑结构和度量空间的研究为泛函分析提供了一种统一的框架。

最后,泛函分析的应用广泛,特别是在数学的其他分支领域中。

在偏微分方程中,泛函分析可以用来研究问题的存在性、唯一性和稳定性;在概率论中,泛函分析可以用来研究随机过程的性质和收敛性;在图像处理中,泛函分析可以用来研究图像的压缩和恢复等等。

总之,泛函分析在数学及其应用领域中具有重要的地位和作用。

总结起来,泛函分析研究的是无穷维空间上的函数及其性质,它的基础是线性代数和实分析。

泛函分析的核心是函数空间的研究,它的重要工具是算子理论及拓扑结构和度量空间的性质。

泛函分析的应用非常广泛,涉及到数学的各个分支领域。

泛函分析复习与总结

泛函分析复习与总结

《泛函分析》复习与总结第一部分 空间及其性质泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。

以下几点是对第一部分内容的归纳和总结。

一.空间(1)距离空间 (集合+距离)!验证距离的三个条件:(,)X ρ称为是距离空间,如果对于,,x y z X ∈(i) 【非负性】(,)0x y ρ≥,并且(,)0x y ρ=当且仅当x y =【正定性】;(ii) 【对称性】(,)(,)x y y x ρρ=;(iii) 【三角不等式】(,)(,)(,)x y x y y z ρρρ≤+。

距离空间的典型代表:s 空间、S 空间、所有的赋范线性空间、所有的内积空间。

(2)赋范线性空间 (线性空间 + 范数)!验证范数的三个条件:(,||||)X ⋅称为是赋范线性空间,如果X是数域K =¡(或K =£)上的线性空间,对于a K ∈和,x y X ∈,成立(i) 【非负性】||||0x ≥,并且||||0x =当且仅当0x =【正定性】; (ii) 【齐次性】||||||||||ax a x =⋅;(iii) 【三角不等式】||||||||||||x y x y +≤+。

赋范线性空间的典型代表:n ¡空间(1,2,3,n =L )、n £空间(1,2,3,n =L )、p l 空间(1p ≤≤∞)、([,])p L ab 空间(1p ≤≤∞)、[,]Cab 空间、[,]k C a b 空间、Banach 空间、所有的内积空间(范数是由内积导出的范数)。

(3)内积空间 (线性空间 + 内积)!验证内积的四个条件:(,(,))X ⋅⋅称为是内积空间,如果X 是数域K =¡(或K =£)上的线性空间,对于a K ∈和,,x y z X ∈,成立(i) 【非负性】(,)0x x ≥,并且(,)0x x =当且仅当0x =【正定性】;(ii) 【第一变元可加性】(,)(,)(,)x y z x z x z +=+;(iii) 【第一变元齐次性】(,)(,)ax z a x z =;(iv) 【共轭对称性】(,)(,)x z z x =。

泛函分析知识总结汇总

泛函分析知识总结汇总

泛函分析知识总结汇总
一、函数的概念
函数是把特定的输入映射到特定的输出的规律。

常用的函数有:实数
函数、复数函数、多元函数和函数序列等。

二、函数的极限
极限是指当自变量的值向其中一数趋近时,函数的值向另一数趋近。

极限可以用来推导函数的行为,它也对定义微积分有着重要的意义。

三、函数的微分
微分是指将函数的变量的值变化一点点,函数值也发生一点点的变化。

微分是运用微积分最基本的操作,也是后续科学研究的基础。

四、函数的积分
积分是指将函数的不断变化的变量值,加以积分,求出函数的总积分,又称为定积分。

在实际应用中,经常使用积分来解决一些问题,如了解随
机变量的概率分布、求参数方程的解等。

五、函数的反函数
反函数就是由变量x的函数f(x)的一个变量y取得,满足条件
f(x)=y的一个函数。

反函数也是函数的一种,它的研究也是微积分的重
要内容之一
六、函数的条件积分
条件积分是指由两变量函数给定的函数在满足其中一种条件的情况下,确定它的积分。

在现实应用中,条件积分也是常用的一种积分方法,用以
求解参数方程的解等。

七、函数的级数
级数是由一系列的数序列组成的,并且它们满足其中一特定的规律。

泛函分析知识总结讲解

泛函分析知识总结讲解

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间nR (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

泛函知识点总结

泛函知识点总结

泛函知识点总结一、泛函的基本概念1.1 泛函的定义泛函是函数的一个推广概念,它是对函数的一种广义的抽象和概括。

在数学中,泛函一般被定义为一个把函数空间中的函数映射到实数域或复数域的映射,这种映射被称为泛函。

泛函可以看作是一个“函数的函数”,它对函数进行了更高级别的抽象和泛化。

1.2 泛函的表示泛函通常用一般形式的积分或者其他函数操作来表示,这样的表示形式更加抽象和一般,可以适用于更广泛的函数空间和函数类别。

例如,一个泛函可以表示为关于函数f(x)的某种积分形式,如:\[J[f]=\int_{a}^{b} L(x,f(x),f'(x))dx\]其中L(x,f(x),f'(x))是关于函数f(x)及其导数的某种函数,称为被积函数,这种形式的泛函被称为积分型泛函。

1.3 泛函的性质泛函具有一般函数所具有的性质,如可微性、极值性、泛函空间的完备性等。

另外,泛函还具有一些特有的性质,如泛函运算的线性性、变分性等。

这些性质对于泛函的研究和分析具有重要意义。

二、泛函的理论基础2.1 变分法变分法是泛函研究的重要方法和基础理论,它是求解泛函的极值问题的一种基本工具。

变分法通过对函数的微小变动进行分析,得到泛函的极值条件和解的存在唯一性等结论,它在物理学、工程学等领域中具有重要应用。

2.2 泛函空间泛函空间是泛函分析的基本研究对象,它是一种特殊的函数空间,其中的元素是泛函。

泛函空间通常具有一定的结构和性质,如线性空间结构、度量空间结构等,它是研究泛函和泛函运算的重要工具和理论基础。

2.3 函数空间的拓扑结构函数空间是泛函空间的特殊情况,它是泛函研究中的另一个重要对象。

函数空间通常具有一定的拓扑结构,如紧性、连续性、收敛性等,这些拓扑性质对于泛函的收敛性和连续性等问题具有重要意义。

2.4 泛函分析的基本理论泛函分析是对泛函和泛函空间进行研究和分析的一个重要分支,它是泛函研究的基本理论之一。

泛函分析主要研究泛函空间的结构、性质和运算规律等问题,它为泛函的研究和应用提供了重要的理论基础和工具。

泛函分析部分知识点汇总

泛函分析部分知识点汇总

度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。

泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。

一、度量空间的进一步例子1、度量空间设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°的充要条件为x=y 2°对任意的z 都成立, 则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空间。

x 中的元素称为点。

2、常见的度量空间(1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称为离散的度量空间。

(2)序列空间S令S 表示实数列(或复数列)的全体,对S 中的任意两点令 称 为序列空间。

(3)有界函数空间B(A )设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义(4)可测函数空间设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度,若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。

令 (5)C[a,b]空间令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意两点x,y ,定义二、度量空间中的极限、稠密集、可分空间1、收敛点列设 是(X ,d )中点列,如果存在 ,使 则称点列是(X ,d ) 中的收敛点列,x 是点列 的极限。

收敛点列性质:(1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯一的。

(2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。

(,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠⎧=⎨=⎩(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()|f tg t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-⎰(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x2、收敛点列在具体空间中的意义(1)n 维欧式空间中:为 中的点列, 即:按欧式距离收敛于x 的充要条件是 依坐标收敛于(2)序列空间S 中:为 S 中的点列,(3)C[a,b]空间设 及X 分别为C[a,b] 中的点列及点,(4)可测函数空间M(X)设 及 f 分别为可测函数空间中的点列及点,3、稠密集,可分空间(1)设X 是度量空间,E 和M 是X 中的两个子集,令 表示M 的闭包,如果 ,那么称集M 在集E 中稠密。

泛函分析部分知识总结

泛函分析部分知识总结

泛函分析单元知识总结与知识应用一、单元知识总结第七章、 度量空间和赋范线性空间 §1 度量空间§1.1定义:若X 是一个非空集合,:dX X R ⨯→是满足下面条件的实值函数,对于,x y X ∀∈,有(1)(,)0d x y =当且仅当xy =;(2)(,)(,)d x y d y x =;(3)(,)(,)(,)d x y d x z d y z ≤+,则称d 为X 上的度量,称(,)X d 为度量空间。

例:1、设X 是一个非空集合,,x y X ∀∈,当1,(,)0,=x y d x y x y≠⎧=⎨⎩当当,则(,)X d 为离散的度量空间。

2、序列空间S ,i =1i |-|1(,)21+|-|i ii i d x y ξηξη∞=∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t Ad x y x y ∈=是度量空间4、连续函数[a,b]C ,(,)max|(t)-(t)|a t bd x y x y ≤≤=是度量空间5、空间2l ,122=1(,)[(-)]kki d x y y x ∞=∑是度量空间§2 度量空间中的极限,稠密集,可分空间 §2.1收敛点列:设{}n x 是(,)X d 中点列,如果∃x X ∈,使n lim (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列。

例:1、nn x R ∈,{}n x 按欧氏距离收敛于x 的充要条件为1,i n ∀≤≤各点列依分量收敛。

2、[a,b]C 中(,)0k d x y x x →⇔→(一致)3、可测函数空间()M X 中点列(,)0n n d f f f f→⇔⇒(依测度)稠密子集与可分空间:设X 是度量空间,E 和M 是X 中两个子集,令M M M ⊂表示的闭包,如果E ,那么称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 是可分空间。

泛函分析知识点总结

泛函分析知识点总结

泛函分析一,距离空间定义1.1.1设X是任一非空集合,对于X中的任意两点x,y,均有一个实数d(x,y)与它对应,且满足:1)d(x,y)≥0(非负性)2)d(x,y)=0当且仅当x=y(严格正)3)d(x,y)=d(y,x)4)d(x,y)≤d(x,z)+d(z,y)(三角不等式)则称d(x,y)为X中的一个距离,定义了距离d的集合称为一个距离空间,记为(X,d),有时简记为X。

1.2设(X,d)是一个距离空间,X中的一个数列,存在X中的任意点,如果当n趋于无穷时,这个数列按照距离收敛到这个点,则称这个数列以这点收敛。

1.3d(x,y)是x,y的二元函数,若当存在一个x的数列收敛到x,存在一个y的数列收敛到y,则这个距离关于x,y的二元函数也收敛。

(利用三角不等式证明)2.1开球的定义(X,d)是一个距离空间,r>0,集合B(x0,r)={x∈X|d(x,x0)<r}则称以x0为中心,r为半径的开球。

有界集:称A为有界集,若存在一个开球,使得A属于这个开球。

内点:称x0为集合G的内点,若存在一个开球B(x0,r)属于G。

开集:称G为开集,若G中的每一个点都是它的内点。

闭集:开集的补集就是闭集。

(若用接触点定义闭集就是,A的接触点的全体称为A的闭包,也就是闭集。

)闭集的等价条件是这个集合中的收敛点列收敛到这个集合中的元素。

全空间和空集即使开集也是闭集。

任意个开集的并是开集,有限个开集的交是开集。

任意个闭集的交是闭集,有限个闭集的并是闭集。

等价距离:两个距离空间称为等价距离,如果它们之间可以互相表示。

连续映射:在两个距离空间之间存在一个映射:T,称T为连续映射。

若在定义域的距离空间中存在一个开集,经过映射T,在另一个距离空间定义的距离下是任意小的。

映射T是连续的等价于值域里的开集的原像仍然是开集。

接触点:点x0称为A的接触点,若存在一个x0的开球与A的交不为空集。

(点x0可以属于A,也可以不属于A)聚点:点x0称为点A的聚点,若存在点x0的任意一个开球与A\{x0}的交不为空集。

泛函分析知识总结讲解

泛函分析知识总结讲解

泛函分析知识总结讲解泛函分析是数学的一个分支,研究无限维空间中的函数与函数序列的性质以及它们之间的关系。

它是实数分析和复数分析的推广与深化,是现代数学的基石之一,对于几乎所有分支的数学都具有极高的重要性。

以下是对泛函分析的知识总结和讲解。

1.范数空间与内积空间:泛函分析的基础概念是线性空间,进一步的,我们将线性空间中的向量赋予一定的范数或内积,得到范数空间和内积空间。

范数空间是指一个线性空间中存在一个范数,满足向量加法、标量乘法和范数运算的线性性质。

常见的范数空间有欧几里得空间、无穷范数空间和Lp空间等。

内积空间是指一个线性空间中存在一个内积,满足线性性质、对称性和正定性。

内积定义了向量之间的夹角和长度,并且可以衡量向量的相似度和正交性。

常见的内积空间有欧几里得空间和希尔伯特空间等。

2.完备性与紧性:完备性是指一个度量空间中的柯西序列在该空间中有一个极限点。

具有完备性的空间被称为“完备度量空间”或“巴拿赫空间”。

典型的完备度量空间包括实数集和复数集。

紧性是指一个度量空间中存在一个有限的覆盖,可以从中选取有限个开球覆盖整个空间。

紧性是度量空间的一个重要性质,表明空间的元素具有收敛性质。

3.可分性与连续性:可分性是指一个度量空间中存在一个可数的稠密子集。

可分性是度量空间的一个重要性质,表明空间的元素可以用可数个元素逼近。

连续性是指线性空间和范数空间中的映射保持了基本的运算和距离的一致性。

连续性是一个重要的概念,它描述了元素的连续变化和收敛性质。

4.泛函与算子:泛函是指一个线性空间到实数或复数的映射。

泛函可以是线性的,也可以是非线性的,常见的泛函有线性泛函和连续泛函等。

算子是指一个线性空间到另一个线性空间的映射。

算子可以是线性的,也可以是非线性的。

常见的算子有线性算子和连续算子等。

5.特征空间与对偶空间:特征空间是指一个线性算子的定义域,它是算子的作用空间的一种表达形式。

特征空间可以是有限维空间,也可以是无限维空间。

泛函分析知识点汇总

泛函分析知识点汇总

泛函分析知识点知识体系概述(一)、度量空间和赋线性空间 第一节 度量空间的进一步例子1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得∀x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间例1 离散的度量空间 例2 序列空间S例3 有界函数空间B(A) 例4 可测函数空M(X)例5 C[a,b]空间 即连续函数空间 例6 l 2第二节 度量空间中的极限,稠密集,可分空间 1. 开球定义 设(X,d )为度量空间,d 是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限定义 若{x n }⊂X, ∃x ∈X, s.t. ()lim ,0n n d x x →∞= 则称x 是点列{x n }的极限.3. 有界集定义 若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。

5. 可分空间定义 如果X 有一个可数的稠密子集,则称X 是可分空间。

第三节 连续映射1.定义 设X=(X,d),Y=(Y, ~d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ<的x ,有()~0,d Tx Tx ε<,则称T 在x 连续.2.定理1 设T 是度量空间(X,d )到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3.定理2 度量空间X 到Y 中的映射T 是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -是X 中的开集.第四节 柯西(cauchy )点列和完备度量空间1.定义 设X=(X,d)是度量空间,{}n x 是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 是X 中的柯西点列或基本点列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泛函分析知识总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n维欧氏空间n R(有限维空间)的推广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X是一个集合,若对于X中任意两个元素x,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔x=y(非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x、y之间的度量或距离(matric或distance),称为(X,d)度量空间或距离空间(metric space)。

(这个定义是证明度量空间常用的方法)注意:⑴定义在X中任意两个元素x,y确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

举例离散的度量空间:设X 是任意的非空集合,对X 中任意两点x,y ∈X ,令()1x y d x y =0x=y≠⎧⎨⎩,当,,当,则称(X ,d )为离散度量空间。

序列空间S :S 表示实数列(或复数列)的全体,d(x,y)=1121i i i i i iςηςη∞=-+-∑; 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义d(x,y)=At ∈sup )()(t y t x -可测函数空间M(X):M(X)为X 上实值(或复值)的L 可测函数全体。

d(f,g)=dt t g t f t g t f x ⎰-+-)()(1)()(C[a,b]空间(重要的度量空间):C[a,b]表示闭区间[a,b]上实值(或复值)连续函数全体,对C[a,b]中任意两点x,y ,定义d(x,y)=)()(max t y t x bt a -≤≤ l 2:无限维空间(重要的度量空间)★ 例、是考试中常考的度量空间。

2.度量空间中的极限,稠密集,可分空间0x 的ε—领域:设(X ,d )为度量空间,d 是距离,定义{}00(,)U x x X εε==∈∣d(x,x )<为0x 的以ε为半径的开球,亦称为0x 的ε—领域。

注:通过这个定义我们可以从点集这一章学到的知识来定义距离空间中一个点集的内点,外点,边界点及聚点,导集,闭包,开集等概念。

度量空间的收敛点列:设(X ,d)是一个度量空间,{}n x 是(X ,d )中点列,如果存在x X ∈,{}n x 收敛于x ,使lim n n x x →∞=,即(,)0()n d x x n →→∞,称点列{}n x 是(X ,d )中的收敛点列,x 叫做点列{}n x 的极限,且收敛点列的极限是唯一的。

注:度量空间中点列收敛性质与数列的收敛性质有许多共同之处。

有界集:设M 是度量空间(X ,d )中的点集,定义,()(,)sup x y MM d x y δ∈=为点集M 的直径。

若()M δ∞<,则称M 为(X ,d )中的有界集。

(类似于n R ,我们可以证明一个度量空间中收敛点列是有界点集) 闭集:A 是闭集⇔A 中任意收敛点列的极限都在A 中,即若n x A ∈,n=1,2,....n x x →,则x A ∈。

(要会证明)举例n 维欧氏空间nR 中,点列依距离收敛(,)0k d x x →⇔依分量收敛。

C[a,b]空间中,点列依距离收敛(,)0k d x x →⇔依分量一致收敛。

序列空间S 中,点列依坐标收敛。

可测函数空间M(X):函数列依测度收敛于f ,即 (,)0n n d f f f f →⇔⇒。

稠密子集和可分度量空间有理数集在实数集中的稠密性,它属于实数集中,现把稠密性推广到一般的度量空间中。

定义:设 X 是度量空间,E 和M 是X 的两个子集,令M 表示M 的闭包,如果E ⊂M ,则称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 为可分空间。

注:可分空间与稠密集的关系:由可分空间定义知,在可分空间X 中一定有稠密的可数集。

这时必有X 中的有限个或可数个点在X 中稠密。

举例①n 维欧式空间n R 是可分空间:坐标为有理数的全体是n R 的可数稠密子集。

②离散度量空间X 可分⇔X 是可数集。

(因为X 中无稠密真子集,X 中唯一的稠密只有X 本身)③l ∞是不可分空间。

数学知识间都有联系,现根据直线上函数连续性的定义,引进了度量空间中映射连续性的概念。

3. 连续映射定义:设X=(X ,d ) Y=(Y ,~d )是两个度量空间,T 是X 到Y 中的映射0x єX ,如果对∀ε>0,∃δ>0 ,使对X 中一切满足d (x ,0x )<δ的x ,有~0(,x )d Tx T ε<,则称T 在0x 连续。

(度量空间之间的连续映射是数学分析中连续函数概念的推广,特别,当映射是值域空间 Y R =时,映射就是度量空间上的函数。

)注:对于连续可以用定义证明,也可以用邻域的方法证明。

下面用邻域描述:对T 0x 的ε-邻域U ,存在0x 的某个δ—邻域V ,使T V ⊂U ,其中T V 表示V 在映射T 作用下的像。

定理1:设T 是度量空间(X ,d )到度量空间(Y ,~d )中映射,T 在0x X ∈连续⇔当0n x x →()n →∞时,必有0()n Tx Tx n →→∞。

在映射中我们知道像与原像的概念,下面对原像给出定义。

原像的定义:映射T 在X 的每一点都连续,则称T 是X 上的连续映射,称集合{x ∣x ∈X ,Tx ⊂M ⊂Y}为集合M 在映射T 下的原像,简记为1T M -。

★可见,对于度量空间中的连续映射可以用定理来证明,也可以用原像的定义来证明。

定理2:度量空间X 到Y 中的映射T 是X 上连续映射⇔Y 中任意开集M 的原像1T M -是X 中的开集(除此之外,利用1T -(M 的补集)=(1T M -)的补集,可将定理中开集改成闭集,定理也成立。

)注:像开原像开,像闭原像闭,映射连续。

在数学分析中有学过收敛点列,柯西点列,但研究都在R 中。

现在我们可类似的给出度量空间中柯西点列的概念。

4. 柯西(Cauchy )点列和完备的度量空间。

柯西点列的定义 :设X=(X ,d )是度量空间,{n x }是X 中的点列,对∀ε>0,∃正整数N=N (ε),使当n,m>N 时,必有d(n x ,m x )<ε,则称{n x }是X 中的柯西(Cauchy )点列或基本点列。

【会判断:柯西点列是有界点列】我们知道实数集的完备性,同时在学习数列收敛时,数列收敛的充要条件是数列是Cauchy列,这由实数的完备性所致。

在度量空间中,这一结果未必成立。

但在度量空间中的确存在完备的度量空间。

完备的度量空间的定义:如果度量空间(X,d)中每一个柯西点列都在(X,d)中收敛,那么称(X,d)是完备的度量空间.★但要注意,在定义中要求X中存在一点,使该柯西点列收敛到这一点。

举例(记住结论)有理数全体按绝对值距离构成的空间不完备,但n维欧式空间n R是完备的度量空间。

在一般度量空间中,柯西点列不一定收敛,但是度量空间中的每一个收敛点列都是柯西点列:C、C[a,b]、l∞也是完备的度量空间。

定理完备度量空间X的子空间M,是完备空间⇔M是X中的闭子空间。

P[a,b](表示闭区间[a,b]上实系数多项式全体,作为C[a,b]的子空间)是不完备的度量空间.5. 度量空间的完备化。

等距映射:设(X,d),~~ ,X d()是两个度量空间,T是从X到~X上的映射,即对∀x,y X∈,~d(Tx,Ty)=d(x,y),则称T是等距映射。

定义:设(X,d),~~ ,X d()是两个度量空间,如果存在一个从X到~X上的等距映射T,则称(X,d)和~~ ,X d()等距同构,此时T称为X到~X上的等距同构映射。

(像的距离等于原像的距离)注:在泛函分析中往往把两个等距同构的度量空间不加区别而视为同一的。

定理1(度量空间的完备化定理):设X=(X,d)是度量空间,那么一定存在完备度量空间~~~=,X X d(),使X与~X的某个稠密子空间W等距同构,并且~X在等距同构下是唯一的,即若(ˆX,ˆd)也是一个完备的度量空间,且X 与ˆX 的某个稠密子空间等距同构,则~~,X d ()与(ˆX ,ˆd )等距同构。

(不需要掌握证明但是要记住结论) 定理1的改述:设X=X (,d )是度量空间,那么存在唯一的完备度量空间~~~=,X X d (),使X 为~X 的稠密子空间。

6. 压缩映射原理及其应用(重点内容,要求掌握并会证明)学习完备度量空间概念,就需要应用,而压缩映像原理是求解代数方程、微分方程、积分方程,以及数值分析中迭代算法收敛性很好的工具,另外要学会如何求不动点。

压缩映射定义:X 是度量空间,T 是X 到X 的映射,如果存在一个数α,0,1α∈(),使 对∀ x ,y X ∈,d (Tx ,Ty )≦αd (x ,y ) 则称T 为压缩映射。

(压缩映射定理)设X 是完备的度量空间,T 是X 上的压缩映射,那么T 有且仅有一个不动点(即方程Tx=x ,有且只有一个解)。

(x 是T 的不动点⇔x 是方程Tx=x 的解)这个定理对代数方程、微分方程、积分方程、数值分析的解的存在性和唯一性的证明中起重要作用。

压缩映射原理的应用:在众多情况下,求解各种方程的问题可以转化为求其某一映射的不动点,现在以大家熟悉的一阶常微分方程(,)dy f x y dx = (1) 为例来说明这一点。

相关文档
最新文档