材料力学第八章__组合变形(2).ppt
合集下载
材料力学组合变形
第八章 组合变形
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
材料力学第八章组合变形
例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max
材料力学 第八章 组合变形
度理论校核此杆的强度。 解:①外力分析
y ZC
Mx z P2z
P2y 400N YA 457N Z A 20.1N
P2Z 70.5N YC 257N Z C 90.6N
YA A 150
T M x 120Nm
B 200
C YC D 100
P2y
x
y
M Z (Nm) M (Nm)
建立图示杆件的强度条件
解:①外力向形心
x A 150 P1 T A 150 B 200 C T B 200 C 100 D 简化并分解
z
z P2z D P2y x 弯扭组合变形 y
100
M Z (Nm) M (Nm)
y
②每个外力分量对应 x 的内力方程和内力图 X
(Nm) My (Nm) Mz
x X
125 37.8 162.8MPa
孔移至板中间时
N 100 103 2 A 631.9mm 10(100 x) x 36.8mm 6 σ max 162.8 10
偏心拉伸或压缩:
CL11TU11
任意横截面上的内力: N P,M y Pa,M z Pb
第八章 组合变形
§8–1 组合变形和叠加原理
§8–2 拉(压)弯组合 §8–4 偏心压缩 截面核心 §8-4 弯曲与扭转
§8–1组合变形和叠加原理
一、组合变形 :在复杂外载作用下,构件的变形会包含几种简
单变形,当几种变形所对应的应力属同一量级时,不能忽略
之,这类构件的变形称为组合变形。 P P
弯曲与扭转
P1
80ºP2 z
x A 150 B 200 C 100 D
y
材料力学课件第8章组合变形zym
§8—4 扭转与弯曲的组合 一、圆截面杆弯扭组合 实例: (一)实例: 已知:塑性材料轴尺寸,传动力偶Me。 已知:塑性材料轴尺寸,传动力偶 。 试建立轴的强度条件。 试建立轴的强度条件。 解: 1、确定危险点: 、确定危险点: (1)外力分析 ) F 计算简图: ①计算简图: Fτ 由 ∑ M x = 0 得: FD = Me 2 可确定F 由F可确定 τ。 可确定 外力分解: ②外力分解: 变形判断: ③变形判断: AB段扭转变形,BE段弯扭组合变 段扭转变形, 段弯扭组合变 段扭转变形 形,EC段弯曲变形。 段弯曲变形。 段弯曲变形
解: 、确定各边为中性轴时的压力作用点: 1、确定各边为中性轴时的压力作用点: b2 h2 2 iy = , iz2 = 12 12 h az = ∞ AB截距: a y = − , 截距: 截距 2 h2 iz2 12 = h , zF = 0 F作用点 坐标: yF = − = − 作用点a坐标 作用点 坐标: h 6 ay − 2 同样确定b,c,d点。 同样确定 点 2、连线 确定截面核心。 、连线a,b,c,d确定截面核心。 确定截面核心 解:
3 由: W ≥ M max = 12 ×10 N ⋅ m 6
[σ ]
100 × 10 Pa
= 12 × 10−5 m3 = 120cm3
查表选定16号工字钢。 查表选定 号工字钢。 号工字钢 (2)组合变形校核计算: )组合变形校核计算: 16号工字钢:W=141cm3,A=26.1cm3 号工字钢: 号工字钢
2、应力状态分析 、 均为单向应力状态 单向应力状态。 均为单向应力状态。
'' σ A = σ ′ +σ A =
F (0.425m) F × (0.075m) + −3 2 15 ×10 m 5310 ×10−8 m 4
材料力学- 8组合变形
l/2 l/2
D
A P
C
d
B
Q
l/2
D
l/2
解:
B
A P
mA
C
Q Q 1 mC QD 2 A M C
Ql/4
B
(1)受力分析与计算简 图:将载荷Q向轮心平移 (2)内力分析,画出弯 矩图和扭矩图;找出危险 面和危险点:危险面在中 点C处 (3)代公式:求最大安 全载荷Q
d
T
QD/2
r3
设计中常采用的简便方法:
因为偏心距较大,弯曲应力 是主要的,故先考虑按弯曲强 度条件 设计截面尺寸
M Wz 6000 6 35 10 d 3 32
解得立柱的近似直径 取d=12.5cm,再代 入偏心拉伸的强 度条件校核
d 0.12 m
15000 6000 3.14 0.1252 3.14 0.1253 4 32 32.4 106 32.4MPa 35MPa
M 2 T2 [ ] Wz
l/2
D
l/2
Ql Q M 0.8 0.2Q 4 4
B
A P
mA
C
d
T
Q Q 1 mC QD 2 A M C
Ql/4
QD Q 0.36 0.18Q 2 2
r3
B
M 2 T2 [ ] Wz
Wz
ቤተ መጻሕፍቲ ባይዱ 3
32
T
QD/2
(1)计算内力
将立柱假想地截开,取上段为 研究对象,由平衡条件,求出 立柱的轴力和弯矩分别为
F
N
FN P 15000 N M Pe 15000 0.4 6000N m
D
A P
C
d
B
Q
l/2
D
l/2
解:
B
A P
mA
C
Q Q 1 mC QD 2 A M C
Ql/4
B
(1)受力分析与计算简 图:将载荷Q向轮心平移 (2)内力分析,画出弯 矩图和扭矩图;找出危险 面和危险点:危险面在中 点C处 (3)代公式:求最大安 全载荷Q
d
T
QD/2
r3
设计中常采用的简便方法:
因为偏心距较大,弯曲应力 是主要的,故先考虑按弯曲强 度条件 设计截面尺寸
M Wz 6000 6 35 10 d 3 32
解得立柱的近似直径 取d=12.5cm,再代 入偏心拉伸的强 度条件校核
d 0.12 m
15000 6000 3.14 0.1252 3.14 0.1253 4 32 32.4 106 32.4MPa 35MPa
M 2 T2 [ ] Wz
l/2
D
l/2
Ql Q M 0.8 0.2Q 4 4
B
A P
mA
C
d
T
Q Q 1 mC QD 2 A M C
Ql/4
QD Q 0.36 0.18Q 2 2
r3
B
M 2 T2 [ ] Wz
Wz
ቤተ መጻሕፍቲ ባይዱ 3
32
T
QD/2
(1)计算内力
将立柱假想地截开,取上段为 研究对象,由平衡条件,求出 立柱的轴力和弯矩分别为
F
N
FN P 15000 N M Pe 15000 0.4 6000N m
武汉理工大学材料力学课件8 组合变形及连接部分的计算--JK
9
若横截面周边具有棱角,则无需确定中性轴的位置,直 接根据梁的变形情况,确定最大拉应力和最大压应力点 的位置。 D D
1 1
z
z D2 y 中性轴
D2
y
中性轴
强度条件:
()若 [ t ] [ c ] [ ], 则 1 (2)若 [ t ] [ c ], 则
t ,max [ t ] ,
z
c ,max
FN M max [ c ] A Wz
(1)若F 的作用点在杆的一对称轴上, F M 则强度条件为: [ t ] t , max A Wz 其中 M Fe
c ,max
F M [ c ] A Wz
23
(2) 若F 的作用点不在杆的任一对称轴上
FN My A Iz
z
c ,max
(2)若 t ] [ c ] [ ] , [
则
FN M max [ c ] A Wz
max Max { t ,max , c ,max } [ ]
20
[例8-3-1] 最大吊重为 P=20kN的简易吊车,如图所 示,AB为工字A3钢梁,许用应力[σ]=100MPa,试选 T YA 择工字梁型号。 Ty XA D
另外, 和 的正负号可由My和 Mz引起的变形是拉 8 还是压直接判断。
sin cos 则,F引起的应力为: M ( I z I y) y z
二、中性轴的位置 令(y0,z0)是中性轴上任一点,则有: 显然,中性轴是一条通过坐标原点的直线, 设其与z轴的夹角为α,则有:
A Tx
C
B F
A
30° 2m
C
1m
若横截面周边具有棱角,则无需确定中性轴的位置,直 接根据梁的变形情况,确定最大拉应力和最大压应力点 的位置。 D D
1 1
z
z D2 y 中性轴
D2
y
中性轴
强度条件:
()若 [ t ] [ c ] [ ], 则 1 (2)若 [ t ] [ c ], 则
t ,max [ t ] ,
z
c ,max
FN M max [ c ] A Wz
(1)若F 的作用点在杆的一对称轴上, F M 则强度条件为: [ t ] t , max A Wz 其中 M Fe
c ,max
F M [ c ] A Wz
23
(2) 若F 的作用点不在杆的任一对称轴上
FN My A Iz
z
c ,max
(2)若 t ] [ c ] [ ] , [
则
FN M max [ c ] A Wz
max Max { t ,max , c ,max } [ ]
20
[例8-3-1] 最大吊重为 P=20kN的简易吊车,如图所 示,AB为工字A3钢梁,许用应力[σ]=100MPa,试选 T YA 择工字梁型号。 Ty XA D
另外, 和 的正负号可由My和 Mz引起的变形是拉 8 还是压直接判断。
sin cos 则,F引起的应力为: M ( I z I y) y z
二、中性轴的位置 令(y0,z0)是中性轴上任一点,则有: 显然,中性轴是一条通过坐标原点的直线, 设其与z轴的夹角为α,则有:
A Tx
C
B F
A
30° 2m
C
1m
《材料力学》第八章组合变形
解 (1)外力分析,确定变形类型—拉弯组合;
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。
材料力学第8章组合变形
MB
M
2 yB
M
2 zB
(364 N m)2 (1000N m)2 1064N m
•由Mz图和My图可知, B截面上的总弯矩最大, 并且由扭矩图可见B截 面上的扭矩与CD段其 它横截面上相同,TB =-1000 N·m,于是判 定横截面B为危险截面。
3. 根据MB和TB按第四强度理论建立的强度条件为
Wp
r4
M 2 0.75T 2
W
300N.m 1400N
300N.m
1500N 200
150
300N.m
128.6N.m
120N.m
(2)作内力图
危险截面E 左处
T 300N.m
M
M
2 y
M
2 z
176N.m
(3)由强度条件设计d
r3
M2 T2 W
W d 3
32
32 M 2 T 2
第8章 组合变形
8.1 组合变形和叠加原理 8.2 拉伸或压缩与弯曲的组合 8.3 偏心压缩和截面核心 8.4 扭转与弯曲的组合 8.5 组合变形的普遍情况
8.1 组合变形和叠加原理
组合变形——实际构件由外力所引起的变形包含两种或两 种以上的基本变形。如压力框架、烟囱、传动轴、有吊车 的立柱。 叠加原理——如果内力、应力、变形等与外力成线性关系, 则在小变形条件下,复杂受力情况下组合变形构件的内力, 应力,变形等力学响应可以分成几个基本变形单独受力情 况下相应力学响应的叠加,且与各单独受力的加载次序无 关。 前提条件:
即 亦即 于是得
r4
M 2 0.75T 2 [ ]
W
•请同学们按
照第三强度理 (1064 N m)2 0.75(1000 N m)2 100106 Pa W
《组合变形》PPT课件
0.266q (12 ) 237 106
(21.5103) q
( max )D
M yD Wy
M zD Wz
0.444q (12 ) 31.5 106
0.456q (12 ) 237 106
(16.02 103) q
危险点在A截面上的外棱角D1和D2处
z
MyA
y
z
MzA
y
D1 z D2
y
32
l 几何参数
A 15103 m2 , zo 7.5 cm, I y 5310 cm4
l 求内力(作用于截面形心)
取研究对象如图
FN P kN,
M y 42.5 102 P kN.m
l 危险截面
各截面相同
l 应力分布
350
FN
33
l 危险截面
各截面相同
l 应力分布
l FN引起的应力
FN P MPa
u 拉伸、压缩
l 组合变形 有两种或两种以上的 基本变形同时发生。
u 剪切
l 求解组合变形的方法
将载荷分为几组分别产生 基本变形的载荷,然后应 用叠加原理。
u 扭转
u 弯曲
3
2 叠加原理 如果内力、应力、变形等与外力成线性关系, 则复杂受力情况下组合变形构件的内力、应 力、变形等可以由几组产生基本变形的载荷 单独作用下的内力、应力、变形等的叠加而 得到,且与各组载荷的加载次序无关。
'' My z Mz y
Iy
Iz
中性轴的方程:
My F1l
F2 (l a)
Mz
My Iy
z0
Mz Iz
y0
0
5
中性轴的方程:
材料力学第八章-组合变形
12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算
材料力学2
§8-4 扭转与弯曲(续2)
1 2 2 4 1 M 2 2 W 2 0 T 1 2 2 4 Wp 3 2 2 第三强度理论:
材料力学
已知:矩形截面梁截面宽度b、高度h、长度l,外载荷 F,与主惯轴y成夹角。 求:根部截面上的最大正应力
y y
Fz z
x z F
材料力学
F
Fy
Fz F sin , Fy F cos
§8-2 两相互垂直平面内的弯曲 (续3)
y
y
z
z
Mz
My
x (M y ) x (M y )
NA 2)拉伸正应力: A
)max 若( t
则正应力分布为
b
( t ) max ( c ) max
材料力学
危险点:A截面上下两边上各点.
§8-3 拉伸(压缩)与弯曲 (续6)
4)强度分析:由题意可知为塑性材料,且危险点为单向应
力状态,其强度条件为:
max
材料力学
§8-2
两相互垂直平面内的弯曲 曲变形后,梁的轴线不在外力作用面内。
斜弯曲:当外力作用面不通过主惯性平面时,则弯
z
F
材料力学
y
§8-2 两相互垂直平面内的弯曲 (续1)
Fz
z xz平面内的平面弯曲
Fz
z y
F y
Fy
z xy平面内的平面弯曲
材料力学
y
Fy
§8-2 两相互垂直平面内的弯曲 (续2)
拉 z y
F
材料力学
压
中性轴
§8-3
拉伸(压缩)与弯曲
材料力学-第八章组合变形
M z y M y sin
Iz
Iz
x
M y z M z cos
Iy
Iy
x
y
z
y
z
M
y sin
z
cos
对于圆形截面
因为过形心的任意轴均为截面的对称轴,所以当横 截面上同时作用两个弯矩时,可以将弯矩用矢量表示, 然后求二者的矢量和。于是,斜弯曲圆截面上的应力计 算公式为:
A
C
B
D
2 kN 5 kN
300 500
2 kN (a)
500
解:
1.5 kN Am
7 kN
C
1.5 kN m
B
D
(1)分析载荷 如图b所示
5 kN
12 kN (b)
T 1.5 kN m
(2)作内力图 x
如图c、d、e、f 所示
(c)
MC MD
1.5 kN Am
7 kN
C
1.5 kN m
B
FN A
F (2a)2
1 4
F a2
(2)开槽后的正应力
My
FN F
My
Fa 2
FN
2
max
FN A
My Wy
F 2a2
Fa / 2 2a2 a2 /
6
2
F a2
2a
2a
z
a
所以:
2
1
8
y
§8.3 斜弯曲
F1
材料力学刘鸿文第六版最新课件第八章 组合变形
667 667
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D=30mm,P1=600N,[]=100MPa,试用第
三强度理论校核此杆的强度。
P1
80ºP2 z
x
A 150
B 200 C 100 D
y
解:
①外力 分析:
弯扭组 合变形
P1
80ºP2 z
x
A 150
B 200 C 100 D
y
P1 A
150
Mx B 200
z
P2z
Mx
x
P2yLeabharlann CD100yMZ (Nm)
计算简图;
内力图与可能危险面
危险点及其应力状态 危险点的位置
危险点及其应力状态 危险点的应力状态
强度计算公式
M,
W
Mx ,
WP
M
M
2 y
Mz2
,
WP 2W
r3
2 4 2 Mr3 [ ],
W
Mr3 M 2 Mx2
r4
2 3 2 Mr4 [ ],
W
Mr4
M
2
0.75M
许用应力〔σ〕=100MPa ,a=150mm, b=200
mm。试按第三强度理论设计轴的直径d。
解:(1)受 力分析,作计 算简图
F2R M e
F2
Me R
300 0.2
1500N
(2)作内力图
危险截面E 左处
T 300N.m
M
M
2 y
M
2 z
176N.m
(3)由强度条件设计d
r3
r4
1 W
M2
0.75T2
32
d3
M2 0.75T2
32 d3
M2 0.75T2
3 32
1.062 0.75 12
100 106
=0.0519m=51.9mm. 所以,轴的直径为d≥51.9mn.
传动轴左端的轮子由电机带动,传入的
扭转力偶矩Me=300N.m。两轴承中间的齿轮半 径R=200mm,径向啮合力F1=1400N,轴的材料
王培荣
2021年3月18日
教学要求
(1)熟练掌握圆轴在弯扭组合变形时 的应力和强度计算。 (2)掌握薄壁圆筒的强度计算。
§8.4 扭转与弯曲 的组合
外力分析
外力 外力偶
纵向力 向形心平移 轴向拉压(主矢) 弯曲(主矩)
向弯曲中心平移 横向力
弯曲(主矢) 扭转(主矩)
纵向力偶
扭转
横向力偶
弯曲
弯曲是平面弯曲,还是斜弯曲?
y
71.25
My (Nm)
40
7.05
M (Nm) 7M711.m.33ax
40.6 5.5
②内力分析:
xX
危险面内力 Xx 为:
M max71.3Nm
xX M n 120 Nm
MZ (Nm)
y
71.25
My (Nm)
40
7.05
M (Nm) 7M711.m.33ax
40.6 5.5
③应力分析:
xX
M=11.2kN.m
3.应力分析
T 25.5MPa
WT
N M
12.7MPa 114MPa 127MPa
4.强度计算
r3 2 4 2 137MPa [ ]
结论:梁的强度满足要求。
作业
8.16 8.17 8.19 8.22
1.外力分解
2.内力分析
3.应力分析
3.应力分析
(1)当外力偶作用面位于形心主惯性 平面或平行于形心主惯性平面时,梁 产生平面弯曲。
(2)当横向外力作用面在平行于形心 主惯性平面,并且通过弯曲中心时, 梁发生平面弯曲。
解题步骤
1.外力分解:将外力分解成若干类简单外力,使每 一类简单外力只产生一种基本变形。
2.内力分析:根据内力图判断构件的危险截面的 位置,并计算危险截面的内力值。
3.应力分析:根据危险截面上的内力和应力分布 ,判断危险点的位置,并计算危险点处的应力值 。
4.强度计算:根据危险点处的应力状态和杆件材 料,选择适当的强度理论来建立相应的强度条件 。
1、外力分析
2、内力分析
危 险 截 面 在 A 端
3、应力分析
横截面上 应力分布
讨论题
例 图示空心圆杆,内径d=24mm,外径
Xx
r3
M
2 max
Tn2
W
3.312407.10.3332(11200.824 )
xX 97.5MPa
满足强度要求
M B右 1.5kN m ; TB右 716N m
解: (1)外力的平移、简化(如图b)
(2)内力分析
扭矩图如图c 水平面内弯矩 图Mz图d 铅垂面内弯矩 图My图e 合成弯矩图M
2 x
设计公式
3
d
32M r3
[ ]
d
3
32M r4
[ ]
*§8.5 组合变形的普遍情况
讨论与思考题
某圆轴受力如图所示 , 已知圆轴的直径D=
100mm,材料的容许应力[σ]=160MPa。试
按第三强度理论进行强度校核。
1. 外 力 分 析
2.内力分析
N
T
N=100kN
T=5kN.m
M
M 2 T 2
W
32 M 2 T 2
d 3
W d 3
32
3
32 1762 3002
100106
32.8103 m 32.8mm
承受弯曲与扭转的圆轴解题步骤:
•计算简图; •外力分析; •内力分析(内力图与可能危险面,忽略 剪力); •应力分析(危险点及其应力状态); •强度计算
图f
Mc
Mcy
2
M
c z
2
0.5682 0.2272 0.612kN m
MB MBy 2 MBz 2
0.3642 12 1.06kN m
(3)应力分析 危险截面上的正应力及剪应力分布如图 h。
围绕危险点 D1 截至取单元体应力状态如图 i 所示 。
(4)设计轴径
三强度理论校核此杆的强度。
P1
80ºP2 z
x
A 150
B 200 C 100 D
y
解:
①外力 分析:
弯扭组 合变形
P1
80ºP2 z
x
A 150
B 200 C 100 D
y
P1 A
150
Mx B 200
z
P2z
Mx
x
P2yLeabharlann CD100yMZ (Nm)
计算简图;
内力图与可能危险面
危险点及其应力状态 危险点的位置
危险点及其应力状态 危险点的应力状态
强度计算公式
M,
W
Mx ,
WP
M
M
2 y
Mz2
,
WP 2W
r3
2 4 2 Mr3 [ ],
W
Mr3 M 2 Mx2
r4
2 3 2 Mr4 [ ],
W
Mr4
M
2
0.75M
许用应力〔σ〕=100MPa ,a=150mm, b=200
mm。试按第三强度理论设计轴的直径d。
解:(1)受 力分析,作计 算简图
F2R M e
F2
Me R
300 0.2
1500N
(2)作内力图
危险截面E 左处
T 300N.m
M
M
2 y
M
2 z
176N.m
(3)由强度条件设计d
r3
r4
1 W
M2
0.75T2
32
d3
M2 0.75T2
32 d3
M2 0.75T2
3 32
1.062 0.75 12
100 106
=0.0519m=51.9mm. 所以,轴的直径为d≥51.9mn.
传动轴左端的轮子由电机带动,传入的
扭转力偶矩Me=300N.m。两轴承中间的齿轮半 径R=200mm,径向啮合力F1=1400N,轴的材料
王培荣
2021年3月18日
教学要求
(1)熟练掌握圆轴在弯扭组合变形时 的应力和强度计算。 (2)掌握薄壁圆筒的强度计算。
§8.4 扭转与弯曲 的组合
外力分析
外力 外力偶
纵向力 向形心平移 轴向拉压(主矢) 弯曲(主矩)
向弯曲中心平移 横向力
弯曲(主矢) 扭转(主矩)
纵向力偶
扭转
横向力偶
弯曲
弯曲是平面弯曲,还是斜弯曲?
y
71.25
My (Nm)
40
7.05
M (Nm) 7M711.m.33ax
40.6 5.5
②内力分析:
xX
危险面内力 Xx 为:
M max71.3Nm
xX M n 120 Nm
MZ (Nm)
y
71.25
My (Nm)
40
7.05
M (Nm) 7M711.m.33ax
40.6 5.5
③应力分析:
xX
M=11.2kN.m
3.应力分析
T 25.5MPa
WT
N M
12.7MPa 114MPa 127MPa
4.强度计算
r3 2 4 2 137MPa [ ]
结论:梁的强度满足要求。
作业
8.16 8.17 8.19 8.22
1.外力分解
2.内力分析
3.应力分析
3.应力分析
(1)当外力偶作用面位于形心主惯性 平面或平行于形心主惯性平面时,梁 产生平面弯曲。
(2)当横向外力作用面在平行于形心 主惯性平面,并且通过弯曲中心时, 梁发生平面弯曲。
解题步骤
1.外力分解:将外力分解成若干类简单外力,使每 一类简单外力只产生一种基本变形。
2.内力分析:根据内力图判断构件的危险截面的 位置,并计算危险截面的内力值。
3.应力分析:根据危险截面上的内力和应力分布 ,判断危险点的位置,并计算危险点处的应力值 。
4.强度计算:根据危险点处的应力状态和杆件材 料,选择适当的强度理论来建立相应的强度条件 。
1、外力分析
2、内力分析
危 险 截 面 在 A 端
3、应力分析
横截面上 应力分布
讨论题
例 图示空心圆杆,内径d=24mm,外径
Xx
r3
M
2 max
Tn2
W
3.312407.10.3332(11200.824 )
xX 97.5MPa
满足强度要求
M B右 1.5kN m ; TB右 716N m
解: (1)外力的平移、简化(如图b)
(2)内力分析
扭矩图如图c 水平面内弯矩 图Mz图d 铅垂面内弯矩 图My图e 合成弯矩图M
2 x
设计公式
3
d
32M r3
[ ]
d
3
32M r4
[ ]
*§8.5 组合变形的普遍情况
讨论与思考题
某圆轴受力如图所示 , 已知圆轴的直径D=
100mm,材料的容许应力[σ]=160MPa。试
按第三强度理论进行强度校核。
1. 外 力 分 析
2.内力分析
N
T
N=100kN
T=5kN.m
M
M 2 T 2
W
32 M 2 T 2
d 3
W d 3
32
3
32 1762 3002
100106
32.8103 m 32.8mm
承受弯曲与扭转的圆轴解题步骤:
•计算简图; •外力分析; •内力分析(内力图与可能危险面,忽略 剪力); •应力分析(危险点及其应力状态); •强度计算
图f
Mc
Mcy
2
M
c z
2
0.5682 0.2272 0.612kN m
MB MBy 2 MBz 2
0.3642 12 1.06kN m
(3)应力分析 危险截面上的正应力及剪应力分布如图 h。
围绕危险点 D1 截至取单元体应力状态如图 i 所示 。
(4)设计轴径