材料力学第五版课件 主编 刘鸿文 第八章组合

合集下载

材料力学(刘鸿文_第5版)

材料力学(刘鸿文_第5版)

第十四章 习题
2012年11月5日星期一
常州大学机械学院力学教研室
第五章 习题
第六章 弯曲变形
§6-1、工程中的弯曲变形问题 §6-2、挠曲线的微分方程 §6-3、用积分法求弯曲变形 6.1和连续性条件 6.3(a) Page 196 §6-4、用叠加法求弯曲变形 6.9(a) 6.10(b) Page 200 §6-5、简单超静定梁 Page 208 6.36 §6-6、提高弯曲刚度的一些措施
第十三章 习题
§13-1、概述 §13-2、杆件应变能的计算104 Page §13-3、应变能的普遍表达式 §13-4、互等定理 Page 106 §13-5、卡氏定理 Page 107 §13-6、虚功原理 §13-7、单位载荷法 Page 109 莫尔积分 §13-8、计算莫尔积分的图乘法 Page 109
第一章 绪论
§1-1、材料力学的任务 §1-2、变形固体的基本假设 §1-3、外力及其分类 §1-4、内力、截面法和应力的概念 §1-5、变形与应变 §1-6、杆件变形的基本形式
第一章 绪论习题
Page 11 1.2 Page 11 1.4 1.6
第二章 拉伸、压缩与剪切 第二章 习题
§2-1、轴向拉伸与压缩的概念和实例 §2-2、轴向拉伸与压缩时横截面上的内力和应力 2.2 Page 53 2.1(a)(c) §2-3、直杆轴向拉伸或压缩时斜截面上的应力 Page 54 2.6 §2-4、材料拉伸时的力学性能 §2-5、材料压缩时的力学性能 §2-7、失效、安全因数与强度计算54 2.7 Page 54 2.12 Page §2-8、轴向拉伸或压缩时的变形 58 2.19 Page 61 2.30 Page
附录 I 平面图形的几何性质

刘鸿文版材料力学课件全套

刘鸿文版材料力学课件全套

pq
Me
x
圆轴扭转的平面假设:
pq
圆轴扭转变形前原为平面的横截面,变形后仍 保持为平面,形状和大小不变,半径仍保持为直线; 且相邻两截面间的距离不变。
§3.4 圆轴扭转时的应力
Me
pq
Me
_ 扭转角(rad)
pq p
q
d
a
d
c
a' O b
R
p
b′ q
dx
d _ dx微段两截面的
x
相对扭转角
边缘上a点的错动距离:
§3.4 圆轴扭转时的应力
例题3.4
已知:P=7.5kW, n=100r/min,最大切应力不 得超过40MPa,空心圆轴的内外直径之比 = 0.5。二轴长度相同。
求: 实心轴的直径d1和空心轴的外直径D2;确 定二轴的重量之比。
解: 首先由轴所传递的功率计算作用在轴上的扭矩
P 7 .5 M x T 9 5 4 9 n 9 5 4 9 1 0 0 7 1 6 .2 N m
d
T GI p dx
G
d
dx
T Ip
§3.4 圆轴扭转时的应力
公式适用于:
1)圆杆
2) max
p
横截面上某点的切应力的方向与扭矩 方向相同,并垂直于半径。切应力的大 小与其和圆心的距离成正比。

Wt
Ip R
抗扭截面系数
m ax
T Wt
在圆截面边缘上, 有最大切应力
§3.4 圆轴扭转时的应力
个平面的交线,
方向则共同指向
各个截面上只有切应
或共同背离这一 力没有正应力的情况称为
交线。
纯剪切
§3.3 纯剪切

刘鸿文版材料力学课件全套4ppt课件

刘鸿文版材料力学课件全套4ppt课件

解:(1)计算横截面的形心、 面积、惯性矩
F 350 F
F 350
M
y1 z0 y
FN
z1
150
A 15000mm2 z0 75mm z1 125 mm I y 5.31107 mm4
50 (2)立柱横截面的内力
FN F
M F 350 75103
50
150
425F 103 N m
10-1
压弯组合变形
目录
§8-1 组合变形和叠加原理
组合变形工程实例
拉弯组合变形
目录
§8-1 组合变形和叠加原理
组合变形工程实例
弯扭组合变形
目录
§8-1 组合变形和叠加原理
叠加原理
构件在小变形和服从胡克定理的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的叠加
r4
M8-4 扭转与弯曲的组合
r3
M 2 T 2
W
W d 3
32
d 3 32
M2 T2
3
32
1762 3002 100106
32.8103 m 32.8mm
目录
小结
1、了解组合变形杆件强度计算的基本方法 2、掌握斜弯曲和拉(压)弯组合变形杆件
0 -极限切应力,由单向拉伸实验测得
0 s /2
目录
7-11 四种常用强度理论
最大切应力理论(第三强度理论)
屈服条件 强度条件
1
3
s
ns
低碳钢拉伸
低碳钢扭转
目录
7-11 四种常用强度理论
最大切应力理论(第三强度理论) 实验表明:此理论对于塑性材料的屈服破坏能够得到 较为满意的解释。并能解释材料在三向均压下不发生

刘鸿文材料力学第五版课件

刘鸿文材料力学第五版课件

Fl 2 2 Fl 2 5Fl 2 = + = 2 EI EI 2 EI
(顺时针) 顺时针)
北京交通大学工程力学研究所
柯燎亮
§6-3 用叠加法求弯曲变形-例4 用叠加法求弯曲变形由叠加原理求图示弯曲刚度为EI的外伸梁 截面的挠度和转角以 由叠加原理求图示弯曲刚度为 的外伸梁C截面的挠度和转角以 的外伸梁 截面的挠度。 及D截面的挠度。 截面的挠度
qa(2a ) qa(2a ) wD1 = θ B1 = − 48EI 16 EI 截面的挠度和B截面右端的转角为 图d中D截面的挠度和 截面右端的转角为: 中 截面的挠度和 截面右端的转角为:
3 2
wD 2
2qa =− 16 EI
4
θ B2
qa 3 = 3EI
柯燎亮
北京交通大学工程力学研究所
§6-3 用叠加法求弯曲变形-例4 用叠加法求弯曲变形将相应的位移进行叠加,即得: 将相应的位移进行叠加,即得:
q B
(θ B )q
θ A = (θ A)q + (θ A)Me
Mel ql =( + ) ( 24EI 3EI
3
(wC )q
l
) Me
B
(θ B ) M e
θB = (θB)q + (θB)Me A (c) (θ A ) C (wC )M ql 3 Mel ( ) = − + l 24EI 6EI 北京交通大学工程力学研究所 柯燎亮
qa 4 wCq = 8EI
θ Cq
qa 3 = 6 EI
柯燎亮
北京交通大学工程力学研究所
§6-3 用叠加法求弯曲变形-例4 用叠加法求弯曲变形原外伸梁C端的挠度和转角也可按叠加原理求得, 原外伸梁 端的挠度和转角也可按叠加原理求得,即: 端的挠度和转角也可按叠加原理求得

刘鸿文主编 材料力学 第八章 PPT课件

刘鸿文主编 材料力学 第八章 PPT课件

§8-3 斜 弯 曲
挠度:
f
f
2 y

f
2 z
fz
fy

Fy l 3 3EI z
fz

Fz l 3 3EI y
tan fz Iz tan
fy Iy
f
fy 矩形 I y I z 正方形 I y I z


斜弯曲
平面弯曲
目录
§8-4 弯曲与扭转的组合
弯曲与扭转组合变形是机械工程中最常见的情况,
• 叠加法的应用条件: (1)线弹性材料,加载在弹性范围内,即服从胡克定律; (2)小变形,保证内力与诸外载荷加载次序无关。
组合变形构件危险点的应力状态
单向应力状态:例如,拉伸(或压缩)与弯曲的组合、偏心拉 伸(或压缩)等;
复杂应力状态:例如,弯曲与扭转的组合、拉伸(或压缩)与 扭转的组合、拉伸(或压缩)与弯曲与扭转的组合变形等;
F 350 F
F 350
M
y1 z0 y
FN
z1
150
A 15000 mm2 z0 75mm z1 125mm I y 5.31107 mm4
50 (2)立柱横截面的内力
FN F
M F 350 75103
50
150
425F 103 N m
目录
§8-2 拉伸或压缩与弯曲的组合
A 15000 mm2 I y 5.31107 mm4
z0 75mm z1 125mm
FN F
M 425 103 F N.m
(3)立柱横截面的最大应力
F 350
M FN
t.max

Mz0 Iy

材料力学第五版(刘鸿文主编)课后答案解析

材料力学第五版(刘鸿文主编)课后答案解析
幻灯片295
幻灯片296
幻灯片297
幻灯片298
幻灯片299
幻灯片300
幻灯片301
幻灯片302
幻灯片303
幻灯片304
幻灯片305
幻灯片306
幻灯片307
幻灯片308
幻灯片309
幻灯片310
幻灯片311
幻灯片312
幻灯片313
幻灯片314
幻灯片315
幻灯片316
幻灯片317
幻灯片318
幻灯片319
幻灯片93
幻灯片94
幻灯片95
幻灯片96
幻灯片97
幻灯片98
幻灯片99
幻灯片100
幻灯片101
幻灯片102
幻灯片103
幻灯片104
幻灯片105
幻灯片106
幻灯片107
幻灯片108
幻灯片109
幻灯片110
幻灯片111
幻灯片112
幻灯片113
幻灯片114
幻灯片115
幻灯片116
幻灯片117
幻灯片118
幻灯片119
幻灯片220
幻灯片221
幻灯片222
幻灯片223
幻灯片224
幻灯片225
幻灯片226
幻灯片227
幻灯片228
幻灯片229
幻灯片230
幻灯片231
幻灯片232
幻灯片233
幻灯片234
幻灯片235
幻灯片236
幻灯片237
幻灯片238
幻灯片239
幻灯片240
幻灯片241
幻灯片242
幻灯片243
幻灯片244
幻灯片145
幻灯片146
幻灯片147

刘鸿文材料力学第五版课件

刘鸿文材料力学第五版课件
z A 1kN· m 5kN C 1kN· m B D x
z
5kN A CC 10kN B 3.64kN D
D
x
y
1.82kN 300mm
300mm
100mm
3.64kN
1 kN· m使轴产生扭转
y 1.82kN 10kN
§8-4 扭转与弯曲的组合
(3)绘制轴的内力图
z 5kN
3.64kN
1kN· m B D x
第八章 组合变形
§8-3 偏心压缩 §8-4 扭转与弯曲的组合
北京交通大学工程力学研究所
柯燎亮
§8-3 偏心压缩
一、偏心拉(压)
1.定义 当外力作用线与杆的轴线平行但不重合时, 将引起轴向 拉伸(压缩)和平面弯曲两种基本变形. 例如钻床的立柱、厂房中支承吊车梁的柱子。 F
F2
F1
O1
z A(yF,zF) y
M max 20kN m
πD W (1 4 ) 32
3
15kN· m
+
扭矩
20kN· m
-
r3
M2 T2 157.26MPa [ ] W
弯矩
§8-4 扭转与弯曲的组合
例题2 传动轴如图所示.在A处作用一个外力偶矩Me=1kN· m,皮 带轮直径D=300mm,皮带轮紧边拉力为F1,松边拉力为F2.且 F1=2F2,l=200mm,轴的许用应力[]=160MPa.试用第三强度理论设 y 计轴的直径
§8-3 偏心压缩
2. (外力分析)以横截面具有两对称轴的等直杆受偏心拉力 F 为例
(1)将外力向截面形心简化,使每个力(或力偶)只产生一种 基本变形形式 轴向拉力 F 力偶矩 M = F e,

刘鸿文版材料力学(第五版全套356页)

刘鸿文版材料力学(第五版全套356页)
精品课件
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性材料。如 木材、胶合板、纤维增强材料等)
普通钢材的显微组织 优质钢材的显微组织
精品课件
§1.3 外力及其分类
外力:来自构件外部的力(载荷、约束反力)
按外力作用的方式分类
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
精品课件
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的
力学性能。因此在进行理论分析的基础上,实验研究是 完成材料力学的任务所必需的途径和手段。
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F)0
FN
Pa M0
MPa
精品课件
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,即
应力的概念。 F A F 4 C F3
pm
F A
—— 平均应力
p lim F A0 A
—— C点的应力
应力是矢量,通常分解为 pF4 C F3
精品课件
§1.1 材料力学的任务
四、材料力学的研究对象
构件的分类:杆件、板壳*、块体*

材料力学第五版(刘鸿文主编)课后习题答案课件

材料力学第五版(刘鸿文主编)课后习题答案课件

材料力学的基本单位
总结词
材料力学的基本单位包括长度单位、质量单 位、时间单位和力的单位。这些单位是国际 单位制中的基本单位,用于描述和度量材料 力学中的各种物理量。
详细描述
在材料力学中,需要用到各种物理量来描述 和度量材料的机械行为。因此,选择合适的 单位非常重要。长度单位通常采用米(m) ,质量单位采用千克(kg),时间单位采 用秒(s),力的单位采用牛顿(N)。这 些单位是国际单位制中的基本单位,具有通 用性和互换性,可以方便地用于描述和度量 材料力学中的各种物理量,如应变、应力、 弹性模量等。同时,这些单位的选择也符合 国际惯例,有利于学术交流和技术合作。
材料力学第五版(刘鸿文 主编)课后习题答案课件
• 材料力学基础概念 • 材料力学基本公式 • 课后习题答案解析 • 材料力学实际应用 • 材料力学的未来发展
01
材料力学基础概念
材料力学定义与性质
总结词
材料力学是研究材料在各种外力作用下 产生的应变、应力、强度、刚度和稳定 性等机械行为的科学。其性质包括材料 的弹性、塑性、脆性等,以及材料的强 度、刚度、稳定性等机械性能。
02
材料力学基本公式
拉伸与压缩
•·
应变公式: $epsilon = frac{Delta L}{L}$,其中 $epsilon$是应变,$Delta L$是长度变化量,$L$是
原始长度。
描述了材料在拉伸和压缩过程中的应力、应变 关系。
应力公式: $sigma = frac{F}{A}$,其中 $sigma$是应力,$F$是作用在物体上的力, $A$是受力面积。
习题二答案解析
问题2
说明应力分析和应变分析在材料力学中的重要性。
答案

材料力学刘鸿文第六版最新课件第八章 组合变形

材料力学刘鸿文第六版最新课件第八章 组合变形
667 667
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
33
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
轴向拉力会因杆件有弯曲变形而产生附加弯矩,但它与横 向力产生的弯矩总是相反的,故在工程计算中对于弯一拉组合 变形的构件可不计轴向拉力产生的弯矩而偏于安全地应用叠加 原理来计算杆中的应力。
34
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
至于发生弯曲与压缩组合变形的杆件,轴向压力引起的附 加弯矩与横向力产生的弯矩为同向,故只有杆的弯曲刚度相当 大(大刚度杆)且在线弹性范围内工作时才可应用叠加原理。
20
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
注意到在F1 作用下x 截面绕中性轴y 转动,在F2 作用下x 截面绕中性轴z 转动,可见在F1和F2共同作用下,x 截面必定绕 通过y 轴与z 轴交点的另一个轴转动,这个轴就是梁在两个相 互垂直平面内同时弯曲时的中性轴,其上坐标为y,z的任意点 处弯曲正应力为零。
态,故可把t,max直接与材料的许用正应力进行比较来建立强度
条件。
37
材料力学Ⅰ电子教案
Ⅱ.偏心拉伸(压缩)
第八章 组合变形及连接部分的计算
偏心拉伸或偏心压缩是 指外力的作用线与直杆的轴 线平行但不重合的情况。
图a所示等直杆受偏心 距为e的偏心拉力F作用,杆 的横截面的形心主惯性轴为 y轴和z轴。
P
P
P
e
Pe
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
§8-4 扭转和弯曲的组合变形
机械中的许多构件在工作时往往发生扭转与弯曲的组合 变形,而且它们多半是实心或空心圆截面杆,图中所示传动轴 便是一种典型的情况。土建工程中发生扭-弯组合变形的杆件 往往是非圆截面的。
42
材料力学Ⅰ电子教案
l
11
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
§8-2 双对称截面梁在两个相互垂直平面内的弯曲
具有双对称截 面的梁,它在任何 一个纵向对称面内 弯曲时均为平面弯 曲。
故具有双对称截面的梁在两个纵向对称面内同时承受横向 外力作用时,在线性弹性且小变形情况下,可以分别按平面弯 曲计算每一弯曲情况下横截面上的应力和位移,然后叠加。
第八章 组合变形及连接部分的计算
tanq I y tan
Iz
这就表明,只要 Iy≠Iz ,中性轴的方向 就不与合成弯矩M的矢量重合,亦即合 成弯矩M 所在的纵向面不与中性轴垂直, 或者说,梁的弯曲方向不与合成弯矩M 所在的纵向面重合。正因为这样,通常 把这类弯曲称为斜弯曲(oblique bending)。
在具体计算中,究竟先按内力叠加(按矢量法则叠加) 再计算应力和位移,还是先计算各基本形式变形下的应力 或位移然后叠加,须视情况而定。
8
材料力学Ⅰ电子教案
Ⅱ.连接件的实用计算
第八章 组合变形及连接部分的计算
连接件(螺栓、铆钉、键等)以及构件在与它们连接
处实际变形情况复杂。
螺栓连接(图a)中,螺栓主要受剪切及挤压(局部压 缩)。
M z y
Iz
材料力学Ⅰ电子教案
16
材料力学Ⅰ电子教案
17
材料力学Ⅰ电子教案
18
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
这里弯矩的正负号系根据图b所示,由右手螺旋法则按它们的 矢量其指向是否与y轴和z轴的指向一致来确定的。在F1和F2共 同作用下x 截面上C 点处的正应力为
(c)
定出中性轴的方向角q。
工程计算中对于实体截面的梁在斜弯曲情况下,通常不考 虑剪力引起的切应力。
26
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
例题8-1 图示20a号工字钢悬臂梁(图a)上的均布荷载 集度为q (N/m),集中荷载为 F qa (N) 。试求梁的许可荷载
2 集度[q]。已知:a =1 m; 20a号工字钢:Wz=237×10-6 m3,
由于 ( ) max A ( ) max D ,可见A截面为危险截面。危险点在
A截面上的外棱角D1和D2处。
31
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
4. 求许可荷载集度[q]。
根据强度条件 ( ) max A [ ],有
(21.5×10-3)q ≤160×106 Pa
§8-6 铆钉和螺栓连接的计算 *§8-7 榫齿连接
1
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
Ⅰ. 组合变形
§8-1 概 述
构件在荷载的作用下如发生两种或两种以上基本形式的
变形,且几种变形所对应的应力(和变形)属于同一数量级,
则构件的变形称为组合变形(combined deformation)。
确定中性轴的方向后,作平行于 中性轴的两直线,分别与横截面的周 边相切,这两个切点(图a中的点D1, D2)就是该截面上拉应力和压应力为 最大的点。从而可分别计算水平和竖 直平面内弯曲时这两点的应力,然后 叠加。
25
材料力学Ⅰ电子教案
对于如图c所示横截面具有 外棱角的梁,求任何横截面上 最大拉应力和最大压应力时, 可直接按两个平面弯曲判定这 些应力所在点的位置,而无需
38
材料力学Ⅰ电子教案
=+
10-3
材料力学Ⅰ电子教案
t,max
=
c,max
c


F A
+
t,max
=+
t,max

Fl W

c,max


Fl W
c,max
t,max

Fl W

F A
[ t ]
c,max


Fl W

F A

[
c
]
材料力学Ⅰ电子教案
特殊情况:力作用在对称面内。
从而得
q

160 106 21.510 3
7.44 103
N/m
于是有
[q]=7.44×103 N/m =7.44 kN/m
32
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
§8-3 拉伸(压缩)与弯曲的组合变形
Ⅰ. 横向力与轴向力共同作用
图a为由两根槽钢组成的杆件,受横向力F和轴向力Ft作 用时的计算简图,该杆件发生弯曲与拉伸的组合变形。
b

M max W

Fl 4W

36
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
在FN 和Mmax共同作用下,危险
截面上正应力沿高度的变化随b和t
的值的相对大小可能有图d ,e ,f 三种 情况。危险截面上的最大正应力是拉 应力:
t,max

Ft A

Fl 4W
注意到危险截面最大拉应力作用点(危险点)处为单向应力状
44
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
图c,d示出了AB杆的弯矩图(M 图)和扭矩图(T 图)。由于扭-弯组合变形情况下不考虑剪力对强度的影响, 故未示出剪力图(FS图)。
F
9
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
键连接(图b)中,键主要受剪切及挤压。
10
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
工程计算中常按连接件和构件在连接处可能产生的破 坏情况,作一些简化的计算假设(例如认为螺栓和铆钉的 受剪面上切应力均匀分布)得出名义应力(nominal stress), 然后与根据在相同或类似变形情况下的破坏试验结果所确 定的相应许用应力比较,从而进行强度计算。这就是所谓 工程实用计算法(engineering method of practical analysis)。
0.642q (12 ) 31.5106

0.266q (12 237106
)
(21.5103) q
( max)D

M yD Wy

M zD Wz

0.444q (12 31.5106
)

0.456q (12 ) 237106
(16.02 103) q
SF
a
Fa T

M
Fl
S平面 y
1
T
4
z
x
2
3 Mz
1
τ
T Wp
σ

Mz Wz
3
τ
T Wp
目录
σ


Mz Wz
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
本节讲述圆截面杆发生扭-弯组合变形时的强度计算。
图a所示由塑性材料制造的曲拐在铅垂外力作用下,其 AB杆的受力图如图b所示。该杆为直径为d 的圆截面杆。
烟囱(图a)有侧向 荷载(风荷,地震力)时 发生弯压组合变形。
2
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
齿轮传动轴(图b)发生弯曲与扭 转组合变形(两个相互垂直平面内的弯 曲加扭转)。
吊车立柱(图c)受偏心压缩, 发生弯压组合变形。
3
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
两个平面内的弯曲(图d)由于计算构件横截面上应力及横 截面位移时,需要把两个平面弯曲的效应加以组合,故归于 组合变形。
'' My z Mz y
Iy
Iz
19
材料力学Ⅰ电子教案
第八章 组合变形及连接部分的计算
利用上式固然可求算x 截面上任意点处的弯曲正应力,但 对于图中所示那类横截面没有外棱角的梁,由于My 单独作用 下最大正应力的作用点和Mz 单独作用下最大正应力的作用点 不相重合,所以还不好判定在My和Mz共同作用下最大正应力 的作用点及其值。
相关文档
最新文档