《三角形的内角和》案例

合集下载

《三角形的内角和》教学案例及反思

《三角形的内角和》教学案例及反思

《三角形的内角和》教学案例及反思《三角形的内角和》教学案例及反思荷兰数学教育家弗赖登塔尔曾反复强调:学习数学的唯一方法就是实行再创造,也就是由学生本人把要学习的东西自己去发现或创造出来,教师的任务是引导和帮助学生进行这种再创造工作,而不是把现成的知识灌输给学生。

【问题的提出】对三角形的内角和传统的教法是:在理解什么是三角形的内角后,教师提出课题:三角形的内角和是多少?同学们想不想知道?之后,教师让学生拿出印有虚线折横的三角形,按课本上的折法开始操作,并组织学生交流,讨论。

再在教师的一步步启发下,得出三角形的三个内角正好可组成一个平角,从而得出三角形的内角和是_0度。

上述教学中,学生既有操作,又有交流,应该说较好地学习了新知识,但细想每一步活动都是在教师的指挥下按部就班进行的,这样的教学形式上是热闹的,但学生的思维却是被动的。

究其原因在与教师还是着眼于知识本身,急于让学生去操作,去发现三角形的内角和定理,而忽视了比获取这一知识更重要的东西对学生主动探究新知的动机的激发与能力的培养。

如何让学生主动地探究并发现新知呢?针对这一问题,我做了如下教学尝试。

【教学尝试】投影出示,已知 1=80 、 2=70 、 3=( ) 初步让学生建立 1、 2、 3正好组成一个平角的印象。

在转入新课。

(一)激发欲望教师让学生每人画一个三角形,量出其中两个角的度数报给老师,老师不用量角器说出第三个角的度数。

(学生开始还不信,后来用量角器一量,确实如此。

)老师到底是如何知道的呢每个学生心中都产生了疑惑。

这时老师指出并不是老师有什么特殊本领,而是掌握了三角形的三个内角之间的某种规律。

学生为了了解这种规律,产生了探究新知的欲望。

(二)探究新知老师让学生交流讨论:三角形的三个内角之间到底有什么规律呢?同学们有的深思,有的在本子画着,量着,算着之后,纷纷发表意见:生1:我算了一下,老师得出的第三个内角的度数同我们报出的两个角的度数相加起来正好都是_0 度生2:我又画了一个三角形,用量角器量了一遍,它的三个角的度数和也非常接近_0 度。

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。

出示一些三角形,让学生指出内角和。

师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。

)(板书三角形的内角和是180度。

)师:那我们再看看刚刚汇报的结果。

为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。

现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。

早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。

(1)直角三角形的两个锐角的和是90°。

(2)一个等腰三角形的底角可能是钝角。

(3)三角形的内角和都是180°,与三角形的大小无关。

4、剪一剪。

把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。

七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。

是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。

教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。

教材还安排了“试一试”,“练一练”的内容。

已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。

他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。

⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。

⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

教学重点:检验三角形的内角和是180°。

教学难点:引导学生通过实验探究得出三角形的内角和是180度。

教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。

1、复习三角形分类的知识。

师出示三角形,生快速说出它的名称。

2、什么是三角形的内角?我们通常所说的角就是三角形的内角。

为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。

用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

3、今天这节课啊我们就一起来研究三角形的内角和。

〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。

师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。

是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。

一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。

三角形内角和教案(优秀6篇)

三角形内角和教案(优秀6篇)

三角形内角和教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!三角形内角和教案(优秀6篇)教学设计的目的是为了提高教学效率和教学质量,使学生在单位时间内能够学到更多的知识。

三角形的内角和 (1)

三角形的内角和 (1)

《三角形的内角和》教学案例一、教材分析:“三角形的内角和”是三角形的一个重要性质,是在学生学习了三角形的相关概念,边、角之间关系的基础上,引导学生通过探索实践、讨论发现、合作交流的基础上,得出无论是什么样的三角形的内角和都是180度。

为今后掌握多边型的内角和及相关知识打下坚实的基础。

所以掌握三角形的内角和是180度这个规律具有重要的意义。

教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。

首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。

绝大局部学生会想到用测量角的方法,此时就能够安排小组活动。

每组同学能够画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。

最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。

三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,所以三角形内角和是180度。

二是把三个内角折叠在一起,发现也能组成一个平角。

每个活动都要使学生动手试一试,加深对三角形内角和的理解,体验三角形内角和性质的探索过程。

另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90度,钝角三角形里的两个锐角和小于90度。

二、学生状况分析:学生在本课学习前已经理解了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,学生课上对数学知识、水平和思考问题的角度有一定的差异,所以比较容易出现解决问题的策略多样化。

三、学习目标:1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

2.知道三角形两个角的度数,能求出第三个角的度数。

3.发展学生动手操作、观察比较和抽象概括的水平。

体验数学活动的探索乐趣,体会研究数学问题的思想方法。

《三角形的内角和》教学案例评析与教学反思1

《三角形的内角和》教学案例评析与教学反思1

《三角形的内角和》教学案例评析与教学反思最近,在区教研室的支配下,我在全区新课改教材培训会上讲了一节示范课,内容是人教版试验教材第八册《三角形的内角和》。

这节课课前得到了区教研室专家的细心指导,课后受到学生和听课老师的相同好评。

我想这节的胜利之处就在于给学生一个开放的学习环境,给学生一个探究的学习天地,让学生“启思质疑引探新知”。

纵观本课,猜测的提出、验证,方法、结论的得出,都是学生个体主动参加、合作探究的结果。

这样的数学课堂教学过程,充溢了视察、试验、猜测、验证、推理与沟通等丰富多彩的数学活动,造就了学生的探究精神,并在探究过程中获得丰富的情感体验。

教学内容:义务教育课程标准试验教科书数学第八册〔人教版〕【片段1】创设情景,提醒课题。

出示多媒体课件:如图1图1师:同学们视察到什么?生1:两条直线相交形成四个角。

生2:这四个角有两个锐角、两个钝角。

生3:因为∠1和∠2组成一个平角,所以∠1+∠2=180°;同样道理,∠3+∠4=180°。

生4:∠1+∠2+∠3+∠4=360°出示多媒体课件:如图2图2师:什么变了?什么没变?生1:∠1和∠2的大小都变了,但∠1和∠2的和还是180°;∠3和∠4的大小都变了,但∠3和∠4的和还是180°。

它们的和没变。

生2:∠1+∠2+∠3+∠4=360°,这四个角的总和也没变。

师:教师把其中一条直线接着旋转,如图3,让∠1变成了一个直角,你们知道其它三个角的是什么角吗?各是多少度?图3生1:其它四个角都是直角,都等于90°。

师:想一想,哪些平面图形中有四个直角。

生:长方形和正方形。

多媒体课件出示一个图片:如图4。

图4师:我们把长方形和正方形里的四个直角叫做内角。

师:想一想,什么叫做内角和?生:〔略〕师:三角形有几个内角?生:〔略〕师:什么是三角形的内角和?生:〔略〕师:三角形的内角和会是多少度呢?是锐角三角形的内角和大还是钝角三角形的内角和大呢?请同学猜一猜。

《三角形的内角和》典型例题

《三角形的内角和》典型例题

《三角形的内角和》典型例题例1 三角形一个角是第二个角的23倍,第三个角比这两个角的和大30°,求这个三角形的三个角.例2 根据条件,判断ABC ∆的形状〔锐角三角形、直角三角形、钝角三角形〕〔1〕︒=∠︒=∠89,76B A〔2〕C B A ∠=∠+∠〔3〕C B A ∠=∠︒=∠2,30例3 在ABC ∆中,5:4:3::=∠∠∠C B A ,求ABC ∆各内角的度数.参考答案例1 分析:如果设第二个角是︒x ,那么有第一个角是︒)23(x ,第三个角是︒++)3023(x x ,由三角形内角和等于180°可以列出方程,从而求出各个角. 解:设第二个角是︒x ,那么第一个角是︒)23(x ,第三个角是︒++)3023(x x ,根据三角形三个内角和是180°,得︒=++++180)3023(23x x x x 解这个方程,得30=x 所以1053023,4523=++=x x x . 答:这个三角形第一个角是45°,第二个角是30°,第三个角是105°.说明:一般在三角形求内角问题时,我们首先应考虑应用三角形三个内角间的关系.例2 分析:三角形中如果有一个内角是钝角〔或直角〕那么这个三角形一定是钝角三角形〔或直角三角形〕,但是如果有一个内角是锐角,那么它未必是锐角三角形,因为锐角三角形必须是三个内角均为锐角.可以根据三角形内角和定理确定各内角的度数,进而确定三角形的形状.解:〔1〕︒=︒-︒-︒=∠158976180C ,∴ABC ∆是锐角三角形.〔2〕∵在ABC ∆中,︒=∠+∠+∠180C B A又C B A ∠=∠+∠ ,∴︒=∠1802C ,︒=∠90C∴ABC ∆是直角三角形.〔3〕︒=︒-︒=∠+∠15030180C B ,又C B ∠=∠2 ,∴︒=∠1503C ,∴︒=∠50C ,∴︒=︒-︒=∠10050150B ∴ABC ∆是钝角三角形.例3 分析:告诉各内角之间的比例关系,求各内角,可以根据比例关系设未知量,比方此题可以设三个内角分别为3x ,4x ,5x ,这样只要求出x 的值,就可以得知三个内角的度数.要求x 的值可以根据三角形内角和定理列方程.解:设x A 3=∠,那么x C x B 5,4=∠=∠∴︒=++180543x x x 〔三角形内角和定理〕∴︒=15x ,∴︒=∠︒=∠︒=∠75,60,45C B A。

三角形内角和教学案例及反思

三角形内角和教学案例及反思

人教小学四年级数学下册《三角形的角和》教学案例及反思片段一:创设问题情境,引发思考师出示一长方形的纸。

师:这是我们什么图形?它有什么特征?生1:这是长方形,它有四条边四个直角。

生2:老师我要给他补充一点,长方形的对边相等,四个角相等。

师:我们把这四个角叫这个长方形的角,那你们知道长方形的角和是多少度吗?生1:我知道是360度,因为长方形的四个角都是90度,所以90乘4就等于360度。

师:你反应真快,计算速度也很快。

师:现在请你们把手里的长方形沿着对角线对折再剪开会怎样呢?学生动手操作。

生1:我把长方形沿着对角线剪开,得到了两个三角形而且都是直角三角形。

生2:我也得到了两个完全相同的直角三角形。

师:其他同学也是这样的吗?(全班齐答:是)举起来互相看看。

师:谁能大胆猜想一下其中的一个三角形的角和是多少度呢?生1:我觉得是90度左右。

生2:根本不可能是90度左右,直角三角形已经有一个角是90度了,还有两个角不可能是几度吧。

生3:我想可能是180度,因为我手里的这块三角板就是一个直角三角形,一个角是90度,另两个角是60度和30度,加起来就是180度。

生4:我也赞同他的猜想,我手里的三角板是等腰直角三角形两个角是45度,加起来是90度,再加一个90度也是180度。

生5:老师,我猜是180度,我们把长方形平均分成了两个直角三角形,也就是把360度平均分成了两份,那一份就是180度。

[猜想已经成为学生学习数学的一种重要方式,从心理学角度看,是一项思维活动,是学生有方向的猜想与判断,包含了理性的思考和直觉的推断;从学生的学习过程来看,猜想是学生有效学习的良好准备。

学生一旦做出某种猜想,他就会把自己的思维与所学的的知识连在一起,会急切地想知道自己的猜想是否正确,于是就会主动的去探索新知识,这时的学习是发自心的需求。

]师:你们的猜想有一定的道理,那直角三角形的角和到底是不是180度呢?同学们能用什么方法来验证吗?片段二:动手操作,验证猜想师:只有猜想没有行动,那只能是空想,同学们把你的猜想用行动证明出来吧。

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)下面是我分享的《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案),供大家赏析。

《三角形内角和》数学教案1学习目标:(1) 知识与技能:掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。

(2) 过程与方法:通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。

对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。

逐渐由实验过渡到论证。

通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。

(3)情感态度与价值观:通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。

使学生主动探索,敢于实验,勇于发现,合作交流。

一.自主预习二.回顾课本1、三角形的内角和是多少度?你是怎样知道的?2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。

3、回忆证明一个命题的'步骤①画图②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。

③分析、探究证明方法。

4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?①平角,②两平行线间的同旁内角。

5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。

如何把三个角转化为平角或两平行线间的同旁内角呢?① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。

② 如图1,延长BC,过C作CE∥AB③ 如图2,过A作DE∥AB④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。

三、巩固练习四、学习小结:(回顾一下这一节所学的,看看你学会了吗?)五、达标检测:略六、布置作业《三角形内角和》数学教案2教学内容义务教育课程标准试验教科书《数学》(人教版)四年级下册第85页。

小学数学《三角形内角和》教学设计(通用8篇)

小学数学《三角形内角和》教学设计(通用8篇)

小学数学《三角形内角和》教学设计(通用8篇)下文是我为您精心整理的《小学数学《三角形内角和》教学设计(通用8篇)》,您浏览的《小学数学《三角形内角和》教学设计(通用8篇)》正文如下:小学数学《三角形内角和》教学设计篇1教学目标:1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

3、经历三角形内角和的研究方法,感受数学研究方法。

教学重点:1、探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:表格、课件。

学具准备:各种三角形、剪刀、量角器。

一、创设情境揭示课题。

1、一天两个三角形发生了争执,他们请你们来评评理。

大三角形说:“我的个头大,所以我的内角和一定比你大。

”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。

”谁说得有道理呢?今天让我们来做一回裁判吧。

生1:大三角形大(个子大)生2:小三角形大(有钝角)(教师不做判断,让学生带着问题进入新课)2、什么是三角形的内角和?(板书:内角和)讲解:三角形内两条边所夹的角就叫做这个三角形的内角。

每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:1、你认为谁说得对?你是怎么想的?2、你有什么办法可以比较一下这两个三角形的内角和呢?生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。

生3:用折一折的办法把三个角折到一起看它们能不能组成平角(二)探索与发现活动一:量一量(1)①了解活动要求:(屏幕显示)A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。

(测量时要认真,力求准确)B、把测量结果记录在表格中,并计算三角形内角和。

北师大版数学八年级上册7.5《三角形内角和定理》优秀教学案例

北师大版数学八年级上册7.5《三角形内角和定理》优秀教学案例
此外,我还注重培养学生的几何直观能力。通过多媒体展示三角形内角和定理的证明过程,让学生更加直观地理解定理的含义。同时,我鼓励学生动手操作,进行小组讨论,从实践中感受和理解三角形内角和定理。这样的教学方式有助于提高学生的几何思维水平,培养他们的空间想象力。
在教学过程中,我还注重引导学生运用三角形内角和定理解决实际问题。例如,我设计了一些实际问题,让学生运用所学知识进行解答。这样不仅能够巩固学生对三角形内角和定理的理解,还能够培养他们学以致用的能力。
在教学过程中,我注重培养学生的动手操作能力和合作意识。设计了小组讨论和动手实践环节,让学生在合作中发现问题、解决问题。同时,我还运用多媒体教学手段,展示了三角形内角和定理的证明过程,使学生更加直观地理解定理的含义。
针对不同学生的学习情况,我采用了分层教学法,设置了不同难度的题目,让每个学生都能在课堂上发挥自己的优势。对于学困生,我给予了耐心指导,帮助他们克服学习困难;对于优秀生,我则引导他们拓展思维,提升解题能力。
(二)过程与方法
1.培养学生独立思考、合作探讨的学习方式,提高他们的自主学习能力。
2.引导学生运用图形直观分析问题,培养他们的几何直观能力。
3.培养学生运用三角形内角和定理解决实际问题的能力,提高他们的实践操作能力。
为了实现上述目标,我在教学过程中采用了以下方法:
首先,我采用了启发式教学法。通过设计富有挑战性的问题,引导学生独立思考,激发他们的学习兴趣。同时,我鼓励学生积极参与课堂讨论,培养他们的合作精神。
北师大版数学八年级上册7.5《三角形内角和定理》优秀教学案例
一、案例背景
北师大版数学八年级上册7.5《三角形内角和定理》优秀教学案例,以三角形内角和定理为核心内容。本节课主要让学生掌握三角形内角和定理,即三角形的三个内角之和等于180度。通过学习,学生能够理解并运用三角形内角和定理解决实际问题。

《三角形的内角和》教学设计优秀8篇

《三角形的内角和》教学设计优秀8篇

《三角形的内角和》教学设计优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《三角形的内角和》教学设计优秀8篇作为一名默默奉献的教育工作者,通常会被要求编写教学设计,借助教学设计可以更好地组织教学活动。

《三角形内角和》数学教案(优秀3篇)

《三角形内角和》数学教案(优秀3篇)

《三角形内角和》数学教案(优秀3篇)作为一名默默奉献的教育工作者,可能需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么优秀的教学设计是什么样的呢?读书破万卷,下笔如有神,这里是漂亮的编辑帮大伙儿找到的《三角形内角和》数学教案【优秀3篇】,希望大家能够喜欢。

《三角形内角和》教学设计篇一【教学内容】《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。

2.让学生经历量一量、折一折、拼一拼等动手操作的过程。

通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180 。

3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

【教学重点】使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。

【教学难点】通过多种方法验证三角形的内角和是180 。

【教学准备】课件。

四组教学用三角板。

铅笔。

大帆布兜子。

固体胶。

剪刀。

筷子若干。

【教学过程】一、激趣导入,提炼学习方法1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。

激发学生的好奇心。

然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。

我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3.选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。

教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

三角形内角和教学案例及点评

三角形内角和教学案例及点评

探索与发现(一)——三角形内角和教学案例及点评一、案例背景:官底镇中心小学刘玭2010年9月,本着构建最本色最简洁最实用的模式以整体提高小学数学课堂教学效率,提高学生各方面学习能力的初衷,针对小学数学新授课课堂教学的特点,我校在已有的小组合作学习模式的基础上做了进一步的完善,提出了小学数学“学、交、练、评”课堂教学模式。

这种教学模式着力追求数学教学的高效性,旨在提高学生的自主学习能力。

经过近年来的研究、实施、改进,这种小学数学课堂教学模式的优越性已逐步体现。

1、教材分析:本课是北师大版小学四年级数学下册第二单元《认识图形》第三节课的内容,是在学生学习了角的分类、三角形分类的基础上进行学习的,为以后探索其它平面图形的特点做好了准备。

因此,学习、掌握三角形的内角和是180°这一性质具有重要意义。

教材创设了两个不同形状的三角形的发生矛盾冲突的问题情境,以此导入新课,激发学生的学习兴趣。

引导学生通过画一画、量一量、算一算的方法探究三角形的内角和,再利用拼一拼、折一折活动来验证三角形的内角和为180°这一性质,并利用此性质解决问题,让学生在动手操作、积极探索的活动过程中掌握知识,积累数学经验,发展学生的空间观念。

2、学情分析:学生在前面的学习中对角的分类、三角形的分类、角的测量已经有了一定的知识基础,同时也具备了一定的动手操作和合作交流的能力,可以通过一系列的操作活动探索发现三角形内角和的性质。

3、教学目标:⑴、让学生通过画、量、剪、拼等一系列直观操作活动,探索三角形内角和的性质。

⑵、能运用三角形内角和的性质解决一些简单的实际问题。

⑶、通过小组合作、动手实践活动培养学生动手操作的能力、探索能力和合作的意识。

4、教学重难点:重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程,知道三角形的内角和是180°,并且能用它解决一些简单的实际问题。

难点:⑴、“三角形内角和等于180°”的探索和验证。

《三角形内角和》的数学教学设计(最新7篇)

《三角形内角和》的数学教学设计(最新7篇)

《三角形内角和》的数学教学设计(最新7篇)角形内角和教学设计篇一教学内容:教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

重点难点:掌握三角形的内角和是180°。

教学准备:三角形卡片、量角器、直尺。

导学过程一、复习1、什么是平角?平角是多少度?2、计算角的度数。

3、回忆三角形的相关知识。

(出示直角三角形、锐角三角形、钝角三角形)二、新知(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。

同时,培养学生的综合素养)1、读学卡的学习目标、任务目标,做到心里有数。

2、揭题:课件演示什么是三角形的内角和。

3、猜想:三角形的内角和是多少度。

4、验证:(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)(4)汇报结论(清楚明白的给小组加优秀10分)5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。

)三、知识运用(课件出示练习题,生解答)1、填空(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、(2)一个直角三角形的一个锐角是50,则另一个锐角是()。

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)三角形的内角和,即三个内角的和。

三角形内角和定理:三角形三个内角和等于180°。

用数学符号表示为:在△ABC中,△1+△2+△3=180°。

奇文共欣赏,疑义相如析,该页是漂亮的小编给大家收集整理的三角形的内角和数学教学设计【精选4篇】,欢迎借鉴,希望能够帮助到大家。

《三角形内角和》数学教案篇一大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

二、教学目标1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

三、教学重难点教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

四、学情分析通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

五、教学法分析本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。

领悟转化思想在解决问题中的应用。

六、课前准备1、教师准备:多媒体课件、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

七、教学过程(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。

“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形的内角和》教学设计
游戏导入,揭示课题
出示三角形其中一个
内角,让学生猜是什
么形状的三角形?并
产生争议!
思考:一个三角形里
面可以有两个直角或
者是两个钝角
吗?
学生积极主动参与
游戏,当只出示三
角形的一个锐角,
无法判断是什么三
角形!并产生疑
惑。

从而揭示课
题:探究三角形的
内角和
猜三角形的游
戏不仅充分调
动了学生的兴
趣,让学生再
认识每个三角
形里面都至少
有两个锐角。

利用白板软件的遮盖、拖
拽功能出示直角三角形、
锐角三角形,钝角三角形
其中一个内角,让学生猜
测!激起学生学习的兴
趣,更好的融入到课堂
中!
大胆猜想,自主探究
通过“量一量”的形
式计算三角形的内角

用量角器量,算出
三角形的内角和!
并观察量出来的数
据,谈发现!得出
三角形的内角和在
180°左右!
从大多数学生
认可的“量一
量”引起争论
并发现了直接
度量的局限
性,自然而然
的产生解决问
题的心理需
求,学生的思
维“逼”入更
高层次,使课
堂出现一个小
高潮。

在白板页面上出示一张表
格,在学生汇报量的结果
同时,利用批注功能,进
行记录。

便于学生观察。

小组合作探究,得出结论。

让学生探究发现并用
不同方法验证三角形
的内角和是
180°。

得出结论后,出示数
学家帕斯卡的故事
教师引导学生通过
小组合作形式,思
考并探究用不同的
方法验证!展示学
生的验证方法。

小组讨论交流验证
方法,让学生在白
板上展示自己的方
法。

a、剪拼
b、折拼
得出:三角形的内
角和是180°(教
师板书)
学生获取知识
的最佳途径是
让他们自己去
发现,因为这样
发现的知识学
生理解的才最
深刻.同时数学
教学是数学活
动的教学,是
师生之间、牛
牛之间交流互
动与共同发展
的过程因此在
这个环节教学
时,我给学生
留下充分的自
我探索、思
考、讨
1、利用白板插入媒体的
功能,插入一段音频。

2、展示学生验证的方
法。

插入所需要的文字和
图片素材。

3、学生用剪拼法时候,
让学生在白板上剪出三角
形的三个角,并通过旋转
图片功能进行旋转图片,
拼成一个平角,得出三角
形的内角和是180°。

4、学生在展小折拼方法
时,利用插入媒体功能,
插入一段flash ,展示折
一折、拼一拼的方法,让
学生认识并理解
“三角形的内角和是
出示数学家帕斯卡在12岁时发现“三角形的内角和是180°”的故事,让学生向伟大的数学家学习,并为自己也有这么伟大的发现而感到自豪!论、操作交流
的空间,使他们
在操作、探究
中发现规律,
形成结论。


受数学家的伟
大发现,激起
学生对数学的
学习兴趣,同
时也使学生产
生巨大的成就
感,为下一步
应用规律奠定
了扎实的心理
基础
180 °”这个结论的验证
全过程。

5、利用拖拽功能在白板
上出示伟大的数学家帕斯
卡图片及事迹,
运用新知,解决问题
1、(出示)求三角
形中/ A的度数。

并让学生解决课开始
时思考的问题:为什
么一个三角形中不可
能有两个直角或钝角
吗?
2、通过“三角形兄
弟向同学们挑战”这
个情境,解决以下问
题:
①三角形哥哥挡住
了三角形其中的一个
内角,请同学们算出
这个内角的度数!
②三角形弟弟把两
个小三角形拼成一个
大三角形,再把大三
角形剪成两个小三角
形,让学生分别说说
他们的内角和是多
少?
学生用不同的方法
算出/ A的度数,
根据“三角形的内
角和是180°”这
个结论进行解释
根据“三角形的内
角和是180°”算
出其中一个内角的
度数。

让学生在直观上感
受到无论这个三角
形有多大,或是多
么的小,它的内角
和都是
180° !
对本节课的知
识进行巩固练
习,练习题是
沟通知识联系
的有效手段,
通过多层次练
习题的设计,
既巩固了本节
课的知识,又
培养了学生思
维的灵活性和
深刻性,又使
不同层次的学
生得到了不同
程度的发展
1、在白板上出示练习
题,利用插入资源,选择
教学过程中用到的多边形
图片。

2、在回答问题时候,禾
用批注功能,根据学生的
汇报,直接把学生的答案
和算式在白板上批注。

相关文档
最新文档