化学键说课课件
第一章 第三节 《化学键》教学课件图文
第三节 化学键
钠在氯气中燃烧
氯化钠的形成
一.离子键
1.定义: 使阴、阳离子结合成化合物的静电作用,叫离 子键
成键原因: 电子得失 成键粒子: 阴阳离子 成键本质: 静电作用(静电吸引和静电排斥) 成键元素: 活泼的金属元素(ⅠA,ⅡA)
和活泼的非金属元素(ⅥA,ⅦA)
子的最外层电子。这种式子叫做电子式。
① 原子的电子式: H × Na × ×Mg×
②阳离子的电子式:不要求画出离子最外层电子数,只要在 元素、符号右上角标出“n+”电荷字样。
H+
Na+
Mg2+
Ca2+
③阴离子的电子式:不但要画出最外层电子数,而且还应 用于括号“[ ]”括起来,并在右上角标出“n·-”电荷 字样。
资料搜集
课堂练习
5.(2011·江苏卷)下列有关化学用语表示正确的是(C. ) A.N2的电子式: B.S2-的结构示意图: C.质子数为53,中子数为78的碘原子: D.H2O的电子式为
H
:
..
O:
..
H
课堂练习
6.(2012·大纲版)下列关于化学键的叙述 , 正确的一 项是(A) A. 离子化合物中一定含有离子键 B.单质分子中均不存在化学键 C.SiH4的沸点高于CH4,可推测pH3的 沸点高于NH3 D.含有共价键的化合物一定是共价化合物
-
C]l
Na +[O H ] —
Na +[ O O] 2- N+a
非极性共价键 离子键
H
[H
N
H][+ Cl
-
]
H
四、分子间作用力和氢键
第三节-化学键PPT优秀课件
共价键
离子 键
成键
原子
微粒
阴、阳离子
微 粒 原子间通过共用
间的 作用
电子对相互作用
阴、阳离子间 静电作用
成键 元素 范围
同种或不同种的 非金属元素
活泼金属(ⅠA、ⅡA) 元素与 活泼非金属(ⅥA、
ⅦA)元素
成键 原因
微粒由不稳定结构通 过共用电子对相互作 用后变成稳定结构。
成键原因:微粒由不稳定结构通过得失电子后变成稳定结构。
Na+11 2 8 1 失 e- +11 2 8
Na+
静电作用
Na+ Cl-
Cl-
Cl +17 2 8 7 得 e- +17 2 8 8
★阴、阳离子通过静电作用而形成的化学键叫做离子键。
4
1.离子键的形成原因是什么?
答: 是因为参与化学反应的成键原子的结构 不稳定,易得、失电子形成阴、阳离子。
一.离子键: 使阴、阳离子结合成化合物的
静电作用。
6
课堂练习
练习1. 下列说法正确的是: ( D ) A.离子键就是使阴、阳离子结合成化合物的静电引力 B.所有金属与所有非金属原子之间都能形成离子键 C.在化合物CaCl2中,两个氯离子之间也存在离子键 D.钠原子与氯原子结合成氯化钠后体系能量降低
13
分析氯化氢的形成过程
点燃
H2+Cl2===2HCl
2
2ห้องสมุดไป่ตู้
通过共用电子对
2
★原子之间通过共用电子对的相互作用所形成的化学键, 叫做共价键。
★共价键形成条件:一般是非金属元素原子间的相互作用。 非金属元素可以是同种,也可以是不同种;如:H2、Cl2、HCl、 CO2 等分子中均含有共价键。
化学键优秀课件
【迁移·应用】公开课课件优质课课件PPT优秀课件PPT免费下
【解析】选C。在复杂的离子化合物如氢氧化钠、过氧化钠中既存在离子键又存在共价键,A项错误;离子化合物如过氧化钠中也存在非极性键,B项错误;C项正确;在H2O2中既存在极性键又存在非极性键,D项错误。
【解析】选C。在复杂的离子化合物如氢氧化钠、过氧化钠中既存在
公开课课件优质课课件PPT优秀课件PPT免费下载《化学键》P
一、离子键1.氯化钠的形成过程钠原子和氯原子最外层电子数分别为1和7,均不稳定。
一、离子键公开课课件优质课课件PPT优秀课件PPT免费下载《
即它们通过得失电子后达到8电子稳定结构,分别形成Na+和Cl-,两种带相反电荷的离子通过_________结合在一起,形成新物质氯化钠。
(2)分类
(2)分类公开课课件优质课课件PPT优秀课件PPT免费下载《
3.共价化合物
3.共价化合物公开课课件优质课课件PPT优秀课件PPT免费下
4.以共价键形成的分子的表示方法
4.以共价键形成的分子的表示方法公开课课件优质课课件PPT优
公开课课件优质课课件PPT优秀课件PPT免费下载《化学键》P
(2)HI是一种比HCl酸性强的强酸,可用电子式表示其形公开
【情境·思考】“春蚕到死丝方尽,蜡炬成灰泪始干”,蜡烛的化学成分是碳元素的氢化物(C22H46、C25H52、C28H58等),“蜡炬成灰”时,化学键是如何变化的?
【情境·思考】“春蚕到死丝方尽,蜡炬成灰泪始干”,蜡烛的化学
提示:存在旧共价键的断裂和新共价键的形成。
不同种原子
键型离子键共价键非极性键极性键特点阴、阳离子间的相互作用共用
键型
离子键
共价键
非极性键
化学键ppt课件
离子键强度影响因素
离子半径
离子半径越小,离子间的静电吸 引力越强,离子键强度越高。
离子电荷
离子电荷越高,离子间的静电吸 引力越强,离子键强度越高。
电子构型
离子的电子构型对离子键强度也 有影响,例如8电子构型的离子
通常具有较高的稳定性。
离子化合物性质总结
物理性质
离子化合物通常具有较高的熔点和沸点,硬度较大 ,且多为脆性。它们在水中溶解度较大,且溶解时 伴随热量的变化。
静电吸引
正负离子之间通过静电吸 引力相互靠近,形成离子 键。
离子晶体结构特点
晶体结构
离子晶体由正负离子按照 一定的规律排列而成,形 成空间点阵结构。
配位数
每个离子周围所邻接的异 号离子的数目称为该离子 的配位数。
晶格能
离子晶体中离子间的相互 作用力称为晶格能,晶格 能的大小决定了离子晶体 的稳定性和物理性质。
01
02
高分子材料
利用共价键的特性,设计合成具 有特定功能的高分子材料。
03 04
纳米材料
通过控制化学键的合成和组装, 制备具有特殊性质的纳米材料。
晶体材料
通过调控化学键的类型和参数, 制备具有优异性能的晶体材料。
06
实验方法与技术手段
Chapter
X射线衍射技术
01
X射线衍射原理
利用X射线与物质相互作用产生衍射现象,通过分析衍射图谱获得物质
其他先进实验方法介绍
核磁共振波谱法
利用核磁共振现象研究 物质结构和化学键性质 的方法,具有高分辨率 和信息量大的优点。
质谱法
通过测量离子质荷比研 究物质结构和化学键性 质的方法,可用于确定 分子式、分析复杂混合 物等。
化学键(46张)PPT课件
化学键的形成与断裂
形成
原子通过得失或共享电子达到稳定的 电子构型,从而形成化学键。化学键 的形成是化学反应的基础。
断裂
化学键的断裂需要吸收能量,使原子 从稳定的电子构型中摆脱出来。化学 键的断裂是化学反应的驱动力。
化学键的强度与稳定性
强度
化学键的强度取决于键能和键长。键能越大,键长越短,化学键越强。一般来说,离子键和共价键的强度较高 ,而氢键的强度较低。
的物质通常具有较高的反应活性。
03
键角
化学键的键角对物质的反应活性也有一定影响。例如,具有较小键角的
物质在化学反应中更容易发生空间位阻效应,从而影响反应的进行。
06
化学键的应用与拓展
化学键在材料科学中的应用
材料性质与化学键
通过改变材料中化学键的类型和强度 ,可以调控材料的硬度、韧性、导电 性等性质。
02
通过改变药物分子中的化学键,可以优化药物的疗效和降低副
作用。
生物医学工程
03
利用化学键原理,可以设计和合成生物相容性良好的医用材料
,如人工关节、心脏瓣膜等。
化学键在环境科学中的应用
大气化学
大气中的化学反应涉及多种化学 键的断裂和形成,对气候变化和
空气质量有重要影响。
水处理化学
利用化学键原理,可以设计和合成 高效的水处理剂,用于去除水中的 污染物。
应。
反应类型
不同类型的化学键在化学反应中 表现出不同的反应类型。例如, 离子键容易发生复分解反应,共 价键则容易发生加成、取代等反
应。
化学键与物质反应活性的关系
01
键能
化学键的键能越大,物质越稳定,反应活性越低。反之,键能越小,物
质越不稳定,反应活性越高。
化学键ppt课件完美版
使离子相结合或原子相互结合形成 分子,构成物质的化学键有离子键、 共价键和金属键。
离子键、共价键和金属键
离子键
由正离子和负离子之间通过静电引力形成,通常在活泼金属和活泼非金属之间形成,例如氯 化钠(NaCl)。
共价键
两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比 较稳定的化学结构,像这样由几个相邻原子通过共用电子并与共用电子之间形成的一种强烈 作用叫做共价键。
材料改性
利用化学键的变化改善材料的性能,如提高材料的强度、硬度、 耐腐蚀性等。
界面科学
研究不同材料界面间的化学键合作用,揭示界面现象对材料性能 的影响。
化学键理论在生命科学中的应用
生物大分子结构
阐述蛋白质、核酸等生物大分子中的化学键合作用,揭示生物大分 子的结构和功能关系。
药物设计
通过模拟药物与靶标间的化学键合作用,设计具有高效、低毒的药 物分子。
氢键对物质性质的影响
氢键的形成条件
氢原子与电负性大、半径小的原子(F、 O、N等)形成共价键后,再与其他分 子中的电负性大、半径小的原子之间 形成的相互作用力。
氢键对物质性质的影响
使物质的熔沸点升高、溶解度增大、粘 度增大等。例如,HF的沸点比HCl高很 多,就是因为HF分子之间存在氢键。
物质性质的综合分析
简单离子晶体
离子晶体的结构特点
由相同或不同的正、负离子按一定比 例排列而成,如NaCl、CsCl等。
高对称性、高稳定性,具有特定的晶 格能。
复杂离子晶体
包含复杂离子或离子集团的晶体,如 硅酸盐、磷酸盐等。
离子键的强度与性质
1 2
离子键的强度 与离子的电荷、半径及电子云密度有关。电荷越 高、半径越小,离子键越强。
化学键课件
化学键课件一、引言化学键是构成物质的基本力之一,它决定了物质的化学性质和物理性质。
了解化学键的形成原理和特性,对于深入理解化学现象和化学变化具有重要意义。
本课件将介绍化学键的基本概念、分类和特性,并通过实例分析化学键在实际应用中的作用。
二、化学键的基本概念化学键是由原子之间的相互作用形成的力,它使得原子结合成为分子或离子。
化学键的形成是由于原子之间的电子互相吸引和排斥,以达到稳定的状态。
化学键可以分为离子键、共价键和金属键三种类型。
三、离子键离子键是由正负电荷之间的相互吸引形成的化学键。
在离子键中,一个原子会失去一个或多个电子,形成正离子,而另一个原子会获得这些电子,形成负离子。
正负离子之间的相互吸引形成了离子键。
离子键通常存在于金属和非金属元素之间,例如氯化钠(NaCl)就是由钠离子和氯离子通过离子键结合而成的。
四、共价键共价键是由原子之间共享电子形成的化学键。
在共价键中,两个原子会共享一对电子,使得它们都能够达到稳定的电子配置。
共价键通常存在于非金属元素之间,例如水分子(H2O)就是由氧原子和两个氢原子通过共价键结合而成的。
五、金属键金属键是由金属原子之间的电子互相流动形成的化学键。
在金属键中,金属原子会将其外层电子贡献给整个金属结构,形成一个电子云。
这些自由电子在金属结构中自由流动,使得金属具有导电性和导热性。
金属键通常存在于金属元素之间,例如铜(Cu)就是由铜原子通过金属键结合而成的。
六、化学键的特性化学键的特性包括键长、键能和键角。
键长是指化学键中两个原子之间的距离,键能是指化学键中两个原子之间的相互作用能量,键角是指化学键中两个原子之间的角度。
这些特性决定了化学键的稳定性和化学性质。
七、化学键在实际应用中的作用化学键在实际应用中起着重要的作用。
例如,化学反应中的化学键断裂和形成是反应进行的基础。
化学键的特性还可以用来解释和预测物质的性质和变化,例如熔点、沸点、溶解度等。
化学键的研究还可以帮助科学家设计新的材料和药物,以及解决环境问题等。
《化学键》PPT课件
位置用弧形箭头, 同性不相邻,合理分
变化过程用
布
“”
左端是原子电
共价化合 物的形成
子式,右端是共价 化合物分子的电 子式,中间用
同性一般不相邻,连 接用“ ”
“ ”连接
举例 ··N︙︙N··
··
H··O····H
··
H·+··C··l··· H··C··l··
探究一
探究二
素养脉络
随堂检测
素能应用
探究一
探究二
素养脉络
随堂检测
素能应用
典例1现有下列物质:①Cl2 ②Na2O2 ④HCl ⑤H2O2 ⑥MgF2 ⑦NH4Cl
(1)只由离子键构成的物质是 。
③NaOH
(2)只由极性键构成的物质是 。
(3)只由非极性键构成的物质是 。
(4)只由非金属元素组成的离子化合物是 。
(5)由极性键和非极性键构成的物质是 。
方式 结构
构
成键 微粒
阴、阳离子
原子
形成 条件
活泼金属元素与活泼非 金属元素化合
同种或不同种非金属元素化合
探究一
探究二
素养脉络
随堂检测
课堂篇探究学习
表示 方法
电子式如 Na+[·× C····l··]离子键的形成过程:
存在 离子化合物中
··
电子式,如H·× C··l·· 结构式,如 H—Cl
共价键的形成过程:
··
K+[∶F∶]-
··
[∶ B····r·×]-Ca2+[·× B····r∶]-
课堂篇探究学习
探究一
探究二
素养脉络
随堂检测
粒子的种 电子式的
(第一课时)化学键精品课件
100%
饱和性
每个原子的未成对电子数是一定 的,因此与它结合的共用电子对 数也是一定的,这就是共价键的 饱和性。
80%
键能
共价键的键能较大,因此共价化 合物一般较为稳定。
典型共价化合物举例
01
02
03
04
氯化氢(HCl)
氢原子和氯原子之间通过共用 一对电子形成共价键。
水(H2O)
两个氢原子分别与氧原子形成 两对共用电子,构成共价键。
离子键的强弱与离子的电荷及半径有关:电荷越多, 半径越小,离子键越强。
离子键在形成过程中,没有电子的得失,只是电子的 偏移。
典型离子化合物举例
01
02
03
04
活泼金属金属氧化物: Na2O、K2O等。
强碱:NaOH、KOH等。
绝大多数的盐:NaCl、 KCl等。
活泼金属与活泼非金属 形成的化合物:Na2S、 KI等。
甲烷(CH4)
碳原子与四个氢原子之间通过 共用电子对形成共价键,构成 正四面体结构。
二氧化碳(CO2)
碳原子与两个氧原子之间通过 共用两对电子形成共价键,构 成直线型分子。
04
金属键形成过程与性质
金属键形成条件及过程分析
金属键形成条件
金属原子具有较少的价电子,容易失去形成正离子,同时金 属原子之间通过自由电子的相互作用形成金属键。
03
键角
键角是指相邻两个化学键之间的夹角,它反映了分子中原子的空间排列
情况。键角的大小与分子的形状、化学键的类型等因素有关。
化学键参数对物质物理性质影响
熔点、沸点
化学键的强度对物质的熔点、沸点等物理性质有显著影响。一般来说,化学键越强,物质 的熔点、沸点越高。例如,离子键的强度大于分子间作用力,因此离子晶体的熔点、沸点 通常比分子晶体高。
化学键(课堂PPT)
e
H 原子
eeeee ee
Cl 原子
16
二位好!我有一个好办法.你们每
人拿出一个电子共用,就象共同分
享快乐一样共同拥有,行吗?
好
好
呀
呀
呵
呵
呵
呵
e
2020/4/27
e
e
e
e
e
e
e 17
愿意
H原子, 你愿意 拿出一 个电子 共用吗?
2020/4/27
愿意
e ee
e e
e ee
Cl原子, 你愿意 拿出一 个电子 共用吗?
18
分析
HH. H2
Cl..
:C..l
..C..2..l:
HCl..
H . C..l:
2020/4/27
19
2、共价键
1、定义:原子之间通过共用电子对所形成 的强烈的相互作用,叫做共价键。
成键微粒:原子 成键本质:共用电子对
成键元素:同种或不同种非金属元素
成键原因:未达到稳定结构的非金属原子通过共用电 子对达到稳定结构。
(VIA,VIIA)形成的化合物,如NaCl、Na2O、 Na2O2 等。
2、活泼的金属元素和酸根离子形成的盐。如Na2CO3、 3、M铵g盐SO。4 如NH4Cl 4、强碱。如NaOH
2020/4/27
6
试一试:
下列物质中含有离子键的是( 2、3、5、7、8 )
1、H2O
2、CaCl2
3、NaOH
CH4<_ CF4<_ CCl4<_ CBr4<_ CI4
2020/4/27
36
沸点/℃ 100
75
H2O
50
化学必修1.3化学键PPT课件
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
二、共价键
1.定义:原子间通过共用电子对形成的相互作用
×× ××
2.表示式
①电子式
HCl的电子式
××
H Cl ××
×× ×× ××
Cl2的电子式
②结构式:
1.通常情况下,哪些元素之 间最易形成离子化合物?
活泼金属与活泼非金属
2.离子键是一种什么性质的 相互作用?
阴阳离子间的静电作用 (静电吸引=静电排斥)
3.离子化合物溶于水或熔化 时离子键是否发生变化?
转化成自由移动的离子, 离子键即被破坏。
4.由下列离子化合物熔点变化
规律 ,分析离子键的强弱与离
子半径、离子电荷有什么关系?
1. 原子的电子式:
H O Cl Mg Na
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
练习:用电子式表示:
1.氢原子
2.钙原子
3.氧原子
4.镁原子
2.
离子的电子式: 为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
氢分子的形成:
··
H ·+ ·H → H H 氯化氢分子的形成:
H ·+
·C····l: → H
··
C··l ··
··
注意:
用电子式 表示靠共 用电子对 形成的分 子时,不 标 [ ]和 电荷。
所以:非金属元素的原子间可通过形成共用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学键说课课件
化学键说课课件
化学键是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。
使离子相结合或原子相结合的作用力通称为化学键。
“化学键”教学设计思路
化学键选自人教版高中化学必修二第一章第三节,化学键是一种抽象的原子间的相互作用力,虽然学生在初中化学里面学习过一些抽象的概念例如原子轨道,原子结构示意图等抽象概念。
但是高中化学中化学键是在原子结构图等知识的基础之上的更为抽象的化学概念,对学生化学微观思维能力要求较高。
化学键的学习也让学生重新认识化学反应的本质,为下面一章节化学反应与能量做好铺垫。
另外,本节课的学习也为日后学习选修三《物质结构与性质》深入学习原子间作用力打下基础。
人教版高中化学必修二课本中,化学键这一节安排在元素周期表和元素周期律之后学习,因此,可利用元素周期表以及元素周期表的相关知识探究不同原子间形成的化学键。
化学键这一节内容包括离子键和共价键两个重要知识点。
本节课的关键是让学生了解离子键和共价键的成键微粒和成键本质以及微粒如何成键。
从本人的学习尽力来看共价键的成键本质以及成键方式更加难以理解。
而离子键是阴阳离子键的相互作用力这一知识点相对而言比较简单,但是用电子式表示离子化合物的成键过程中对于阴阳离子的电子式书写难度较大。
所以,在教学设计的第一课时离子键中,我会更加注重学生对于电子式的书写,因为这位共价键的`学习减轻压力。
而在共建键部分的教学过程中,我会更加注重学生对于共价键成键方式以及共价键类型的区分,在这部分教学中,我将采用球棍模型模拟共价化合物的成键过程以及方式。
这样可以让学生化抽象为具体,从宏观层面学习微观知识。
另外,让学生动手制作模型可以激发学生的学习兴趣,让本来枯燥乏味的化学概念课变得充满探索欲望。
在区分极
性共价键和非极性共价键时,我会引导学生自行总结归纳,通过电子对的偏向联系电池的正负极,提出极性这一抽象概念,从学生熟悉的电池入手,让学生更容易接受。
最后再总结比较离子键和共价键的成键微粒,成键方式以及成键过程等,让学生区分离子键和共价键的区别,最后总结化学键的概念。
在化学键这部分的学习中,大部分概念对学生来讲都是陌生的,枯燥的,抽象的,作为知识的传播者,我们需要在学生兴趣和课本知识点之间寻找两者之间的关系,不要只一味的讲解化学知识,让原本生动有趣的化学探索课堂变成强行记忆概念的带有文科性质的课堂。
这是我们化学工作者需要努力的方向。
一、教材分析:
1.教学内容:高中化学第一册(必修)第五章第四节《化学键》第一课时包括:①离子键,②用电子式书写及用电子式表示离子化合物的形成过程。
2.教材所处的地位:本节内容是在学习了原子结构、元素周期律和元素周期表后学习化学键知识,是在原子结构的基础上对分子结构知识——化学键的学习。
学习这些知识有利于对物质结构理论有一个较为系统完整的认识,为以后学习元素化合物知识奠定基础。
3.教材分析:本节的离子键内容,是在学习了原子结构、元素周期律和元素周期表后对物质结构知识的进一步学习,目的是使学生对物质结构理论有一个较为系统的认识,也为今后更深层次的学习化学奠定基础。
考试大纲中要求了解离子键的形成。
在高考题中,可能出现在选择题中,或者大题的填空中。
二、教学目标
知识与技能
1.掌握离子键的概念。
2.掌握离子键的形成过程,并能熟练地用电子式表示离子化合物的形成过程。
过程与方法
通过回忆钠与氯气反应的实验现象及对离子键形成过程的讨论,
培养学生由感性认识到理性认识到抽象思维的能力。
由宏观到微观的研究问题的方法。
情感、态度与价值观
结合教学培养学生思考、分析问题的能力,合作意识和主动学习精神。
三、教学重点、难点
重点:离子键及离子化合物的的含义
难点:用电子式表示原子、离子、离子化合物以及离子化合物的形成过程。
四、教学方法
本节知识需要学生理解,用抽象思维动脑思考,所以我将运用启发式,回忆式,归纳总结法,提问引导法,多媒体等多种方法来帮助学生理解接受知识。
五、教学内容及教学过程:
(一)、引入:请学生回忆钠和氯气反应,让学生加深实验现象。
过渡,让学生思考反应的微观实质是什么?引出这节课的教学内容。
(二)、新课教学:
1、离子键的概念及形成过程:
演示NaCl的形成过程引出概念,分析成键原因、特点,粒子间的相互作用。
再来分析哪些原子之间会明显以离子键结合?在周期表中处于什么位置?
离子键概念:带相反电荷离子之间的相互作用。
成链微粒:Na+、Cl-
六、课堂小结:
离子键、共价键、化学键的概念,化学反应的本质。
七、布置作业:
课后习题一,巩固本节所学内容.。