结构稳定理论
19、考试:结构稳定理论
考试:结构稳定理论∙1【单选】下列选项中,属于球面网壳的是()∙ A.联方网络型∙ B.米字网络型∙ C.纵横斜杆型∙ D.短程线型∙A∙B∙C∙D∙正确答案:D2【单选】下列选项中不属于厚面层夹芯柱的屈曲的选项是()∙ A.简支柱的屈曲∙ B.两端固定柱的屈曲∙ C.悬臂梁的屈曲∙ D.一端固定一端铰接柱的屈曲∙A∙B∙D∙正确答案:D3【单选】下列选项中,不属于网壳失稳模态的是()∙ A.杆件失稳∙ B.条件失稳∙ C.面失稳∙ D.整体失稳∙A∙B∙C∙D∙正确答案:C4【多选】动力稳定包括下列哪几项()∙ A.驰振∙ B.涡振∙ C.参数激振∙ D.强迫振动∙A∙C∙D∙正确答案:A B C D5【多选】结构稳定的类型按破坏部位可划分为以下几类()∙ A.整体稳定∙ B.局部稳定∙ C.整体稳定和局部稳定的相互作用∙ D.参数激振∙A∙B∙C∙D∙正确答案:A B C6【多选】以下结构稳定问题的判别准则包括哪几项()∙ A.能量准则∙ B.静力准则∙ C.运动准则∙ D.动力准则∙B∙C∙D∙正确答案:A B C7【判断】能量准则适用于保守系统()∙ A.正确∙ B.错误∙正确∙错误∙正确答案:正确8【判断】理想构件的失稳主要包括稳定的后屈曲性能和不稳定的后屈曲性能()∙ A.正确∙ B.错误∙正确∙错误∙正确答案:正确9【判断】在薄面层夹芯柱中,芯层的剪切刚度是有限的,必须考虑其剪切变形()∙ A.正确∙ B.错误∙正确∙错误∙正确答案:正确。
《结构稳定理论》课件
02
它通过比较实际的安全系数与规定的最低 安全系数来评估结构的稳定性。
03
稳定性安全系数法通常用于评估结构的整 体稳定性,如边坡和土坝等。
04
该方法还可以用于评估结构的局部稳定性 ,如桥梁和建筑物的支撑结构等。
PART 04
结构稳定性的实验研究
实验设备与实验方法
实验设备
高精度测力计、加速度计、位移 计、高速摄像机、数据采集系统 等。
环境条件
温度、湿度、腐蚀等环境因素 也会对结构的稳定性产生影响
。
结构失稳的判据
平衡分岔
当结构受到的外力作用达到一定值时 ,平衡状态发生分岔,出现多个可能 的平衡状态。
极值点失稳
结构在达到某一极值点时失去稳定性 ,发生屈曲或失稳。
跳跃失稳
当结构受到的外部扰动达到一定阈值 时,结构会发生跳跃式失稳。
局部失稳
结构的稳定性是结构设计中的重要因素,直接关 系到结构的安全性和可靠性。
影响结构稳定性的因素
材料的性质
材料的弹性模量、泊松比、剪 切模量等物理性质对结构的稳
定性有重要影响。
结构的形状和尺寸
结构的几何形状、尺寸和比例 等因素对稳定性有显著影响。
外力作用
外力的大小、方向和作用点等 都会影响结构的稳定性。
实验结论与建议
结论
通过实验研究,总结出结构稳定性的 基本规律和影响因素,为实际工程应 用提供指导。
建议
针对不同应用场景和需求,提出相应 的结构设计建议,以提高结构的稳定 性和安全性。同时,建议进一步开展 相关研究,不断完善结构稳定理论体 系。
PART 05
结构稳定性的工程实例
桥梁结构的稳定性分析
02
结构稳定理论知识点整理
结构稳定理论知识点整理●杆件失稳1.什么是稳定?●稳定问题的类型●稳定问题的研究1)稳定问题研究特点2)一阶分析法和二阶分析法的区别3)稳定问题研究方法●静力法●能量法(依托能量准则)●能量守恒原理●势能驻值原理●最小势能原理●瑞利-利兹法●伽辽金法●动力法●稳定问题和强度问题的区别?2.什么是失稳?●失稳类型1)弯曲失稳●弹性失稳(符合胡克定律应力应变线性关系)●理想情况●理想轴心压杆弯曲失稳●考虑工况●弹性支撑轴心压杆弯曲失稳●初始缺陷对轴心压杆临界荷载的影响●初始几何缺陷●残余应力的影响●变截面轴心压杆弯曲失稳●压弯构件(梁柱)弯矩作用平面内弯曲失稳(体现柱的特点)●失稳类型:极值点失稳,构件的极限荷载同时受到最大轴力与最大弯矩的控制。
●临界荷载的求解方法●边缘屈服准则●数值积分法●不同横向荷载作用下压弯构件的最大挠度与弯矩●二阶弯矩:考虑轴压力及纵向弯曲变形影响的弯矩。
与构件两端所作用的轴力P的大小有关。
P越大,所引起的二阶附加弯矩效应越强,构件上的最大弯矩也就越大,反之相反。
●一阶弯矩:不考虑轴压力及纵向弯曲变形影响的弯矩●一阶弯矩和二阶弯矩的关系:二阶弯矩是一阶弯矩乘以含轴力的方大系数●压弯构件的等效弯矩系数●概念:不同荷载压弯构件等效弯矩可以看作在原受弯构件一阶最大弯矩M0的基础上乘以了一个含有轴力P的放大系数,这个放大系数就是压弯构件等效系数。
●压弯构件弯矩作用平面内弯曲失稳的承载力公式构建方法●①冷弯薄壁型钢压弯构——基于边缘屈服准则的弹性稳定相关计算公式●②普通热轧型钢压弯构件──基于极限强度准则的弹塑性稳定相关计算公式●非弹性失稳(弹塑性失稳)2)扭转失稳●什么时候发生扭转:外力不通过剪切中心,绕剪切中心轴扭转●剪切中心的概念●剪切中心的特点和确定方法●扭转的特点●扭转的类型●自由扭转●自由扭转的特点●自由扭转的刚度方程●约束扭转●约束扭转的特点●约束扭转的刚度方程●轴心压杆扭转失稳●扭转失稳历程●理想轴心压杆弹性扭转失稳临界荷载●考虑缺陷●扭转失稳设计准则(换算长细比法)3)弯扭失稳●什么时候发生弯扭失稳:不通过剪切中心轴的横力使得截面剪切中心和形心不重合的杆件发生弯扭失稳(单轴对称截面和不对称截面)●轴心受压杆件的弯扭失稳●弯扭失稳历程●理想轴心压杆弹性弯扭失稳临界荷载●弯扭失稳设计准则(换算长细比法)●梁的整体失稳(弯扭失稳)●整体失稳的概念:梁受弯矩作用,当弯矩增加到某一数值时,梁将在截面承载力尚未充分发挥之前突然偏离原来的弯曲变形平面,发生侧向挠曲和扭转,使梁丧失继续承载的能力,这种现象称为梁的整体失稳。
结构的稳定性分析
结构的稳定性分析结构的稳定性是指在外力作用下,结构是否能保持其原有的形状和稳定性能。
在工程领域中,结构的稳定性分析是非常重要的一项内容,它关系到工程结构的性能和安全性。
本文将从理论基础、分析方法和实际案例三个方面,对结构的稳定性分析进行探讨。
一、理论基础结构的稳定性分析依托于力学和结构力学的基本理论。
结构的稳定性问题可以归结为结构的等效刚度和等效长度的问题。
等效刚度是指结构在外力作用下的变形程度,而等效长度则是指结构的几何形状与尺寸。
通过对结构的等效刚度和等效长度进行计算和分析,可以判断结构的稳定性。
二、分析方法1. 静力分析法静力分析法是最常用的结构稳定性分析方法之一。
它基于结构在平衡状态下的力学平衡方程,通过计算结构内力和外力的平衡关系,确定结构是否能保持稳定。
静力分析法主要适用于简单的结构体系,如悬臂梁、简支梁等。
2. 动力分析法动力分析法是一种基于结构的振动特性进行稳定性判断的方法。
通过分析结构的自然频率、振型和阻尼比等参数,可以确定结构的稳定性。
动力分析法适用于复杂的结构体系,如桥梁、高层建筑等。
3. 线性稳定性分析法线性稳定性分析法是一种通过求解结构的特征方程,得到结构的临界荷载(临界力)的方法。
线性稳定性分析法适用于线弹性结构,在分析过程中通常假设结构材料的性质符合线弹性假设,结构的变形量较小,且作用于结构的荷载为线性荷载。
三、实际案例以钢柱稳定性为例,介绍结构的稳定性分析在实际工程中的应用。
钢柱是承受垂直荷载的重要组成部分,其稳定性直接关系到整个结构的安全性。
通过使用静力分析法和线性稳定性分析法,可以确定钢柱的临界荷载并判断其稳定性。
在静力分析中,需要计算钢柱受力状态下的内力和外力之间的平衡关系。
通过引入等效长度和等效刚度的概念,可以将实际的钢柱简化为等效的杆件模型,从而进行稳定性计算。
在线性稳定性分析中,通过建立钢柱的特征方程,并求解其特征值和特征向量,可以得到钢柱的临界荷载。
结构稳定理论(第2版)
2022年3月7日,《结构稳定理论(第2版)》由高等教育出版社出版发行。
内容简介
《结构稳定理论(第2版)》共计9章,第1章介绍结构稳定问题概述,第2章介绍结构稳定计算的能量法,第 3章介绍轴心受压杆件的整体稳定,第4章和第5章介绍杆件的扭转与梁的弯扭屈曲、受压杆件的扭转屈曲与弯扭 屈曲,第6章和第7章介绍压弯杆件在弯矩作用平面内的稳定、刚架的稳定,第8章和第9章介绍拱的平面内屈曲以 及薄板的屈曲等内容。
郑宏,男,哈尔滨人,工学博士,长安大学建筑工程学院教授,研究生导师。研究领域:钢结构基本理论及 其应用、结构稳定理论、结构抗震及减震。
石宇,工学博士,重庆大学土木工程学院教授,硕士生、博士生导师。研究方向:钢结构基本原理及其应用、 钢—混凝土组合结构。
感谢观看
教材目录
(注:目录排版顺序为从左列至右列)
教学资源
《结构稳定理论(第2版)》的数字课程与纸质教材一体化设计,内容涵盖教学课件、动画、失稳案例分析、 练习题及答案等。
《结构稳定理论(第2版)》配有数字化资源。
作者简介
周绪红,男,1956年9月出生,汉族,湖南南县人,工学博士,中国工程院院士,日本工程院外籍院士,重 庆大学钢结构工程研究中心主任,重庆大学土木工程学院教授。研究方向:钢结构、钢-混凝土混合结构、高层结 构、大跨结构、桥梁结构、风电结构。
结构稳定理论(第2版)
3月高等教育出版社出版的图书
01 成书过程
03 教材目录 05 作者简介
目录
02 内容简介 04 教学资源
《结构稳定理论(第2版)》是由周绪红主编,高等教育出版社于2022年3月7日出版的“十二五”普通高等 教育本科国家级规划教材,新世纪土木工程系列教材。该教材可作为高等学校土木工程专业高年级本科生及相关 专业研究生教材,也可供相关专业教师和工程技术人员参考。
钢结构稳定理论
❖ 与上一章讲的初弯曲、初偏心的影响相类似,δ0相当 于初弯曲和初偏心的影响。
钢结构稳定理论
❖ 弹性分析时,当δ→∞时,P=PE,即压弯杆件的弹性承
载力为PE。 下面给出证明:
0
1
1 P/
PE
P
PE
(1
0
)
(a)
dP
d
0
PE0 (1) 2
0
代入(a)式中,得:
P PE
❖ 本节为简支的压弯构件,其它边界条件时,求解方法 类似,结论类似。
y
i
d
dx
y
y
dx
y点处伸长 ❖ 中和轴以外为
量为y dθ
拉,以内为压
钢结构稳定理论
3)数值积分法(压杆挠曲线法)
❖ 具有初弯曲的压弯构件,假设条件最少,可适用于任 意情况。
❖ 截面上内弯矩:
M内=-A EyIyj'd' Aj
弹性阶段 弹塑性阶段
有正负 拉+,压-
钢结构稳定理论
❖ 具体求解过程如下: 1. 将压杆沿长度分成n段;
§4-1 有横向荷载作用的压杆的弹性弯 曲变形和稳定临界力
❖ 横向荷载 集中荷载 均布荷载
钢结构稳定理论
1)横向集中荷载作用的压弯构件
❖ 当0<x≤l/2时,平衡方 程为:
M Py Q x
即:
2
EIy''Py Qx / 2
y''k 2 y Qx /(2EI )
❖ 所以方程的通解为:
其中:k 2 P / EI
✓ 当横向荷载不同时,弯矩的放大系数也有所不同。
钢结构稳定理论
2)弹性压弯构件平面内弯曲承载力验算
结构稳定概述(结构稳定原理)
第1章结构稳定概述工程结构或其构件除了应该具有足够的强度和刚度外,还应有足够的稳定性,以确保结构的安全。
结构的强度是指结构在荷载作用下抵抗破坏的能力;结构的刚度是指结构在荷载作用下抵抗变形的能力;而结构的稳定性则是指结构在荷载作用下,保持原有平衡状态的能力。
在工程实际中曾发生过一些由于结构失去稳定性而造成破坏的工程事故,所以研究结构及其构件的稳定性问题,与研究其强度和刚度具有同样的重要性。
1.1 稳定问题的一般概念结构物及其构件在荷载作用下,外力和内力必须保持平衡,稳定分析就是研究结构或构件的平衡状态是否稳定的问题。
处于平衡位置的结构或构件在外界干扰下,将偏离其平衡位置,当外界干扰除去后,仍能自动回到其初始平衡位置时,则其平衡状态是稳定的;而当外界干扰除去后,不能自动回到其初始平衡位置时,则其平衡状态是不稳定的。
当结构或构件处在不稳定平衡状态时,任何小的干扰都会使结构或构件发生很大的变形,从而丧失承载能力,这种情况称为失稳,或者称为屈曲。
结构的稳定问题不同于强度问题,结构或构件有时会在远低于材料强度极限的外力作用下发生失稳。
因此,结构的失稳与结构材料的强度没有密切的关系。
结构稳定问题可分为两类:第一类稳定问题(质变失稳)—结构失稳前的平衡形式成为不稳定,出现了新的与失稳前平衡形式有本质区别的平衡形式,结构的内力和变形都产生了突然性变化。
结构丧失第一类稳定性又称为分支点失稳。
第二类稳定问题(量变失稳)—结构失稳时,其变形将大大发展(数量上的变化),而不会出现新的变形形式,即结构的平衡形式不发生质的变化。
结构丧失第二类稳定性又称为极值点失稳。
无论是结构丧失第一类稳定性还是第二类稳定性,对于工程结构来说都是不能容许的。
结构失稳以后将不能维持原有的工作状态,甚至丧失承载能力,而且其变形通常急剧增加导致结构破坏。
因此,在工程结构设计中除了要考虑结构的116强度外,还应进行其稳定性校核。
1.1.1 第一类稳定问题首先以轴心受压杆来说明第一类稳定问题。
结构稳定理论计算和原理
静力法
静力法即静力平衡法,也称中性平衡法,此法是 求解临界荷载的最基本方法。
对第一类弹性稳定问题,在分支点存在两个临近 的平衡状态:
初始直线平衡状态和产生了微小弯曲变形的平衡 状态。
静力法就是根据已发生了微小弯曲变形后结构的 受力条件建立平衡微分方程,而后解出临界荷载。
静力法举例
两端铰接轴心受压构件
挠曲线的平衡微分方程
由内力矩-EIy〞=M与外力矩 P y
相平衡
或 EIy〞+Py=0
当两端铰接时,边界条件为 x=0, y=0; x=l, y=0
解平衡微分方程,得到P的最小值:
Pcr =π2EI / l2 即 临界荷载或“ 欧拉荷载”
能量法
静力法是通过建立轴心受压构件微弯状态时的平 衡方程,求出临界荷载的精确解。
影响结构稳定性能的各种主要因素;
为增强结构稳定可能采取的各种措施等。
本课程为考试课。
第一章 概 述
工程结构或其构件除了应该具有足够的强度和刚度外, 还应有足够的稳定性,以确保结构的安全。
强度 结构的强度是指结构在荷载作用下抵抗 破坏的能力;
刚度 结构的刚度是指结构在荷载作用下抵抗 变形的能力;
当作用着外力的弹性结构偏离原始平衡位置而产生 新的微小位移时,如果应变能的增量ΔU大于外力功的增 量ΔW,即此结构具有恢复到原始平衡位置的能力,则结 构处于稳定平衡状态;如果ΔU <ΔW,则结构处于不稳 定平衡状态而导致失稳;临界状态的能量关系为
ΔU =ΔW
势能驻值原理
势能驻值原理指:受外力作用的结构,当位移有 微小变化而总势能不变,即总势能Π 有驻值时,结构处 于平衡状态。或者说
荷载—位移曲线
结构稳定理论
1.理想压杆:受压杆件两端铰支荷载作用于形心轴,杆轴线沿杆长完全平直,横截面双轴对称且沿杆长均匀不变,杆件无初应力,材料符合胡=胡克定律2.极限状态:承载能力极限状态和正常使用极限状态。
3.保守力:如果力在它作用的任意可能位移上所做的功与力作用点移动路径无关,只依赖与移动的起点和终点。
4.势能驻值原理与最小势能的区别:势能驻值原理方法比较简单,但从教学角度δp=0只是平衡条件,它不表示从稳定平衡过度到不稳定平衡的临界条件,而最小势能原理方法更加严密。
(势能驻值原理:虚位移,基本条件δp=0)5.伽辽金法瑞利-里兹法的区别:①瑞利里兹法只需要满足几何边界条件即可,而伽辽金法需要满足几何边界条件,力学边界条件;②伽辽金法直接与微分方程相联系,而瑞利里兹法需要写出体系的总势能。
6.计算长度系数μ,将非两端铰支的理想轴心压杆构件,临界荷载公式换算成相当于两端铰支理想轴心压杆构件,求解临界荷载的形式的所利用的计算长度,几何意义:杆件绕由曲线上两反弯点的间距7.自由度:用来表示约束条件允许的体系,可能变形时所必须的独立几何参数的数目。
8.柱子曲线:临界应力δcr与长细比的关系曲线,可作为轴心受压构件设计的依据。
9.残余应力:降低比例极限,使柱子提前出现弹塑性屈曲,当超过比例极限后,残余应力使杆件应力应变曲线,同时减小了截面的有效面积和有效惯性矩,从而降低了刚度和稳定性。
10.翘曲:非圆形截面的杆件扭转时,截面处绕杆件轴线转动外,截面上个点还会发生不同的轴向位移而使截面出现凹凸,不像圆截面杆件那样扭转后不保持平面。
11.影响弯曲荷载Mor的因素:①截面的形状,尺寸。
②截面的残余应力。
③初始几何缺陷。
④荷载类型及其作用特点。
⑤构件端部和侧向支撑条件。
12.梁的弯曲屈曲5个假设:①构件为各向同性完全弹性体,②弯曲和扭转时,构件截面形状不变,③小变形(侧面)。
④构件为等截面无截面。
⑤主弯矩作用平面内刚度很大,屈曲前变形对弯扭屈曲的影响的忽略。
结构力学稳定理论
解。即在荷载达到临界值前后,总势能由正定过渡到非正定θ。 3)如以原始平衡位置作为参考状态,当体θ系处于中性平衡P=Pcr
时,必有总势能θ=0。对于多自由度体系,结论仍然成立。
2)能量法
•在新的平衡位 置各杆端的相 对水平位移
A
YA=Py1/l
y1
Bk
R1=ky1
y2
kC
R2=ky2
Dλ P YD=Py2/l
l
l
l cos
2l sin 2
2
1 2
l能①2量给法出12步新l(骤的ly )平:2 衡 形12 式yl 2 ;②写出
体系具有足够的应变能克服荷载势能,使压杆恢复到原有平
衡位置)当θ=0,Π为极小值0。
对于稳定平衡状态,真实的位移使Π为极小值
2)P>k/l ,当θ≠0,Π恒小于零(Π为负定) (即U<UP表示体系缺 少足够的应变能克服荷载势能,压杆不能恢复到原有位置) 。当 θ=0,Π为极大值0。原始的平衡状态是不稳定的。
对于具有n找个新自的由平度衡的位结置构,,列新平的衡平方衡程形,式需E要I=∞n个独立的位
l
移参数确定,由在此新求的临平界衡荷形载式。下也可列出n个独立的平衡方程,
它们是以n个独立的位移参数为未知量的齐次代数方θ程组。根据
临P(l界Pl状Mkk态)A的静00 力θ特=0征,,原该始齐平次衡方程组除零解转外动(刚对应于原有平
结构稳定理论-概述
实际工程中,某些结构失稳时,荷载方向将发生变化,这 样的体系属于非保守体系,荷载所作的功,与其作用的路径有 关。非保守体系的稳定问题常根据动力准则来进行分析。
内力功 δWi 等于体系弹性势能增量 δU 的负值,即:δWi = −δU 平衡条件: δπ = δ (π e + U ) = 0
π 为体系的总势能,π = π e + U = U − We
平衡状态时,体系总势能的一阶变分为零,总势能为驻值——总势能驻值原理。 平衡状态的稳定性通过总势能的二阶变分 δ 2π 确定。 稳定的平衡状态时,总势能为最小值——总势能最小原理。
美国Connecticut州 Hartford城一体育 馆网架,1978年1 月大雨雪后倒塌。
工程概况: 91.4m×109.7m网架, 四个等边角钢组成的 十字形截面杆件。 破坏原因: 只考虑了压杆的弯曲 屈曲,没有考虑弯扭 屈曲。
宁波一39.8m跨度轻钢门式刚架施工阶段倒塌。
破坏原因:施工顺序不当、未设置必要的支撑等。
结构稳定理论
一、结构稳定问题概述 二、结构稳定计算的近似分析方法 三、轴压杆的弯曲稳定 四、杆的扭转屈曲与梁的弯扭屈曲 五、压杆的扭转屈曲与弯扭屈曲 六、压弯杆的弯曲屈曲 七、刚架的稳定 八、薄板的屈曲
参考书目:
1. 周绪红,结构稳定理论,高等教育出版社,2010 2. 陈骥,钢结构稳定理论与设计,科学出版社,2008 3. 李存权,结构稳定和稳定内力,人民交通出版社,2000
(三)跃越失稳 平衡→失稳(失去承载力)→新的平衡
整体稳定与局部稳定的关系
整个结构的稳定问题属于结构的整体稳定; 结构中一个构件的稳定问题属于构件的整体稳定; 构件中的一块板件的稳定问题属于构件的局部稳定; 整体稳定与局部稳定会发生耦合作用,但是谁先谁后对结构 (构件)发生失稳的意义截然不同。
结构稳定理论2
We Wi
We 为外力在虚位移上作的功,即外力虚功; Wi 为内力在虚位移上作的功,即内力虚功。
用应变能和外力势能来表示:
Ep (E W ) 0
E p —— 为总势能; E —— 为应变能;
W —— 为外力势能;
0
E
EI 2
l
0
2a1(l 3x) 6a2 (l
2x)x
2 dx
EI 2
(4l 3a12
8l 4a1a2
4.8l5a22 )
外力势能
W F l y/ 2 dx 20
W F 2
l 0
a1(2l
3x)x a2 (3l
4x)x2
2.4 瑞利—里兹法
瑞利—里兹法:建立在势能驻值原理基础上的近似方法, 用求解代数方程式代替求解微分方程。
假设体系在中性平衡时,沿坐标轴x,y,z方向的位移分量分 别为:
n
其中,ai ,bi , ci 是3n个独立
u aii (x, y, z)
参数,成为广义坐标;
i 1
2 dx
F 2
(0.1333l 5a12
0.2l 6a1a2
0.0857l7a22 )
压杆的总势能: EP E W
令:
EP a1
(4EI 0.1333Fl2 )l3a1 (4EI 0.1Fl2 )l 4a2
0
EP a2
(4EI 0.1Fl2 )l 4a1 (4.8EI 0.085Fl2 )l5a2
2 dx
由临界荷载的基本方程: W Es
结构稳定理论复习思考题
结构稳定理论复习思考题1、平衡稳定性的三个基本准则是什么?根据这三个准则,求结构稳定临界荷载方法有哪些?求解临界荷载是在结构原来的位图上求解还是在变形后位图上求解?答:三个基本准则:静力准则、能量准则、动力准则。
求临界荷载方法:静力平衡法、能量方法、动力方法。
必须采用结构产生变形后的计算图形来建立平衡方程和其总势能表达式。
P112、结构稳定问题有哪些类型?答:稳定问题根据荷载-位移和荷载-变形曲线不同分为两类:1)第一类稳定问题,具有平衡分枝点的稳定问题。
属于这类稳定问题的有:轴压杆的弯曲屈曲、轴压杆和压弯杆件的弯扭屈曲、在腹板平面内受荷的梁的侧扭屈曲以及在板平面内受轴压荷载和剪切荷载的薄板的弯曲屈曲等。
在临界荷载Per以前,属稳定平衡;在临界荷载Per以后,进入不平衡状态。
2)第二类稳定问题,无平衡分枝的稳定问题。
属于这类稳定问题的有:压弯杆件在弯矩作用平面内的稳定。
上升段是稳定的,下降段是不稳定的,转折点即不稳定平衡的临界状态,用极限荷载Pn表示。
3)跌越失稳3、结构稳定问题与结构强度问题的有何区别?答:1)强度问题,是指结构或单个构件在稳定平衡状态下由荷载所引起的最大应力(或内力)是否超过建筑材料的极限强度,因此是一个应力问题。
2)稳定问题,主要是要找出外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态,从而设法避免进入该状态,因此,它是一个变形问题。
3)强度问题可以采用一阶或二阶分析结构内力,而稳定问题必然是二阶分析,其外荷载与变形间呈非线性关系,叠加原理不能应用。
4、理想轴压杆小挠度理论和大挠度理论有哪些不同?根据你的理解,理想轴压杆大挠度理论最适合用于分析夏志斌教授《结构稳定理论》书中P29图1-5中哪个阶段的轴压杆的力学行为?答:从P/P E-3/I关系曲线分析不同点:1)大挠度理论,在P/P E>1,时,与小挠度理论的差别是能得到相应于屈曲后强度的曲线;2)小挠度理论的分枝荷载代表了由稳定平衡到不稳定平衡的分枝点,而大挠度理论的分枝荷载则是由直线稳定平衡状态到曲线稳定平衡状态的分枝点。