结构稳定理论课件

合集下载

《结构稳定理论》课件

《结构稳定理论》课件

02
它通过比较实际的安全系数与规定的最低 安全系数来评估结构的稳定性。
03
稳定性安全系数法通常用于评估结构的整 体稳定性,如边坡和土坝等。
04
该方法还可以用于评估结构的局部稳定性 ,如桥梁和建筑物的支撑结构等。

PART 04
结构稳定性的实验研究
实验设备与实验方法
实验设备
高精度测力计、加速度计、位移 计、高速摄像机、数据采集系统 等。
环境条件
温度、湿度、腐蚀等环境因素 也会对结构的稳定性产生影响

结构失稳的判据
平衡分岔
当结构受到的外力作用达到一定值时 ,平衡状态发生分岔,出现多个可能 的平衡状态。
极值点失稳
结构在达到某一极值点时失去稳定性 ,发生屈曲或失稳。
跳跃失稳
当结构受到的外部扰动达到一定阈值 时,结构会发生跳跃式失稳。
局部失稳
结构的稳定性是结构设计中的重要因素,直接关 系到结构的安全性和可靠性。
影响结构稳定性的因素
材料的性质
材料的弹性模量、泊松比、剪 切模量等物理性质对结构的稳
定性有重要影响。
结构的形状和尺寸
结构的几何形状、尺寸和比例 等因素对稳定性有显著影响。
外力作用
外力的大小、方向和作用点等 都会影响结构的稳定性。
实验结论与建议
结论
通过实验研究,总结出结构稳定性的 基本规律和影响因素,为实际工程应 用提供指导。
建议
针对不同应用场景和需求,提出相应 的结构设计建议,以提高结构的稳定 性和安全性。同时,建议进一步开展 相关研究,不断完善结构稳定理论体 系。
PART 05
结构稳定性的工程实例
桥梁结构的稳定性分析
02

结构稳定理论第五章

结构稳定理论第五章
式中:
1G k2 I E 2M 0 Iy G k2 I E 2M 0 Iy 2E M yE 0 2 II (f)
2G k2 E I2 M 0 Iy G k2 E I2 M 0 Iy 2E M yE 0 2 II(g)
根据简支边界条件,由(e)式可得积分常数A、B、C和D的 线性齐次代数方程为:
K Azr2 d A 2 M xy
( 5 - 1 ) 6
—华格纳效应系数;
r (xx0)2(yy0)2 -剪力中心到截 意面 点 B(上 x,y)任 的距离
(6-15)式中第一项是外力引起的弯矩Mx在屈曲弯扭变 形时所作的功。
2020/4/10
(6-15)式中第二项是由于截面扭转使弯曲正应力z方 向偏斜,由其水平分力形成抵抗扭矩所引起的应变能, K‘称为华格纳(H. Wagner)效应。
EIyuIVPu"(Py0 Mx)"0
EIxvIVPv"(Px0 My)"0
EIIV(PC2rGkI2Mxy
2Myx)"
(4-49)
(Py0 Mx)u"(Px0 My)v"0
将P=0、My=0和Mx=-M0代入(4-49)式得:
2020/4/10
E E yu IIIIV V M (G ok" I2 0M 0y)"M 0u"0 ( 53)
z N d 2 d d s z 1 2 [ z u '2 2 ( y y 0 )u " ( x x 0 ) 2 '2 ( y y 0 ) 2 '2 ] ( d )
U 3 0 lA M 2 I x x y [ u '2 2 (y y 0 )u " (x x 0 )'2 (y y 0 )2'2 ] dA ( e )d

结构稳定理论(第2版)

结构稳定理论(第2版)
在该教材修订过程中,高等教育出版社和重庆大学给予支持,使用该教材的兄弟院校、工程界同行给予了意 见和建议。
2022年3月7日,《结构稳定理论(第2版)》由高等教育出版社出版发行。
内容简介
《结构稳定理论(第2版)》共计9章,第1章介绍结构稳定问题概述,第2章介绍结构稳定计算的能量法,第 3章介绍轴心受压杆件的整体稳定,第4章和第5章介绍杆件的扭转与梁的弯扭屈曲、受压杆件的扭转屈曲与弯扭 屈曲,第6章和第7章介绍压弯杆件在弯矩作用平面内的稳定、刚架的稳定,第8章和第9章介绍拱的平面内屈曲以 及薄板的屈曲等内容。
郑宏,男,哈尔滨人,工学博士,长安大学建筑工程学院教授,研究生导师。研究领域:钢结构基本理论及 其应用、结构稳定理论、结构抗震及减震。
石宇,工学博士,重庆大学土木工程学院教授,硕士生、博士生导师。研究方向:钢结构基本原理及其应用、 钢—混凝土组合结构。
感谢观看
教材目录
(注:目录排版顺序为从左列至右列)
教学资源
《结构稳定理论(第2版)》的数字课程与纸质教材一体化设计,内容涵盖教学课件、动画、失稳案例分析、 练习题及答案等。
《结构稳定理论(第2版)》配有数字化资源。
作者简介
周绪红,男,1956年9月出生,汉族,湖南南县人,工学博士,中国工程院院士,日本工程院外籍院士,重 庆大学钢结构工程研究中心主任,重庆大学土木工程学院教授。研究方向:钢结构、钢-混凝土混合结构、高层结 构、大跨结构、桥梁结构、风电结构。
结构稳定理论(第2版)
3月高等教育出版社出版的图书
01 成书过程
03 教材目录 05 作者简介
目录
02 内容简介 04 教学资源
《结构稳定理论(第2版)》是由周绪红主编,高等教育出版社于2022年3月7日出版的“十二五”普通高等 教育本科国家级规划教材,新世纪土木工程系列教材。该教材可作为高等学校土木工程专业高年级本科生及相关 专业研究生教材,也可供相关专业教师和工程技术人员参考。

钢结构稳定理论-2

钢结构稳定理论-2

有:A 0 B 1 C 0 D 0
Ak 1 Bk 0 C 0 0
A
sin
kl
B
cos
k
l
Cl
D
0
Ak cos kl Bk sin kl C 0 0
为使关于A、B、C、 D的齐次方程组有非 0解,则其系数行列 式应为0。
0
1 01
k sin kl
0 10 0
cos kl l 1
挠度关系; ❖ 大挠度理论使用了弹性假设,因此屈曲后荷载有所提
高,但当挠度达到构件长度3%以上时,跨中弯曲应 力将使截面进入弹塑性状态,出现下降段,如上图所
示。因此轴心压杆的屈曲后强度提高时没有意义的。
§2-4 理想轴心压杆的弹塑性屈曲
(inelastic buckling)
1)理想弹性轴压杆屈曲的适用范围
§2-2 理想轴压杆的弹性屈曲(perfect columns)
1)理想轴压杆的欧拉临界力Euler critical load
基本假设: ❖ 同一材料制成的等截面直杆,两端铰接; ❖ 荷载作用在截面形心上; ❖ 平截面假定,仅考虑弯曲变形(忽略剪切变形); ❖ 材料为弹性;
❖ 构件变形非常微小(小挠度理论 y 1 )。
采用图形曲线法得: kl 1.43 k 1.43
l
Pcr
1.43
l
2
EI
2EI
(l /1.43)2
2EI
(0.7l)2
❖ 工况三:一端嵌固、一端自由的轴心压杆
y x0 0, y' x0 0
y'' xl 0, y''' xl k 2 y' xl 0
有: B D 0 Ak C 0 Ak 2 sin kl Bk 2 cos kl 0 Ak3 cos kl Bk 3 sin kl k 2 ( Ak cos kl Bk sin kl C) 0

受压构件的稳定(结构稳定原理)

受压构件的稳定(结构稳定原理)

127第2章 受压构件的稳定2.1 轴心受压构件的稳定轴心压杆就其自身的截面形状和尺寸而言,有较长细的杆,也有较中短的杆,这可用长细比i l /0=λ来表达。

对于长细比大的长细压杆,可以认为是在弹性范围内失稳;对于长细比小的中短杆件,则可能是在弹塑性范围内失稳。

因此,应该分别按弹性范围和弹塑性范围来分析理想轴心压杆的临界荷载。

2.1.1 理想轴心压杆的弹性稳定用理想轴心压杆的欧拉荷载E P 除以杆件的截面积A ,可得轴心压杆欧拉临界应力22202)/(λππσE i l E A P E cr===,式中i 为回转半径,AIi =。

由此可计算出应力值为材料比例极限p σ时的长细比p λ,并以此作为长细杆和中短杆的分界;压杆的长细比大于p λ时称为长细杆或大柔度杆,长细比小于p λ时称为中短杆或小柔度杆。

对于理想轴心压杆来说,长细杆是在弹性范围内工作的,所以压杆的稳定分析为弹性稳定问题。

通过弹性压杆的静力平衡条件,可以建立理想轴心压杆的平衡微分方程式,解平衡微分方程则可求得轴心压杆的临界荷载。

下面来看几个边界条件不同的理想轴心压杆的弹性稳定分析。

1)一端固定一端铰接的压杆 (1)用静力法求解如图2-1所示一端固定一端铰接的等截面轴心受压弹性直杆,设其已处于新的曲线平衡形式,则取任意截面的弯矩为)(x l Q Py M -+-=式中Q 为上端支座反力。

由y EI M ''-=,压杆挠曲线的平衡微分方程为:)(x l Q Py y EI -+-='' 图2-1一端固定一端铰接压杆128即 )(x l EIQ y EI P y -=+'' (2.1) 令EIPk =2,则有 )(22x l PQk y k y -=+'' (2.2) 此微分方程的通解为)(sin cos x l PQkx B kx A y -++= (2.3) 式中A 、B 为积分常数,Q /P 也是未知的。

钢结构稳定原理ppt课件

钢结构稳定原理ppt课件
2 0 稳定平衡状态 2 0 不稳定平衡状态 2 0 由3阶变分判定
2016《钢结构稳定原理》
02.1 典型算例1
【典型算例1】 能量法
UVUW
r2 /2Nl1cos
r N ls in 0
小变形状态下
sin
N cr
r l
【思考02.1】请根据最小势能原理判别 变形后的平衡状态是否稳定?
同济大学建筑工程系
2016《钢结构稳定原理》
04.2 平衡方程
A. 两端铰接理想压杆的平衡方程
基本假定:
z
z
等直杆;弹性;小变形;
平截面;荷载作用在形心;
N
由内外弯矩的平衡可得:
N
Mx内EIxv M x外 Nv
EIxvNv0
【思考04.1】右图压杆失稳后,支座处有没有 水平反力?画出右图压杆变形后的弯矩图和剪 力图;压杆中的剪力是如何产生的?
典型焊接残余应力分布
平板
工字形截面
纵向残余应力; 焊缝处后冷却,为残余拉应力; 残余应力在截面上自平衡;
同济大学建筑工程系
2016《钢结构稳定原理》
04 轴压构件的弯曲失稳
可编辑课件PPT
42
04.1 失稳形式
轴压构件整体失稳形式
➢弯曲失稳: H型截面柱
➢扭转失稳 十字截面柱
➢弯扭失稳 T型截面柱
大应力,原因:
fy fe
fp
(1)fe、fp、fy非常接近,三者合一,可认
为弹性与塑性的分界点;
(2)fy以后,塑性变形很大,一旦超载,易 o 被发现加固补救;
(3)fy 发展到fu,有很大一段区域,可作为 fy 强度储备,称fu/fy为强屈比,要求大于1.2

钢结构稳定理论

钢结构稳定理论
钢结构稳定理论
❖ 与上一章讲的初弯曲、初偏心的影响相类似,δ0相当 于初弯曲和初偏心的影响。
钢结构稳定理论
❖ 弹性分析时,当δ→∞时,P=PE,即压弯杆件的弹性承
载力为PE。 下面给出证明:
0
1
1 P/
PE
P
PE
(1
0
)
(a)
dP
d
0
PE0 (1) 2
0
代入(a)式中,得:
P PE
❖ 本节为简支的压弯构件,其它边界条件时,求解方法 类似,结论类似。
y
i
d
dx
y
y
dx
y点处伸长 ❖ 中和轴以外为
量为y dθ
拉,以内为压
钢结构稳定理论
3)数值积分法(压杆挠曲线法)
❖ 具有初弯曲的压弯构件,假设条件最少,可适用于任 意情况。
❖ 截面上内弯矩:
M内=-A EyIyj'd' Aj
弹性阶段 弹塑性阶段
有正负 拉+,压-
钢结构稳定理论
❖ 具体求解过程如下: 1. 将压杆沿长度分成n段;
§4-1 有横向荷载作用的压杆的弹性弯 曲变形和稳定临界力
❖ 横向荷载 集中荷载 均布荷载
钢结构稳定理论
1)横向集中荷载作用的压弯构件
❖ 当0<x≤l/2时,平衡方 程为:
M Py Q x
即:
2
EIy''Py Qx / 2
y''k 2 y Qx /(2EI )
❖ 所以方程的通解为:
其中:k 2 P / EI
✓ 当横向荷载不同时,弯矩的放大系数也有所不同。
钢结构稳定理论
2)弹性压弯构件平面内弯曲承载力验算

结构稳定概述(结构稳定原理)

结构稳定概述(结构稳定原理)

第1章结构稳定概述工程结构或其构件除了应该具有足够的强度和刚度外,还应有足够的稳定性,以确保结构的安全。

结构的强度是指结构在荷载作用下抵抗破坏的能力;结构的刚度是指结构在荷载作用下抵抗变形的能力;而结构的稳定性则是指结构在荷载作用下,保持原有平衡状态的能力。

在工程实际中曾发生过一些由于结构失去稳定性而造成破坏的工程事故,所以研究结构及其构件的稳定性问题,与研究其强度和刚度具有同样的重要性。

1.1 稳定问题的一般概念结构物及其构件在荷载作用下,外力和内力必须保持平衡,稳定分析就是研究结构或构件的平衡状态是否稳定的问题。

处于平衡位置的结构或构件在外界干扰下,将偏离其平衡位置,当外界干扰除去后,仍能自动回到其初始平衡位置时,则其平衡状态是稳定的;而当外界干扰除去后,不能自动回到其初始平衡位置时,则其平衡状态是不稳定的。

当结构或构件处在不稳定平衡状态时,任何小的干扰都会使结构或构件发生很大的变形,从而丧失承载能力,这种情况称为失稳,或者称为屈曲。

结构的稳定问题不同于强度问题,结构或构件有时会在远低于材料强度极限的外力作用下发生失稳。

因此,结构的失稳与结构材料的强度没有密切的关系。

结构稳定问题可分为两类:第一类稳定问题(质变失稳)—结构失稳前的平衡形式成为不稳定,出现了新的与失稳前平衡形式有本质区别的平衡形式,结构的内力和变形都产生了突然性变化。

结构丧失第一类稳定性又称为分支点失稳。

第二类稳定问题(量变失稳)—结构失稳时,其变形将大大发展(数量上的变化),而不会出现新的变形形式,即结构的平衡形式不发生质的变化。

结构丧失第二类稳定性又称为极值点失稳。

无论是结构丧失第一类稳定性还是第二类稳定性,对于工程结构来说都是不能容许的。

结构失稳以后将不能维持原有的工作状态,甚至丧失承载能力,而且其变形通常急剧增加导致结构破坏。

因此,在工程结构设计中除了要考虑结构的116强度外,还应进行其稳定性校核。

1.1.1 第一类稳定问题首先以轴心受压杆来说明第一类稳定问题。

结构稳定理论与设计-2(110303)

结构稳定理论与设计-2(110303)
例题图 无限自由度轴心压杆
7 23 U V 4EIa l Pa1 l 3
2 1
2.1 轴心受压构件的弯曲失稳
2.1.1 理想轴心受压构件的弹性弯曲失稳 能量法: 用里兹法求解图示轴心受压构件 的临界荷载Pcr。 d 0 由势能驻值原理 da1
4EIl 1.714EI P 3 cr 3 7l l 2 级数、 三角函数! 1.358EI Pcr 精确解 2 l 例题图 无限自由度轴心压杆
切线模量理论采用如下假定: ①杆件是挺直的; ②杆件两端铰接,荷载沿杆轴 线作用; ③杆件产生微小的弯曲变形 (小变形假定); ④弯曲前的平截面弯曲变形后 仍为平面; ⑤弯曲变形时全截面没有出现 反号应变?
Pt
2 Et I
l0
2
2 Et t 2
2.1 轴心受压构件的弯曲失稳
2.1.2 理想轴心受压构件的非弹性弯曲失稳 2.双模量理论
挠曲线方程成为:
y A sin kz Cz
z l 由 ; y 0
z l 得 y 0
A sin kl Cl 0 Ak cos kl C 0
为一关于A、C 的线形齐次方程组,为使其有非零解
(否则 y 0),则必有其系数行列式等于零,即:
2.1.1 理想轴心受压构件的弹性弯曲失稳
静力法:
2) 柱的高阶微分方程(对其他支承及荷载情况)
考虑图示杆件承受一组竖向力系, 由脱离体的平衡可得:
EIy Fy M A Vz
对上式求导两次可消去 等式右端的杆端约束力:
EIy Fy 0
2.1 轴心受压构件的弯曲失稳
sin kl
l
k cos kl 1

结构稳定理论

结构稳定理论

1.理想压杆:受压杆件两端铰支荷载作用于形心轴,杆轴线沿杆长完全平直,横截面双轴对称且沿杆长均匀不变,杆件无初应力,材料符合胡=胡克定律2.极限状态:承载能力极限状态和正常使用极限状态。

3.保守力:如果力在它作用的任意可能位移上所做的功与力作用点移动路径无关,只依赖与移动的起点和终点。

4.势能驻值原理与最小势能的区别:势能驻值原理方法比较简单,但从教学角度δp=0只是平衡条件,它不表示从稳定平衡过度到不稳定平衡的临界条件,而最小势能原理方法更加严密。

(势能驻值原理:虚位移,基本条件δp=0)5.伽辽金法瑞利-里兹法的区别:①瑞利里兹法只需要满足几何边界条件即可,而伽辽金法需要满足几何边界条件,力学边界条件;②伽辽金法直接与微分方程相联系,而瑞利里兹法需要写出体系的总势能。

6.计算长度系数μ,将非两端铰支的理想轴心压杆构件,临界荷载公式换算成相当于两端铰支理想轴心压杆构件,求解临界荷载的形式的所利用的计算长度,几何意义:杆件绕由曲线上两反弯点的间距7.自由度:用来表示约束条件允许的体系,可能变形时所必须的独立几何参数的数目。

8.柱子曲线:临界应力δcr与长细比的关系曲线,可作为轴心受压构件设计的依据。

9.残余应力:降低比例极限,使柱子提前出现弹塑性屈曲,当超过比例极限后,残余应力使杆件应力应变曲线,同时减小了截面的有效面积和有效惯性矩,从而降低了刚度和稳定性。

10.翘曲:非圆形截面的杆件扭转时,截面处绕杆件轴线转动外,截面上个点还会发生不同的轴向位移而使截面出现凹凸,不像圆截面杆件那样扭转后不保持平面。

11.影响弯曲荷载Mor的因素:①截面的形状,尺寸。

②截面的残余应力。

③初始几何缺陷。

④荷载类型及其作用特点。

⑤构件端部和侧向支撑条件。

12.梁的弯曲屈曲5个假设:①构件为各向同性完全弹性体,②弯曲和扭转时,构件截面形状不变,③小变形(侧面)。

④构件为等截面无截面。

⑤主弯矩作用平面内刚度很大,屈曲前变形对弯扭屈曲的影响的忽略。

结构力学稳定理论

结构力学稳定理论
1)3于结)当中论P体性:=系k平/l处,衡于当(稳θ临为定界任平状意衡态值状)时态这,时时Π,的恒其荷等总载于势称零能为(必即临为U界=最U荷小P载) 。。Pc体r=k系/l处。 2)临P<界Pc状r 态Π的能量特征是:P=势P能cr 为Π驻值δΠ=0 ,P且>P位cr移Π有非零
解。即在荷载达到临界值前后,总势能由正定过渡到非正定θ。 3)如以原始平衡位置作为参考状态,当体θ系处于中性平衡P=Pcr
时,必有总势能θ=0。对于多自由度体系,结论仍然成立。
2)能量法
•在新的平衡位 置各杆端的相 对水平位移
A
YA=Py1/l
y1
Bk
R1=ky1
y2
kC
R2=ky2
Dλ P YD=Py2/l
l
l
l cos
2l sin 2
2
1 2
l能①2量给法出12步新l(骤的ly )平:2 衡 形12 式yl 2 ;②写出
体系具有足够的应变能克服荷载势能,使压杆恢复到原有平
衡位置)当θ=0,Π为极小值0。
对于稳定平衡状态,真实的位移使Π为极小值
2)P>k/l ,当θ≠0,Π恒小于零(Π为负定) (即U<UP表示体系缺 少足够的应变能克服荷载势能,压杆不能恢复到原有位置) 。当 θ=0,Π为极大值0。原始的平衡状态是不稳定的。
对于具有n找个新自的由平度衡的位结置构,,列新平的衡平方衡程形,式需E要I=∞n个独立的位
l
移参数确定,由在此新求的临平界衡荷形载式。下也可列出n个独立的平衡方程,
它们是以n个独立的位移参数为未知量的齐次代数方θ程组。根据
临P(l界Pl状Mkk态)A的静00 力θ特=0征,,原该始齐平次衡方程组除零解转外动(刚对应于原有平

结构稳定理论2

结构稳定理论2
势能驻值原理就是由虚位移原理导出来的。
We Wi
We 为外力在虚位移上作的功,即外力虚功; Wi 为内力在虚位移上作的功,即内力虚功。
用应变能和外力势能来表示:
Ep (E W ) 0
E p —— 为总势能; E —— 为应变能;
W —— 为外力势能;
0
E
EI 2
l
0
2a1(l 3x) 6a2 (l
2x)x
2 dx
EI 2
(4l 3a12
8l 4a1a2
4.8l5a22 )
外力势能
W F l y/ 2 dx 20
W F 2
l 0
a1(2l
3x)x a2 (3l
4x)x2
2.4 瑞利—里兹法
瑞利—里兹法:建立在势能驻值原理基础上的近似方法, 用求解代数方程式代替求解微分方程。
假设体系在中性平衡时,沿坐标轴x,y,z方向的位移分量分 别为:
n
其中,ai ,bi , ci 是3n个独立

u aii (x, y, z)
参数,成为广义坐标;
i 1

2 dx

F 2
(0.1333l 5a12

0.2l 6a1a2

0.0857l7a22 )
压杆的总势能: EP E W
令:
EP a1
(4EI 0.1333Fl2 )l3a1 (4EI 0.1Fl2 )l 4a2
0
EP a2
(4EI 0.1Fl2 )l 4a1 (4.8EI 0.085Fl2 )l5a2
2 dx
由临界荷载的基本方程: W Es

结构稳定理论绪论.ppt

结构稳定理论绪论.ppt
4.陈骥 钢结构稳定理论与设计,科学出版社,2003。 5.李存权 结构稳定和稳定内力,人民交通出版社,2000 6.吴连元 板壳稳定性理论,华中理工大学出版社,1996
结构稳定理论 福州大学土木工程学院 林翔
绪论
一。稳定与失去稳定的概念
狭义的概念: 稳定(Stability): 体系保持某种情形或状态 失稳(Instability):体系丧失某种情形或状态,通常是突然

sin


e
cos
l
(0 11)
线性化(0-11)得:
p

PL 2K




e
l

(0 12) 图0-15 荷载缺陷的影响
1 e e
1 p L L
(2 13)
结构稳定理论 福州大学土木工程学院 林翔
3。2 能量方法
U 1 K (2 )2
2
1 2L(1 cos )
图1-11 小球平衡位置附近稳 定性
结构稳定理论 福州大学土木工程学院 林翔
2。判别平衡稳定性的三个准则
2。1 静力准则
平衡稳定的静力准则可表达为:若结构系统处于某一平衡 状态,且与其无限接近的相邻位置也是平衡的,则这一平衡状 态是随遇的。用静力准则确定平衡分支荷载,首先要对新的平 衡状态建立静力平衡方程。这种在外荷载不变的情况下,考虑 干扰变形影响的静力平衡方程显然是对干扰状态的一组齐次方 程。这组方程如果存在非零解,就表示非零的干扰状态是另一 平衡位置,则原来的平衡状态处于随遇平衡状态,因而平衡稳 定问题便转化为在齐次边界条件下求解齐次方程组的特征值问 题。这样求得的状态对应于分支点A,最小特征值即为稳定性 问题的临界荷载。对应于每个特征值都可得到特征函数,即失 稳波形。用静力准则确定临界荷载的方法称为静力平衡法。静 力准则广泛应用于连续弹性体系稳定性问题的求解。

桥梁结构稳定理论演示文稿

桥梁结构稳定理论演示文稿
第20页,共59页。
第21页,共59页。
日期 6月
6月 8月6日 8月23日 8月27日
施工过程中杆件变形
构件 A3R、A4R、A7R、
A8R、A9R A8R、A9R
7L、8L 5R、6R
A9L
变形量/mm 1.5~6.5
19 19 13 57
第22页,共59页。
1907年 Quebec桥 第一次事故
根据能量准则,令 程:
,又 0 是任意的,则可得体系的平衡方
故有: P k 或 l sin
其中:
Pkp k l
稳定平衡判别:
sin 0
sin
Pkp P
1 cos
第52页,共59页。
2.0
1.8
1.6
1.4
平衡状态方程:
λ<1时,θ=0
λ=1时,θ=0
λ>1时,两个解
1.2
1.0
sin
线性屈曲分析
非线性屈曲分析
第5页,共59页。
参考教材
李国豪. 桥梁结构稳定与振动. 中国铁道出版社,1992
Timoshenko. S.P, Gere. J. Theory of Elastic Stability, 2nd. Ed. McGraw Hill Inc. 1961
刘光栋,罗汉泉. 杆系结构稳定. 人民交通出版设, 1988
论和折算模量理论;
➢ 1910年,Timoshenko导出了均匀受压两端铰支圆弧拱的屈曲临界 荷载公式;
➢ 1940年,符拉索夫(Vlasov)引入极值点失稳的观点以及跳跃现象
的稳定理论。
➢ 1947年,Shanley提出简化的弹塑性压杆模型。
➢ ………
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构稳定理论
Theory of Stability 李波
教材
陈骥. 钢结构稳定理论与设计(第五版). 科学出版社,2011
绪论
一.实践中的稳定现象
二.结构正常工作的条件是什么?
三.本课程的主要任务
四.为什么钢结构特别强调稳定性?
五.结构中稳定问题的类型
六.稳定问题的特点
七.稳定问题的求解方法
一.实践中的稳定现象
一.实践中的稳定现象
一.实践中的稳定现象
二.结构正常工作的条件是什么?
足够的强度;足够的刚度;足够的稳定性强度Strength :材料抵抗破坏的能力不会因材料的应力被超过而破坏
刚度Stiffness :材料抵抗变形的能力不会因结构的变形过大而失效
稳定Stability :结构维持其原有平衡形式的能力不会产生与原受力状态不符的另外的较大变形而破坏
三.本课程的主要任务
1.结构中几类受力构件(存在受压区)弹性平面变位的稳定理论;
2.考虑初始缺陷对稳定性能的影响;
3.结合规范介绍应用稳定理论解决钢结构设计中的稳定性问题
四.为什么钢结构特别强调稳定性
1.高强度材料的结构与低强度材料的结构相比;
2.薄壁结构与厚实结构相比;
3.主要受压的结构与主要受拉的结构相比
五.结构中稳定问题的类型
1. 平衡分岔失衡
自动
恢复
五.结构中稳定问题的类型
1. 平衡分岔失衡
P E
P E P E 无法自
动恢复v
五.结构中稳定问题的类型
2. 极值型失稳P
e 1
P v
e 2
五.结构中稳定问题的类型
3. 跃越失稳
六.稳定问题的特点
1. 必须考虑变形对荷载效应的影响
针对已变形的结构来分析它的平衡,二阶分析; 针对未变形的结构来分析它的平衡,一阶分析。

P
E P E
P E
2. 整体性的特点
结构的稳定性:结构的稳定不能就某个杆件去孤立地分析,而应当考虑其他杆件对它的约束作用,这种约束作用是要从结构的整体分析来确定。

六.
稳定问题的特点
F F
3.
多样性的特点 失稳的形态多种多样
六.稳定问题的特点
4. 叠加原理不再适用
叠加原理应用的前提是:
材料符合胡克定律;
六.稳定问题的特点
结构的变形很小,用一阶分析来计算。

稳定分析要进行二阶分析,所以叠加原理不再适用。

七.稳定问题的求解方法
1.平衡法
根据已产生了微小变形(失稳时的变形形态)后的结构的受力条件建立平衡方程,进行求解。

2.能量法
基于能量原理进行求解。

3.动力法
小扰动下,根据结构振动特性来确定。

七.稳定问题的求解方法例1:图示下端铰接,上端具有弹性支承的刚性杆。

抗位移的弹簧常数为k ,杆的长度为l ,在上端作用有F 集中荷载P 。

求其临界荷载l
θ
七.稳定问题的求解方法P 00.00=θ05.00=θcr P P
θ10.00=θ20
.00=θ30
.00=θ02π0θθ。

相关文档
最新文档