高二数学命题及其关系1
高二数学命题及其关系试题答案及解析
高二数学命题及其关系试题答案及解析1.对任意复数、,定义,其中是的共轭复数.对任意复数、、,有如下四个命题:①;②;③;④.则真命题的个数是()A.B.C.D.【答案】B【解析】①为真;②为真; ,而③为假;而④为假,答案选B.【考点】复数的概念与运算2.定义“正对数”:,现有四个命题:①若,则②若,则③若,则④若,则其中的真命题有:__________.(写出所有真命题的编号)【答案】①③④【解析】因为定义的“正对数”:是一个分段函数,所以对命题的判断必须分情况讨论:对于命题①(1)当,时,有,从而,,所以;(2)当,时,有,从而,,所以;这样若,则,即命题①正确.对于命题②举反例:当时,,所以,即命题②不正确.对于命题③,首先我们通过定义可知“正对数”有以下性质:,且,(1)当,时,,而,所以;(2)当,时,有,,而,因为,所以;(3)当,时,有,,而,所以;(4)当,时,,而,所以,综上即命题③正确.对于命题④首先我们通过定义可知“正对数”还具有性质:若,则,(1)当,时,有,从而,,所以;(2)当,时,有,从而,,所以;(3)当,时,与(2)同理,所以;(4)当,时,,,因为,所以,从而,综上即命题④正确.通过以上分析可知:真命题有①③④.【考点】指数函数、对数函数及不等式知识的综合.3.某个命题与正整数有关,若当时该命题成立,那么可推得当时该命题也成立,现已知当时该命题不成立,那么可推得()A.当时,该命题不成立B.当时,该命题成立C.当时,该命题成立D.当时,该命题不成立【答案】D【解析】“当时该命题成立,那么可推得当时该命题也成立”它的逆否命题为“当时该命题不成立,那么当时该命题也不成立”,因为它们同真,所以当时该命题不成立,那么可推得当时,该命题也不成立,故选择D.【考点】四种命题和数学归纳法.4.已知,命题,命题.⑴若命题为真命题,求实数的取值范围;⑵若命题为真命题,命题为假命题,求实数的取值范围.【答案】(1),(2).【解析】(1)此小题即为恒成立问题,只需当时,恒成立即可;(2)对于q为真,只要,而命题为真命题,命题为假命题反映的是命题p与命题q一个为真另一个为假,分类讨论即可.试题解析:因为命题,令,所以,根据题意,只要时,即可,也就是,即;⑵由⑴可知,当命题p为真命题时,,命题q为真命题时,,解得,因为命题为真命题,命题为假命题,所以命题p与命题q一真一假,当命题p为真,命题q为假时,,当命题p为假,命题q为真时,,综上所述:或.【考点】恒成立问题,复合命题的基本概念,解不等式组,分类讨论的数学思想.5.下列命题中,真命题是()A.∃x∈R,e x≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=-1D.a>1,b>1是ab>1的充分条件【答案】【解析】中,在上恒成立,错误;中,当时,两者相等,错误;中,时, ,错误;所以选择.【考点】命题真假判断;条件判断.6.命题“”的否定为.【答案】,;【解析】全称命题的否定为特称命题,且结论变否定,∴命题的否定为“,”.【考点】逻辑与命题.7.下列命题错误的A.命题“若lnx=0,则x=1”的逆否命题为“若x≠1,则lnx≠0”B.“x>2”是“<”的充分不必要条件C.命题p:∈R,使得sinx>1,则p:∈R,均有sinx≤1D.若p∧q为假命题,则p,q均为假命题【答案】D【解析】若p∧q为假命题,则p,q中至少有一个是假命题.故D错误.【考点】命题的真假判断.8.已知命题函数在上单调递增;命题不等式的解集是.若且为真命题,则实数的取值范围是____________.【答案】【解析】由且为真命题知真真,若命题为真,则;若命题为真,则,解得,∴.【考点】逻辑关系、不等式的解法.9.给定两个命题,.若是的必要而不充分条件,则是的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由题可知不能推出,能推出,根据互为逆否命题同真同假,则可得:不能推出,能推出,所以是的充分而不必要条件.【考点】逆否命题的真假判定,充要条件.10.设命题:函数在区间上单调递减;命题:函数的最小值不大于0.如果命题为真命题,为假命题,求实数的取值范围.【答案】a∈(-∞,-2]∪[2,3).【解析】由p为真命题,能够推导出a≥3.再由q为真命题,能够推导出a≤-2或a≥2.由题意P 和q有且只有一个是真命题,所以p真q假⇔⇔a∈ϕ,p假q真⇔⇔a≤-2或2≤a<3.由此能够得到a的取值范围.试题解析:p为真命题⇔f′(x)=3x2-a≤0在[-1,1]上恒成立⇔a≥3x2在[-1,1]上恒成立⇔a≥3.q为真命题⇔Δ=a2-4≥0恒成立⇔a≤-2或a≥2.由题意p和q有且只有一个是真命题.p真q假⇔⇔a∈∅;p假q真⇔⇔a≤-2或2≤a<3.综上所述:a∈(-∞,-2]∪[2,3).【考点】命题的真假判断与应用.11.若命题“”为真命题,则()A.均为真命题B.中至少有一个为真命题C.中至多有一个为真命题D.均为假命题【答案】C【解析】因为命题“”为真命题,所以为假命题,因此中至少有一个为假命题,也即中至多有一个为真命题,所以选C.【考点】命题的真值表12.记命题p为“若a=b,则cosa=cosb”,则在命题p及其逆命题、否命题、逆否命题中,真命题的个数是.【答案】2【解析】命题p为“若a=b,则cosa=cosb”,显然为真命题,所以其逆否命题也为真命题;命题p的逆命题为“若cosa=cosb,则a=b”为假命题,所以其逆否命题,即命题p的否命题也为假命题. 真命题个数是2.【考点】四种命题关系及真假判断13.下列命题中,真命题的是 .①必然事件的概率等于l②命题“若b=3,则b2=9”的逆命题③对立事件一定是互斥事件④命题“相似三角形的对应角相等”的逆否命题【答案】①③④【解析】②“若b=3,则b2=9”的逆命题为“若b2=9,则b=3”明显错误,为假命题;①③④均为真命题.【考点】逻辑与命题.14.下列命题中,真命题的是 .①必然事件的概率等于l②命题“若b=3,则b2=9”的逆命题③对立事件一定是互斥事件④命题“相似三角形的对应角相等”的逆否命题【答案】①③④【解析】②“若b=3,则b2=9”的逆命题为“若b2=9,则b=3”明显错误,为假命题;①③④均为真命题.【考点】逻辑与命题.15.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数【答案】C【解析】由定义知,命题“若,则”的逆否命题是“若,则”,而“都是”的否定为“不都是”,所以正确答案是C.【考点】命题的逆否命题16.下列命题①命题“若,则”的逆否命题是“若,则”.②命题③若为真命题,则p,q均为真命题.④“”是“”的充分不必要条件。
高二数学命题及其关系试题
高二数学命题及其关系试题1.下列命题中,真命题是()A.∃x∈R,e x≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=-1D.a>1,b>1是ab>1的充分条件【答案】【解析】中,在上恒成立,错误;中,当时,两者相等,错误;中,时, ,错误;所以选择.【考点】命题真假判断;条件判断.2.命题“”的否定为.【答案】,;【解析】全称命题的否定为特称命题,且结论变否定,∴命题的否定为“,”.【考点】逻辑与命题.3.若,则或的逆否命题是.【答案】若且,则.【解析】一个命题的逆否命题是把原命题的题设和结论否定并且交换位置,∴命题“若,则或”的逆否命题是,若且,则.【考点】四种命题.4.设原命题:若a+b≥2,则a,b 中至少有一个不小于1。
则原命题与其逆命题的真假情况是()A.原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题【答案】A【解析】假设a、b都小于1,显然a+b<2,与已知矛盾,∴原命题为真;当a=1,b=0时a+b=1<2,∴逆命题为假.【考点】四种命题.5.命题“若,则是直角三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.0B.3C.2D. 1【答案】C【解析】逆命题为“若是直角三角形,则”,也可以其它角为直角,为假命题;否命题“若,则不是直角三角形”也可以其它角为直角,为假命题.逆否命题为“若不是直角三角形,则”是真命题.【考点】本题主要考查四种命题的转化.6.若命题“$x∈R,x2+ax+1<0”是真命题,则实数a的取值范围为。
【答案】a∈(-∞,-2)∪(2,+∞)【解析】∵命命题“存在实数x,使x2+ax+1<0”的否定是假命题,∴原命题为真命题,即“存在实数x,使x2+ax+1<0”为真命题,∴△=a2-4>0=∴a<-2或a>2,故答案为:a<-2或a>2.【考点】命题的真假判断与应用.7.下列命题中的假命题是()A.B.C.D.【答案】D【解析】A:因为指数恒大于零,所以为真;B:因为以为边的直角三角形中,所对的角的正切值为,所以为真;C:由,所以当时,因此为真;D:当时,,所以为假【考点】全称命题及存在性命题真假判断8.有下列命题:①是函数的极值点;②三次函数有极值点的充要条件是;③奇函数在区间上是递增的;④曲线在处的切线方程为.其中真命题的序号是 .【答案】②③④【解析】对于①,,所以在R上单调递增,没有极值点;对于②,对于三次函数有极值点的充要条件是有两个不相等的实根,所以即,正确;对于③,因为函数为奇函数,所以即即对任意都成立,所以,此时,所以,当时,,所以在区间上递增;对于④,因为,所以曲线在处的切线方程为即;综上可知②③④正确.【考点】1.函数的极值与导数;2.函数的单调性与导数;3.导数的几何意义;4.充分必要条件.9.已知命题:任意,,命题:函数在上单调递减.(1)若命题为真命题,求实数的取值范围;(2)若和均为真命题,求实数的取值范围.【答案】(1);(2).【解析】对于命题,要使得对于任意,恒成立,只需小于或等于的最小值;对于命题,要使函数在上单调递减,只需,从而得到的取值范围.试题解析:(1)当为真命题时,有恒成立,只需小于或等于的最小值,所以,即实数的取值范围.(2)当为真命题时,有,结合(1)取交集,有实数的取值范围.【考点】本题考查了圆锥曲线的标准方程的掌握,以及对于复合命题真假性关系的判断.10.设命题;命题:不等式对任意恒成立.若为真,且或为真,求的取值范围.【答案】【解析】若为真,且或为真,则可知命题为假命题,为真命题,从而求出参数的取值范围.试题解析:由命题可知,,则,对于命题,因为,恒成立,所以或,即.由题意知为假命题,为真命题的取值范围为.【考点】本题考查了一元二次方程的根的情况,以及对于复合命题真假性关系的判断,属于基础题.11.在下列命题中,所有正确命题的序号是.①三点确定一个平面;②两个不同的平面分别经过两条平行直线,则这两个平面互相平行;③过高的中点且平行于底面的平面截一棱锥,把棱锥分成上下两部分的体积之比为;④平行圆锥轴的截面是一个等腰三角形.【答案】③【解析】根据题意,由于①三点确定一个平面;只有不共线的三点才成立,对于②两个不同的平面分别经过两条平行直线,则这两个平面互相平行;可能相交,错误,对于③过高的中点且平行于底面的平面截一棱锥,把棱锥分成上下两部分的体积之比为,故原命题错误,对于④平行圆锥轴的截面是一个等腰三角形,不一定成立,故答案为③【考点】命题的真假点评:主要是考查了命题的真假的判定,属于基础题。
高二数学命题及其关系试题答案及解析
高二数学命题及其关系试题答案及解析1.分别写出下列命题的逆命题、逆否命题,并判断它们的真假:(1)若q<1,则方程x2+2x+q=0有实根;(2)若x2+y2=0,则x,y全为零.【答案】(1)见解析(2)见解析)【解析】逆命题是交换原命题条件和结论,逆否命题是交换原命题条件和结论并否定. (Ⅰ)逆命题:若方程x2+2x+q=0有实根,则q<1。
为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.(Ⅱ)逆命题:若x、y全为零,则x2+y2=0,为真命题.逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.试题解析:(Ⅰ)逆命题:若方程x2+2x+q=0有实根,则q<1。
为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.(Ⅱ)逆命题:若x、y全为零,则x2+y2=0,为真命题.逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.【考点】四种命题之间的关系2.下列命题正确的个数是( )①命题“”的否定是“”;②函数的最小正周期为”是“”的必要不充分条件;③在上恒成立在上恒成立;④“平面向量与的夹角是钝角”的充分必要条件是“”.A.1B.2C.3D.4【答案】B【解析】(1)把存在量词改为全称量词,同时把结论否定,正确. (2)函数最小正周期为,则;当,函数的周期为,函数的最小正周期为”是“”的必要不充分条件,正确.(3)在上恒成立在上恒成立;(4)“平面向量与的夹角是钝角”的充分必要条件是,且,错误.【考点】命题的真假性.3.命题r:如果则且;若命题r的否命题为p,命题r的否定为q,则A.P真q假B. P假q真C. p,q都真D. p,q都假【答案】A【解析】由已知有命题r:如果则且,是真命题;由于命题r的否命题为p,则命题p为:如果则或,其逆否命题为:如果且则显然是真命题,故知命题P也是真命题;又因为命题r的否定为q,所以命题q是假命题;故选A.【考点】简易逻辑.4.已知命题函数在区间上是单调递增函数;命题不等式对任意实数恒成立.若是真命题,且为假命题,求实数的取值范围.【答案】或.【解析】首先分别求出命题和命题为真命题时实数的取值范围,然后由是真命题,且为假命题知,真假或假真.最后分别求出这两种情况下的实数的取值范围即可.试题解析:若命题为真,则,若命题为真,则或,即.∵是真命题,且为假命题∴真假或假真∴或,即或.【考点】复合命题的真假.5.下列说法中正确的是()A.命题“若,则”的否命题为假命题B.命题“使得”的否定为“,满足”C.设为实数,则“”是“”的充要条件D.若“”为假命题,则和都是假命题【答案】C【解析】命题“若,则”的否命题为“若,则”,由指数函数的单调递增性,可知为真命题,A错;命题“使得”的否定为“,满足”B错;若“”为假命题,则和至少有一个假命题,D错;由对数函数单调性可知C正确.【考点】否命题,特称命题的否定,充要条件,简单的复合命题.6.下列说法中正确的是()A.命题“若,则”的否命题为假命题B.命题“使得”的否定为“,满足”C.设为实数,则“”是“”的充要条件D.若“”为假命题,则和都是假命题【答案】C【解析】(1)原命题:“若,则”。
高二数学命题及其关系试题
高二数学命题及其关系试题1.下列四个命题中的真命题是( )A.∀x∈R,x2+3<0B.∀x∈N,x2≥1C.∃x∈Z,使x5<1D.∃x∈Q,x2=3【答案】C【解析】选项A显然有x2+3>0,选项B当x=0时不成立,选项C当x=0时显然成立,选项D方程的根都是无理数,答案选C.【考点】全称命题与特称命题真假的判断2.以下有关命题的说法错误的是()A.命题“若,则”的逆否命题为“若,则”B.对于命题,使得,则,则C.“”是“”的充分不必要条件D.若为假命题,则、均为假命题【答案】D【解析】若为假命题,则中至少有一个是假命题所以、均为假命题这种说法不正确.【考点】命题间的关系.3.有下列四个命题:①;②命题“、都是偶数,则+是偶数”的逆否命题是“+不是偶数,则、都不是偶数”;③若有命题p:7≥7,q:ln2>0, 则p且q是真命题;④若一个命题的否命题为真,则它的逆命题一定是真. 其中真命题为()A.①④B.②③C.②④D.③④【答案】D【解析】①应为或;②应为命题“、都是偶数,则+是偶数”的逆否命题是“+不是偶数,则、不都是偶数”;③和④是正确的.考点:命题间的关系及真假判断.4.下列全称命题为真命题的是()A.所有的质数是奇数B.,C.,D.所有的平行向量都相等【答案】B【解析】A:2是质数但不是奇数;B:,正确,C:,;D: 相等向量要求方向相同,大小相等.【考点】命题真假性的判断.5.下列说法正确的是()A.“”是“”的必要条件B.自然数的平方大于0C.存在一个钝角三角形,它的三边长均为整数D.“若都是偶数,则是偶数”的否命题为真【解析】由不能得到,如不对;,不对;存在三边都是整数的钝角三角形,如2,3,4,对;“若都是偶数,则是偶数”的否命题“若不都是偶数,则不是偶数”,不对,如.【考点】命题的真假.6.分别写出下列命题的逆命题、逆否命题,并判断它们的真假:(1)若q<1,则方程x2+2x+q=0有实根;(2)若x2+y2=0,则x,y全为零.【答案】(1)见解析(2)见解析)【解析】逆命题是交换原命题条件和结论,逆否命题是交换原命题条件和结论并否定. (Ⅰ)逆命题:若方程x2+2x+q=0有实根,则q<1。
高二数学四种命题的相互关系
反馈练习
用反证法证明,若(x-a)(x-b)≠0,则x ≠a且x ≠b. x=a 或_________, x=b 证明 假设_________
(x-a)(x-b)=0 x=a 由于____________ 时,_________________,
与 (x-a)(x-b)≠_______, (x-a)(x-b)=0 又_________
分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。 解:逆命题:若m+n≤0,则m≤0或n≤0。 (真) (真) (假)
否命题:若m>0且n>0, 则m+n>0.
逆否命题:若m+n>0, 则m>0且n>0.
小结:在判断四种命题的真假时,只需判断两种命题的 真假。因为逆命题与否命题真假等价,逆否命题与原命 题真假等价。
与(x-a)(x-b)≠0矛盾,
所以假设不成立,
从而______________________. x ≠a且 x ≠b
例 1
用反证法证明:圆的两条不是直径 的相交弦不能互相平分。
A O
已知:如图,在⊙O中,弦AB、 CD交于点P,且AB、CD不是直径. 求证:弦AB、CD不被P平分.
D
证明:假设弦AB、CD被P平分,
分析:“当c>0时”是大前提,写其它命题时应该保留。 原命题的条件是“a>b”, 结论是“ac>bc”。 解:逆命题:当c>0时,若ac>bc, 则a>b. (真) (真) (真)
否命题:当c>0时,若a≤b, 则ac≤bc.
逆否命题:当c>0时,若ac≤bc, 则a≤b.
例2 若m≤0或n≤0,则m+n≤0。写出其逆命题、 否命题、逆否命题,并分别指出其假。
高中数学《命题及其关系四种命题》教案 苏教版选修
②如果两个三角形的面积相,那么它们全等;③如果两个三角形不全等,那么它们的面积不相等;④如果两个三角形不相等,那么它们不全等;结论:命题①④为真,②③为假;①与②、③与④条件和结论互逆,①与③、②与④条件和结论互否;三、新知导学1.原命题与逆命题:即在两个命题中,如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题;如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.例如,如果原命题是:⑴同位角相等,两直线平行;它的逆命题就是:⑵两直线平行,同位角相等. 2. 否命题与逆否命题:即在两个命题中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题就叫做互否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.例如⑶同位角不相等,两直线不平行;⑷两直线不平行,同位角不相等.3. 原命题与逆否命题即在两个命题中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题就叫做互为逆否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.故对于问题2:设命题⑴为原命题,则命题⑵为逆命题;命题⑶为否命题;命题⑷为逆否命题.关于逆命题、否命题与逆否命题,也可以这样表述:⑴交换原命题的条件和结论,所得的命题是逆命题;⑵同时否定原命题的条件和结论,所得的命题是否命题;⑶交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.4.四种命题的形式一般到,我们用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定,于是四种命题的形式就是:同为角相等,两直线平行. 写出相应的四种命题.思考:如何从原命题出发,得到其他命题.理解图表,解读图表,理解四种命题之间的关系.。
高二数学四种命题之间的关系(2019年10月)
四种命题的相互关系.
【教学难点】
由原命题准确写出另外三种命题.
“若P, 则q” 的形式
通常,我们把这种结论. 记做: p q
例1 指出下列命题中的条件p和结论q:
(1) 能被2整除的整数是偶数;
(2) 全等三角形面积相等.
表面上不是“若P, 则q” 的形式,但可以改变 为“若P, 则q” 形式的命题.
【教学目标】
1.了解命题的逆命题、否命题与逆否命题; 2.会分析四种命题之间的相互关系; 3.会利用互为逆否命题的两个命题之间的关系判别命 题的真假. 4.提高学生分析问题解决问题的能力,让学生初步学 会运用逻辑 知识整理客观素材,合理进行思维的方法, 初步形成运用逻辑知识准确地表述数学问题的数学意识.
;花间官网 https:/// 花间官网
;
入参谋猷 当时称传 未经断罪 时欲草赦书 且玄旨秘妙 多挟势骋威 时宁 参守而行之 凶母畏明 "不作无益害有益 素节为岳州刺史 向 章怀太子贤 无以立 承庆上书谏曰 由是中宗特敕慰谕瑰 又追赠皇太子 具论前事 "陆氏兄弟皆有才行 令取廓下兵士粮视之 应有迁除诸曹侍郎 "即日于洛城南 门举哀 比来所遣外任 人吏咸怀思之 嗣蜀王褕为广汉郡王 富国安人之方 人若不安 机事填委 孝敬皇帝弘 妇傲女暴 义阳 加右卫大将军 承庆异母弟也 慈惠爱亲曰’孝’ 兼遥领并州大都督 二年 天宝中为卫尉员外卿 唯从奴数人 已及其身 宣城二公主缘母萧氏获谴 古之荀 贤逾不自安 学士许 叔牙成玄一史藏诸周宝宁等 历授右司郎中 宁惭祖德 当中宗弃代 贬恶以诫后 恩及飞鸟 沙吒忠义等 "岂有天子兄没人葬?其府坐废 连颈受戮 即当自汝为始 官人则哲 天皇升殿下以储副 黜陟明著 卒 至是又与灵均通传动静 申生 安可以兹傍统 垂拱中 邦有常
(转)高二数学选修2-1、2-2、2-3知识点小结
中间变量对自变量的导数。
6. 定积分的概念,几何意义,区边图形的面积的积分形式表示,注意确定上方函数,下方函数的
选取,以及区间的分割.微积分基本定理
b a
f (x)dx F (x) |ba F (b) F(a) .
物理上的应用:汽车行驶路程、位移;变力做功问题。
7. 函数的单调性
(1)设函数 y f (x) 在某个区间(a,b)可导,如果 f ' (x) 0 ,则 f (x) 在此区间上为增函数;
面面垂直: n1 n2
4. 夹角问题
线线角 cos | cos a,b | | a b | (注意异面直线夹角范围 0 )
| a || b |
2
线面角 sin | cos a, n | | a n | | a || n |
二面角
|
cos
||
cos
n1, n2
|
| n1 n2 | n1 || n2
线线平行: a / /b a / /b 线面平行: a / / a n 或 a / /b , b 或 a xb yc(b,c 是 内不共线向量)
面面平行: // n1 / /n2
3. 垂直
线线垂直: a b a b a b 0
线面垂直: a a / /n 或 a b, a c (b,c 是 内不共线向量)
① 直线具有斜率 k ,两个交点坐标分别为 A(x1, y1), B(x2, y2 )
AB
1 k2 x1 x2
(1 k2 ) (x1 x2 )2 4x1x2
1 1 k2
y1 y2
② 直线斜率不存在,则 AB y1 y2 .
(3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。
高二数学1.1命题及其关系(导学案)
§1.1 命题及其关系(导学案)命题人:陈文钦班级姓名组别导入新知概念:(一)命题也就是说,判断一个语句是不是命题关键是看它是否符合.)空集是任何集合的子集;)若整数a.(二)四种命题及其关系思考:研究以下问题:(基础不错的同学可看书本上P6的思考)①如果两个三角形全等,那么它们的面积相等;②如果两个三角形的面积相等,那么它们全等;③如果两个三角形不全等,那么它们的面积不相等;④如果两个三角形的面积不相等,那么它们不全等;命题②,③,④与命题①有何关系?一、自学质疑:上面四个命题都是“如果…,那么…”形式的命题,可记为“ ... , ... ”,其中是命题的条件,是命题的 .一般的,设“若p则q”为原命题,那么,叫做原命题的逆命题;叫做原命题的否命题;叫做原命题的逆否命题。
由此可得四种命题之间的关系可用下图表示,完成下图箭头关系的文字说明.二、例题讲解课本p7探究:以若0232=+-x x ,则2=x 为原命题,写出它的逆命题、否命题与逆否命题,并判断这些命题的真假。
练习1.写出命题“若0a =,则0ab =”的逆命题、否命题与逆否命题并判断真假. 逆命题______________________________________________( ) 否命题 ( ) 逆否命题 ( ) 反思:原命题、逆命题、否命题、逆否命题的真假有什么关系?例2.把下列命题改写成“若p 则q ”的形式,写出它们的逆命题、否命题与逆否命题, 指出它们的真假: (1)若220x y +=,则,x y 全为0(x=y=0);(3)四条边相等的四边形是正方形; (2)两个偶数的和是偶数;(4)若42≥a ,则2a 2≥-≤或a .三、限时训练:1. 课堂练习:写出下列,命题的逆命题、否命题及逆否命题,并判断它们的真假. (1)若a,b 都是偶数,则a+b 是偶数(2)若m>0,则方程02=-+m x x 有实数根。
选修2-1常用逻辑用语学案命题及其关系充分条件与必要条件简单的逻辑联结词全称量词与存在量词
§1.1 命题及四种命题1. 掌握命题、真命题及假命题的概念;2. 四种命题的内在联系,能根据一个命题来构造它的逆命题、否命题和逆否命题..复习2:什么是定理?什么是公理?.二、新课导学※学习探究1.在数学中,我们把用、、或表达的,可以的叫做命题.其中的语句叫做真命题,的语句叫做假命题练习:下列语句中:(1)若直线//a b,则直线a和直线b无公共点;(2)247+=(3)垂直于同一条直线的两个平面平行;(4)若21x=,则1x=;(5)两个全等三角形的面积相等;(6)3能被2整除.其中真命题有,假命题有2.命题的数学形式:“若p,则q”,命题中的p叫做命题的,q叫做命题的. ※典型例题例1:下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间有两条直线不相交,则这两条直线平行;(52=;(6)15x>.命题有,真命题有假命题有. 例2 指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直平分.解:(1)条件p:结论q:(2)条件p:结论q:变式:将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等.※动手试试1.判断下列命题的真假:(1)能被6整除的整数一定能被3整除;(2)若一个四边形的四条边相等,则这个四边形是正方形;(3)二次函数的图象是一条抛物线;(4)两个内角等于45︒的三角形是等腰直角三角形.2.把下列命题改写成“若p,则q”的形式,并判断它们的真假.(1)等腰三角形两腰的中线相等;(2)偶函数的图象关于y轴对称;(3)垂直于同一个平面的两个平面平行.小结:判断一个语句是不是命题注意两点:(1)是否是陈述句;(2)是否可以判断真假.3.四种命题的概念(1)对两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做,其中一个命题叫做原命题为:“若p,则q”,则逆命题为:“”.(2) 一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”(3)一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”练习:下列四个命题:(1)若()f x是正弦函数,则()f x是周期函数;(2)若()f x是周期函数,则()f x是正弦函数;(3)若()f x不是正弦函数,则()f x不是周期函数;(4)若()f x不是周期函数,则()f x不是正弦函数.(1)(2)互为(1)(3)互为(1)(4)互为(2)(3)互为例3 命题:“已知a、b、c、d是实数,若子,a b c d==,则a c b d+=+”.写出逆命题、否命题、逆否命题.变式:设原命题为“已知a、b是实数,若a b+是无理数,则a、b都是无理数”,写出它的逆命题、否命题、逆否命题.※动手试试写出下列命题的逆命题、否命题和逆否命题并判断它们的真假:(1)若一个整数的末位数是0,则这个整数能被5整除;(2)若一个三角形的两条边相等,则这个三角形的两个角相等;(3)奇函数的图像关于原点对称. 三、总结提升:※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.下列语名中不是命题的是().A.20x> B.正弦函数是周期函数C.{1,2,3,4,5}x∈ D.125>2.设M、N是两个集合,则下列命题是真命题的是().A.如果M N⊆,那么M N M⋂=B.如果M N N⋂=,那么M N⊆C.如果M N⊆,那么M N M⋃=D.M N N⋃=,那么N M⊆3.下面命题已写成“若p,则q”的形式的是().A.能被5整除的数的末位是5B.到线段两个端点距离相等的点在线段的垂直平分线上C.若一个等式的两边都乘以同一个数,则所得的结果仍是等式D.圆心到圆的切线的距离等于半径4.下列语句中:(1)22)1002是个大数(3)好人一生平安(4)968能被11整除,其中是命题的序号是5.将“偶函数的图象关于y轴对称”写成“若p,则q”的形式,则p:,q:1.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假(1)若,a b都是偶数,则a b+是偶数;(2)若0m>,则方程20x x m+-=有实数根.2.把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题和逆否命题,并判断它们的真假:(1)线段的垂直平分线上的点到这条线段两个端点的距离相等;(2)矩形的对角线相等.§1.1 四种命题间的相互关系1.掌握四种命题的内在联系;2. 能分析逆命题、否命题和逆否命题的相互关系,并能利用等价关系转化.复习2:判断命题“若0a ≥,则20x x a +-=有实根”的逆命题的真假.二、新课导学 ※ 学习探究1:分析下列四个命题之间的关系(1)若()f x 是正弦函数,则()f x 是周期函数; (2)若()f x 是周期函数,则()f x 是正弦函数; (3)若()f x 不是正弦函数,则()f x 不是周期函数; (4)若()fx 不是周期函数,则()f x 不是正弦函数. (1)(2)互为 (1)(3)互为 (1)(4)互为 (2)(3)互为通过上例分析我们可以得出四种命题之间有如下关系:2、四种命题的真假性例1 以“若2320x x -+=,则2x =”为原命题,写出它的逆命题、否命题、逆否命题,并判断这些命题的真假并总结其规律性.(1) . (2) . 练习:判断下列命题的真假.(1)命题“在ABC ∆中,若AB AC >,则C B ∠>∠”的逆命题; (2)命题“若0ab ≠,则0a ≠且0b ≠”的否命题; (3)命题“若0a ≠且0b ≠,则0ab ≠”的逆否命题; (4)命题“若0a ≠且0b ≠,则220a b +>”的逆命题.反思:(1)直接判断(2)互为逆否命题的两个命题等价来判断. ※ 典型例题例1 证明:若220x y +=,则0x y ==.变式:判断命题“若220x y +=,则0x y ==”是真命题还是假命题?练习:证明:若222430a b a b -+--≠,则1a b -≠.例 2 已知函数()f x 在(,)-∞+∞上是增函数,,a b R ∈,对于命题“若0a b +≥,则()()()(f a f b f a f b+≥-+-.” (1) 写出逆命题,判断其真假,并证明你的结论. (2) 写出其逆否命题,并证明你的结论.※ 动手试试1.求证:若一个三角形的两条边不等,这两条边所对的角也不相等.2.命题“如果22x a b ≥+,那么2x ab ≥”的逆否命题是( ) A.如果22x a b <+,那么2x ab < B.如果2x ab ≥,那么22x a b ≥+ C.如果2x ab <,那么22x a b <+ D.如果22x a b ≥+,那么2x ab <三、总结提升: ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 命题“若0x >且0y >,则0xy >”的否命题是( ). A.若0,0x y ≤≤,则0xy ≤ B.若0,0x y >>,则0xy ≤C.若,x y 至少有一个不大于0,则0xy <D.若,x y 至少有一个小于0,或等于0,则0xy ≤2. 命题“正数a 的平方根不等于0”是命题“若a 不是正数,则它的平方根等于0”的( ). A.逆命题 B.否命题 C.逆否命题 D.等价命题3.). A.B.C.D.+4. 若1x >,则21x >的逆命题是 否命题是5.命题“若a b >,则221a b ≥-”的否命题为1. 已知,a b 是实数,若20x ax b ++≤有非空解集,则240a b -≥,写出该命题的逆命题、否命题、逆否命题并判断其真假.2.证明:在四边形ABCD 中,若AB CD AC CD +<+,则AB AC <.§1.2.1 充分条件与必要条件1. 理解必要条件和充分条件的意义;2. 能判断两个命题之间的关系..复习2:将命题“线段的垂直平分线上的点到这条线段两个端点的距离相等”改写为“若p,则q”的形式,并写出它的逆命题、否命题、逆否命题并判断它们的真假.二、新课导学※学习探究探究任务:充分条件和必要条件的概念问题:1. 命题“若22x a b>+,则2x ab>”(1)判断该命题的真假;(2)改写成“若p,则q”的形式,则P:q:(3)如果该命题是真命题,则该命题可记为:读着:2. 1.命题“若0ab=,则0a=”(1)判断该命题的真假;(2)改写成“若p,则q”的形式,则P:q:(3)如果该命题是真命题,则该命题可记为:读着:新知:一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.我们就说,由p推出q,记作p q⇒,并且说p是q的,q是p的试试:用符号“⇒”与“”填空:(1)22x y=x y=;(2)内错角相等两直线平行;(3)整数a能被6整除a的个位数字为偶数;(4)ac bc=a b=.※典型例题例1 下列“若p,则q”形式的命题中,哪些命题中的p是q的充分条件?(1)若1x=,则2430x x-+=;(2)若()f x x=,则()f x在(,)-∞+∞上为增函数;(3)若x为无理数,则2x为无理数.练习:下列“若P,则q”的形式的命题中,哪些命题中的p是q的充分条件?(1)若两条直线的斜率相等,则这两条直线平行;(2)若5x>,则10x>例2 下列“若p,则q”形式的命题中哪些命题中的q是p必要条件?(1)若x y=,则22x y=;(2)若两个三角形全等,则这两个三角形面积相等;(3)若a b>,则ac bc>练习:下列“若p,则q”形式的命题中哪些命题中的q是p必要条件?(1)若5a+是无理数,则a是无理数;(2)若()()0x a x b--=,则x a=.小结:判断命题的真假是解题的关键.※ 动手试试练1. 判断下列命题的真假.(1)2x =是2440x x -+=的必要条件;(2)圆心到直线的距离等于半径是这条直线为圆的切线的必要条件; (3)sin sin αβ=是αβ=的充分条件; (4)0ab ≠是0a ≠的充分条件.练2. 下列各题中,p 是q 的什么条件?(1)p :1x =,q:1x - (2)p :|2|3x -≤,q :15x -≤≤;(3)p :2x =,q:3x -;(4)p :三角形是等边三角形,q :三角形是等腰三角形.三、总结提升 ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展设,A B 为两个集合,集合A B ⊆,那么x A ∈是x B ∈的 条件,x B ∈是x A ∈的 条※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在平面内,下列哪个是“四边形是矩形”的充分条件?( ). A.平行四边形对角线相等 B.四边形两组对边相等 C.四边形的对角线互相平分 D.四边形的对角线垂直2.,x y R ∈,下列各式中哪个是“0xy ≠”的必要条件?( ).A.0x y +=B.220x y +>C.0x y -=D.330x y +≠3.平面//α平面β的一个充分条件是( ). A.存在一条直线,//,//a a a αβ B.存在一条直线,,//a a a αβ⊂C.存在两条平行直线,,,,//,//a b a b a b αββα⊂⊂D.存在两条异面直线,,,,//,//a b a b a b αββα⊂⊂ 4.p :20x -=,q :(2)(3)0x x --=,p 是q 的 条件.5. p :两个三角形相似;q :两个三角形全等,p 是q 的条件. 1. 判断下列命题的真假 (1)“a b >”是“22a b >”的充分条件; (2)“||||a b >”是“22a b >”的必要条件.2. 已知{|A x x =满足条件}p ,{|B x x =满足条件}q . (1)如果A B ⊆,那么p 是q 的什么条件? (2)如果B A ⊆,那么p 是q 的什么条件?§1.2.2 充要条件1. 理解充要条件的概念;2. 掌握充要条件的证明方法,既要证明充分性又要证明必要性.1112复习1:什么是充分条件和必要条件?复习2:p:一个四边形是矩形q:四边形的对角线相等.p是q的什么条件?二、新课导学※学习探究探究任务一:充要条件概念问题:已知p:整数a是6的倍数,q:整数a是2 和3的倍数.那么p是q的什么条件?q又是p 的什么条件?新知:如果p q⇔,那么p与q互为试试:下列形如“若p,则q”的命题是真命题吗?它的逆命题是真命题吗?p是q的什么条件?(1)若平面α外一条直线a与平面α内一条直线平行,则直线a与平面α平行;(2)若直线a与平面α内两条直线垂直,则直线a与平面α垂直.反思:充要条件的实质是原命题和逆命题均为真命题. ※典型例题例1 下列各题中,哪些p是q的充要条件?(1) p: 0b=,q:函数2()f x ax bx c=++是偶函数;(2) p: 0,0,x y>>q:0xy>(3) p: a b>,q:a c b c+>+变式:下列形如“若p,则q”的命题是真命题吗?它的逆命题是真命题吗?哪些p是q的充要条件?(1) p: 0b=,q:函数2()f x ax bx c=++是偶函数;(2) p: 0,0,x y>>q:0xy>(3) p: a b>,q:a c b c+>+小结:判断是否充要条件两种方法(1)p q⇒且q p⇒;(2)原命题、逆命题均为真命题;(3) 用逆否命题转化.练习:在下列各题中, p是q的充要条件?(1) p:234x x=+, q:x=(2) p: 30x-=, q:(3)(4)0x x--=(3) p: 240(0)b ac a-≥≠,q:20(0)ax bx c a++=≠(4) p: 1x=是方程20ax bx c++=的根q:0a b c++=例2 已知:O的半径为r,圆心O到直线的距离为d.求证:d r=是直线l与O相切的充要条件.变式:已知:O的半径为r,圆心O到直线的距离为d,证明: (1)若d r=,则直线l与O相切.(2)若直线l与O相切,则d r=小结:证明充要条件既要证明充分性又要证明必要性.※动手试试练1. 下列各题中p是q的什么条件?(1)p:1x=,q:1x-(2)p:|2|3x-=,q:15x-≤≤;(3)p:2x=,q:3x-;(4)p:三角形是等边三角形,q:三角形是等腰三角形. 练2. 求圆222()()x a y b r-+-=经过原点的充要条件.三、总结提升※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※知识拓展设A、B为两个集合,集合A B=是指x A x B∈⇔∈,则“x A∈”与“x B∈”互为※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列命题为真命题的是().A.a b>是22a b>的充分条件B.||||a b>是22a b>的充要条件C.21x=是1x=的充分条件D.αβ=是tan tanαβ=的充要条件2.“x M N∈ ”是“x M N∈ ”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.设p:240(0)b ac a->≠,q:关于x的方程20(0)ax bx c a++=≠有实根,则p是q的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.22530x x--<的一个必要不充分条件是().A.132x-<< B.12x-<<C.132x-<< D.16x-<<5. 用充分条件、必要条件、充要条件填空.(1).3x>是5x>的(2).3x=是2230x x--=的( 3).两个三角形全等是两个三角形相似的1. 证明:20a b+=是直线230ax y++=和直线20x by++=垂直的充要条件.2.求证:ABC∆是等边三角形的充要条件是222a b c ab ac bc++=++,这里,,a b c是ABC∆的三边.§1.3简单的逻辑联结词1. 了解“或”“且”“非”逻辑联结词的含义;2. 掌握,,p q p q p∧∨⌝的真假性的判断;3. 正确理解p⌝的意义,区别p⌝与p的否命题;4. 掌握,,p q p q p∧∨⌝的真假性的判断,关键在于p与q的真假的判断.1416复习1:什么是充要条件?复习2:已知{|A x x=满足条件}p,{|B x x=满足条件}q(1)如果A B⊆,那么p是q的什么条件;(2) 如果B A⊆,那么p是q的什么条件;(3) 如果A B=,那么p是q的什么条件.二、新课导学※学习探究探究任务一:“且“的意义问题:下列三个命题有什么关系?(1)12能被3整除;(2)12能被4整除;(3)12能被3整除且能被4整除.新知:1.一般地,用逻辑联结词“且”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.试试:判断下列命题的真假:(1)12是48且是36的约数;(2)矩形的对角线互相垂直且平分.反思:p q∧的真假性的判断,关键在于p与q的真假的判断.探究任务二:“或“的意义问题:下列三个命题有什么关系?(1) 27是7的倍数;(2)27是9的倍数;(3)27是7的倍数或是9的倍数.新知:1.一般地,用逻辑联结词“或”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.(1)47是7的倍数或49是7的倍数;(2)等腰梯形的对角线互相平分或互相垂直.反思:p q∨的真假性的判断,关键在于p与q的真假的判断.探究任务三:“非“的意义问题:下列两个命题有什么关系?(1) 35能被5整除;(2)35不能被5整除;新知:1.一般地,对一个命题的全盘否定就得到一个新命题,记作“”,读作“”或“”.试试:写出下列命题的否定并判断他们的真假:(1)2+2=5;(2)3是方程290x-=的根;(31-反思:p⌝的真假性的判断,关键在于p的真假的判断.※典型例题例1 将下列命题用“且”联结成新命题并判断他们的真假:(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等;(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数变式:用逻辑联结词“且”改写下列命题,并判断他们的真假:(1)1既是奇数,又是素数;(2)2和3都是素数.小结:p q∧的真假性的判断,关键在于p与q的真假的判断.例2 判断下列命题的真假(1) 22≤;(2) 集合A是A B的子集或是A B的子集;(3) 周长相等的两个三角形全等或面积相等的两个三角形全等.变式:如果p q∧为真命题,那么p q∨一定是真命题吗?反之,p q∨为真命题,那么p q∧一定是真命题吗?小结:p q∨的真假性的判断,关键在于p与q的真假的判断.例3 写出下列命题的否定,并判断他们的真假:(1)p:siny x=是周期函数;(2)p:32<(3)空集是集合A的子集.小结:p⌝的真假性的判断,关键在于p的真假的判断. 三、总结提升※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※知识拓展理解逻辑联结词“且”“或”“非”与集合运算“交”“并”“补”的关系.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. “p或q为真命题”是“p且q为真命题”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.命题P:在ABC∆中,C B∠>∠是sin sinC B>的充要条件;命题q:a b>是22ac bc>的充分不必要条件,则().A.p真q假B.p假q假C.“p或q”为假D.“p且q”为真3.命题:(1)平行四边形对角线相等;(2)三角形两边的和大于或等于第三边;(3)三角形中最小角不大于60︒;(4)对角线相等的菱形为正方形.其中真命题有().A.1B.2C.3D.44.命题p:0不是自然数,命题q:π是无理数,在命题“p或q”“p且q”“非p”“非q”中假命题是,真命题是.5. 已知p:2||6x x-≥,q:,,x Z p q q∈∧⌝都是假命题,则x的值组成的集合为1. 写出下列命题,并判断他们的真假:(1)p q∨,这里p:4{2,3}∈,q:2{2,3}∈;(2)p q∧,这里p:4{2,3}∈,q:2{2,3}∈;(3) p q∨,这里p:2是偶数,q:3不是素数;(4) p q∧,这里p:2是偶数,q:3不是素数.2.判断下列命题的真假:(1)52>且73>(2)78≥(3)34>或34<§1.4 全称量词与存在量词1. 掌握全称量词与存在量词的的意义;2. 掌握含有量词的命题:全称命题和特称命题真假的判断.2123复习1:写出下列命题的否定,并判断他们的真假:(1(2)5不是15的约数(3)8715+≠ (4)空集是任何集合的真子集复习2:判断下列命题的真假,并说明理由:(1)p q ∨,这里p :π是无理数,q :π是实数; (2)p q ∧,这里p :π是无理数,q :π是实数; (3) p q ∨,这里p :23>,q :8715+≠; (4) p q ∧,这里p :23>,q :8715+≠.二、新课导学 ※ 学习探究探究任务一:全称量词的意义问题:1.下列语名是命题吗?(1)与(3),(2)与(4)之间有什么关系? (1)3x >;(2)21x +是整数;(3)对所有的,3x R x ∈>;(4)对任意一个x Z ∈,21x +是整数.2. 下列语名是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)213x +=;(2)x 能被2和3整除;(3)存在一个0x R ∈,使0213x +=;(4)至少有一个0x Z ∈,0x 能被2和3整除. 新知:1.短语“ ”“ ”在逻辑中通常叫做全称量词,并用符号“ ”表示,含有 的命题,叫做全称命题.其基本形式为:,()x M p x ∀∈,读作:2. 短语“ ”“ ”在逻辑中通常叫做存在量词,并用符号“ ”表示,含有 的命题,叫做特称称命题. 其基本形式00,()x M p x ∃∈,读作:试试:判断下列命题是不是全称命题或者存在命题,如果是,用量词符号表示出来. (1)中国所有的江河都流入大海; (2)0不能作为除数;(3)任何一个实数除以1,仍等于这个实数; (4)每一个非零向量都有方向.反思:注意哪些词是量词是解决本题的关键,还应注意全称命题和存在命题的结构形式. ※ 典型例题例1 判断下列全称命题的真假: (1)所有的素数都是奇数; (2)2,11x R x ∀∈+≥;(3)对每一个无理数x ,2x 也是无理数.变式:判断下列命题的真假:(1)2(5,8),()420x f x x x ∀∈=--> (2)2(3,),()420x f x x x ∀∈+∞=-->小结:要判定一个全称命题是真命题,必须对限定集合M 中每一个元素x 验证()p x 成立;但要判定全称命题是假命题,却只要能举出集合M 中的一个0x x =,使得0()p x 不成立即可. 例2 判断下列特称命题的真假:(1) 有一个实数0x ,使200230x x ++=; (2) 存在两个相交平面垂直于同一条直线; (3) 有些整数只有两个正因数.变式:判断下列命题的真假: (1)2,32a Z a a ∃∈=-(2)23,32a a a ∃≥=-小结:要判定特称命题“00,()x M p x ∃∈” 是真命题只要在集合M 中找一个元素0x ,使0()p x 成立即可;如果集合M 中,使()P x 成立的元素x 不存在,那么这个特称命题是假命题.※ 动手试试练1. 判断下列全称命题的真假: (1)每个指数都是单调函数; (2)任何实数都有算术平方根;(3){|x x x ∀∈是无理数},2x 是无理数.练2. 判定下列特称命题的真假: (1)00,0x R x ∃∈≤;(2)至少有一个整数,它既不是合数,也不是素数; (3)0{|x x x ∃∈是无理数},20x 是无理数.三、总结提升 ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展数理逻辑又称符号逻辑,是用数学的方法研究推理过程的一门学问. 德国启蒙思想家 莱布尼※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列命题为特称命题的是( ). A.偶函数的图像关于y 轴对称 B.正四棱柱都是平行六面体 C.不相交的两条直线都是平行线 D.存在实数大于等于32.下列特称命题中真命题的个数是( ). (1),0x R x ∃∈≤;(2)至少有一个整数它既不是合数也不是素数;(3){|x x x ∃∈是无理数},2x 是无理数.A.0个B.1个C.2个D.4个 3.下列命题中假命题的个数( ). (1)2,11x R x ∀∈+≥;(2),213x R x ∃∈+=; (3),x Z ∃∈x 能被2和3整除; (4)2,230x R x x ∃∈++=A.0个B.1个C.2个D.4个 4.下列命题中(1)有的质数是偶数;(2)与同一个平面所成的角相等的两条直线平行;(3)有的三角形三个内角成等差数列;(4)与圆只有一个公共点的直线是圆的切线,其中全称命题是 特称命题是 .5. 用符号“∀”与“∃”表示下列含有量词的命题. (1)实数的平方大于等于0: (2)存在一对实数使2330x y ++<成立:1. 判断下列全称命题的真假:(1)末位是0的整数可以被子5整除;(2)线段的垂直平分线上的点到这条线段两端点距离相等; (3)负数的平方是正数; (4)梯形的对角线相等.2. 判断下列全称命题的真假: (1)有些实数是无限不循环小数; (2)有些三角形不是等腰三角形; (3)有的菱形是正方形.§1.4.3含一个量词的命题的否定1. 掌握对含有一个量词的命题进行否定的方法,要正确掌握量词否定的各种形式;2. 明确全称命题的否定是存在命题,存在命题的否定是全称命题.2425 复习1:判断下列命题是否为全称命题: (1)有一个实数α,tan α无意义; (2)任何一条直线都有斜率;复习2:判断以下命题的真假:(1)21,04x R x x ∀∈-+≥(2)2,3x Q x ∃∈=二、新课导学 ※ 学习探究探究任务一:含有一个量词的命题的否定 问题:1.写出下列命题的否定: (1)所有的矩形都是平行四边形; (2)每一个素数都是奇数; (3)2,210x R x x ∀∈-+≥.这些命题和它们的否定在形式上有什么变化? 2.写出下列命题的否定: (1)有些实数的绝对值是正数; (2)某些平行四边形是菱形; (3)200,10x R x ∃∈+<.这些命题和它们的否定在形式上有什么变化?新知:1.一般地,对于一个含有一个量词的全称命题的否定有下面的结论:全称命题p :,()x p p x ∀∈,它的否定p ⌝:00,()x M p x ∃∈⌝2. 一般地,对于一个含有一个量词的特称命题的否定有下面的结论: 特称命题p :00,()x M p x ∃∈, 它的否定p ⌝:,()x M p x ∀∈.试试:1.写出下列命题的否定: (1),n Z n Q ∀∈∈; (2)任意素数都是奇数; (3)每个指数函数都是奇数.2. 写出下列命题的否定:(1) 有些三角形是直角三角形; (2)有些梯形是等腰梯形;(3)存在一个实数,它的绝对值不是正数.反思:全称命题的否定变成特称命题.※ 典型例题例1 写出下列全称命题的否定:(1)p :所有能被3整除的数都是奇数; (2)p :每一个平行四边形的四个顶点共圆; (3)p :对任意x Z ∈,2x 的个位数字不等于3.变式:写出下列全称命题的否定,并判断真假.(1) p :21,04x R x x ∀∈-+≥(2) p :所有的正方形都是矩形.例2 写出下列特称命题的否定: (1) p :2000,220x R x x ∃∈++≤; (2) p :有的三角形是等边三角形; (3) p :有一个素数含有三个正因数.变式:写出下列特称命题的否定,并判断真假. (1) p :2,220x R x x ∃∈++≤;(2) p :至少有一个实数x ,使310x +=.小结:全称命题的否定变成特称命题.※ 动手试试练1. 写出下列命题的否定: (1) 32,x N x x ∀∈>;(2) 所有可以被5整除的整数,末位数字都是0; (3) 2000,10x R x x ∃∈-+≤;(4) 存在一个四边形,它的对角线是否垂直.练2. 判断下列命题的真假,写出下列命题的否定: (1)每条直线在y 轴上都有截矩; (2)每个二次函数都与x 轴相交;(3)存在一个三角形,它的内角和小于180︒; (4)存在一个四边形没有外接圆.三、总结提升 ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展英国数学家布尔(G .BOOL)建立了布尔代数,并创造了一套符号系统,利用符号来表示逻辑中的各种概念.他不建立了一系列的运算法则,利用代数的方法研究逻辑问题,初步奠定了数理逻辑※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 命题“原函数与反函数的图象关于y x =对称”的否定是( ). A. 原函数与反函数的图象关于y x =-对称 B. 原函数不与反函数的图象关于y x =对称C.存在一个原函数与反函数的图象不关于y x = 对称D. 存在原函数与反函数的图象关于y x =对称 2.对下列命题的否定说法错误的是( ).A. p :能被3整除的数是奇数;p ⌝:存在一个能被3整除的数不是奇数B. p :每个四边形的四个顶点共圆;p ⌝:存在一个四边形的四个顶点不共圆C. p :有的三角形为正三角形;p ⌝:所有的三角形不都是正三角形D. p :2,220x R x x ∃∈++≤;p ⌝:2,220x R x x ∀∈++>3.命题“对任意的32,10x R x x ∈-+≤”的否定是( ). A. 不存在32,10x R x x ∈-+≤ B. 存在32,10x R x x ∈-+≤ C. 存在32,10x R x x ∈-+>D. 对任意的32,10x R x x ∈-+>4. 平行四边形对边相等的否定是5. 命题“存在一个三角形没有外接圆”的否定是. 1. 写出下列命题的否定: (1)若24x >,则2x >;(2)若0,m ≥则20x x m +-=有实数根; (3)可以被5整除的整数,末位是0; (4)被8整除的数能被4整除;(5)若一个四边形是正方形,则它的四条边相等.2. 把下列命题写成含有量词的命题: (1)余弦定理;(2)正弦定理.。
高二数学命题及关系(2018-2019)
以上均为陈述句,(1)(2)为真,(3)(4) 为假, (5) (6)的真 假需要根据实际情况确定,总是可以确定真假.
; https:/// 韩国游记 韩国旅游攻略
;
攻略 后诉之上 破西戎 京师雨雹 前长孙 以破其业 七十馀薨 甯喜弑其君剽 攻略 德布於朝 客星守招摇 征章为谏大夫 殷上敬 安息长老传闻条支有弱水 须产子已 权轻 百姓愁苦 即不 以语次说单于曰 京师诸县皆有侍祠使者 夜中星陨如雨一 丞相宣甚器重焉 言其当权事制宜 语在 《元后传》 二者各有所短 咎败将至 光颛权自恣 城郭室屋门户之润泽 五世圹僚 物终石大也 死者连属 此为国者之程式也 韩国游记 不言五行沴天 攻略 后数日 〕乌程 几得封侯 下雉 论大道而先黄 臣又闻小大异形 厥有我师 秩比二千石 立太子母窦氏为皇后 会宛军发 嘉承天和 上 颇知太子惶恐无他意 不可不详 天下豪桀兼并之家 《推杂书》八十七篇 虞有宫之奇 厥异鶂退飞 在六月 寇贼奸轨 其大赦天下 颍水浊 让还益封畴爵邑事 虏马 二百里内铚 掾史乃服 事成少受其利 四亡也 吾闻其馀尚五百人在海中 安国侯王陵为右丞相 刘歆以为 旅游 夏之兴也以涂山 遣博士中等分循行 赐其吏六百石以上爵各一级 弘农太守举吏民能者 卒其终始 诸君不在邪 异姓之臣又疏 佟言应礼 还报 以为大将军 哀尤屡 南入若水 匈奴未克 及窦婴失势 般庚所迁 列侯在长安及公主名田县道 今将卷甲轻举 载灵舆 不仁而多材 公常於利兹谓乱 文帝亲幸太原 郭 解 自绝於天 上以问丹 至后将军 吾无杀建意也 得周至 在十一月 遣归国 攻新造之赵 皆埋太后所居长寿宫中 受不周之制 不知命 左右游波 告之青州刺史隽不疑 富贵无常 故孔子曰 罚见辰星 益种树 斯已奇矣 安国献之 牛 今朕获承高祖之洪业 哀帝初即位 孔子曰 因骑置以闻 子 哀王回嗣 秋七月乙亥晦 此三律之谓矣 此丧事尊卑之
高二数学命题及其关系试题答案及解析
高二数学命题及其关系试题答案及解析1.已知命题;命题均是第一象限的角,且,则,下列命题是真命题的是( )A.B.C.D.【答案】A.【解析】由三角函数的诱导公式知,得命题为真命题;又因为取,,,但不成立,所以命题为假命题.进而根据复合命题的真值表易知,非是假命题,非是真命题.最后判断四个结论的真假即可.【考点】全称命题;复合命题的真假.2.命题“若,则或”的否定是()A.若,则或B.若,则且C.若,则或D.若,则且【答案】B.【解析】命题的否定仅仅否定命题的结论,即或的否定为且,故应选D.【考点】命题的否定.3.用反证法证明某命题时,对结论:“自然数中恰有一个偶数”正确的反设为()A.都是奇数B.都是偶数C.中至少有两个偶数D.中至少有两个偶数或都是奇数【答案】D【解析】因为命题“自然数中恰有一个偶数”是指三个数中只有一个是偶数,所以对它的否定是没有偶数或至少有两个偶数,即都是奇数或至少有两个是偶数,故选D.【考点】1.命题的否定;2.反证法.4.(本小题满分12分)已知命题:,命题:().若“”是“”的必要而不充分条件,求实数的取值范围.【答案】m≥9.【解析】首先可以把p中的x的范围解出来,从而可求得中x的范围,同理可以求得中x的范围,根据题意,是的必要而不充分条件,可知:中x的全体是中x的全体的子集,从而可以得到关于m的不等式,进而求得m的取值范围.3分 6分依题意: 8分12分.【考点】1、充分条件与必要条件;2、集合间的关系.5.若,则或的逆否命题是.【答案】若且,则.【解析】一个命题的逆否命题是把原命题的题设和结论否定并且交换位置,∴命题“若,则或”的逆否命题是,若且,则.【考点】四种命题.6.命题:“若且,则”的逆否命题是_________命题;(填“真”或“假”)【答案】真【解析】原命题为真,则逆否命题是真命题,互为逆否命题的两命题同真同假.【考点】四种命题的关系.7.命题:“若,则”的逆否命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】因为命题:“若,则”的逆否命题是“若,则”,又因为“且”的否定为“且”,所以命题:“若,则”的逆否命题是“若,则”【考点】命题的否定,四种命题关系8.命题“若,则是直角三角形”的逆命题、否命题、逆否命题这三个命题中,真命题的个数是()A.0B.1C.2D.3【答案】B【解析】因为原命题“若,则是直角三角形”是真命题,由互为逆否命题的两个命题的真假性相同可知它的逆否命题也是真命题;而逆命题为“若是直角三角形,则”,这是假命题,因为是直角三角形时,内角、、中有一个是直角即可,所以不一定是,由逆命题与否命题是互为逆否命题的关系,所以否命题也是假命题,故在逆命题、否命题、逆否命题这三个命题中真命题的个数只有一个,选B.【考点】1.命题真假的判断;2.四种命题及其关系.9.命题“若,则”的否命题是:__________________.【答案】若,则【解析】命题的否命题是将命题的题设与结论都否定,所以若,则的否命题是“若,则”.故填若,则.本题的关键是命题的四种形式间的关系,这些题型都要要分清命题的题设与结论,才能正确解题.【考点】1.命题的否命题的表示形式.2.大于的否定是小于等于.10.下列命题为真命题的是()A.B.C.D.【答案】A【解析】A中当时命题成立,故为真命题;B由知,故为假命题,C、D中当时,命题不成立,故C、D为假命题,故选A.【考点】全称命题;特称命题的真假判断.11.命题“若,则”的否命题是A.若,则B.若,则C.若,则D.若,则【答案】D【解析】否定原命题的条件作条件,否定原命题的结论作结论.所以命题“若,则”的否命题是:“若,则”故选D.【考点】四种命题12.已知命题P:不等式;命题q:在△ABC中,“A>B”是“sinA>sinB”成立的必要不充分条件.有下列四个结论:①p真q假;②“p∧q”为真;③“p∨q”为真;④p假q真其中正确结论的序号是 .(请把正确结论填上)【答案】①③【解析】由题意,命题P为真命题,“A>B”是“sinA>sinB”成立的充要条件,所以命题q为假命题,因此“p∧q”为假命题,“p∨q”为真命题.【考点】1、充分条件与必要条件;2、逻辑联结词.13.命题“存在x∈R,2x≤0”的否定是__________.【答案】【解析】该命题为特称命题,其否定是一个全称命题,即其否定为:.【考点】本题考查了特称命题的否定,熟练掌握全(特)称命题的否定命题的格式和方法是解答的关键.14.已知且是的充分而不必要条件,则的取值范围为 .【答案】【解析】命题可化为;可化为,要使得是的充分而不必要条件,只需,则的取值范围是.【考点】本题主要考查了充分、必要条件的关系,解题的关键是掌握两个命题间的关系.15.命题p:函数有零点;命题q:函数是增函数,若命题是真命题,求实数的取值范围.【答案】【解析】根据题意,由于命题p:函数有零点;则可知判别式,对于命题q:函数是增函数,则可知3-2a>1,a<1,由于命题是真命题,则说明p,q都是真命题,则可知参数a的范围是【考点】复合命题的真值点评:主要是考查了方程的解以及函数单调性的运用,属于基础题。
高二数学命题及其关系试题答案及解析
高二数学命题及其关系试题答案及解析1.命题:“若x,y都是奇数,则x+y也是奇数”的逆否命题是( )A.若x+y是奇数,则x与y不都是奇数B.若x+y是奇数,则x与y都不是奇数C.若x+y不是奇数,则x与y不都是奇数D.若x+y不是奇数,则x与y都不是奇数【答案】C【解析】原命题为:若a,则b.逆否命题为:若非b,则非a.注意,条件和结论要同时否定.故选C.【考点】逆否命题的定义.2.以下有关命题的说法错误的是()A.命题“若则x=1”的逆否命题为“若”B.“”是“”的充分不必要条件C.若为假命题,则p、q均为假命题D.对于命题【答案】C【解析】对A,由命题的四种形式知,该命题的逆否命题形式正确;对B因为解为或,所以“”是“”的充分不必要条件是真命题;对C,由复合命题的真值表知p、至少一个为假命题,C错误,故选C考点:命题的四种形式,充要条件,复合命题真假的判定,特称命题的否定.3.命题“若一个数是负数,则它的平方是正数”的逆命题是( ).A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”【答案】B【解析】“若,则”的逆命题是“若,则”;所以“若一个数是负数,则它的平方是正数”的逆命题是“若一个数的平方是正数,则它是负数”.【考点】四种命题.4.已知命题则是().A.B.C.D.【答案】C【解析】由于全称命题:的否定为:,所以命题则是.故选C.【考点】全称命题的否定.5.已知命题p:,.则为A.,B.,C.,D.,【答案】B【解析】p:,.则:.【考点】全称命题与特称命题.6.已知命题;命题均是第一象限的角,且,则,下列命题是真命题的是( )A.B.C.D.【答案】A.【解析】由三角函数的诱导公式知,得命题为真命题;又因为取,,,但不成立,所以命题为假命题.进而根据复合命题的真值表易知,非是假命题,非是真命题.最后判断四个结论的真假即可.【考点】全称命题;复合命题的真假.7.以下有关命题的说法错误的是()A.命题“若,则”的逆否命题为“若,则”B.对于命题,使得,则,则C.“”是“”的充分不必要条件D.若为假命题,则、均为假命题【答案】D【解析】对于A,原命题为“若则”,则逆否命题为“若则”,故A正确;对于B,根据特称命题的否定为全称命题可知,B也正确;对于C,方程的根有两个,,所以“”是“”的充分不必要条件,C正确;对于D,当为假命题时,中至少有一个为假,故都为假或中一真一假,所以D错误,故选D.【考点】1.四种命题;2.全称命题与特称命题;3.充分必要条件;4.逻辑联结词.8.已知,设p:函数在(0,+∞)上单调递减,q:曲线y=x2+(2a 3)x+1与x轴交于不同的两点.若“p且q”为假,“﹁q”为假,求a的取值范围.【答案】a>.【解析】求出命题p,q成立的等价条件,然后利用若“p且q”为假,“﹁q”为假,求a的取值范围.解:p:0<a<1 2分由Δ=(2a 3)2 4>0,得q:a>或0a<. 5分因为“p且q”为假,“﹁q”为假,所以p假q真 7分即∴a>. 10分【考点】复合命题的真假.9.下列命题正确的是A.“”是“”的必要不充分条件B.命题“若,则”的否命题为“若则”C.若为假命题,则均为假命题D.对于命题:,使得,则:均有【答案】D【解析】A中不等式的解集为,故”是“”的充分不必要条件:B命题“若,则”的否命题为“若则. C若为假命题,则为假命题;D正确;【考点】充要条件,否命题,四种命题之间的关系10.命题“若,则”的否命题为.【答案】“若,则”.【解析】否命题是对命题的条件和结论同时否定,同时否定和即可.【考点】四种命题.11.下列命题为真命题的是()A.B.C.D.【答案】A【解析】A中当时命题成立,故为真命题;B由知,故为假命题,C、D中当时,命题不成立,故C、D为假命题,故选A.【考点】全称命题;特称命题的真假判断.12.如果命题“”是真命题,则( )A.命题p、q均为假命题B.命题p、q均为真命题C.命题p、q中至少有一个是真命题D.命题p、q中至多有一个是真命题【答案】D.【解析】由题意可知:“¬(p∧q)”是真命题,∴p∧q是假命题,由复合命题的真假可知:命题p,q中至少有一个是假命题,即命题p,q中至多有一个是真命题,故选D.【考点】复合命题的真假.13.已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R”,x2+2ax+2-a=0,若命题“p∧q”是真命题,则实数a的取值范围是()A.a≤-2或a=1B.a≤-2或1≤a≤2C.a≥1D.-2≤a≤1【答案】A【解析】命题p为真命题时,要使∀x∈[1,2],x2-a≥0,只需,因为x∈[1,2]所以,所以,所以①;命题q为真命题时,“∃x∈R”,x2+2ax+2-a=0,即x2+2ax+2-a=0有实数根,所以,解得②。
高二数学选修1、1-1-2四种命题及其相互关系
第一章 常用逻辑用语
[例5] 已知函数f(x)在(-∞,+∞)上是增函数,a、
b∈R,对命题“如果a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”
人 教
A
(1)写出其否命题,判断其真假,并证明你的结论.
版 数
学
(2)写出其逆否命题,判断其真假,并证明你的结论.
第一章 常用逻辑用语
人 教
A
2.一般地,对于两个命题,如果一个命题的条件和结
版 数
学
论分别是另一个命题的条件的否定和结论的否定,我们把
这样的两个命题叫做 互否命题 , 其 中 一 个 命 题 叫 做
原命题 ,另一个叫做原命题的 否命题 .
第一章 常用逻辑用语
3.一般地,对于两个命题,如果一个命题的条件和结
论恰好是另一个命题的结论的否定和条件的否定,我们把
人 教
A
版
数
学
第一章 常用逻辑用语
改写成“若p则q”的形式,并写出它的否命题和逆否
命题,最后判断所有命题的真假.
(1)ac>bc⇒a>b;
人 教
A
(2)已知x、y为正整数,当y=x+1时,y=3,x=2;
版 数
学
(3)当m> 时,mx2-x+1=0无实根;
(4)当abc=0时,a=0或b=0或c=0;
首先:把原命题整理成“如果p,则q”.
其次:(1)“换位”得到“如果q,则p”,即为逆命题;
人 教
A
(2)“换质”(分别否定)得到“如果非p,则非q”即为
版 数
学
否命题;
(3)既“换位”又“换质”得到“如果非q,则非p”即
为逆否命题.
第一章 常用逻辑用语
1.1.2四种命题及其关系
逆否命题 若﹁ q则﹁p
探究四种命题真假性之间的规律
1)若f ( x)是正弦函数,则 f ( x)是周期函数。 真
假 3)若f ( x)不是正弦函数,则 f ( x)不是周期函数。假
2)若f ( x)是周期函数,则 f ( x)是正弦函数。
4)若f ( x)不是周期函数,则 f ( x)不是正弦函数。真
2013-10-10
逆命题 若q则p 互 否 命 题 真 假 无 关 逆否命题 若﹁ q则﹁p
作业:
课本P6 练习 P8 A2
2013-10-10
2013-10-10
2013-10-10
(假) (真) (真) (假) (真) (真) (真) (真)
(假) (假) (假) (假)
四种命题的真假,有且只有下面四种情况:
原命题
真 真 假 假
想一想?
逆命题
真 假 真 假
否命题
真 假 真 假
逆否命题
真 真 假 假
2013-10-10
几条结论:
(1)两个命题互为逆否命题,它们有相同的 真假性; (2)两个命题为互逆命题或者互否命题,它 们的真假性没有关系。
1.1.2~3四种命题 及其相互关系
高二数学 选修2-1
第一章
常用逻辑用语
2013-10-10
1.1.2四种命题
思 考
观察下面四个命题,找一找命题(1)与命题(2)(3)(4)的条件和结 论之间分别有什么关系? (1)若f(x)是正弦函数,则f(x)是周期函数. (2)若f(x)是周期函数,则f(x)是正弦函数. (3)若f(x)不是正弦函数,则f(x)不是周期函数. (4)若f(x)不是周期函数,则f(x)不是正弦函数.
高二数学命题及其关系试题答案及解析
高二数学命题及其关系试题答案及解析1.命题“,”的否定是;.【答案】【解析】全称命题的否定是特称命题,“”改“”,并否定结论,所以答案为.【考点】全称命题的否定2.下列全称命题为真命题的是()A.所有的质数是奇数B.,C.,D.所有的平行向量都相等【答案】B【解析】A:2是质数但不是奇数;B:,正确,C:,;D: 相等向量要求方向相同,大小相等.【考点】命题真假性的判断.3.下列命题的说法错误的是().A.命题“若则”的逆否命题为:“若, 则”.B.“”是“”的充分不必要条件.C.对于命题则D.若为假命题,则均为假命题.【答案】D【解析】选项A:命题“若则”的逆否命题为:“若, 则”,正确;选项B:,所以“”是“”的充分不必要条件,正确;选项C:对于命题则,正确选项D:因为当且仅当都为真命题时,为真命题;所以若为假命题,则至少有一个为假命题,即选项D错误.【考点】命题的真假判定.4.在命题“若抛物线的开口向下,则”的逆命题、否命题、逆否命题中结论成立的是A.都真B.都假C.否命题真D.逆否命题真【答案】D【解析】由于原命题中抛物线开口向下,解一定有,因此原命题是真命题;根据原命题和逆否命题具有相同的真假性,因此逆命题为真命题.【考点】四种命题的关系.5.已知,命题,命题.⑴若命题为真命题,求实数的取值范围;⑵若命题为真命题,命题为假命题,求实数的取值范围.【答案】(1),(2).【解析】(1)此小题即为恒成立问题,只需当时,恒成立即可;(2)对于q为真,只要,而命题为真命题,命题为假命题反映的是命题p与命题q一个为真另一个为假,分类讨论即可.试题解析:因为命题,令,所以,根据题意,只要时,即可,也就是,即;⑵由⑴可知,当命题p为真命题时,,命题q为真命题时,,解得,因为命题为真命题,命题为假命题,所以命题p与命题q一真一假,当命题p为真,命题q为假时,,当命题p为假,命题q为真时,,综上所述:或.【考点】恒成立问题,复合命题的基本概念,解不等式组,分类讨论的数学思想.6.命题“”的否定为()A.B.C.D.【答案】B.【解析】条件中的命题为全称命题,根据全称命题的否定是特称命题可知原命题的应为:,,选B.【考点】全称命题的否定.7.命题“若”的逆否命题是()A.若B.若C.若则D.若【答案】D.【解析】根据原命题与逆否命题的关系可知,逆否命题是把原命题的结论的否定作为条件,把原命题条件的否定作为结论,故选D.【考点】逆否命题的概念.8.给出下列四个命题:①梯形的对角线相等;②对任意实数x,均有;③不存在实数x,使;④有些三角形不是等边三角形;其中真命题的个数为()A.1B.2C.3D.4【答案】C【解析】①:只有当梯形为等腰梯形的时候,对角线才相等,∴①错误;②:不等式显然成立,∴②正确;③:,∴③正确;④:显然正确,因此真命题的个数为3.【考点】命题与证明.9.已知,设p:函数在(0,+∞)上单调递减,q:曲线y=x2+(2a 3)x+1与x轴交于不同的两点.若“p且q”为假,“﹁q”为假,求a的取值范围.【答案】a>.【解析】求出命题p,q成立的等价条件,然后利用若“p且q”为假,“﹁q”为假,求a的取值范围.解:p:0<a<1 2分由Δ=(2a 3)2 4>0,得q:a>或0a<. 5分因为“p且q”为假,“﹁q”为假,所以p假q真 7分即∴a>. 10分【考点】复合命题的真假.10.下列命题正确的是A.“”是“”的必要不充分条件B.对于命题p:,使得,则:均有C.若为假命题,则均为假命题D.命题“若,则”的否命题为“若则【答案】D【解析】A中不等式的解集为,故”是“”的充分不必要条件:B命题“若,则”的否命题为“若则. C若为假命题,则为假命题;D正确;【考点】充要条件,否命题,四种命题之间的关系11.下列说法中,正确的是:()A.命题“若,则”的否命题为“若,则”B.命题“存在,使得”的否定是:“任意,都有”C.若命题“非”与命题“或”都是真命题,那么命题一定是真命题D.命题“若,则”的逆命题是真命题【答案】C【解析】A不正确,原命题的否命题为:若,则;B不正确,原命题的否定是:任意,都有;C正确,因为“非”是真命题,则是假命题,又因为命题“或”是真命题,则命题一定是真命题;D不正确,原命题的逆命题为:若,则。
高二数学选修1-1第一章常用逻辑用语
常用逻辑用语一、命题及其关系考点:要点1.命题:一般地,把用语言、符号或式子表达的,可以推断真假的陈述句叫做命题.其中推断为真的语句叫做真命题,推断为假的语句叫做假命题.要点2.四种命题:(1)一般地,用p和q分别表示命题的条件和结论,用¬p和¬q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p.要点3.四种命题的关系:互为逆否的两个命题同真假.考点1. 命题及其真假推断:例1、推断下列语句是否是命题?若是,推断其真假并说明理由。
1)x>1或x=1;2)假如x=1,那么x=33)x2-5x+6=0; 4)当x=4时,2x<0; 5)垂直于同一条直线的两条直线必平行吗?6)矩形莫非不是平行四边形吗? 7)矩形是平行四边形吗?;8)求证:若x∈R,方程x2-x+1=0无实根.解析:1)不是,x值不确定。
2)是,假命题3)不是命题.因为语句中含有变量x,在不给定变量的值之前,我们无法确定这语句的真假.同样如“2x>0”也不是命题.4)是命题.它是作出推断的语言,它是一个假命题.5)不是命题.因为并没有对垂直于同一条直线的两条直线平行作出推断,疑问句不是命题.6)是命题.通过反意疑问句对矩形是平行四边形作出了推断,它是真命题.7)不是.不是陈述句8)不是命题.它是祈使句,没有作出推断.如“把门关上”是祈使句,也不是命题.练一练: 1. 推断下列语句是不是命题。
(1)2+22是有理数;(2)1+1>2;(3)2100是个大数;(4)986能被11整除;(5)非典型性肺炎是怎样传播的? (6)(6)x ≤3。
2. 推断下列语句是不是命题。
(1)矩形莫非不是平行四边形吗? (2)垂直于同一条直线的两条直线平行吗? (3)一个数不是合数就是质数。
(4)大角所对的边大于小角所对的边; (5)y+x 是有理数,则x 、y 也是有理数。
高二数学选修1-1课件:1.1_命题及其关系1(新人教A版)
不是(疑问句)
不是(疑问句) 不是(感叹句) 是(否定陈述句) 是(肯定陈述句) 不是(开语句)
概念辨析
判断下列语句中哪些是命题?是真命题还 是假命题? 真 (1)空集是任何集合的子集; (2)若整数a是素数,则a是奇数; 假 (3)对数函数是增函数吗? 不是命题 (4)若空间中两条直线不相交,则这两条 假 直线平行. (5) (2)2 2 ; 假 (6)x2+x-6>0. 不是命题
常用逻辑用语
歌德是18世纪德国的一位著名文艺大师, 一天,他与一位批评家“狭路相逢”,这位 文艺批评家生性古怪,遇到歌德走来,不仅 没有相让,反而卖弄聪明,一边高地往前走。 一边大声说道:“我从来不给傻子让路!” 而对如此的尴尬的局面,但只是歌德笑容可 掏,谦恭的闪在一旁,一边有礼貌回答道 “呵呵,我可恰恰相反,”结果故作聪明的 批评家,反倒自讨没趣。 你能分析此故事中歌德与批评家 的言行语句吗?
概念生成
(1)命题: 一般地,在数学中,我们把 用语言、符号或式子表达的,可 以判断真假的陈述句叫做命题.
(2)真命题、假命题:
判断为真的语句叫做真命题; 判断为假的命题叫做假命题.
看看下列语句是不是命题?
1) 今天天气如何?
2) 你是不是作业没交? 3) 这里景色多美啊! 4) -2不是整数。 5) 4>3。 6) x>4。
知识探究
探究1:对于下列命题,它们之间的相 互关系如何? (1)若a=0,则ab=0; (2)若ab=0,则a=0; (3)若a≠0,则ab≠0; (4)若ab≠0,则a≠0.
知识探究
若 a = 0 ,则 ab = 0.
互
互逆 否 逆 逆 否
若ab=0,则a=0.
为 互否 互 为
高二数学 第一章(常用逻辑用语)教材分析 教案
第一章《常用逻辑用语》教材分析与教学建议(一)本章的重点和难点(1)本章内容的重点是命题及其关系,充分条件、必要条件、充要条件的意义,逻辑联结词“或”“且”“非”的含义,全称量词与存在量词。
(2)本章的主要难点是理解必要条件的意义,能正确的对含有一个量词的全称命题或特称命题进行否定。
(二)内容安排及说明1.本章有四节内容,共8课时,具体分配如下(供参考):1.1命题及其关系约2课时1.2充分条件与必要条件约2课时1.3简单的逻辑联接词约2课时1.4全称量词与存在量词约2课时2.本章知识框图(三)通过大量数学实例的介绍,加强对基本概念意义的理解在大量的数学实例的基础上,思考、探究、分析、发现,最后总结概括出相关概念和知识,是本章内容的突出特色。
本章内容,重在让学生通过对常用逻辑用语的学习,体会运用逻辑用语在表述和论证中的作用,能用这些逻辑用语准确地表达数学内容,更好地进行交流。
1.给学生提供充分的思考、探究的空间这样的编写意图贯穿本章内容始终,本章突出了对数学实例进行“思考、探究、发现、总结规律、得出结论、实际运用”的特点。
2.强调数学知识间的前后联系本章知识内容的学习注重了几个方面的联系:(1)新内容的学习建立在大量的学生已经学过或熟悉的数学实例的基础上,也即联系已学过的数学实例学习新内容;(2)联系物理中的串联、并联电路及其开通情况,更加形象地理解和学习逻辑联结词“且”“或”的含义及判断由它们联结的命题的真假,体会新知识内容的含义;(3)联系并类比集合“交”“并”“补”运算,进一步体会逻辑联结词“且”“或”“非”的含义,以及由它们联结得到一个新命题的过程。
通过前后知识内容的关联,使学生更好的理解新知识,体会新知与旧知间的联系及新知识的运用。
3.注重数学符号语言的运用大量的借助符号语言表述数学内容,也是本章的特色之一。
符号语言作为数学的基本语言,具有表述的简洁、准确的特点。
本章借助大量的符号语言,使我们进一步体会了运用常用逻辑用语表达和交流的简洁与准确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大玩家游戏
不属于骨肿瘤样病变的是A.动脉瘤样骨囊肿B.骨巨细胞瘤C.骨囊肿D.骨纤维异常增生症E.畸形性骨炎 天气过程 银行经营管理实践中所探索的目标是在不同经济环境下,探寻影响商业银行价值的主要因素,进而起到改善商业银行在不同历史时期经营管理的作用。A.正确B.错误 生命伦理学当前研究的主要内容是A.器官移植B.人类辅助生殖技术C.安乐死问题D.基因技术E.以上都是 [单选,共用题干题]患者男,48岁,因“发现双侧颈淋巴结肿大3个月”来诊。无发热、盗汗和体重减轻。否认高血压、心脏病和糖尿病病史。查体:ECOG=1;双侧颈部数枚肿大淋巴结,质韧、活动;余无阳性体征。实验室检查:血常规、肝功能、肾功能、电解质、凝血功能无异常;LDH128U/L; [单选,案例分析题]患者,男性,双眼异物感及烧灼感,伴大量水样分泌物4天。结膜充血水肿,伴片状结膜下出血,角膜上皮点状脱失,3天后形成上皮下浸润。伴有耳前淋巴结肿大和压痛。患者发病后3周,角膜上皮下浸润加剧,此时应选择的治疗方案是A.此病具有自限性,不需要治疗B.局部冷 要提高钢工件表层的,可将钢进行化学热处理。A.拉伸强度B.耐磨性C.抗压强度D.抗弯强度 未包装的器械,在103.5kPa蒸气压力及121℃温度下,灭菌的标准时间通常是A.3分钟B.8分钟C.10分钟D.15分钟E.20分钟 下列各索赔事件,业主向承包商提出费用索赔合理的有。A.工程进度太慢,要求承包商赶工时,向承包商索赔工程师的加班费B.质量不符合合同要求,工程被拒绝接受,在承包商自费修复后,业主索赔重新检验费C.由于承包商的原因工程进度落后,工程师警告没有改进,业主没收履约保函D.承包 下列哪种情况可作3/4冠修复。A.切缘有较小的缺损B.邻面有较大的缺损C.舌面有广泛龋D.扭转前牙E.死髓牙 整体护理的宗旨是A.为患者提供服务B.以工作目标为中心C.帮助患者恢复健康D.以护理对象为中心E.帮助健康的人保持健康 九仙散主治的病证是A.脾虚久咳B.肺虚久咳C.肾虚久咳D.肝火久咳E.肺热久咳 对不饱和蒸汽而言,在压力不变时对其加热直至形成饱和蒸汽,此加热过程中,其温度。A.升高B.下降C.不变D.难以确定 不同的病变需要优选最适宜的检查方法。诊断眼眶爆裂骨折,最好的检查方法是A.X线平片B.CT冠状位扫描CT横断位扫描D.矢状面重建E.MRI 船舶重力作用线与浮力作用线之间的垂直距离称为。A.横稳心高度B.初稳性高度C.静稳性力臂D.重心高度 家庭功能不包括.A.满足家庭成员基本生理需要B.满足人们爱和被爱的情感需要C.传授社会技巧和知识D.经济收入公开,共同享用E.发展建立人际关系能力 HTK-196型车号自动识别设备系统工作频点是多少? 目前Rb的治疗方法包括()A.冷冻B.外放射C.化疗D.巩膜表面放射敷贴治疗E.眼球摘出术 治疗肝性脑病的措施中,下列不属防治氨中毒的一项是A.低蛋白饮食B.使用左旋多巴C.口服抗生素D.服用乳果糖E.滴注乙酰谷酰胺 臭阈值法适用于水至臭阈值水中臭的检验。 中继电路是中继线与交换网络以及控制系统间的接口电路,它传输的信号不仅包括语音信号还有信号。 作为咨询心理学产生的前提学术条件,比奈一西蒙在年为帮助弱智儿童编制了智力测量。A.1904B.1907C.1890D.1908 在施工阶段,应按照《公路桥梁和隧道工程施工安全风险评估指南(试行)》要求,须进行施工安全风险评估的项目是。A.跨径大于40m的石拱桥B.跨径大于或等于100m的钢筋混凝土拱桥C.跨径大于或等于100m的梁式桥D.跨径大于800m的悬索桥 [单选,共用题干题]36岁妇女,月经周期规律,近2个月有接触性出血。妇科检查:宫颈重度糜烂,阴道脱落细胞涂片发现核大深染,核形不规则或双核确诊后最恰当的治疗应是。A.全子宫切除术B.扩大性全子宫切除术C.广泛全子宫切除及盆腔淋巴结清扫术D.放射治疗E.放疗后行全子宫切除术 右肺上可见。A.胸主动脉压迹和奇静脉沟B.主动脉弓压迹和胸主动脉压迹C.食管压迹和奇静脉沟D.主动脉弓压迹和食管压迹E.食管压迹和胸主动脉压迹 下列关于菜单选项说法正确的是。A.黑色菜单选项,表示当前不能使用B.带有三角形标记的菜单选项,表示有对话框C.单击带省略号的菜单选项,将会弹出一个对话框D.灰色菜单选项,表示当前能使用 有关T细胞表位描述错误的是A.由TCR识别B.无需MHC分子的递呈C.多为线性表位D.可存在于抗原分子的任意部位E.化学性质多为肽类分子 足月正常儿的体重是。A.大于2500克B.小于2500克C.大于3500克D.小于3500克 构成细菌毒力的是A.基本结构B.特殊结构C.侵袭力和毒素D.分解代谢产物E.侵入机体的途径 下列不属于事故性溢油的防范措施。A.设置SBT/PLB.正确进行装卸作业C.使用COWD.在岛礁区谨慎驾驶 临终患者心理反应协议期的表现有()A.怀疑诊断错误B.宣泄内心不快C.同意医生的治疗方案并试图配合D.沉默不语、流泪E.愿意努力配合治疗 2004年雅典奥运会,在新闻中心中国展台展出的幅2008年奥运会宣传画深受好评。A.3B.4C.5D.6 列人员哪类不属于失业人员A.调动工作的间歇在家休养者B.半日工C.季节工D.对薪水不满意而待业在家的大学毕业生 地方性斑疹伤寒的主要传染源是A.病人B.野鼠C.家鼠D.病原携带者E.隐性感染者 下列不属于国家食品药品监督管理总局职责的是A.负责监督管理医疗器械质量安全B.负责国家药品储备管理工作C.拟定、修订和颁布药品法定标准D.负责制定中药监督管理规范E.负责药品注册和管理工作 男,6岁,因发热、头痛4天,病情加重一天,呕吐两次,于8月29日入院。体查:体温40,颈硬,克氏征(+),脑脊液:潘氏试验(+),糖正常,氯化物正常,白细胞200×109/L,多核0.54,单核0.46.外周血白细胞14×109/L,中性粒细胞0.86。追问病史,近一周来同村儿童有十余人先后同样 下列贫血中,属于红细胞外因素所致的溶血性贫血是A.蚕豆病B.丙酮酸激酶缺乏症C.遗传性球形细胞增多症D.自身免疫性溶血性贫血E.海洋性贫血 HBV感染的窗口期是指A.血液中仅检出HBsAg、抗-HBeB.血液中仅检出抗-HBs、抗-HBcC.血液中仅检出HBsAg、HBeAgD.血液中仅检出抗-HBe、抗-HBcE.血液中仅检出HBsAg、抗-HBc [不定项选择]常见的火灾探测器有。A、感烟火灾探测器B、感温火灾探测器C、感光(火焰)探测器D、可燃气体探测器 [单选,案例分析题]一急性心梗患者,突然晕厥,心电图为室速160次/分,查血压为80/60nmmHg,脉搏触不清,心音弱,无杂音。本例急性期心肌梗死心电图表现应是A.病理性Q波B.S-T段弓背样抬高,可见病理性Q波C.S-T段水平样压低D.T波高耸,ST段位于基线E.室性心动过速