分子克隆全攻略

合集下载

分子克隆的基本步骤

分子克隆的基本步骤

分子克隆的基本步骤嘿,各位科学小达人,今天咱们就来聊聊分子克隆的基本步骤,这可是实验室里的“高级魔术”,我保证,听完我的讲解,你也能变成一个“DNA巫师”。

首先,得准备好我们的“魔法材料”,也就是那些瓶瓶罐罐里的“液体宝贝”。

什么“PCR试剂”、“限制酶”、“连接酶”啦,这些都是我们“克隆大业”的必备良药。

第一步,来个“DNA热舞派对”,也就是PCR扩增。

把我们的目标DNA扔进“PCR机器”里,让它跟着高温曲线一起“热舞”,直到它“子孙满堂”,复制出成千上万的DNA副本。

第二步,给DNA来个“精致修剪”,这就是传说中的“酶切反应”。

我们用限制酶这个“分子剪刀”把DNA切成我们想要的形状,这可是个精细活儿,稍微手一抖,就可能变成“DNA碎片”。

接下来,是“DNA联姻”环节,也就是“连接反应”。

我们把修剪好的DNA片段和载体DNA“牵线搭桥”,让它们在连接酶的“见证”下,成为“一家人”。

这就像是在实验室里举办了一场“分子婚礼”。

然后,是“细胞变身”时间,也就是“转化反应”。

我们把连接好的DNA“送入”细菌细胞,让它们变成“DNA搬运工”。

这个过程就像是在细胞界搞了一场“特工行动”。

紧接着,得来个“D NA身份验证”,也就是“筛选转化子”。

我们把这些“可能怀孕”的细胞放在含有抗生素的培养基上,只有那些成功“怀孕”的细胞才能存活下来,这就像是在玩“细胞版”的“谁是卧底”。

最后,我们要进行“DNA产前检查”,也就是“DNA测序”。

通过测序,我们可以确认我们的克隆是否“健康成长”,没有出现“基因突变”这类“家庭悲剧”。

总之,分子克隆这事儿,听起来高大上,其实就是一场实验室里的“魔法表演”。

只要掌握了这些“咒语”和“魔法棒”,你也能在DNA的世界里,玩转“克隆大法”。

别忘了,每个科学家心里都住着一个小巫师,分子克隆,只是我们施展魔法的一部分!。

分子克隆技术操作手册

分子克隆技术操作手册

分子克隆技术操作手册摘要:一、分子克隆技术简介1.分子克隆技术的定义2.分子克隆技术的发展历程二、分子克隆技术的原理1.基本原理2.克隆过程详解三、分子克隆技术的应用1.基因工程2.生物制药3.基因诊断4.转基因技术四、分子克隆技术的操作步骤1.设计引物2.PCR扩增3.酶切鉴定4.连接转化5.筛选重组子6.鉴定克隆子五、分子克隆技术的注意事项1.实验操作规范2.试剂选择与储存3.防止污染4.优化实验条件六、分子克隆技术的发展趋势1.高效自动化设备2.单细胞克隆技术3.基因编辑技术4.个性化医疗正文:一、分子克隆技术简介分子克隆技术是一种生物技术方法,主要用于复制特定DNA序列。

该技术在我国科研领域得到了广泛的应用,为基因研究、生物制药、转基因技术等领域提供了重要的技术支持。

自20世纪70年代以来,分子克隆技术不断发展,为生命科学研究带来了革命性的变革。

二、分子克隆技术的原理分子克隆技术的基本原理是将目标DNA片段通过PCR扩增,然后利用限制性内切酶切割得到特定片段,将这些片段连接到载体DNA上,最后将连接产物转化到受体细胞中。

在转化过程中,载体DNA与受体细胞的染色体DNA 结合,实现目标基因的复制和表达。

克隆过程详解:首先,设计一对特异性引物,使目标DNA片段在PCR扩增过程中产生特定的扩增子。

接下来,通过PCR扩增得到目的基因。

然后,利用限制性内切酶对扩增产物进行酶切,得到具有粘性末端的目的基因片段。

将目的基因片段与载体DNA连接,形成重组载体。

最后,将重组载体转化到受体细胞中,实现基因的克隆。

三、分子克隆技术的应用1.基因工程:分子克隆技术为基因工程提供了重要的技术支持,使得科学家可以对基因进行改造、编辑,进而创造新的生物品种和药物。

2.生物制药:分子克隆技术在生物制药领域具有广泛应用,如制备抗体、细胞因子、酶等生物制品。

3.基因诊断:通过分子克隆技术,可以快速、准确地检测特定基因序列,为遗传病诊断提供依据。

常用分子克隆实验方法

常用分子克隆实验方法

常用分子克隆实验方法I一、植物总DNA的小量提取方法1:提取吸附法。

无须巯基乙醇、氯仿等有毒物质,产物无须Rnase处理。

(1)充分研磨。

称取约0.2克植物组织,加入液氮充分研磨3-5min,稍后加约1ml溶液A,继续研磨至略粘稠的组织匀浆,用大口1ml吸头将所有溶液移至1.5ml离心管中,55℃水浴30min;(2) 高速离心去杂质。

10,000rpm离心5min,取约600ul上清至新1.5ml离心管;(3) 核酸吸附。

往上清液中加入1倍的异丙醇,轻轻混匀,再加入总体积1/4已混匀的溶液B,静置3min;(4) 低速离心沉淀。

5000rpm离心1min,轻轻倒掉上清,并用吸水纸轻吸离心管口,再用移液枪吸走大部分残余液体;(5) 75%乙醇清洗。

加入1ml75%乙醇,5000rpm离心30s,轻轻倒掉上清,用吸水纸稍吸离心管口。

重复该步骤一次,再5000rpm离心30s,然后用移液枪吸走管底的残液,晾干5min;(6) 核酸洗脱。

加入约55ul TE(PH8.0)至管底,轻轻重悬硅土,静置3min,10,000rpm离心1min,用小枪头轻轻吸取出50ul管底溶液,冷藏。

方法2:CTAB法,此为在经典方法基础上,经过摸索改进,提高了得率,减少了污染。

(1)充分研磨。

称取约0.2克植物组织,加入液氮充分研磨3-5min,稍后加约1ml CTAB提取液,继续研磨至略粘稠的组织匀浆,用大口1ml吸头移至1.5ml离心管,65℃水浴30-60min。

(2) 氯仿抽提。

10,000rpm离心3min,取约600ul上清。

加入1倍的氯仿,轻轻混匀,10,000rpm离心3min,取上清再抽提1遍。

(3) 核酸沉淀。

加入预冷的1倍异丙醇或2倍乙醇,轻混匀,6000rpm离心3min,弃上清。

(4) 清洗沉淀。

轻加入1ml 75%乙醇,再吸掉上清,重复一次,倒置于吸水纸或横放于离心管架上晾干5min。

(5) 溶解DNA。

分子克隆的五个步骤

分子克隆的五个步骤

分子克隆的五个步骤1 选择载体:在分子克隆的过程中,首先需要选择一种合适的载体来实现这一过程。

载体是要被克隆的DNA片段,生物体中的某种大分子结构,可以为克隆提供容器。

一般来说,载体选择最好是含有可重复使用的重组信息,如使用多种重组酶克隆更为容易和可靠,能在实验室之间转移。

该步骤需要考虑选择对于试验类型最合理、在实验中表现最佳的载体,与之相符的必要条件是有可操作和稳定的复制介质,以及品质可靠、价格相对划算的供应商。

2 将载体与要克隆的DNA片段连接:接下来需要将载体与要克隆的DNA片段连接。

这样一来,DNA片段就会受到载体中的重组酶以及其余细菌特有的信息影响,从而生存,复制,得以分离,克隆出多个相同的DNA断片。

连接DNA片段和载体的技术有各种方法,最常见的方法为用复制酶切割载体的方法,这种技术利用重组酶将DNA片段片段插入载体结构中,实现载体与DNA片段的融合。

3 转化:经过第二步的操作,则可以将融合的载体片段转入细菌,进行转化,实现将载体片段覆盖到细菌细胞中,形成细菌外源DNA的转基因,从而使细菌体系内发生变化,从而开始转化过程。

4 筛选:经过第三步的转化,载体就可以移植到细菌体内,从而形成转基因细菌,这时候就可以采用测试细胞以及一些标记物质来进行筛选,将转基因细菌与其他细菌相区分开来,根据一些指定条件进行筛选,从而得到被克隆的特异性DNA片段,实现分子克隆的目的。

5 收集:经过第四步的筛选,就可以将特异性的DNA断片收集起来,被收集的DNA断裂片段就是分子克隆的结果,可以得到被克隆的特异性DNA 断片,将其用于进一步的研究。

最后,分子克隆是一种复杂的实验过程,需要经过以上5个步骤,才能实现分子克隆的目的,如正确选择载体、把该DNA片段片段插入载体结构、将融合的载体片段转入细菌、用测试细胞以及一些标记物质对转基因细菌进行筛选,从而得到被克隆DNA片段,最终收集被克隆的DNA断片,这样就可以实现分子克隆的目的,得出满意的实验结果。

分子克隆(亚克隆)实验总体流程详解

分子克隆(亚克隆)实验总体流程详解

一、扩增1、LB培养基5ml;2、抗生素:1000X,即1:1000比例。

种类根据细菌抗性决定;3、菌体:看浑浊度,1%-5%,取500ul于其中;4、37℃摇床220转,过夜,12-16h。

二、纯化质粒DNA1、1.5ml离心管,编号一定要写清楚;2、加满离心管,离心12000xg. 1min,弃上清。

取三次;3、加Buffer S1 200ul,溶解沉淀,5min;4、加S2(用完立刻盖紧瓶盖,以免CO2中和Buffer中的NaOH)200ul,不能剧烈(以免基因组DNA的污染),上下翻转4-6次,直至形成透亮的溶液,时间少于5min。

目的是使蛋白包裹基因组DNA,游离质粒;5、加S3 280ul,温和充分翻转混合6-8次,12000xg,10min(此步呈白色絮状);*备注:S1:S2:S3=5:5:76、取上清加入制备管(置于2ml离心管),12000xg,1min,去滤液;7、加Buffer W1 500ul,12000xg,1min,弃滤液;8、加Buffer W2 700ul,12000xg,1min,弃滤液。

重复一遍;9、空管离心12000xg,1min;10、制备管移入新的1.5ml离心管,管膜中加60-80ul去离子水,静置1min,12000xg,1min。

(将去离子水加热至65度,将提高洗脱效率)四、跑胶回收:sost回收失败1、2%浓度胶,Loading Buffer如是6X,则加10ul到样品,全部加样到胶孔中。

插入:配胶方法大块胶60ml;小块胶25ml;需要配置大块胶、大孔胶;Agarose 0.6g,TAE60ml,微波中火2min;趁热但不烫手时加入gold view 0.5ul/25ml;倒入槽里。

2、跑胶:单位厘米/5-10v。

所以大槽25cm,150v即可。

小槽100v即可。

3、紫外灯下切胶,纸巾吸进液体,计算凝胶重量(1mg=1ul);4、加3个凝胶体积的凝胶结合液DB(0.1ul视为100ul;如凝胶浓度大于2%,则加入6倍体积溶胶液;凝胶块最大不能超过400ul,超过可多个离心柱);5、56℃水浴放置10分钟,至完全溶解;6、每100mg最初的凝胶重量加入150ul的异丙醇,震荡混匀,回收大于4Kb的片段可不加异丙醇,加入反而降低回收效率;7、将上一步所得溶液加入吸附柱AC中(吸附柱放入收集管中),12000rpm,30-60s,弃液体;8、加700ul漂洗液WB,12000rpm,1min,弃废液;9、加500ul漂洗液WB,12000rpm,1min,弃废液;10、空离心2min,弃废液;11、晾干乙醇,以免抑制下游反应;12、将吸附柱放入新的1.5ml离心管,加入50ul(最少30ul)洗脱缓冲液EB或者去离子水(65-70水浴加热效果更好,或将得到的溶液重新加入离心柱可增加洗脱量);五、连接体系:六、转化1、加感受肽:连接产物=10:1,冰浴30min;2、激活:42℃,90s,不能震动;3、加500ul LB培养基;4、37℃,150转摇床,45min;5、铺板子七、检测1、细菌长势良好,对照组不长;2、酶切检测:(1)1ml LB体系:1ml LB培养基+1ul抗生素于1.5mlEP管中;(2)15ul Pcr体系:7.5ul Mix(2X)5.5ul water1ul上游引物1ul下游引物(3)用枪头挑培养皿中的菌体,吹打于1ml LB体系中,再吹打于15ul Pcr体系中;(4)1ml LB体系放入37℃摇床,150rpm;显示4°/4°时,结束。

分子克隆流程

分子克隆流程

分子克隆流程分子克隆呀,就像是一场微观世界里的神奇魔法。

咱先说说这第一步,得把目标基因给找出来。

这就像是在基因的大森林里找一棵特别的树。

有时候这基因藏得可深了,你得各种找线索,像是基因的一些独特的小标记之类的。

找着找着,突然发现目标基因的时候,那感觉就像是找到了宝藏一样,心里可美了。

接着就是获取这个基因啦。

这就好比把找到的宝藏小心翼翼地挖出来。

有好多种方法呢,像从生物的基因组里直接切出来,这个过程就像是用一把超级小的剪刀,精准地把想要的那部分基因剪下来。

或者用一些其他的巧妙手段,像是从mRNA反转录得到,就像是照着一个影子重新做出实体一样。

再之后就是把这个基因放到一个载体里。

载体就像是一个小飞船,要带着基因去一个新的地方。

这个过程可不能马虎,就像把宝贝小心翼翼地放进一个小盒子里,还得保证放得稳稳当当的。

而且这个载体还得是经过精心挑选的,就像给宝贝选一个最合适的运输工具。

然后就是把带着基因的载体送到宿主细胞里。

宿主细胞就像一个小房子,这个时候就像是把带着宝贝的小盒子送到一个新的家里。

这个送的过程也得很小心,要让载体顺利地进入细胞,不能把这个小房子给弄坏了。

等基因进入宿主细胞后呀,还得检查一下到底有没有成功呢。

这就像是检查宝贝有没有在新家里安顿好。

用一些特殊的方法,像是看基因有没有表达出特定的东西。

如果成功了,那就像一场精心策划的旅行完美收官,心里别提多开心了。

要是没成功呢,也别灰心,就像一次小冒险失败了,再重新来一次就好啦。

分子克隆就是这样一个充满挑战又特别有趣的过程,每一步都像是在微观世界里的一次奇妙探索呢。

分子克隆技术操作手册

分子克隆技术操作手册

分子克隆技术操作手册【最新版】目录1.分子克隆技术的概念2.分子克隆技术的操作步骤3.分子克隆技术的应用4.分子克隆技术的优缺点正文一、分子克隆技术的概念分子克隆技术是一种生物技术方法,用于在体外将各种来源的 DNA 片段进行拼接组合,形成新的 DNA 分子。

这种技术可以在短时间内大量复制特定 DNA 序列,为基因工程、生物制药等领域提供重要的研究手段。

二、分子克隆技术的操作步骤分子克隆技术主要包括以下几个操作步骤:1.提取 DNA:从实验材料中提取 DNA,并通过特定方法进行纯化。

2.切割 DNA:使用限制性内切酶将 DNA 切割成特定大小的片段。

3.链接 DNA:将切割好的 DNA 片段通过 DNA 连接酶进行拼接组合。

4.转化细胞:将拼接好的 DNA 分子转化到受体细胞中,让细胞表达新的 DNA 序列。

5.筛选克隆:通过特定筛选方法,选出含有目标 DNA 序列的克隆细胞。

三、分子克隆技术的应用分子克隆技术在生物领域有广泛的应用,主要包括:1.基因工程:通过分子克隆技术,可以对特定基因进行拼接组合,研究基因的功能和调控关系。

2.生物制药:利用分子克隆技术,可以大量生产具有特定功能的蛋白质,用于药物研发和生产。

3.基因诊断:通过分子克隆技术,可以制备特定基因片段作为诊断试剂,用于疾病的早期诊断。

4.基因治疗:将正常或功能性基因通过分子克隆技术导入患者细胞,以治疗遗传性疾病。

四、分子克隆技术的优缺点分子克隆技术的优点包括:操作简便、效率高、可大量制备特定 DNA 序列。

但其缺点是:可能产生非特异性拼接、克隆产物可能不稳定、需要使用有毒的化学试剂等。

总之,分子克隆技术是一种重要的生物技术手段,广泛应用于基因工程、生物制药等领域。

分子克隆技术操作手册

分子克隆技术操作手册

分子克隆技术操作手册摘要:一、分子克隆技术的概念与原理二、分子克隆技术的操作步骤1.提取目的基因2.构建基因表达载体3.将目的基因导入受体细胞4.目的基因的检测与表达三、分子克隆技术在科研和生产中的应用四、分子克隆技术的发展趋势正文:一、分子克隆技术的概念与原理分子克隆技术是指在体外将各种来源的遗传物质——DNA 片段,与适当的载体DNA 相结合,然后导入受体细胞,使这些DNA 片段在受体细胞内复制、表达的操作技术。

分子克隆技术的原理主要基于重组DNA 技术,通过切割、连接、导入等步骤,实现外源基因与载体DNA 的重组,从而形成一个新的基因表达载体,最终达到在受体细胞中表达目的基因的目的。

二、分子克隆技术的操作步骤1.提取目的基因提取目的基因是分子克隆技术的第一步,通常采用PCR 扩增或化学合成的方法获取目的基因。

PCR 扩增是一种常见的方法,通过设计特定的引物,从基因组DNA 中扩增出目的基因。

化学合成则是根据目的基因的序列,通过化学合成方法直接合成目的基因。

2.构建基因表达载体构建基因表达载体是分子克隆技术的核心步骤,主要包括以下几个方面:(1)选择合适的载体:常用的载体有大肠杆菌的质粒等,根据实验目的和受体细胞的类型选择合适的载体。

(2)切割载体:使用限制性内切酶切割载体,暴露出载体的粘性末端,便于与目的基因连接。

(3)连接目的基因:将提取到的目的基因与切割后的载体DNA 片段通过DNA 连接酶连接,形成重组载体。

(4)转化受体细胞:将重组载体导入受体细胞,使目的基因在受体细胞内表达。

3.将目的基因导入受体细胞将目的基因导入受体细胞是分子克隆技术的关键步骤,根据受体细胞的类型选择不同的导入方法。

常用的方法有转化、转染、显微注射等。

4.目的基因的检测与表达在将目的基因导入受体细胞后,需要对目的基因进行检测和表达。

检测方法包括PCR、Western blot、南方杂交等,表达方法包括实时荧光定量PCR、Western blot、酶联免疫吸附试验等。

分子克隆实验步骤总结

分子克隆实验步骤总结

分子克隆实验步骤总结分子克隆实验步骤1.对目的片段进行pcr扩增:Pcr体系:(50μL)DNA Template:10-100ng10×PCR buffer:5μL50mM dNTPs:0.5μLPrimers:1μM eachWater:add to 49μLTaq Polymerase:1μL2.琼脂糖电泳,看有无目的条带3.对目的条带进行切胶回收4.对pcr产物加尾: 72℃,20min(如用高保真酶,则需加尾;Taq酶,则无需加尾)加尾体系:(10μL)胶回收DNA: 8μLBuffer: 1μLdNTPmix: 0.5μLTaq Polymerase:0.5μL5.T载体连接:室温,30min体系:(6μL)加尾后产物:4μLT载体:1μLSalt solution 1μL6.30-40μL感受态加入重组后的质粒。

7.放冰上30min。

8.42℃热击90s(放冰上冷:1-2min)9. 加SOC(200-250μL)10.37℃,300rpm,1h11.平板涂布:加氨苄的培养基,37℃培养箱倒置培养过夜12.挑单菌落:用牙签挑单菌落,放到含6mL液体培养基的试管中,37℃摇床培养过夜13.试剂盒提质粒14.酶切:37℃,2h体系:(20μL)Buffer2: 2μL酶:0.5μL模板:1μLBSA:0.2μLH2O:16.31μL15.琼脂糖凝胶电泳分析是否正确导入目的片段鉴定阳性克隆的另一个方法----菌落PCR从平板挑单菌落到含1ml LB(Amp+)的1.5drof管中,37℃摇床培养8小时左右,进行菌落PCR鉴定,引物可选用载体的通用引物,如T载体用M13F/R。

菌落PCR体系(20ul)10*taq buf 2uldNTPs(2.5mM)1.6ul Mg2+(25mM)1.6ul Primer F (10uM)0.5ul Primer R(10uM)0.5ul DNA 1 ul Ex taq 0.3 ul ddH2O 12.5ul程序:94度10min94度30sec56度30sec72度2:10 30cycle 72度10min4度forever。

分子克隆技术操作手册

分子克隆技术操作手册

分子克隆技术操作手册(实用版)目录1.分子克隆技术的概念与原理2.分子克隆技术的操作步骤3.分子克隆技术的应用领域4.分子克隆技术的优势与局限性正文一、分子克隆技术的概念与原理分子克隆技术是一种在生物体外将特定 DNA 片段复制并插入到载体DNA 中的技术。

这种技术可以使得新的 DNA 分子与载体 DNA 相结合,形成一个具有自我复制能力的 DNA 分子。

在实际应用中,分子克隆技术主要通过将目的基因与载体 DNA 连接,从而实现对目的基因的扩增和表达。

二、分子克隆技术的操作步骤分子克隆技术的操作步骤主要包括以下几个方面:1.提取目的基因:从待研究的生物体中提取需要克隆的 DNA 片段,通常使用 PCR 技术进行扩增。

2.构建载体:选择合适的载体 DNA,将其与目的基因连接,构建成一个完整的克隆载体。

3.转化受体细胞:将构建好的克隆载体转化到受体细胞中,让受体细胞表达出目的基因。

4.筛选克隆子:通过特定的筛选方法,从转化后的细胞中筛选出含有目的基因的克隆子。

5.鉴定克隆子:对筛选出的克隆子进行鉴定,确认其是否含有目的基因。

三、分子克隆技术的应用领域分子克隆技术在生物学研究中具有广泛的应用,主要包括以下几个方面:1.基因工程:通过分子克隆技术,可以将目的基因与载体 DNA 连接,实现对目的基因的扩增和表达。

2.蛋白质工程:通过分子克隆技术,可以研究蛋白质的结构和功能,为药物研发提供重要依据。

3.基因组学:通过分子克隆技术,可以对基因组 DNA 进行拼接和分析,揭示生物体的基因组结构。

4.转基因技术:通过分子克隆技术,可以将目的基因插入到载体 DNA 中,实现对转基因生物的研究和开发。

四、分子克隆技术的优势与局限性分子克隆技术在生物学研究中具有明显的优势,如操作简单、扩增效率高、可控性强等。

然而,分子克隆技术也存在一定的局限性,如克隆效率受载体 DNA 大小限制、克隆过程中可能出现突变等。

分子克隆全攻略

分子克隆全攻略

分⼦克隆全攻略分⼦克隆⼀、载体与外源⽚段(PCR产物)的双酶切为了保证做连接反应时有⾜够的量,应该加⼊1ug的DNA进⾏酶切反应;两种酶分别加1ul,10*buffer 2ul,1ug的DNA,加⽔⾄20ul。

(因此要跑胶分析DNA以及载体的浓度,取1-2ul,电泳检测其含量。

1ul量太少,可以加将其稀释在9ul⽔中,再加loading buffer。

6ul 15000bp的maker,2500bp条带的亮度约是100ng DNA。

可对⽐maker的亮度算出酶切回收的DNA的浓度,以便于连接反应的⽤量。

Image J软件可以做灰度分析。

)双酶切反应结束后,使⽤PCR cleanup试剂盒回收DNA与载体。

回收完之后⽤同样的⽅法分析其浓度。

(也可以⽤分光光度计直接测量DNA的浓度,但是,⼀般酶切反应之后浓度会⽐较⼩,取1ul 稀释100倍之后浓度很低,可能已经低于仪器的测量范围,⽽电泳灵敏度很⾼,还可⼀排除杂带、RNA、蛋⽩质等对浓度的⼲扰。

)⼆、连接反应载体100ng,DNA⽚段根据⼤⼩,1ul buffer,1ul T4连接酶,加⽔⾄10ul;16°连接12-16h。

载体(约0.03pmol)与外源DNA的摩尔⽐⼤约1:3~1:10之间,根据载体与DNA⽚段的长度,可算出需要的量。

扫胶的电脑上有个⽂件:连接反应.xls,按要求填写即可得出连接反应的⽤量。

因为载体的⼤⼩⼀般在5kb-10kb,因此,严格的算出0.03pmol的载体的质量意义不⼤,⼤约100ng即可。

如果时间⽐较紧张,可以25°连接15min,之后可取5ul进⾏转化,剩余5ul 16°继续连接。

三、质粒转化到感受态⼤肠杆菌中从-70°中取出感受态,在⼿⼼融化后⽴即插⼊冰上,5ul连接产物+100ul感受态⼤肠杆菌,混匀。

冰浴30min,然后42°热激90s,热激时不要晃动EP管。

然后⽴即插⼊冰上,静置2min。

分子克隆的主要步骤

分子克隆的主要步骤

分子克隆的主要步骤嘿,咱今儿个就来唠唠分子克隆的那些主要步骤呀!你想想,分子克隆就像是搭积木,得一步步来,还得搭得稳稳当当的。

第一步呢,就是要选好咱要克隆的那个“宝贝”基因。

这就好比是挑一件合心意的衣服,得看准了,可不能瞎选哟!然后呢,得把这个基因从原来的基因组里给“揪”出来,这可不是个容易事儿,得小心翼翼的,就像从一大团线里找出那根关键的线头。

接下来,得给这个基因找个“家”呀,这就是载体啦。

载体就像是个小车子,能带着基因到处跑呢。

把基因和载体连接起来,这可得有点技术含量,得严丝合缝的,不能有一点马虎。

弄好了这些,就该把它们送进细胞里啦。

细胞就像是个大工厂,基因在里面就能开始工作啦。

这一步就好像是把种子撒进地里,等着它生根发芽。

之后呢,就得等着细胞们繁殖啦,让带有基因的细胞越来越多。

这就像看着自己养的花儿一点点长大、开花。

然后呀,还得筛选出那些成功克隆了基因的细胞,这可不容易呢,就像在一群孩子里找出那个最聪明的。

再往后,就是培养这些细胞,让它们茁壮成长啦。

这就像是照顾小宠物,得细心呵护着。

最后呢,就是收获啦,得到我们想要的克隆产物。

哇,这一路走来,可不简单呢!分子克隆啊,就像是一场奇妙的冒险,每一步都充满了挑战和惊喜。

要是哪一步出了差错,可能就前功尽弃啦。

所以啊,做这个可得打起十二分的精神呢!你说,这分子克隆是不是很神奇呀?它能让我们实现好多以前想都不敢想的事情呢!它就像是一把神奇的钥匙,能打开好多未知的大门。

咱可得好好研究研究它,让它为我们的生活带来更多的好处呀!你说是不是这个理儿?。

分子克隆实验指南

分子克隆实验指南

分子克隆实验指南分子克隆是现代生物学领域的一项核心技术,也是基因研究、药物研发和农业开发过程中必不可少的手段之一。

在这篇指南中,我将会简要介绍如何进行分子克隆实验,以帮助初学者更好地理解、掌握这项技术。

同时,我也建议实验者在进行实验前,详细阅读当地的安全操作规程,并在合适的实验室环境中进行操作。

一、材料准备在进行分子克隆实验前,我们需要准备以下材料和试剂:1. DNA的扩增产物和载体DNA2. 限制性内切酶3. T4 DNA连接酶4. 细菌菌种5. 热激酶6. 磷酸缓冲液7. 离心管、PCR管、琼脂糖凝胶和电泳槽等相关实验器材。

二、实验步骤1. PCR扩增将目标DNA扩增出来,制备扩增产物。

同时,也需要提纯产物,将其溶于蒸馏水中,以备后续操作。

2. DNA限制性内切酶切割选择两种限制酶,将目标DNA和载体DNA分别切割。

切割产品应该能够被T4 DNA连接酶形成连接。

在T4 DNA连接酶形成连接的基础上,我们需要将其转化到大肠杆菌等细菌中进行培养。

3. DNA连接将切割后的DNA和载体DNA混合,加入T4DNA连接酶,进行DNA连接。

连接成功后,进行质粒的转化操作。

4. 质粒转化将DNA与转化者(例如大肠杆菌)一起培养几个小时,使其在培养基中繁殖生长。

之后,分离转化菌落,进行鉴定。

5. 鉴定正式的及相关标签元素为了确保成功的分子克隆,在选取符合需要的转化菌落后,除了进行相关的鉴定,还需要使用相关的标签元素。

这些标签元素可以用于识别有效的重组表达载体,并进行大规模的表达。

三、实验注意事项1. 选取嵌合体目标和载体的选择应按照相关配对的要求进行。

在酶切反应中,应注意酶的用量。

同时,也需要注意处理过程中不要将酶污染。

2. 进行DNA限制性内切酶切割时,应注意温度和反应时间。

3. 在进行DNA连接后,将混合物放置于水浴中,沸腾数分钟,以便DNA连接的更加稳定。

在连接DNAs之前,应该对酶进行热灭活。

4. 质粒转化后,为了鉴定高效的表达,需要进行多次筛选和鉴定。

分子克隆技术的操作流程

分子克隆技术的操作流程

分子克隆技术的操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!分子克隆技术是一种在分子水平上进行遗传操作的技术,用于复制和扩增特定的 DNA 片段。

分子克隆技术操作手册

分子克隆技术操作手册

分子克隆技术操作手册摘要:一、分子克隆技术简介二、分子克隆实验材料与设备三、分子克隆实验步骤1.设计引物2.合成目的基因3.构建表达载体4.转化受体细胞5.筛选转化子6.鉴定目的基因四、分子克隆实验注意事项五、实验结果分析与应用正文:一、分子克隆技术简介分子克隆技术是一种生物技术方法,通过复制特定DNA序列,将目的基因在受体细胞中稳定表达。

该技术在基因工程、生物科学等领域具有广泛应用,有助于研究基因功能、蛋白质表达及药物筛选等。

二、分子克隆实验材料与设备1.实验材料:DNA模板、引物、dNTPs、DNA聚合酶、缓冲液等。

2.实验设备:PCR仪、离心机、电泳仪、凝胶成像系统等。

三、分子克隆实验步骤1.设计引物根据目的基因序列,设计一对互补的引物。

引物应具备一定的特异性,避免非特异性扩增。

2.合成目的基因利用PCR技术,以DNA模板为基础,通过引物扩增目的基因。

反应条件需根据所使用DNA聚合酶的要求进行优化。

3.构建表达载体将目的基因与载体DNA连接,形成表达载体。

常用的载体有质粒、噬菌体等。

4.转化受体细胞将构建好的表达载体转化到受体细胞中,如大肠杆菌、酵母等。

转化方法有化学法、电转化法等。

5.筛选转化子转化后的受体细胞在含相应抗生素的培养基上生长,筛选出含有目的基因的转化子。

6.鉴定目的基因对筛选出的转化子进行进一步鉴定,如DNA测序、基因表达分析等。

四、分子克隆实验注意事项1.实验过程中要保持无菌操作,避免污染。

2.选择合适的引物长度和退火温度,以提高扩增特异性。

3.转化受体细胞时,注意操作力度,避免细胞损伤。

4.筛选转化子时,严格控制抗生素浓度,避免过度筛选。

五、实验结果分析与应用1.分析PCR产物,判断目的基因是否成功克隆。

2.鉴定目的基因的表达水平,评估实验效果。

3.将成功克隆的目的基因应用于基因敲除、基因表达等研究。

通过以上步骤,您可以顺利完成分子克隆实验。

实验过程中需严格操作,确保实验结果的准确性。

分子克隆实验指南引用

分子克隆实验指南引用

分子克隆实验指南引用分子克隆,听起来是不是很高大上,其实它就像是科学家们的拼图游戏。

想象一下,实验室里各种试管、培养皿,气氛热火朝天,简直像个疯狂的厨师在调制特制的“分子大餐”。

今天咱们就来聊聊这门看似复杂但其实充满乐趣的技术。

要说分子克隆,咱们得知道,它其实就是把特定的DNA片段“复制”到另一个载体里,像是把心爱的照片放进相框。

你可能会问,为什么要这样做呢?好吧,想象一下,你有一张绝世好照片,想给好朋友分享,当然得好好保存,不然可能就被风吹走了。

在分子克隆的过程中,首先得从目标生物中提取DNA。

这一步就像是找到了一块宝藏,得小心翼翼地挖掘出来。

提取的过程可能会让人觉得像是做实验的“魔法”,各种试剂的加持,DNA就像小精灵一样被召唤出来。

哇,这时候你可不能掉以轻心,得确保你的操作稳稳的,避免那些可恶的污染,真是让人抓狂的事。

咱们要用限制酶来切割DNA,听起来是不是有点像下厨时剁菜?其实就是把大块的DNA“切”成合适的小块,方便后续的拼接。

然后,再把这些小片段连接到载体上,载体就像个可爱的“家”,让DNA片段能在其中安稳扎根。

连接的过程就像是把不同的乐器组合成一支和谐的乐队,咱们的DNA片段就是主唱,载体则是默默支持它的乐手。

然后,转化过程来了,想象一下把这支乐队送到一场大型音乐会上。

通过转化,咱们把载体连同DNA片段转入细菌中,真是个大动作。

细菌们就像是新来的“小伙伴”,它们会开始繁殖,把这个新来的“主唱”带进自己的基因组里。

哎呀,这过程真是紧张又激动,心里小鹿乱撞的感觉。

在这个过程中,咱们还得筛选出成功的转化菌株,真是个挑战。

想象一下,你得从一大堆小伙伴中找出那几位特别出色的,简直是给自己增添了不少麻烦。

你可能会用抗生素来筛选,这就像是给小伙伴们设定了一个小门槛,只有表现最好的能留下来,真是个智慧的考验。

好,成功筛选后,咱们就可以大展身手,开始分析和验证了。

通过测序,你能知道自己拼的这块“拼图”是不是完美无瑕,能不能在科学的舞台上大放异彩。

分子克隆(亚克隆)实验总体流程详解

分子克隆(亚克隆)实验总体流程详解

一、扩增1、LB培养基5ml;2、抗生素:1000X,即1:1000比例。

种类根据细菌抗性决定;3、菌体:看浑浊度,1%-5%,取500ul于其中;4、37℃摇床220转,过夜,12-16h。

二、纯化质粒DNA1、1.5ml离心管,编号一定要写清楚;2、加满离心管,离心12000xg. 1min,弃上清。

取三次;3、加Buffer S1 200ul,溶解沉淀,5min;4、加S2(用完立刻盖紧瓶盖,以免CO2中和Buffer中的NaOH)200ul,不能剧烈(以免基因组DNA的污染),上下翻转4-6次,直至形成透亮的溶液,时间少于5min。

目的是使蛋白包裹基因组DNA,游离质粒;5、加S3 280ul,温和充分翻转混合6-8次,12000xg,10min(此步呈白色絮状);*备注:S1:S2:S3=5:5:76、取上清加入制备管(置于2ml离心管),12000xg,1min,去滤液;7、加Buffer W1 500ul,12000xg,1min,弃滤液;8、加Buffer W2 700ul,12000xg,1min,弃滤液。

重复一遍;9、空管离心12000xg,1min;10、制备管移入新的1.5ml离心管,管膜中加60-80ul去离子水,静置1min,12000xg,1min。

(将去离子水加热至65度,将提高洗脱效率)四、跑胶回收:sost回收失败1、2%浓度胶,Loading Buffer如是6X,则加10ul到样品,全部加样到胶孔中。

插入:配胶方法大块胶60ml;小块胶25ml;需要配置大块胶、大孔胶;Agarose 0.6g,TAE60ml,微波中火2min;趁热但不烫手时加入gold view 0.5ul/25ml;倒入槽里。

2、跑胶:单位厘米/5-10v。

所以大槽25cm,150v即可。

小槽100v即可。

3、紫外灯下切胶,纸巾吸进液体,计算凝胶重量(1mg=1ul);4、加3个凝胶体积的凝胶结合液DB(0.1ul视为100ul;如凝胶浓度大于2%,则加入6倍体积溶胶液;凝胶块最大不能超过400ul,超过可多个离心柱);5、56℃水浴放置10分钟,至完全溶解;6、每100mg最初的凝胶重量加入150ul的异丙醇,震荡混匀,回收大于4Kb的片段可不加异丙醇,加入反而降低回收效率;7、将上一步所得溶液加入吸附柱AC中(吸附柱放入收集管中),12000rpm,30-60s,弃液体;8、加700ul漂洗液WB,12000rpm,1min,弃废液;9、加500ul漂洗液WB,12000rpm,1min,弃废液;10、空离心2min,弃废液;11、晾干乙醇,以免抑制下游反应;12、将吸附柱放入新的1.5ml离心管,加入50ul(最少30ul)洗脱缓冲液EB或者去离子水(65-70水浴加热效果更好,或将得到的溶液重新加入离心柱可增加洗脱量);五、连接体系:六、转化1、加感受肽:连接产物=10:1,冰浴30min;2、激活:42℃,90s,不能震动;3、加500ul LB培养基;4、37℃,150转摇床,45min;5、铺板子七、检测1、细菌长势良好,对照组不长;2、酶切检测:(1)1ml LB体系:1ml LB培养基+1ul抗生素于1.5mlEP管中;(2)15ul Pcr体系:7.5ul Mix(2X)5.5ul water1ul上游引物1ul下游引物(3)用枪头挑培养皿中的菌体,吹打于1ml LB体系中,再吹打于15ul Pcr体系中;(4)1ml LB体系放入37℃摇床,150rpm;显示4°/4°时,结束。

分子克隆技术步骤

分子克隆技术步骤

分子克隆技术步骤第一步:选取目标DNA在开始分子克隆之前,需要从一个生物体中选择一个含有所需DNA序列的样本。

这可以是任何生物体的DNA,例如人类、动物、植物或微生物。

第二步:DNA提取从所选生物体提取DNA。

这可以通过使用一系列化学和物理方法来完成,例如细胞裂解、蛋白酶处理、DNA沉淀和洗涤等。

第三步:选择一个合适的载体载体是一种DNA分子,可以容纳目标DNA序列并将其复制。

在分子克隆中最常使用的载体是质粒。

质粒是圆形的双链DNA分子,存在于许多细菌和酵母种类中,并被广泛用于分子生物学研究。

第四步:限制性内切酶切割将目标DNA和载体同时使用限制性内切酶(Restriction Enzymes)酶切。

限制性内切酶是一种可以识别和切割特定DNA序列的酶。

通过在目标DNA和载体的特定位置上切割,可以为将两者连接提供互补的末端。

第五步:DNA连接将目标DNA和载体连接在一起。

将目标DNA和载体的DNA片段混合,并在其末端形成互补碱基,然后使用DNA连接酶将两者连接在一起。

连接后的DNA分子被称为重组质粒。

第六步:转化将重组质粒引入细菌或酵母等微生物细胞中,这个过程称为转化。

这可以通过将细菌细胞暴露在低温高压胁迫下来实现,使得细胞膜变得更加渗透性,可以将质粒引入细胞内。

第七步:筛选和鉴定筛选出含有重组质粒的细菌或酵母细胞。

一种常用的筛选方法是将细菌培养在含有抗生素的培养基上,只有携带重组质粒的细菌才能在含有抗生素的环境下存活。

此外,还可以使用标记基因和特定染色剂等方法来鉴定重组质粒。

第八步:扩增和纯化用培养液扩增含有重组质粒的细菌或酵母细胞。

随着细菌或酵母细胞的生长,它们会复制重组质粒并将其传递给后代细胞。

然后使用一系列纯化步骤,如离心、洗涤和电泳等手段,将其中的重组质粒提取纯化。

总结:分子克隆技术的主要步骤包括选取目标DNA、DNA提取、选择合适的载体、限制性内切酶切割、DNA连接、转化、筛选和鉴定,以及扩增和纯化。

分子克隆详细步骤

分子克隆详细步骤

分子克隆步骤:一、贴壁细胞总RNA提取:1、吸掉培养液,用PBS洗一遍?2、往培养皿中加入1ml,TRIzol,吹打几次(每10cm2面积,即3.5cm直径的培养板加1ml)3、移至1.5mlEP管,静置5分钟4、加入200ul三氯甲烷,震荡混匀,室温静置5分钟5、4度12000r/min,离心15分钟,取上清,约600ul6、加入500ul异丙醇,混匀后,静置30分钟?7、4度12000r/min,离心15分钟,弃上清8、加入1ml70%预冷酒精洗涤沉淀物9、4度7500r/min,离心5分钟10、弃上清,自然晾干11、加入50ulDEPC水溶解,测OD值*鼠尾基因组DNA粗提取:1、100ul lysis buffer for each tail,and 2ul 10mg/ml PK,55℃,overnight.2、Then,100℃ for 10min to denature the PK, use 0.5~1ul lysate as template to do PCR.Lysis buffer:(store at 4℃)KCl 0.5MTris 0.1MNP-40 1%Tween-20 1%二、RT-PCR:1、预变性体系12ul:Total RNA 2ulOligo(dT18)primer 1ulDH water 9ul65℃ 5min 速置冰上2、RT体系:20ul:预变性体系12ul5×buffer 4ulRNAase inhibiter 1ul10m dNTP 2ulMMLV 1ul42℃ 60min70℃ 5min12℃ forever3、PCR体系20ul:10×buffer 2ul10m dNTP 0.5ulPrimer(F+R) 1ul (0.5ul+0.5ul)稀释后cDNA(50ul)1ulPfu 0.2uldd water 15.3ul95℃3min、(95℃30s,55℃30s,72℃35s)×29cycle、72℃10min、12℃forever三、跑胶鉴定PCR产物:四、醇沉PCR产物:1、将PCR产物转移至1.5mlEP管中2、加入0.1倍体积预冷NaAC,3倍体积70%预冷乙醇,混匀3、—80℃静置30min4、4度14000r/min,10min离心弃上清,加1ml70%预冷乙醇洗涤沉淀5、4度14000r/min,10min离心弃上清,自然晾干6、加入25-20ul dd water 吹匀静置10-20min待溶解五、原始质粒/PCR醇沉产物双酶切体系50ul:Enzyme1 1ulEnzyme2 1ul10×Buffer 5ul (在体系中被稀释成1×)10×BSA 5ul (看需要)Template 1ugADD dd water to 50ul酶切过夜?六、单独鉴定质粒酶切产物:1、采用20ul体系:酶各0.5ul、buffer2ul、bsa0.5ul、template2ul)酶切2h2、跑胶鉴定七、电泳,切胶回收与纯化:使用DNA回收试剂盒(QIAquick Gel Extraction Kit Protocol)PCR酶切产物纯化:1.将PCR产物于需要的电压和电流下跑电泳2. 紫外灯下仔细切下含待回收DNA的凝胶,置1.5ml离心管中,称重。

分子克隆——主要步骤

分子克隆——主要步骤

笔记3(分子克隆2——重要步调)分子克隆可以分为以下几个步调:分别制备待克隆的DNA片断————将靶DNA片断与载体在体外进行衔接————重组DNA分子转入宿主细胞————筛选.判定阳性重组子————重组子的扩增.1.带有目标基因的DNA片断的获得:可以用限制内切酶降解基因组DNA,再合营应用其他试验手腕得到待定的DNA片断,可以用超速离心的办法分别出具有特定核苷酸构成的DNA片断,可以用mRNA做模板,用反转录酶合成互补DNA,即cDNA,也可以用化学合成的办法直接合成一段DNA.分子的构建:重组DNA分子中包含两部分,一部分是外源DNA,即目标DNA片断,另一部分是载体DNA.用作载体的,有质粒.噬菌体或病毒DNA.它们的根本特点是可以或许自力复制.假如用统一种限制性内切酶切割这两种DNA,则它们的末尾完整雷同,因为有互补的单链末尾序列消失,在衔接酶的感化下,就可以形成重组DNA分子.在没有互补单链末尾的情形下,也可以用酶学办法造成一个互补单链末尾之后再进行衔接.3.重组DNA分子的转化和重组克隆的筛选:重组DNA分子必须进入宿主细胞中,才干得到扩增和表达.这个进程叫做转化.大肠杆菌是今朝应用最普遍的宿主细胞.除此以外.其他细菌.酵母.哺乳动物细胞等也可作为宿主细胞,可以依据试验的须要加以选择.在被转化的宿主细胞中,不合的单个细胞(在平板上表示为单个菌落,亦称克隆)中可能含有不合的重组质粒或非重组质粒,是以必须进行筛选,以便肯定哪些是重组克隆.筛选可以应用抗菌素抗性或其他办法,依载体的性质而定.4.特定重组克隆的辨别:因为重组克隆往往是较多的,而在某一克隆试验中,我们感兴致的目标克隆只有一个或几个,所以须要进一步辨别.应用的办法重要有核酸杂交法和免疫化学法.此外,找出了目标克隆之后,还须要依据试验的目标,进一步弄清目标克隆中外源DNA片断上的基因的构造和功效.重要有酶切图谱的制订,基因在DNA片断上的准肯定位,肯定是否有内含子,DNA序列剖析,离体翻译试验,外源基因在某些宿主细胞中的表达及产品的提纯等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子克隆一、载体与外源片段(PCR产物)的双酶切为了保证做连接反应时有足够的量,应该加入1ug的DNA进行酶切反应;两种酶分别加1ul,10*buffer 2ul,1ug的DNA,加水至20ul。

(因此要跑胶分析DNA以及载体的浓度,取1-2ul,电泳检测其含量。

1ul量太少,可以加将其稀释在9ul水中,再加loading buffer。

6ul 15000bp的maker,2500bp条带的亮度约是100ng DNA。

可对比maker的亮度算出酶切回收的DNA的浓度,以便于连接反应的用量。

Image J软件可以做灰度分析。

)双酶切反应结束后,使用PCR cleanup试剂盒回收DNA与载体。

回收完之后用同样的方法分析其浓度。

(也可以用分光光度计直接测量DNA的浓度,但是,一般酶切反应之后浓度会比较小,取1ul 稀释100倍之后浓度很低,可能已经低于仪器的测量范围,而电泳灵敏度很高,还可一排除杂带、RNA、蛋白质等对浓度的干扰。

)二、连接反应载体100ng,DNA片段根据大小,1ul buffer,1ul T4连接酶,加水至10ul;16°连接12-16h。

载体(约0.03pmol)与外源DNA的摩尔比大约1:3~1:10之间,根据载体与DNA片段的长度,可算出需要的量。

扫胶的电脑上有个文件:连接反应.xls,按要求填写即可得出连接反应的用量。

因为载体的大小一般在5kb-10kb,因此,严格的算出0.03pmol的载体的质量意义不大,大约100ng即可。

如果时间比较紧张,可以25°连接15min,之后可取5ul进行转化,剩余5ul 16°继续连接。

三、质粒转化到感受态大肠杆菌中从-70°中取出感受态,在手心融化后立即插入冰上,5ul连接产物+100ul感受态大肠杆菌,混匀。

冰浴30min,然后42°热激90s,热激时不要晃动EP管。

然后立即插入冰上,静置2min。

(连接产物的量尽量不超过感受态体积的5%,否则会降低转化效率,从而得不偿失。

)在超净台中加入700ul LB培养基,然后37°摇床培养45min-1h;4000rpm离心3min,在超净台中弃去700ul上清,然后轻轻吹打残留的菌液沉淀,涂平板;(涂平板的玻璃棒要在酒精灯上烧热灭菌,后冷却)37°培养箱先正放15min,之后倒置培养12-16h。

(超过16h,则阳性克隆周围会生出卫星菌落,原因是阳性克隆会分泌水解氨苄的酶到培养基中,水解其周围的氨苄,因此,平板上的DH5α、杂菌等会生长。

)四、重组子的挑取培养挑选单克隆到2ml LA培养基中,37°培养8-16h,可提质粒。

(要在管壁上部用注射器的针头烧热,戳个小洞,因为大肠杆菌是好氧的,无菌会生长缓慢)其实在挑克隆培养的时候就可以PCR鉴定,先配好PCR反应体系,在超净台中,同一个克隆,一半用于摇菌培养,一半用小的枪头挑取在对应的PCR体系里涮一下,即可作为模版进行PCR反应。

PCR时要做阴性、阳性对照;阴性对照,用枪头在没有菌落的培养基上沾一下做模版(PCR灵敏度很高,要排除连接体系中的残留的DNA对结果影响的可能),阳性对照用最初PCR扩增DNA片段时的模版。

也可以等37°培养8-16h之后取1ul菌液做模版鉴定,或者提质粒之后,用质粒做模版进行鉴定,均可。

五、质粒的提取与电泳检测1.在超净台中取300ul菌液与无菌EP管中,4°保存,待鉴定是否成功后取100ul菌液+100ul 50%甘油保种,送200ul菌液到公司测序,不正确的丢掉即可。

(如果质粒量很多,也可以送5-10ul质粒测序)2.取1ml菌液到新的EP管, 12000 rpm离心30s,弃上清,再将700ul剩余菌液于同一EP管,12000 rpm离心30s,弃上清。

然后瞬时离心,将残留液体吸干。

(枪头不能重复使用)3.加入预冷的100µl 溶液I。

反复吹打混匀。

(一定要混匀,不然会影响裂解效果,可以用涡旋混合器震荡混匀)4.加入200µl溶液II,盖紧管口,轻轻快速颠倒离心管3-5次。

(不要剧烈震荡,防止基因组DNA、质粒断裂,可以悬空加试剂,这样不用换枪头,而且比较快,下同)5.观察到溶液变清后,立即加入预冷的150µl 溶液III。

颠倒3-5次,颠倒时用手指轻弹离心管底部,混匀。

冰浴5min。

12000rpm离心10min。

6.取400ul上清至另一干净的离心管中(尽量不要吸到白色的沉淀物质,如果效果不理想,可以转移400ul上清至新离心管,12000rpm,5min,之后在转移上清),加入280µl异丙醇,充分混匀。

室温放置2min,12000rpm离心10min。

7.弃上清,加入1ml 75%的乙醇,轻轻颠倒两次,12000rpm离心5min。

8.弃上清,然后瞬时离心,用Tip头将残留酒精吸干。

空气中干燥10min。

9.加入25ul 含有RNA酶的ddw溶解质粒。

(RNA酶溶液:取10ul RNA酶,加990ul ddw)10.取1ul质粒,加9ul ddw,2ul 6*loading buffer,混匀电泳检测质粒浓度。

六、酶切鉴定或者PCR检测大约酶切1ug质粒进行鉴定。

如果质粒含量太少,即便能够切下目的条带,也有可能看不到。

(为了节约,鉴定时取0.25-0.5ul的酶,20ul体系,酶切30min-1h,即可电泳跑胶)PCR检测,则将提取的质粒稀释10-100倍到适合做模版的浓度(taq酶的说明书上有说明),利用目的片段的引物,使用普通的taq酶PCR即可。

注意事项:1.移液器使用结束后调回最大量程放归远处。

2.本实验属于微量操作,用量极少的步骤必须严格注意吸取量的准确性并确保样品全部加入反应体系中。

3.不论是酶切还是连接反应,加样的顺序应该是,先加双蒸水,其次是缓冲液和DNA,最后加酶。

而酶液要在加入前从-20℃的冰箱取出,酶管放置冰上,取酶液时吸头应从表面吸取,防止由于插入过深而使吸头外壁沾染过多的酶液。

取出的酶液应立即加入反应混合液的液面以下,并充分混匀。

4.Ep管的盖子应盖紧,防止水浴过程中水汽进入管内,并做好标记以防样品混淆。

5.制备凝胶时,应避免琼脂糖溶液在微波炉里加热时间过长,否则溶液将会暴沸蒸发,影响琼脂糖浓度。

制胶时要除去气泡。

拔梳子时要特别小心,以防凝胶与支持物脱离。

6.上样时要小心操作,避免损坏凝胶或将样品槽底部的凝胶刺穿。

也不要快速挤出吸头内的样品,避免挤出的空气将样品冲出样品孔。

7.紫外线对眼睛和皮肤均有伤害,对眼睛尤甚。

观察电泳条带时要确保紫外光源得到适当遮蔽,并应戴好目镜或眼罩,避免皮肤直接暴露在紫外线下。

割胶回收动作要快,避免紫外照射时间过长,使得DNA突变。

8.实验中注意更换枪头,以避免试剂的污染,悬空滴加试剂的话,可以连续使用。

碱裂解法质粒提取的原理溶液I,50 mM葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M 醋酸钾/ 2 M 醋酸。

溶液I的作用葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。

因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。

所以说溶液I中葡萄糖是可缺的。

EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。

在溶液I中加入高达10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。

如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。

如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。

有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。

溶液II的作用这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。

要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。

其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。

事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。

用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌,自然就难高效率抽提得到质粒。

如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。

很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。

有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。

这一步要记住两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。

基因组DNA的断裂会带来麻烦。

溶液III的作用溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。

最容易产生的误解是,当SDS碰到酸性后发生的沉淀。

如果你这样怀疑,往1%的SDS溶液中加如2M 的醋酸溶液看看就知道不是这么回事了。

大量沉淀的出现,显然与SDS的加入有关系。

如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。

既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。

因此高浓度的盐导致了SDS的沉淀。

但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。

这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。

如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。

大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。

这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。

相关文档
最新文档