人教版九年级下册数学第一次月考试卷及答案
2012届湖北省黄石市第十六中学九年级下第一次月考数学试题及答案【新课标人教版】
一、选择题(本题共30分,每小题3分) 1.6的相反数是( )A .6-B .6C .16D .16- 2.计算32a a ÷的结果是( )A .5a B .1a - C .aD .2a3.若A B C D E F △∽△,ABC △与DEF △的相似比为1∶2,则ABC △与DEF △的周长比为( )A .1∶4B .1∶2C .2∶1D 4.我县今年毕业的九年级学生约为13500人,数据13500用科学记数法表示为( ) A .50.13510⨯B .31.3510⨯C .41.3510⨯D .313.510⨯5.抛物线2(1)1y x =-+的顶点坐标为( )A .(1,1)B .(1,1)-C .(1,1)-D .(1,1)-- 6.若相交两圆的半径分别为4和7,则它们的圆心距可能是 A .2 B .3 C . 6 D .117.在Rt△ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( )A B C .12D .2 8.如图,在⊙O 中,直径AB ⊥弦CD 于E ,连接BD ,若∠D =30°,BD =2,则AE 的长为( )A .2B .3C .4D .59.如图,在直角三角形ABC 中,斜边AB 的长为m ,40B ∠= ,则直角边BC 的长是( )A .sin 40mB .cos 40mC .tan 40mD .tan 40m10.如图,AB 为半圆的直径,点P 为AB 上一动点.动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t .分别以AP 与PB 为直径作半圆,则图中阴影部分的面积S 与时间t 之间的函数图象大致为( )二、填空题(本题共18分,每小题3分)11.“Welcome to Senior High School .”(欢迎进入高中),在这段句子的所有英文字母中,字母O 出现的频率是 .12.如图,⊙O 是△ABC 的外接圆,若∠OCB =40°,则∠A= °. 13.如图,在Rt△ABC 中,∠ACB =90°,∠B =30°,AB =4 .以斜边AB 的中点D 为旋转中心,把△ABC 按逆时针方向旋转α角(0120α︒<<︒),当点A 的对应点与点C 重合时,B ,C 两点的对应点分别记为E ,F ,EF 与AB 的交点为G ,△DEG 的面积为 .14.a 、b 为实数,且满足b >a >0, ab b a 422=+,则ba ba +-的值等于 ;15.如图所示,在△ABC 中,AC =7,BC =4,D 为AB 的中点,E 为AC 边上一点,且∠AED =90°+21∠C ,则CE 的长为 .16.已知一次函数y kx b =+,点P (n ,0)是x 轴上的一个动点,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数y=x 2-2x -3.的图象于N 。
最新人教版九年级数学第一次月考试题
九年级数学第一次月考试卷一.选择题(每小题2分,共12分)1.下列方程中,属于一元二次方程的是( )A.x 2+by+c=0.B.1522+=+x x xC.06432=++y y D.522=++x x x 2.抛物线y =x 2 –2x –3 的对称轴和顶点坐标分别是( )A .x =1,(1,-4)B .x =1,(1,4)C .x =-1,(-1,4)D .x =-1,(-1,-4)3.一元二次方程x(x-2)=x-2的根是( )A.0B.1C.1,2D.0,24.若关X 的一元二次方程036)1(2=++-x x k 有实数根,则实数k 的取值范围为( )A.k ≤4,且k ≠1B.k <4, 且k ≠1C. .k <4D. k ≤45如图是二次函数2y x 2x 4=-++的图象,使y 1≤成立的x 的取值范围是【 】5题图 6题图6抛物线y =ax 2+bx +c 的顶点为D (﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;②a +b +c <0;③2a-b =2;④方程ax 2+bx +c ﹣2=0有两个相等的实数根. 其中正确结论的个数为( )A . 0B . 1C . 2D . 3二.填空题(每题3分,共30分)7若0是一元二次方程016)1(22=-++-m x x m 的一个根,则m 取值为8.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,9、若关于x 的方程2x 2-3x+c = 0的一个根是1,则另一个根是 .10抛物线()42)2(22-++-=m x x m y 的图象经过原点,则=m .11.已知抛物线c x ax y ++=22与x 轴的交点都在原点右侧,则M (c a ,)在第 象限;12将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.13.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 .13题图14烟花厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间(s)t 的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为三.解答题。
初三数学第一次月考试卷及答案
九年级数学练习试卷(.10)注意事项:1.本试卷共27题,全卷满分120分,考试时间120分钟.2.考生必须在答题纸上各题指定区域内作答,在本试卷上和其他位置作答一律无效. 3.如用铅笔作图,必须把线条加黑加粗,描写清楚.一、填空题(本大题共有12小题,每小题2分,共计24分.不需写出解答过程,请把答案直接填写在答题纸相应位置上........) 1.在平行四边形ABCD 中,若∠A =60°,则∠D = ▲ °.2.在平行四边形ABCD 中,若AB=6cm,BC=8cm ,则平行四边形周长为 ▲ cm. 3. 数据-5,6,4,0,1,7,5的极差为 ▲ .4. 若等腰三角形ABC 中,AB =AC ,若∠A =50°,则∠B =____▲______°.5. 若菱形的两条对角线长分别为6和8,则该菱形的面积为 ▲ .6. 若直角三角形的两直角边长为5和12,则斜边上的中线长为 ▲ .7. 在等边三角形、正方形、菱形和等腰梯形这四个图形中,是轴对称图形的有 ▲ 个. 8. 若等腰梯形的上、下底边长分别是6、12,腰长是5,则这个梯形的高是 ▲ .9. 如图,△ABC 中,AB =6cm ,AC =5cm ,BC =4cm ,∠ABC 与∠ACB 的平分线相交于点O ,过点O 作DE ∥BC 交AB 于点D ,交AC 于点E ,则△ADE 的周长等于 ▲ cm . 10.如图,已知EF 是梯形ABCD 的中位线,△DEF 的面积为4cm 2,则梯形ABCD 的面积为 ▲ cm 2.11. 梯形的上底长为2,下底长为5,一腰为4,则另一腰m 的范围是 ▲ . 12. 点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC =6,AC =8,则线段EF 长的最小值为 ▲ .(第9题) A D E BF (第10题) FEPBAC(第12题)(第18题)二、选择题(本大题共有6小题,每小题3分,共计18分,在每小题所给出的选项中,恰有一项是符合题目要求的,请将正确选项的字母代号写在答题纸相应位置上.........) 13. 人数相等的甲、乙两班学生,参加了一次数学测验班级平均分和方差如下:x 甲=80,x 乙=80,S 甲2=240,S 乙2=200,则成绩较为稳定的班级为( ▲ )A .甲班B .乙班C .两班一样稳定D .无法确定14. 如图,在平面直角坐标系中,菱形OABC 的顶点C 的坐标是(3,4),则顶点A 、B的坐标分别是( ▲ ) A .(4,0)、(7,4) B .(5,0)、(8,4)C .(4,0)、(7,4)D .(5,0)、(8,4)15. 顺次连结一个四边形四条边的中点,所得的四边形是矩形,则原四边形一定是( ▲ )A .平行四边形B .对角线相等的四边形C .矩形D .对角线互相垂直的四边形. A. 2个B. 3个C. 4个D. 6个17. 一等腰梯形两组对边中点连线段的平方和为8,则这个等腰梯形的对角线长为( ▲ )AB .2C .D .418. 如图,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =4,AB =5,BC =6,点P 是AB 上一个动点,当PC +PD 的和最小时,PB 的长为( ▲ ) A .4B. 3C.2D. 1三、解答题(本大题共有9小题,共计78分.请在答题纸指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (6分)如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF ,∠ACB =∠DFE .(第14题)求证:AB ∥ED .20. (8分)如图,平行四边形ABCD 中,AE 、CF 分别平分∠BAD 和∠DCB ,交BC 、AD 于点E 和点F . 求证:(1)△ABE 是等腰三角形;(2)四边形AECF 是平行四边形.21. (8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六计算出甲的平均成绩是 ▲ 环,乙的平均成绩是 ▲ 环; (2)分别计算甲、乙六次测试成绩的方差; (3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由. (计算方差的公式:s 2=n1[22221)()()(x x x x x x n -++-+- ])22. (8分)已知:如图,锐角△ABC 的两条高BD 、CE 相交于点O ,且OB=OC .(1)求证:△ABC 是等腰三角形;(2)判断点O 是否在∠BAC 的角平分线上,并说明理由.A F DB E C(第20题)Ax23. (8分)如图,∠ACB =∠ADB =90°,M 、N 分别是AB 、CD 的中点.(1)求证:MN 垂直CD ;(2)若AB =10,CD =8,求MN 的长.24. (8分)在平面直角坐标系xOy 中,已知点P (3,4),点Q 在x 轴上,△PQO 是等腰三角形,在图中标出满足条件的点Q 位置,并写出其坐标.25. (10分)矩形纸片ABCD 中,AB =5,AD =4B ’处,折痕为AE ,点P 是AE 上的一点,且BP =BE ,连结B ’P . (1)求B ’D 的长;(2)求证:四边形BP B ’E 的形状为菱形;(第23题)NMDCBA(3)若在折痕AE 上存在一点到边CD 的距离与到点B 的距离相等,请直接写出此相等距离的值.26.(10分)如图,在梯形ABCD 中,∠B =900,AD ∥BC ,AB =14cm,AD =15cm , BC =24cm ,点P 从A 出发,沿AD 边向D 运动,速度为1cm/s ,点Q 从C 出发,沿CB 边向B 运动,速度为2cm/s ,其中一动点达到端点时,另一动点随之停止运动。
九年级下册数学 第一次月考数学试卷含答案解析
九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,记分1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。
2013-2014年云南省曲靖市麒麟区珠街二中九年级下第一次月考数学试卷及答案【新课标人教版】
云南省曲靖市麒麟区珠街二中2013-2014年下学期九年级第一次月考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分.)1.3-的绝对值是()A.3 B.3- C.13D.13-2.函数12yx=-中,自变量x的取值范围是()A.2x> B.2x< C.2x≠ D.2x≠-3.如图所示的几何体是由4个相同的小正方体组成.其主视图()A. B. C. D.4.下列计算正确的是()A.223a a a+= B.235a a a⋅= C.33a a÷= D.33()a a-=5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为()元A.59.310⨯ B.9103.9⨯ C.49310⨯ D.60.9310⨯6.如图,在平面直角坐标系xOy中,点P(3-,5)关于y轴的对称点的坐标为()A.( 3-,5-) B.(3,5) C.(3.5-) D.(5,3-)6题7题8题..A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC二、填空题(本大题共8个小题,每小题3分,共24分)9.分解因式:25x x- =________.10.已知x=3是方程260x x k-+=的一个根,则k=______.11.已知|2|0a-+,则b a=____________. 12题12.如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q .②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= .13.商店某天销售了ll件衬衫,其领口尺寸统计如下表:则这ll件衬衫领口尺寸的众数是________cm,中位数是________cm.14.如图,AB是⊙O的弦,OC⊥AB于C.若AB=,0C=1,则半径OB的长为______.15.下列说法:①对顶角相等;②打开电视机,“正在播放《新闻联播》”是必然事件;③若某次摸奖活动中奖的概率是15,则摸5次一定会中奖;14题图④想了解端午节期间某市场粽子的质量情况,适合的调查方式是抽样调查;⑤若甲组数据的方差s2=0.01,乙组数据的方差s2=0.05,则乙组数据比甲组数据更稳定.其中正确的说法是________________.(写出所有正确说法的序号)16.一组按规律排列的式子:a2,43a,65a,87a,….则第n个式子是________.三、解答题(本大题共6个小题,共72分)17.(8分)计算:(1)024cos45((1)π++-(2)先化简,再求值:(a+2)(a﹣2)+4(a+1)﹣4a,其中a=﹣1.18.(8分)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩19.(8分) 如图,在△ABC 中,AB=AC ,AD 是高,AM 是△ABC 外角∠CAE 的平分线. (1)用尺规作图方法,作∠ADC 的平分线DN ;(保留作图痕迹,不写作法和证明) (2)设DN 与AM 交于点F ,判断△ADF 的形状.说明理由。
初三数学第一次月考试题及答案
初三数学第一次调研测试试卷(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上;答案写在试卷上无效.3.作图必须用2B 铅笔;并请加黑加粗.第一部分 选择题(共18分)一、选择题(本大题共有6小题;每小题3分;共18分.在每小题所给出的四个选项中;恰有一项是符合题目要求的;请将正确选项的字母代号填涂在答题卡...相应位置....上) 1.13的相反数是 A .31- B .13C .-3D . 3 2.下列运算中;正确的是 A .xy y x 222=+ B .32)(1)(xy xy xy =÷ C .54232)(y x y x = D .xy yx xy =-323.口袋中装有形状、大小与质地都相同的红球2个;黄球1个;下列事件为随机事件的是A .随机摸出1个球;是白球B .随机摸出1个球;是红球C .随机摸出1个球;是红球或黄球D .随机摸出2个球;都是黄球4.如图;在⊙O 中;弦AC ∥半径OB ;若∠BOC =50°;则∠B 的大小为A .25°B .30°C .50°D .60° 5.一元二次方程2x 2+3x +1=0的根的情况是A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定6.如图;将正六边形ABCDEF 放入平面直角坐标系后;若点A 、B 、E的坐标分别为(a ;b )、(3;1)、(a ;-b );则点D 的坐标为 A .(1;3) B .(3;-1) C .(-1;-3) D .(-3;1)第二部分 非选择题(共132分)二、填空题(本大题共有10小题;每小题3分;共30分.请把答案直接填写在答题卡相应.....位置..上) 7. 9的平方根是 ▲ .8. 分解因式2x 2+4x +2= ▲ .(第4题图)A F BE (第6题图)D C A B A B C DEF M 9. 11233-等于 ▲ . 10.若关于x 的方程x 2+mx +5=0有一个根为1;则该方程的另一根为 ▲ .11.一组数据2、-2、4、1、0的极差是 ▲ .12.某圆锥体的底面周长为4π;母线长为3;则该圆锥体的侧面积是 ▲ .13.如图;⊙O 的内接四边形ABCD 中;∠A =105°;则∠BOD 等于 ▲ .14.如图;在□ABCD 中;E 、F 分别是AD 、CD 的中点;EF 与BD 相交于点M ;若△DEM的面积为1;则□ABCD 的面积为 ▲ .15.如图;Rt △ABC 中;∠ACB =90°;CD ⊥AB ;垂足为点D ;若AD =BC =1;则sin ∠A = ▲ .16.平面直角坐标系中;点A 、B 、C 的坐标分别为(1;0)、(3;4)、(m -1;2m +2);则△ABC 的面积为 ▲ .三、解答题(本大题共有10小题;共102分.请在答题卡指定区域内作答;解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分12分)计算或解不等式(1)21()3tan 301(3)2π--+︒---︒; (2)不等式31+x —21-x ≥1;并把它 的解集在数轴上表示出来.18.(本题满分8分)化简求值412212-÷⎪⎭⎫ ⎝⎛+-x x ;其中x 是方程04212=--x x 的解. 19.(本题满分8分)为了了解我校九年级学生的跳绳成绩;体育老师随机调查了该年级体育模拟考试中部分同学的跳绳成绩;并绘制成了如图所示的条形统计图和扇形统计图.请你根据图中提供的信息完成下列各题:(第13题图) (第14题图) (第15题图)O CB A D(1)被调查同学跳绳成绩的中位数是 ▲ ;并补全上面的条形统计图;(2)如果我校初三年级共有学生1800人;估计跳绳成绩能得8分的学生约有多少人?20.(本题满分8分)在一个不透明袋子中有1个红球和3个白球;这些球除颜色外都相同.(1)从袋中任意摸出2个球;用树状图或列表求摸出的2个球颜色不同的概率;(2)在袋子中再放入x 个白球后;进行如下实验:从袋中随机摸出1个球;记录下颜色后放回袋子中并搅匀.经大量试验;发现摸到白球的频率稳定在0.9左右;求x 的值21.(本题满分10分)学校准备添置一批课桌椅;原计划订购60套;每套100元。
九年级数学第一次月考试卷新人教版
九年级数学试题(考试时间:120分钟,满分:150分)亲爱的同学,这份试卷将记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光。
请认真审题,看清要求,仔细答题. 预祝你取得好成绩! 一 填空题(每小题3分,共36分)1.当x 时,二次根式x -3在实数范围内有意义。
2、方程220x x -=的解是3.已知a 是方程x 2-x-2=0的一个根,则代数式a 2-a 的值等于4.若一个三角形的三边长均满足方程x 2-6x+8=0,则此三角形的周长为 5.点P (-1,3)关于原点对称的点的坐标是6、请写出两个既是轴对称又是中心对称的图形7. 计算:(1)=⨯63_________ (2)=÷816 ______ 8、如图2,把△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是__________。
9.比较大小:63___13210.观察下列各式:31142-=,52193-=,731164-=,941255-=,…,请你将猜想的规律用含自然数(1)n n ≥的代数式表示出来 .11.一个三角形两边中点的连线叫做这个三角形的中位线.只要顺次连结三角形三条中位线,则可将原三角形分割为四个全等的小三角形(如图(1));把三条边分成三等份,再按照图(2)将分点连起来,可以看作将整个三角形分成9个全等的小三角形;把三条边分成四等份,……,按照这种方式分下去,第n个图形中应该得到_______个全等的小三角形.12.22__)(__-=+x -x x ABCB'A'D图2D EF 图(1)D EF 图(2)D EF 图(n )二选择题(每小题4分,共20分)在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确选项的代号填在各题后的括号中. 13、下列各式中,一定是二次根式的是( )A 、4-B 、32aC 、42+xD 、1-x14、用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -= B .2(2)2x += C .2(2)2x -=- D .2(2)6x -=15.下列图形中,既是轴对称图形又是中心对称图形的是( )16.若关于x 的一元二次方程022=+-m x x 没有实数根,则实数m 的取值范围是( ) A.m<1 B.m>-1 C.m>1 D.m<-117.某厂1月印科技书籍40万册,第一季度共印140万册,问2月、3月平均每月增长率是多少?设平均增长率为x ,则列出下列方程正确的是 ( )。
人教版九年级下册数学第一次月考试卷及答案
九年级第二学期数学第一次月考试卷时间:120分钟 总分:120分 姓名:一、选择题(本大题共 8小题,每小题3分,共24 分)1.绝对值是6的有理数是 ( ) A .±6 B .6 C .-6 D .61-2.计算42a a ⋅的结果是 ( ) A .5a B .6a C .62a D .8a 3.半径为6的圆的内接正六边形的边长是 ( ) A .2 B .4 C .6 D .84.如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为 ( )A .2πB .3πC .23πD .()123π+5.某校共有学生600名,学生上学的方式有乘车、骑车、步行三种. 如图是该校学生乘车、骑车、步行上学人数的扇形统计图.,乘车的人数是 ( ) A .180 B .270 C .150 D .200步行30%乘车45%图5骑车6.函数12y x =-的自变量X 的取值范围是 ( ) A . 2>x B .2<x C . 2≥x D .2≤x 7. 如右图, 是一个下底小而上口大的圆台形容器,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t ,容器内对应的水高度为h ,则h 与t 的函数图象 只可能是 ( )8. 如图所示的正方体的展开图是 ( )A. B. C. D.二、填空题(本大题共7 小题,每小题3分,共21分.)9、.若分式22123x x x -+-的值为零 , 则x = .10. 已知反比例函数ky x=的图象经过点(3,-4),则这个函数的解析式为 11 已知两圆内切,圆心距2d = ,一个圆的半径3r =,那么另一个圆的半径为 12.用科学记数法表示20 120427的结果是 (保留两位有效数字);h h h hA. B. C. D.13.二次函数2y x =的图象向右平移1个单位,再向下平移1个单位,所得图象的与X 轴的交点坐标是: ;14.如图,已知梯形ABCD ,AD ∥BC ,对角线AC ,BD 相交于点O ,△AOD 与△BOC 的面积之比为1:9,若AD =1,则BC 的长是 . 15. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 .三、解答题(本大题共10小题,共75分.解答应写出文字说明,证明过程或演算步骤.)17、(本小题5分)计算: 011271tan 60( 3.14)()2π---︒+--18. (本小题5分)先化简,再求值 xx x x x x x 6366122---+÷-+ 其中x=319. (本小题7分) 已知:如图,四边形ABCD 是平行四边形,BE AC ⊥于E ,DF AC ⊥于F .求证:BE DF =.20.(本小题7分). 为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭去年每个月的用水量,统计得到的数据绘制了下面的两幅统计图.图1是去年这50户家庭月总用水量的折线统计图,图2是去年这50户家庭月总用水量的不完整的频数分布直方图.(1)根据图1提供的信息,补全图2中的频数分布直方图;(2)在抽查的50户家庭去年月总用水量这12个数据中,极差是 米3,众数是 米3,中位数是 米3;(3)请你根据上述提供的统计数据,估计该住宅区今年每户家庭平均每 月的用水量是多少米3?FEDCBA月份550 500600 650 700 800 750 12 1 2 3 4 5 6 7 8 9 10 11 O•月总用水量(米3) • ••• • •• •• ••图121. (本小题7分)一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为57,求n的值.22. (本小题7分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2:(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.23.(本小题7分) 如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD 的高度,他们先在A 处测得古塔顶端点D 的仰角为45°,再沿着BA 的方向后退20m 至C 处,测得古塔顶端点D 的仰角为30°。
九年级下学期第一次月考数学试卷
九年级(下)第一次月考数学试卷一.选择题(共10小题,30分)1.﹣9的绝对值等于()A.﹣9 B.9 C.D.2.如图,某江段江水流向经过B、C、D三点拐弯后与原来方向相同,若∠ABC=125°,∠BCD=75°,则∠CDE的度数为()A.20°B.25°C.35°D.50°3.下列各式正确的是()A.6a2﹣5a2=a2B.(2a)2=2a2C.﹣2(a﹣1)=﹣2a+1 D.(a+b)2=a2+b24.如图是由若干个完全相同的小正方体组合而成的几何体,若将小正方体①移动到小正方体②的正上方,下列关于移动后几何体的三视图说法正确的是()A.左视图发生变化B.俯视图发生变化C.主视图发生改变D.左视图、俯视图和主视图都发生改变5.如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC6.关于x的分式方程的解为负数,则a的取值范围为()A.a>1 B.a<1 C.a<1且a≠2 D.a>1且a≠2 7.如图,⊙O中,ABDC是圆内接四边形,∠BOC=110°,则∠BDC的度数是()A.110°B.70°C.55°D.125°8.掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A.1 B.C.D.9.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,分析下列四个结论,其中正确结论的个数有()①abc<0;②3a+c>0;③(a+c)2<b2;④4ac﹣8a<b2.A.1个B.2个C.3个D.4个二.填空题(共6小题,18分)11.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km.用科学记数法表示1个天文单位是km.12.已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为cm2.13.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”则物价为.14.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=40x﹣2才能停下来.15.已知菱形ABCD在平面直角坐标系的位置如图所示,A(1,1),B(6,1),AC=4,点P是对角线AC上的一个动点,E(0,3),当△EPD 周长最小时,点P的坐标为.16.在菱形ABCD中,∠B=60°,BC=2cm,M为AB的中点,N为BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE,CE,当△CDE为等腰三角形时,线段BN的长为.三.解答题(共9小题,72分)17.先化简,再求值:(﹣x+1)÷,其中x=﹣2.18.已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.19.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离AB是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离CD是0.7米,看旗杆顶部E的仰角为45°.两人相距7米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF;(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据: 1.4, 1.7)20.某学校计划利用一片空地建一个花圃,花圃为矩形,其中一面靠墙,这堵墙的长度为12米,另三面用总长28米的篱笆材料围成,且计划建造花圃的面积为80平方米.那么这个花圃的长和宽分别应为多少米?21.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A (﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.22.如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=,CE=2,求CD的长.23.襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如表所示:有机蔬菜种类进价(元/kg)售价(元/kg)甲m 16乙n 18(1)该超市购进甲种蔬菜10kg和乙种蔬菜5kg需要170元;购进甲种蔬菜6kg和乙种蔬菜10kg需要200元.求m,n的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg进行销售,其中甲种蔬菜的数量不少于20kg,且不大于70kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60kg的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y(元)与购进甲种蔬菜的数量x(kg)之间的函数关系式,并写出x的取值范围;(3)在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2.5a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的盈利率不低于20%,求a的最大值(精确到十分位).24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:=;【结论应用】(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D 重合,若AB=2,BC=3.求折痕EF的长;【拓展运用】(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB 边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF=,请求BP的长.25.如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+b≤﹣n的取值范围.(直接写出结果即可)。
九年级下第一次月考数学试卷含答案解析
2018-2019学年江苏省无锡市江阴市马镇九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.﹣的绝对值是()A.﹣3 B.C.﹣D.32.计算﹣a2+3a2的结果为()A.2a2B.﹣2a2C.4a2D.﹣4a23.若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤34.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为()A.8,10 B.10,9 C.8,9 D.9,105.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.27.由五个小正方体搭成的一个几何体如图所示,它的俯视图是()A.B.C.D.8.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 9.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.()、(﹣)C.()、(﹣)D.()、(﹣)10.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.2二、填空题(本大题共8小题,每空2分,共18分.)11.因式分解:x2﹣3x=.12.已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于.13.命题“对顶角相等”的逆命题是命题(填“真”或“假”).14.关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是.15.若圆锥底面的直径为6cm,母线长为5cm,则它的侧面积为cm2(结果保留π).16.若把代数式x2+2bx+4化为(x﹣m)2+k的形式,其中m、k为常数,则k﹣m=,k﹣m的最大值是.17.如图,正方形ABCD的边长等于3,点E是AB延长线上一点,且AE=5,以AE为直径的半圆交BC于点F,则BF=.18.如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、3为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.三、简答题(本大题共10小题,共82分.)19.(1)计算:(3﹣π)0﹣3﹣2﹣+|﹣|+2tan60°(2)(1﹣)÷.20.(1)解方程:=;(2)解不等式组:.21.如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.22.某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题:组别分数段/分频数/人数频率1 50.5~60.52 a2 60.5~70.5 6 0.153 70.5~80.5 b c4 80.5~90.5 12 0.305 90.5~100.56 0.15合计40 1.00(1)表中a=,b=,c=;(2)请补全频数分布直方图;(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.23.盒子中有4个球,每个球上写有1~4中的一个数字,不同的球上数字不同.(1)若从盒中取三个球,以球上所标数字为线段的长,则能构成三角形的概率是多少?(2)若小明从盒中取出一个球,放回后再取出一个球,然后让小华猜两球上的数字之和,你认为小华猜和为多少时,猜中的可能性大.请说明理由.24.甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为45m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=.(1)求索道AB的长;(2)若乙游客在C处等了甲游客3分钟,求乙步行的速度.25.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.26.如图1,在平面直角坐标系中,点A、C分别在y轴和x轴上,AB∥x轴,sinC=,点P从O点出发,沿边OA、AB、BC匀速运动,点Q从点C出发,以1cm/s的速度沿边CO匀速运动.点P与点Q同时出发,其中一点到达终点,另一点也随之停止运动.设点P运动的时间为t(s),△CPQ的面积为S(cm2),已知S与t之间的函数关系如图2中曲线段OE、线段EF与曲线段FG给出.(1)则点P的运动速度为cm/s,点B、C的坐标分别为,;(2)求曲线FG段的函数解析式;(3)当t为何值时,△CPQ的面积是四边形OABC的面积的?27.如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?28.(1)数学爱好者小森偶然阅读到这样一道竞赛题:一个圆内接六边形ABCDEF,各边长度依次为3,3,3,5,5,5,求六边形ABCDEF的面积.小森利用“同圆中相等的弦所对的圆心角相等”这一数学原理,将六边形进行分割重组,得到图③.可以求出六边形ABCDEF的面积等于.(2)类比探究:一个圆内接八边形,各边长度依次为2,2,2,2,3,3,3,3.求这个八边形的面积.请你仿照小森的思考方式,求出这个八边形的面积.2015-2016学年江苏省无锡市江阴市马镇九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.﹣的绝对值是()A.﹣3 B.C.﹣D.3【考点】绝对值.【分析】根据负数的绝对值等于它的相反数即可求解.【解答】解:﹣的绝对值是,故选B【点评】考查了绝对值,计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.2.计算﹣a2+3a2的结果为()A.2a2B.﹣2a2C.4a2D.﹣4a2【考点】合并同类项.【分析】运用合并同类项的方法计算.【解答】解:﹣a2+3a2=2a2.故选:A.【点评】本题考查了合并同类项法则,解题的关键是掌握相关运算的法则.3.若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤3【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,a﹣3≥0,解得a≥3.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.4.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为()A.8,10 B.10,9 C.8,9 D.9,10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选:D.【点评】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.5.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】多边形内角与外角.【专题】计算题.【分析】设这个多边形是n边形,内角和是(n﹣2)180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A.B.C.D.2【考点】解直角三角形;坐标与图形性质.【分析】设(2,1)点是B,作BC⊥x轴于点C,根据三角函数的定义即可求解.【解答】解:设(2,1)点是B,作BC⊥x轴于点C.则OC=2,BC=1,则tanα==.故选C.【点评】本题考查了三角函数的定义,理解正切函数的定义是关键.7.由五个小正方体搭成的一个几何体如图所示,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上往下看立体图形得到的平面图,据此选择正确答案.【解答】解:俯视图是从上往下看物体的形状,该图的俯视图是4个小正方形排成一排组成.故选D.【点评】本题主要考查了简单组合体的三视图的知识,解答本题的关键是要掌握俯视图是从上往下看物体的形状,此基础题.8.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【考点】一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选D.【点评】此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.9.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.()、(﹣)C.()、(﹣)D.()、(﹣)【考点】矩形的性质;坐标与图形性质.【分析】首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.【解答】解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,延长CA交x轴于点H,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE=∠CHO,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴=,即=,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点C(﹣,4).故选D.【点评】此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.2【考点】相似三角形的判定与性质;勾股定理;圆周角定理.【专题】压轴题.【分析】连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出=,可解得DE的长,由AE=AD﹣DE求解即可得出答案.【解答】解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴=,即=,解得DE=,∴AE=AD﹣DE=5﹣=2.8.故选:B【点评】此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出△ABD∽△BED.二、填空题(本大题共8小题,每空2分,共18分.)11.因式分解:x2﹣3x=x(x﹣3).【考点】因式分解-提公因式法.【专题】因式分解.【分析】确定公因式是x,然后提取公因式即可.【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.已知方程2x2+4x﹣3=0的两根分别为x1和x2,则x1+x2的值等于﹣2.【考点】根与系数的关系.【分析】根据两根之和等于一次项系数与二次项系数商的相反数作答即可.【解答】解:∵方程2x2+4x﹣3=0的两根分别为x1和x2,∴x1+x2=﹣=﹣2,故答案为:﹣2.【点评】本题考查的是一元二次方程根与系数的关系,掌握两根之和等于一次项系数与二次项系数商的相反数,两根之积等于常数项除二次项系数是解题的关键.13.命题“对顶角相等”的逆命题是假命题(填“真”或“假”).【考点】命题与定理.【分析】先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.【解答】解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.14.关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是a>0.【考点】根的判别式.【专题】计算题.【分析】根据方程没有实数根,得到根的判别式小于0,求出a的范围即可.【解答】解:∵方程x2+a=0没有实数根,∴△=﹣4a<0,解得:a>0,故答案为:a>0【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.15.若圆锥底面的直径为6cm,母线长为5cm,则它的侧面积为15πcm2(结果保留π).【考点】圆锥的计算.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:圆锥的侧面积=π×6÷2×5=15πcm2.【点评】本题考查圆锥侧面积的求法.16.若把代数式x2+2bx+4化为(x﹣m)2+k的形式,其中m、k为常数,则k﹣m=﹣b2+b+4,k﹣m的最大值是.【考点】配方法的应用.【分析】首先把代数式x2+2bx+4变为x2+2bx+b2﹣b2+4,再进一步利用完全平方公式,把前三项因式分解化为(x﹣m)2+k的形式,求出m、k的数值,从而求得k﹣m的值,根据k﹣m的顶点式即可求得最大值.【解答】解:x2+2bx+4=x2+2bx+b2﹣b2+4=(x+b)2﹣b2+4;∴m=﹣b,k=﹣b2+4,则k﹣m=﹣b2+b+4,∵﹣b2+b+4=﹣(b﹣)2+.∴当b=时,k﹣m的最大值是.故答案为:.【点评】此题考查利用完全平方公式配方,注意代数式的恒等变形.17.如图,正方形ABCD的边长等于3,点E是AB延长线上一点,且AE=5,以AE为直径的半圆交BC于点F,则BF=.【考点】勾股定理;正方形的性质;圆的认识.【分析】作出AE的中点O,连接OF,在直角△OBF中利用勾股定理即可求得BF的长.【解答】解:作出AE的中点O,连接OF.则OF=OA=AE=,OB=AB﹣OA=3﹣=.在直角△OBF中,BF===.故答案是:.【点评】本题考查了勾股定理,正确作出辅助线,构造直角三角形是解决本题的关键.18.如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、3为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于﹣4.【考点】圆的综合题.【分析】作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,根据两点之间线段最短得到此时PM+PN最小,再利用对称确定A′的坐标,接着利用两点间的距离公式计算出A′B的长,然后用A′B的长减去两个圆的半径即可得到MN的长,即得到PM+PN的最小值.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(﹣2,3),∴点A′坐标(﹣2,﹣3),∵点B(3,4),∴A′B==,∴MN=A′B﹣BN﹣A′M=﹣3﹣1=﹣4,∴PM+PN的最小值为﹣4.故答案为﹣4.【点评】本题考查了圆的综合题:掌握与圆有关的性质和关于x轴对称的点的坐标特征;会利用两点之间线段最短解决线段和的最小值问题;会运用两点间的距离公式计算线段的长;理解坐标与图形性质.三、简答题(本大题共10小题,共82分.)19.(1)计算:(3﹣π)0﹣3﹣2﹣+|﹣|+2tan60°(2)(1﹣)÷.【考点】分式的混合运算;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项化为最简二次根式,第四项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=1﹣﹣×4++2=1;(2)原式==.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20.(1)解方程:=;(2)解不等式组:.【考点】解分式方程;解一元一次不等式组.【专题】分式方程及应用;一元一次不等式(组)及应用.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出解集.【解答】解:(1)方程两边乘2x(x+5),得x+5=6x,解得:x=1,检验:当x=1时,2x(x+5)≠0,则原分式方程的解为x=1;(2),由①得:x<2,由②得x≥﹣1,则不等式组的解集为﹣1≤x≤2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.【考点】菱形的判定;翻折变换(折叠问题).【专题】证明题.【分析】由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF.【解答】证明:∵AD平分∠BAC∴∠BAD=∠CAD又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中,∴△AEO≌△AFO(ASA),∴EO=FO又∵A点与D点重合,∴AO=DO,∴EF、AD相互平分,∴四边形AEDF是平行四边形∵点A与点D关于直线EF对称,∵EF⊥AD,∴平行四边形AEDF为菱形.【点评】本题考查了平行四边形的判定,菱形的判定,线段垂直平分线,全等三角形的性质和判定等知识点,注意:对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.22.某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题:组别分数段/分频数/人数频率1 50.5~60.52 a2 60.5~70.5 6 0.153 70.5~80.5 b c4 80.5~90.5 12 0.305 90.5~100.56 0.15合计40 1.00(1)表中a=0.05,b=14,c=0.35;(2)请补全频数分布直方图;(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【专题】图表型.【分析】(1)根据频率的计算公式:频率=即可求解;(2)利用总数40减去其它各组的频数求得b,即可作出直方图;(3)利用总数3000乘以最后两组的频率的和即可求解.【解答】解:(1)a==0.05,第三组的频数b=40﹣2﹣6﹣12﹣6=14,频率c==0.35;(2)补全频数分布直方图如下:;(3)3000×(0.30+0.15)=1350(人).答:该公司员工“六五”普法知识知晓程度达到优秀的人数1350人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.盒子中有4个球,每个球上写有1~4中的一个数字,不同的球上数字不同.(1)若从盒中取三个球,以球上所标数字为线段的长,则能构成三角形的概率是多少?(2)若小明从盒中取出一个球,放回后再取出一个球,然后让小华猜两球上的数字之和,你认为小华猜和为多少时,猜中的可能性大.请说明理由.【考点】列表法与树状图法;三角形三边关系.【分析】(1)将所有等可能的结果列举出来,利用三角形的三边关系进行判断后利用概率公式进行计算即可;(2)确定和为5的概率最大即可得到猜和为多少时猜中的可能性大.【解答】解:(1)从盒中取三个球,共有1、2、3,1、2、4,1、3、4,2、3、4四种情况其中能构成三角形的只有2、3、4这一种情况.故P(构成三角形)=;(2)由题意小华猜和为5时,猜中的可能性大,因为数字5出现的概率最大,为.【点评】本题考查了列表与树状图法求概率及三角形的三边关系的知识,解题的关键是能够确定所有等可能的结果,难度不大.24.甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为45m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=.(1)求索道AB的长;(2)若乙游客在C处等了甲游客3分钟,求乙步行的速度.【考点】解直角三角形的应用.【分析】(1)利用同角三角函数的关系,可求得sinA与sinC,从而得到sinB.再在△ABC 中利用正弦定理加以计算,即可得到索道AB的长;(2)先由正弦定理得=,求得BC=500m,再分别求出甲共用时间与乙索道所用时间,设乙的步行速度为vm/min,依题意,解方程28﹣(2+1+8+)=3即可.【解答】解:(1)∵cosA=,cosC=,∴sinA==,sinC==,∴sinB=sin[π﹣(A+C)]=sin(A+C)=sinAcosC+cosAsinC=,∵=,∴AB=sinC=×=1040m,答:索道AB的长为1040米;(2)∵=,∴BC=sinA=×=500m .甲共用时间: =28,乙索道所用时间:=8,设乙的步行速度为 vm/min ,由题意得28﹣(2+1+8+)=3,整理得=14,解得v=.答:乙步行的速度为m/min .【点评】本题给出实际应用问题,求索道的长并研究甲乙二人到达时间的问题.着重考查了同角三角函数的基本关系、正余弦定理解三角形和解三角形的实际应用等知识,属于中档题.25.如图,在△ABC 中,∠BAC=90,BC ∥x 轴,抛物线y=ax 2﹣2ax+3经过△ABC 的三个顶点,并且与x 轴交于点D 、E ,点A 为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD ,在抛物线的对称轴上是否存在一点P 使△PCD 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.【考点】抛物线与x 轴的交点;二次函数的性质.【专题】计算题.【分析】(1)BC与抛物线的对称轴于F点,先根据抛物线的性质得到对称轴为直线x=1,由于BC∥x轴,根据抛物线的对称性得到B点和C点关于直线x=1对称轴,则AB=AC,于是可判断△ABC为等腰直角三角形,根据等腰直角三角形的性质得AF=BF=1,所以可确定A点坐标为(1,4),然后把A点坐标代入y=ax2﹣2ax+3求出a即可得到抛物线解析式为y=﹣x2+2x+3;(2)先根据抛物线与x轴的交点问题得到D点坐标为(﹣1,0),设P点坐标为(1,t),利用两点之间的距离公式得到CD2=32+(2+1)2=18,PC2=12+(t﹣3)2,PD2=22+t2,然后分类讨论:当CD2=PC2+PD2,即18=12+(t﹣3)2+22+t2,解得t1=,t2=,此时P点坐标为(1,),(1,);当PD2=CD2+PC2,即22+t2=18+12+(t ﹣3)2,解得t=4,此时P点坐标为(1,4),;当PC2=CD2+PD2,即12+(t﹣3)2=18+22+t2,解得t=﹣2,此时P点坐标为(1,﹣2).【解答】解:(1)BC与抛物线的对称轴于F点,如图,抛物线的对称轴为直线x=﹣=1,∵BC∥x轴,∴B点和C点关于直线x=1对称轴,∴AB=AC,而∠BAC=90,∴△ABC为等腰直角三角形,∴AF=BF=1,∴A点坐标为(1,4),把A(1,4)代入y=ax2﹣2ax+3得a﹣2a+3=4,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;(2)令y=0,则﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴D点坐标为(﹣1,0),设P点坐标为(1,t),∴CD2=32+(2+1)2=18,PC2=12+(t﹣3)2,PD2=22+t2,当CD2=PC2+PD2,即18=12+(t﹣3)2+22+t2,解得t1=,t2=,此时P点坐标为(1,),(1,);当PD2=CD2+PC2,即22+t2=18+12+(t﹣3)2,解得t=4,此时P点坐标为(1,4),;当PC2=CD2+PD2,即12+(t﹣3)2=18+22+t2,解得t=﹣2,此时P点坐标为(1,﹣2);∴符合条件的点P的坐标为(1,)或(1,)或(1,4)或(1,﹣2).【点评】本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.也考查了分类讨论的思想和两点之间的距离公式.26.如图1,在平面直角坐标系中,点A、C分别在y轴和x轴上,AB∥x轴,sinC=,点P从O点出发,沿边OA、AB、BC匀速运动,点Q从点C出发,以1cm/s的速度沿边CO 匀速运动.点P与点Q同时出发,其中一点到达终点,另一点也随之停止运动.设点P运动的时间为t(s),△CPQ的面积为S(cm2),已知S与t之间的函数关系如图2中曲线段OE、线段EF与曲线段FG给出.(1)则点P的运动速度为2cm/s,点B、C的坐标分别为(5,4),(8,0);(2)求曲线FG段的函数解析式;(3)当t为何值时,△CPQ的面积是四边形OABC的面积的?【考点】二次函数综合题;动点问题的函数图象.【分析】(1)利用函数图象得出QC=2时S=4,进而得出AO的长,再利用图象变化规律得出CO的长,进而得出B,C点坐标;(2)利用三角形面积公式以及t的不同取值范围进而得出S与t的函数关系式;(3)利用当△CPQ的面积是四边形OABC的面积的,则26×=8,进而代入函数解析式求出t的值.【解答】解:(1)如图1,过点B作BN⊥CO于点N,由图象可得出:当t=2秒时,S=4时,2秒后,图象变为一次函数,则此时P点在线段AB 上移动,∵S△CPQ=×QC×AO=4,QC=2时S=4,∴AO=4,∴点P的运动速度为2cm/s,∵sinC=,AO=4,∴BN=4,则BC=5,∴NC=3,当4.5秒时,图象再次发生变化,则P点在AB上移动了2.5秒,移动距离的为5cm,故AB=5,则B(5,4),CO=8,故C(8,0),故答案为:2,(5,4)(8,0);(2)当0≤t≤2时,S=CQ×OP=t2,故此时抛物线解析式为:S=t2;如图2,当2≤t≤4.5时,S=PM×QC=4××t=2t,故此时直线解析式为:S=2t;如图3,当4.5≤t≤7时,S=×PM×QC=×QC×PCsinC=t[5﹣(2t﹣9)]×sinC=t[5﹣(2t﹣9)]×,故S=﹣t2+t;=(AB+CO)×AO=×4×(5+8)=26,(3)∵S四边形AOCB当△CPQ的面积是四边形OABC的面积的,则26×=8,∴S△CPQ=8,当2t=8解得:t=4,当8=﹣t2+t,解得:t1=2(不合题意舍去),t2=5,故t=4或t=5时,△CPQ的面积是四边形OABC的面积的.【点评】此题主要考查了动点问题的函数图象以及三角形面积求法和待定系数法求函数解析式等知识,利用分类讨论得出是解题关键.27.如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?【考点】切线的性质;等腰三角形的性质;等边三角形的性质.【专题】压轴题.【分析】(1)OA=AC首先三角形OAC是个等腰三角形,因为∠AOC=60°,三角形AOC 是个等边三角形,因此∠OAC=60°;(2)如果PC与圆A相切,那么AC⊥PC,在直角三角形APC中,有∠PCA的度数,有A 点的坐标也就有了AC的长,可根据余弦函数求出PA的长,然后由PO=PA﹣OA得出OP 的值.(3)本题分两种情况:①以O为顶点,OC,OQ为腰.那么可过C作x轴的垂线,交圆于Q,此时三角形OCQ 就是此类情况所说的等腰三角形;那么此时PO可在直角三角形OCP中,根据∠COA的度数,和OC即半径的长求出PO.②以Q为顶点,QC,QD为腰,那么可做OC的垂直平分线交圆于Q,则这条线必过圆心,如果设垂直平分线交OC于D的话,可在直角三角形AOQ中根据∠QAE的度数和半径的长求出Q的坐标;然后用待定系数法求出CQ所在直线的解析式,得出这条直线与x轴的交点,也就求出了PO的值.【解答】解:(1)∵∠AOC=60°,AO=AC,∴△AOC是等边三角形,∴∠OAC=60°.(2)∵CP与⊙A相切,∴∠ACP=90°,∴∠APC=90°﹣∠OAC=30°;又∵A(4,0),∴AC=AO=4,∴PA=2AC=8,∴PO=PA﹣OA=8﹣4=4.(3)①过点C作CP1⊥OB,垂足为P1,延长CP1交⊙A于Q1;∵OA是半径,∴,∴OC=OQ1,∴△OCQ1是等腰三角形;又∵△AOC是等边三角形,∴P1O=OA=2;②过A作AD⊥OC,垂足为D,延长DA交⊙A于Q2,CQ2与x轴交于P2;∵A是圆心,∴DQ2是OC的垂直平分线,∴CQ2=OQ2,∴△OCQ2是等腰三角形;过点Q2作Q2E⊥x轴于E,在Rt△AQ2E中,∵∠Q2AE=∠OAD=∠OAC=30°,∴Q2E=AQ2=2,AE=2,∴点Q2的坐标(4+,﹣2);在Rt△COP1中,∵P1O=2,∠AOC=60°,∴,∴C点坐标(2,);设直线CQ2的关系式为y=kx+b,则,。
九年级数学下册第一次月考试卷附答案
九年级数学下册第一次月考试卷附答案(第26章反比例函数)总分:120分 时间:90分钟选择题(共30分)1,反比例函数x ky =,经过(-3,-5)则下列各点在这个反比例函数图象上的有( ) (1,15) (-3,5) (3,-5) (1,-15) (-1,-15)A. 5个B. 4个C. 3个D. 2个.2,已知反比例函数的图象经过点(21)P -,,则这个函数的图象位于( ) A .第一、三象限 B .第二、三象限 C .第二、四象限 D .第三、四象限 3,已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4,对于反比例函数x k y 2=(0≠k ),下列说法不正确的是( ) A. 它的图象分布在第一、三象限 B. 点(k ,k )在它的图象上C. 它的图象是中心对称图形D. y 随x 的增大而增大5,已知反比例函数y =x a(a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y =-a x +a 的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6,已知反比例函数y=2x ,下列结论中,不正确的是( )A .图象必经过点(1,2)B .y 随x 的增大而减少C .图象在第一、三象限内D .若x >1,则y <27,一次函数y1=x-1与反比例函数y2=x 2的图像交于点A (2,1),B (-1,-2), 则使y1>y2的x的取值范围是( )A. x>2B. x>2 或-1<x<0C. -1<x<2D. x>2 或x<-18,函数x k1y -=的图象与直线x y =没有交点,那么k 的取值范围是( ) A 、1k > B 、1k < C 、1k -> D 、1k -<9,若()A a b ,,(2)B a c -,两点均在函数1y x =的图象上,且0a <,则b 与c 的大小关系为( )A .b c >B .b c <C .b c =D .无法判断10,若点(x 0,y 0)在函数y=x k( x <0)的图象上,且x 0y 0=-2,则它的图象大致是 ( ).二,填空题(共24分)11.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .12,如图是反比例函数x m y 2-=的图象,那么实数m 的取值范围是13,如图,在反比例函数2y x =(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .14,如图,在平面直角坐标系中,函数ky x =(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标为 .15,如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k 的值和Q 点的坐标分别为_________________________. 16,如图所示的是函数y kx b =+与y mx n =+的图象,求方程组y kx b y mx n =+⎧⎨=+⎩的解关于原点对称的点的坐标是 ;在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数k y x =的图象上,则此函数的图象分布在第 象限.三,解答题(共66分)17(6分)若一次函数y =2x -1和反比例函数y =2kx 的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;y18,(6分)为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y (mg )与燃烧时间x (分钟)成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg .据以上信息解答下列问题:(1)求药物燃烧时y 与x 的函数关系式.(2)求药物燃烧后y 与x 的函数关系式.(3)当每立方米空气中含药量低于1.6mg 时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?19,(6分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数x ky 的图象上. (1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.20(8分)已知:如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).(1)求该反比例函数的解析式;(2)求直线BC的解析式.21,(8分)一次函数y kx b=+的图象经过第一、二、三象限,且与反比例函数图象相交于AB,两点,与y轴交于点C,与x轴交于点D,OB=B横坐标是点B纵坐标的2倍.(1)求反比例函数的解析式;(2)设点A横坐标为m,ABO△面积为S,求S与m的函数关系式,并求出自变量的取值范围.22(10分)已知一次函数与反比例函数的图象交于点(3)(23)P m Q --,,,. (1)求这两个函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x 为何值时,一次函数的值大于反比例函数的值?当x 为何值时, 一次函数的值小于反比例函数的值?23(10分)一次函数y kx b =+的图象与反比例函数m y x =的图象相交于A 、B 两点(1)根据图象,分别写出A 、B 的坐标;(2)求出两函数解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值24,(12分)已知:等腰三角形OAB在直角坐标系中的位置如图,点A的坐标为(33,3-),点B的坐标为(-6,0).(1)若三角形OAB关于y轴的轴对称图形是三角形O A B'',请直接写出A、B的对称点A'B'、的坐标;(2)若将三角形OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数63y=的图像上,求a的值;参考答案一,选择题:1,D 2,C 3,C 4,D 5,C 6,B 7,B 8,A 9,A 10,B二,填空题11,-3 12,m >2 13,23 14,(3,32)15,k=3,Q(2,23) 16,(-3,-4) ,二、四三,解答题17,(1)y=x 1 (2) A(-21,-2)18,(1)y=x 54 (2)y=x 80 (3) 50(mim)19,(1)由m(m+1)=(m+3)(m-1) 得m=3, k=12; (2)直线AB 的解析式为:632+-=x y , AB=13,MN ∥AB 且MN=AB ,所以,MN :b x y +-=32,所以N (0,b ) M(b 23,0)所以,13)23(22=+b b ,得b=±2,所以满足条件的MN 的解析式为: 232+-=x y 或232--=x y .20,(1)x y 3=;(2)B (3,1) D (2,0)所以直线BC :y=x-2 21,(1)x y x y 22-==或; (2)当k =2时m s 2=; 当k=-2时m m s 221-=MN22.(1);16--=-=x y x y 和 (2)画图略; (3)203πππx x 或-. 23,( 1))3,4().2,6(B A -- (2)12112+==x y x y 和(3)406φππx x 或- 24,(1)A '(),333B '、(6,0) (2)35=a。
湖南省长沙市麓山国际实验学校2013—2014年九年级下第一次月考数学试卷及答案【新课标人教版】
麓山国际实验学校2013--2014—2初三返校限时训练数 学 试 题一、选择题:(本大题共10小题,每小题3分,共30分)1.式子1x -有意义的x 的取值范围是( ) A .112x x ≥-≠且 B.1x ≠ C.12x ≥-D.112x x >-≠且 2.如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是( ) A .15cm B .16cm C .17cm D .1617cm cm 或3.已知α为锐角,且sin α=,则α等于 ( ) A.30 B.45 C.60 D.904. 有一组数据:2,5,7,2,3,3,6,下列结论错误的是( )A.平均数为4B.中位数为3C.众数为2D.极差是55.如果圆锥的母线长为6cm ,底面圆半径为3cm ,•则这个圆锥的侧面积为( ) A .29cm π B .218cm π C .227cm π D .236cmπ6.如图,在ABCD 平行四边形中,E 是AB 边上的中点,连接BE ,并延长BE 交CD 延长线于点F ,则EDF ∆与BCF ∆的周长之比是( )A.1:2 B .1:3 C .1:4 D .1:5 7.已知a 、b 、c 都是正数,且a b cb c c a a b==+++=k ,则下列四个点中,在正比例函数y=kx 图象上的点的坐标是( ) A .(1,12) B .(1,2) C .(1,-12) D .(1,-1) 8.直线y=x+1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC•为等腰三角形,则满足条件的点C最多有( )个.A .4B .5C .7D .89.二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为1x =,有如下结论:①1c <;②20a b +=;③24b ac <;④若方程20ax bx c ++=的两根为1x 、2x ,则122x x +=,则正确的结论是( )A .①②B .①③C .②④D .③④10.如图,等腰Rt △ABC (∠ACB =90º)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一条直线上,开始时点C 与点D 重合,让△ABC 沿直线AE 向右平移,到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y 、则y 与x 之间的函数的图象大致是( )二.填空题:(本大题共8小题,每小题3分,共24分.)11.若实数a,b 满足:0)3(22=-++b a ,则ba = . 12.分式方程211x x=+的解是 . 13.分解因式:244ab ab a -+= 。
广东省汕头市潮阳区铜盂中学2013-2014学年九年级下第一次月考数学试卷及答案【新课标人教版】
2013-2014年铜中九年级数学试题(时间:100分钟 满分:120分) 命题:铜盂中学一、选择题(每小题3分,共30分)1.=x -2,那么x 的取值范围是( )A .x ≥2B .x <2C .x ≤2D .x >22.若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为( )A .1B .2C .3D .4 3.如图, AB 是⊙O 的直径,CD 是弦, 连结AC 、AD ,若∠CAB =35°,则∠ADC 为( )A .35°B .45°C .55°D .65° 4.下列事件中,属于随机事件的是( )A .掷一枚均匀的正方体骰子所得的结果超过13B .买一张彩票中奖C .口袋中装有10个红球,从中摸出一个红球D .太阳从西边落下 5.已知135=a b则ba b a +- 的值是( ) A.32 B .23 C .49 D . 946.关于x 的一元二次方程kx 2+1=0有两个不相等的实数根,则k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2+bx .若此炮弹在第8秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的? A.第11秒 B.第10秒 C. 第9秒 D. 第8秒 .8.已知二次函数y =ax 2+bx +c 的图象如图所示,现有下列结论:①b 2-4a c >0 ②a >0 ③b >0 ④c >0 ⑤9a +3b +c <0,则其中结论正确的个数是( ). A 、1个 B 、2个 C 、3个 D 、4个9.如图,在梯形ABCD 中,AD ∥BC ,AD=2,AB=3,BC=6,沿AE 翻折梯形ABCD 使点B 落AD 的延长线上,记为点B ’,连结B ’E交CD 于点F ,则FCDF的值为( ) A .31B .41C .51D .61第3题ADBEF(8题图)(9题图)(10题图)学校: 班级: 姓名: 座号:10.如图,已知正方形ABCD 的边长为4 ,E 是BC 边上的一个动点,AE ⊥EF , EF 交DC 于F , 设BE =x ,FC =y ,则当点E 从点B 运动到点C 时,y 关于x 的函数图象是( ).A .B .C .D .二、填空题(每题4分,共24分)11.a 的取值范围为__________________. 12.关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是13.抛物线2y ax bx c =++上部分点的坐标对应值如下表:从上表可知,下列说法中正确的是 .(填写序号)①函数2y ax bx c =++的最大值为6;②抛物线与x 轴的一个交点为(3,0);③在对称轴右侧,y 随x 增大而减小; ④抛物线的对称轴是直线12x =;⑤抛物线开口向上. 14.如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A ″B ″C ″的位置.若BC=1,AC=,则顶点A 运动到点A ″的位置时,点A 两次运动所经过的路程 _________ .(计算结果不取近似值)15.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=2,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 _________ (结果保留π). 16.如图所示,已知直线133+-=x y 与x 、y 轴交于B 、C 两点,(00)A ,,在ABC △内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,……则第n 个等边三角形的边长等于 .(14题图)(16题图)(17题图)三、解答题(一)(本大题3小题,每小题5分,共15分)17.计算:021423-⎛⎫+-- ⎪⎝⎭⎝⎭.19.某商场以每台2500元进口一批彩电,如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?四、解答题(二)(本大题3小题,每小题8分,共24分)20.如图:在△ABC 中,点M 是BC 上任一点, MD∥AC ,ME ∥AB ,2,.5BD CEAB AC=求21.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm , 求这个圆形截面的半径.22.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 为AB 上的一点,DE =DC ,以D为圆心,DB 长为半径作⊙D ,AB =5,EB =3. (1)求证:AC 是⊙O 的切线;(2)求线段AC 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23.已知抛物线y=x 2+ax+a ﹣3(1)求证:不论a 取何值,抛物线与x 轴总有两个交点. (2)当a=5时,求抛物线与x 轴的两个交点间的距离.(3)直接写出a= ______ 时,抛物线与x 轴的两个交点间的距离最小.24.已知:在⊙O 中,AB 是直径,AC 是弦,OE ⊥AC 于点E ,过点C 作直线FC , 使∠FCA =∠AOE ,交AB 的延长线于点D . (1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G ,若OG =2,求⊙O 半径的长; (3)在(2)的条件下,当OE =3时,求图中阴影部分的面积.第24题图学校: 班级: 姓名: 座号:25.如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (-1,0). 求: ⑴求抛物线的解析式及顶点D 的坐标;⑵判断△ABC 的形状,证明你的结论;⑶点M (m ,0)是x 轴上的一个动点, 当CM +DM 的值最小时,求m 的值.第25题图2013-2014年铜中九年级数学试题(参考答案)一、选择题。
人教版九年级数学秋学期第一次月考测试题(含答案)
人教版九年级数学秋学期第一次月考测试题(含答案)检测时间:120分钟总分:150分一、选择题(共10题,每题4分,共40分)1.关于x的一元二次方程(m−1)x2+5x+m2−3m+2=0的常数项为0,则m等于()A、1B、2C、1或2D、02.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A、y=3(x−1)2−2B、y=3(x+1)2−2C、y=3(x+1)2+2D、y=3(x−1)2+23.下列图案中,既是轴对称图形又是中心对称图形的是()4.在同一平面直角坐标系中,函数y=ax+b与y=ax2−bx的图象可能()5.下列关于抛物线y=−x2+2的说法正确的是()A、抛物线开口向上B、顶点坐标为(−1,2)C、在对称轴的右侧,y随x的增大而增大D、抛物线与x轴有两个交点6.若m是方程x2−x−1=0的一个根,则2m2−2m+2020的值为()A、2019B、2020C、2021D、20227.如图,以点P为圆心作圆,所得的圆与直线l相切的是()A、以PA为半径的圆B、以PB为半径的C、以PC为半径的圆D、以PD为半径的圆8.如图,A、B、C在⊙O上,∠ACB=40°,点D在弧ACB上,M为半径OD 上一点,则∠AMB的度数不可能为()A、45°B、60°C、75°D、85°9.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A、5000(1+2x)=7500B、5000×2(1+x)=7500C、5000(1+x)2=7500D、5000+5000(1+x)+5000(1+x)2=7500 10.如图,点A,B是半径为1的圆上的任意两点,则下列说法正确的是()A、A,B两点间的距离可以是⎷5B、以AB为边向⊙O内构造等边三角形,则三角形的最大面积为3/2 ⎷3C、以AB为边向⊙O内构造正方形,则正方形的面积可以为3D、以AB为边向⊙O内构造正六边形,则正六边形的最大面积为3/2 ⎷3第7题第8题第10题二、填空题(共6题,每题4分,共24分)11.若a,b是一元二次方程x2+2x−2022=0的两个实数根,则a2+4a+2b的值是.12.若二次函数y=a(x+m)2+b(a,m,b均为常数,a≠0)的图象与x轴两个交点的坐标是(−2,0)和(1,0),则方程a(x+m+2)2+b=0的解是.13.某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=−0.25t2+8t,无人机着陆后滑行秒才能停下来.14.如图,边长为2的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE将线段CE绕点C顺时针旋转60°得到CF,连接DF,则在点E运动过程中,DF的最小值是.15.如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=35°,则∠CAD=.16.如图,在平行四边形ABCD中,AC=3cm,BD=⎷13cm,AC⊥CD,⊙O是△ABD的外接圆,则AB的弦心距等于cm.第14题第15题第16题三、解答题(共9题,共86分)17.计算题(共2题,每题4分,共8分)18.(8分)已知关于x的一元二次方程mx2−(3m−1)x+2m=1.(1)如果方程根的判别式的值为1,求m的值.(2)如果方程有一个根是−1,求此方程的根的判别式的值.19.(8分)对于二次函数y=x2+bx+b−1(b>0),在函数值y=−1的情况下,只有一个自变量x的值与其对应.(1)求二次函数的解析式;(2)若在自变量x的值满足m≤x≤m+2的情况下,与其对应的函数值y的最小值为3,求m的值.20.(8分)2022北京冬奥会期间,冰墩墩和雪容融受到人们的广泛喜爱.某网店以每套96元的价格购进了一批冰墩墩和雪容融,由于销售火爆,销售单价经过两次的调整,从每套150元上涨到每套216元,此时每天可售出16套冰墩墩和雪容融.(1)若销售价格每次上涨的百分率相同,求每次上涨的百分率;(2)预计冬奥会闭幕后需求会有所下降,需尽快将这批冰墩墩和雪容触售出,决定降价出售、经过市场调查发现:销售单价每降价10元,每天多卖出2套,当降价钱数m为多少元时每天的利润W(元)可达到最大,最大利润是多少?21.(8分)如图,抛物线y=−x2+bx+c与x轴交于点A(−1,0),B(3,0),与y轴交于点C,点D是直线BC上方抛物线上一动点.(1)求抛物线的解析式;(2)若过点D作DE⊥x轴于点E,交直线BC于点M.当DM=2ME时,求点D 的坐标.22.(10分)如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作⊙O的切线,交BC于点E,连接BD.(1)判断∠ABD与∠CDE的数量关系,并说明理由.(2)若∠EDB=40°,OB=4,求弧BD的长.23.(10分)如图,已知Rt△ABC中,∠ACB=90°,先把△ABC绕点C顺时针旋转90°至△EDC后,再把△ABC沿射线BC平移至△GFE,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结AG,求证:四边形ACEG是正方形.24.(12分)如图,正方形ABCD是⊙O的内接正方形,E在边AB上,F在DC的延长线上,且∠F=∠BEC,BF交⊙O于点G,连接DG,交BC于点H.(1)求证:四边形BECF是平行四边形;(2)求证:DH=CE.25.(14分)如图,抛物线y=ax2+bx+c过点A(−1,0),点B(3,0),与y 轴负半轴交于点C,且OC=3OA,抛物线的顶点为D,对称轴交x轴于点E.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)若点P是抛物线上一点,过点P作PQ⊥x轴交直线BC于点Q,试探究是否存在以点E,D,P,Q为顶点的平行四边形.若存在,求出点P坐标;若不存在,请说明理由.。
九年级数学下册第一次月考试卷(附答案)
九年级数学下册第一次月考试卷(附答案)一.单选题。
(共40分)1.﹣2的相反数是()A.12B.﹣12C.2D.﹣22.如图所示几何体的左视图是()A. B. C. D.3.一个数是890 000,这个数用科学记数法表示为()A.0.89×106B.89×104C.8.9×106D.8.9×1054.下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.x6÷x3=x3D.(x3)2=x95.下列图形中,是中心对称图形的是()A. B. C. D.6.如图,将三角尺的直角顶点放在直尺的一边上,若∠1=30°,∠2=50°,则∠3等于()A.20°B.30°C.50°D.80°(第6题图)(第8题图)7.在一次学生运动会上,参加男子跳高的15名运动员成绩如下表所示:则这些运动员成绩的中位数、众数分别是( )A.1.70,1.75B.1.70,1.70C.1.65,1.75D.1.65,1.708.如图,某同学利用标杆BE 测量建筑物的高度,测得标杆BE 为1.2m ,而且该同学测得AB :BC=1:8,则建筑物CD 的高是( )A.9.6mB.10.8mC.12mD.14m9.如图,BD 是菱形ABCD 的对角线,CE ⊥AB 交于点E ,交BD 于点F ,且点E 是AB 中点,则cos ∠BFE 的值是( )A.√3B.√32 C.√33 D.12(第9题图) (第10题图)10.如图,二次函数y=ax 2+bx+c 图象的一部分,对称轴为x=12,且经过点(2,0),下列说法:①abc <0;②﹣2b+c=0;③4a+2b+c <0;④若(﹣52,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14b >m (am+b ),(m ≠12),其中说法正确的是( ) A.①②④⑤ B.①②④ C.①④⑤ D.③④⑤ 二.填空题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级下册数学第一次月考试卷及答案九年级第二学期数学第一次月考试卷时间:120分钟。
总分:120分。
姓名:一、选择题(本大题共8小题,每小题3分,共24分)1.绝对值是6的有理数是()A。
±6.B。
6.C。
-6.D。
162.计算a^2a^4的结果是()A。
a^5.B。
a^6.C。
2a^6.D。
a^83.半径为6的圆的内接正六边形的边长是()A。
2.B。
4.C。
6.D。
84.如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为()A。
2π。
B。
3π。
C。
2/3π。
D。
1+2/3π5.某校共有学生600名,学生上学的方式有乘车、骑车、步行三种.如图是该校学生乘车、骑车、步行上学人数的扇形统计图。
乘车的人数是()A。
180.B。
270.C。
150.D。
2006.函数y=(x-2)/x的自变量X的取值范围是()A。
x>2.B。
x<2.C。
x≥2.D。
x≤27.如右图,是一个下底小而上口大的圆台形,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,内对应的水高度为h,则h与t的函数图象只可能是()A。
一次函数。
B。
二次函数。
C。
三次函数。
D。
反比例函数8.如图所示的正方体的展开图是()二、填空题(本大题共7小题,每小题3分,共21分.)9.若分式(2x)/(x+2)的值为零,则x=_____。
10.已知反比例函数y=k/x的图象经过点(3,-4),则这个函数的解析式为y=______。
11.已知两圆内切,圆心距d=2,一个圆的半径r=3,那么另一个圆的半径为______。
(用科学记数法表示20 的结果是______(保留两位有效数字))12.二次函数y=x^2的图象向右平移1个单位,再向下平移1个单位,所得图象的与X轴的交点坐标是:(______。
0)。
13.如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是______。
14.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n是大于的整数)个图形需要黑色棋子的个数是______。
三、解答题(本大题共10小题,共75分.解答应写出文字说明,证明过程或演算步骤.)17.计算:(1/27)-1-tan60°+(π-3.14)-(2/x+1)+(x-6)/(x^2+xx-6)。
18.先化简 $x=3x-6x^2-36x$,得到 $6x^2-33x=0$,再因式分解为 $3x(2x-11)=0$,解得 $x=0$ 或 $x=\frac{11}{2}$。
19.如图,连接 $EF$,则 $\triangle ABE$ 和 $\triangle DCF$ 相似,因为它们都与 $\triangle ABC$ 相似。
所以$ $BE=DF$。
20.1) 根据图1,可以计算出每个月总用水量的频数分布,如下表所示:月总用水量(米3) | 频数 |500.| 1.|550.| 2.|600.| 3.|650.| 5.|700.| 9.|750.| 11.|800.| 19.|2) 极差为 $800-500=300$,众数为 $750$,中位数为$(650+700)/2=675$。
3) 由于没有给出今年的数据,无法准确估计每户家庭平均每月的用水量。
但可以根据去年的数据,估计今年的数据大致相同,即每户家庭平均每月的用水量在 $600$ 到 $800$ 米3 之间。
21.1) 摸出1个球是白球的概率为 $\frac{1}{3}$。
2) 摸出1个球的颜色有两种情况,即白球和红球,每种情况的概率都为 $\frac{1}{3}$。
因此,两次摸出的球恰好颜色不同的概率为 $\frac{1}{3} \times \frac{2}{3} + \frac{2}{3}\times \frac{1}{3} = \frac{4}{9}$。
3) 设共有 $n$ 个白球,则摸出1个球是白球的概率为$\frac{n}{n+2}$。
解得 $n=5$。
22.1) 如图所示,连接 $AB_1$,$BC_1$,$CA_1$,$A_1C$,$B_1A$,$C_1B$,则 $\triangle A_1B_1C_1$ 是 $\triangleABC$ 向右平移4个单位,再向上平移1个单位得到的图形。
2) 如图所示,以点 $O$ 为中心,将 $\triangleA_1B_1C_1$ 放大到原来的两倍,得到 $\triangle A_2B_2C_2$。
23.如图所示,设 $BD$ 的高度为 $h$,则有 $\tan 45^\circ = \frac{h}{AD}$ 和 $\tan 30^\circ = \frac{h}{CD}$。
解得 $h =20(\sqrt{3}-1)$。
24.1) 对于任何实数 $m$,判别式 $\Delta = (3m-1)^2 - 8m(m-2) = 1$,因此方程恒有实数根。
2) 当 $m=0$ 时,方程变为 $-x+2=0$,有实数根 $x=2$。
当 $m \neq 0$ 时,方程的判别式为 $\Delta = 9m^2 - 4m + 8$,当 $\Delta。
0$ 时,方程有两个实数根。
因此,当 $m$ 为整数且 $\Delta \geq 0$ 时,方程恒有实数根。
1.求抛物线解析式已知抛物线过点(2,0),又与x轴的交点间距为2,设交点横坐标为x1和x2,则有:x1 + x2 = 2.(1)抛物线的解析式为 y = ax^2 + bx + c,代入点(2,0)得:4a + 2b + c = 0.(2)又因为抛物线与x轴的交点横坐标为x1和x2,所以有:a(x1 + x2)^2 + b(x1 + x2) + c = 0.(3)将式(1)代入式(3),得:4a + 2b + c = 0解得 c = -4a - 2b将 c 代入式(2),得:4a + 2b - 4a - 2b = 0解得 b = 0将 b = 0 代入式(2),得:4a + c = 0解得 a = 1所以,抛物线的解析式为 y = x^2 - 2x。
2.求直线与抛物线没有交点的取值范围设直线方程为 y = x + b,代入抛物线解析式得:x^2 - 3x - x - b + 2 = 0化XXX:x^2 - 4x + (2 - b) = 0由于直线与抛物线没有交点,所以方程无实数根,即判别式小于0,得:16 - 4(2 - b) < 0解得 b。
2 或 b < -2.所以,直线与抛物线没有交点的取值范围为 b ∈ (-∞。
-2) ∪ (2.+∞)。
3.证明 AC 与⊙O 相切由角平分线定理得:AF/AB = CF/CB又因为 AH = AC,所以有:AF/AB = AH/AC代入得:CF/CB = AH/AC因为以 BC 为直径的圆与边 AB 相交于点 D,所以有:CDB = ∠CEB = 90°所以△CEB 和△CDB 相似,得:XXX代入得:CE/CB = CB/(2CB)CE = CB/2所以△XXX 中,AE 是半径,CE 是切线,所以 AC 与⊙O 相切。
4.求 EC 的长度因为 AC 与⊙O 相切,所以 CE 是切线,所以∠CEB = 90°,所以△CEB 是直角三角形。
设 BC = x,则 AB = 10 - x,由余弦定理得:AC^2 = AB^2 + BC^2 - 2AB·BC·cos∠CAB代入得:36 = (10 - x)^2 + x^2 - 2(10 - x)x·cos∠CAB化XXX:cos∠CAB = (x^2 - 4x + 28)/20x因为 CE 是切线,所以∠XXX ∠CAB,所以:tan∠CEB = tan∠CAB = (x^2 - 4x + 28)/20x因为 E 是弧 BD 的中点,所以:BEC = 1/2 ∠BDC = 1/2 (180° - ∠CAB)所以:tan∠BEC = tan(90° - 1/2 ∠CAB) = cot(1/2 ∠CAB) 代入得:XXX∠XXX∠BEC = 1化XXX:x^2 - 4x + 28)^2 = 400x^2解得 x = 2 或 x = 14/3因为x ≠ 2,所以 x = 14/3,代入得:CE^2 = AC^2 - AE^2 = 36 - (14/3)^2解得CE = 2√23/3.由y=x+b和y=x^2-2x没有交点,可得其判别式Δ=9+4b<0,即b<-(9/4)。
因此当b<-(9/4)时,直线y=x+b与抛物线y=x^2-2x没有交点。
改写为:设y=x+b和y=x^2-2x,由于它们没有交点,因此判别式Δ=9+4b<0,解得b<-(9/4)。
因此当b<-(9/4)时,直线y=x+b与抛物线y=x^2-2x没有交点。
解:(1)二次函数y=x^2+bx+c的对称轴为x=-(b/2),因为对称轴为x=2,所以-(b/2)=2,解得b=-4.又因为该函数过点A(0,3),代入函数式得c=3.改写为:1) 二次函数y=x^2+bx+c的对称轴为x=-b/2,因为对称轴为x=2,所以-4/2=-2=b。
又因为该函数过点A(0,3),代入函数式得c=3.2)解方程x^2-4x+3=0得到二次函数图象与x轴的交点为B(1,0)和C(3,0)。
改写为:2) 解方程x^2-4x+3=0,得到二次函数图象与x轴的交点为B(1,0)和C(3,0)。
3)一次函数过原点O(0,0)和二次函数的顶点M(2,-1),可得一次函数解析式为y=-x/2.存在三点(1,-1/2)、(2,-1)和(3,-3/2)。
改写为:3) 假设一次函数解析式为y=kx,由过原点O(0,0)和二次函数顶点M(2,-1)可得k=-1/2.因此一次函数的解析式为y=-x/2,存在三点(1,-1/2)、(2,-1)和(3,-3/2)。