倒立摆模型数学模型推导

合集下载

倒立摆拉格朗日方程

倒立摆拉格朗日方程

倒立摆拉格朗日方程介绍倒立摆是一个经典的动力学系统,在控制理论和机器人控制领域中被广泛研究和应用。

拉格朗日方程是描述这种系统动力学的一种常用方法。

本文将详细介绍倒立摆的拉格朗日方程及其应用。

倒立摆的定义倒立摆是由一个连杆和一个质量集中在连杆末端的质点组成的系统。

连杆固定在一个支点上,可以绕该支点进行旋转。

连杆的长度、质点质量以及各种外力(例如重力)都会影响倒立摆的运动行为。

摆动方程的推导步骤 1:绘制系统图首先,我们需要绘制出倒立摆的系统图。

图中包括连杆、质点以及外力,如图 1 所示。

步骤 2:确定系统自由度根据系统图,我们可以确定倒立摆的自由度。

在本例中,连杆的旋转角度被选为系统的自由度。

步骤 3:写出动能和势能接下来,我们需要写出系统的动能和势能。

连杆的动能可以表示为其转动惯量和角速度的乘积的平方的一半,而质点的势能则可以表示为其离支点的高度与重力加速度的乘积。

步骤 4:写出拉格朗日方程拉格朗日方程描述了系统的运动方程。

我们将系统的动能和势能相减,并根据连杆的旋转角度对其进行求导,然后运用欧拉-拉格朗日方程得到系统的运动方程。

倒立摆的拉格朗日方程根据以上步骤,倒立摆的拉格朗日方程可以表示为:L=T−V其中,L是系统的拉格朗日函数,T是系统的动能,V是系统的势能。

对于倒立摆的拉格朗日方程,我们可以得到如下表达式:d dt (∂L∂q̇)−∂L∂q=Q其中,q是系统的自由度,q̇是自由度的导数,Q是系统的广义力。

这个方程描述了系统运动的动力学。

倒立摆的应用倒立摆广泛应用于控制理论和机器人控制中。

通过控制倒立摆的力矩或输入力,可以实现倒立摆的平衡或特定轨迹下的运动。

具体应用包括:1.倒立摆控制算法研究:基于拉格朗日方程,可以设计出各种控制算法来控制倒立摆的平衡和运动。

例如,模糊控制、PID 控制、最优控制等方法都可以用于倒立摆的控制研究。

2.机器人姿态控制:倒立摆可以用作机器人姿态控制的模型。

通过控制倒立摆的角度和角速度,可以实现机器人的姿态调整和稳定控制。

倒立摆数学模型(word文档良心出品)

倒立摆数学模型(word文档良心出品)

1单级倒立摆的数学模型的建立:小车由电机通过同步带驱动在滑杆上来回运动,保持摆杆平衡。

电机编码器和角编码器向运动卡反馈小车和摆杆位置(线位移和角位移)。

导轨截面成H 型,小车在轨道上可以自由滑动,其在轨道上的有效运行长度为1米。

轨道两端装有电气限位开关,以防止因意外失控而撞坏机构。

图1 单级倒立摆系统数学模型倒立摆系统的模型参数如下[]:M 小车质量 1.096Kg ;m 摆杆质量 0.109Kgb 小车摩擦系数 0.1N/m /secI 摆杆质量 0.0034kg*m*ml 摆杆转动轴心到杆质心的长度 0.25mT 采样频率 0.005s下面N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。

分析小车水平方向所受的合力,可得到方程为:N x b F x M --=&&& (1)由摆杆水平方向的受力进行分析可以得到下面等式:()θθθθθsin cos sin 222&&&&&ml ml x m N l x dtd m N -+=+= (2) 把这个等式代入(1)式中,得到系统的第一个运动方程:()F ml ml x b x m M =-+++θθθθsin cos 2&&&& (3)为了推出系统的第二个运动方程,对摆杆垂直方向的合力进行分析,得到下面的方程:()θcos 22l dtd m mg P =- θθθθcos sin 2&&ml ml mg P --=- (4)力矩平衡方程如下:θθ&&I Nl Pl =--cos sin (5)方程中力矩的方向,由于φπθ+=,θφθφsin sin ,cos cos -=-=,故等式前面有负号。

合并这两个方程,约去P 和N ,得到第二个运动方程: ()θθθcos sin 2x ml mgl ml I &&&&-=++ (6)假设φ与1(单位是弧度)相比很小,即1〈〈φ,则可进行近似处理:0,sin ,1cos 2=⎪⎭⎫⎝⎛-=-=dt d θφθθ用u 代表被控对象的输入力,线性化后两个运动方程如下:()()⎪⎩⎪⎨⎧=-++=-+u ml x b x m M x ml mgl ml I φφφ&&&&&&&&&2(7)对方程(7)进行拉普拉斯变换,得到:()()⎪⎩⎪⎨⎧=-++=-+)()()()()()()(22222s U s s ml s s bX s s X m M s s mlX s mgl s s ml I φφφ (8)(推到时假设初始条件为0)则,摆杆角度和小车位移的传递函数为: mgl s ml I mls s X s -+=222)()()(φ将上述参数代入,摆杆角度和小车位移的传递函数为:26705.00102125.002725.0)()(22-=s s s X s φ摆杆角度和小车加速度之间的传递函数为: ()mgl s ml I mls A s -+=22)()(φ将上述参数代入,摆杆角度和小车加速度之间的传递函数为:26705.00102125.002725.0)()(22-=s s s A s φ摆杆角度和小车所受外界作用力的传递函数:22432222()()()()()()ml s s q b I ml M m mgl bmgl F s s s s s q q qq M m I ml m l φ=+++--⎡⎤=++-⎣⎦将上述参数代入,摆杆角度和小车所受外界作用力的传递函数:32()2.35655()0.088316727.9169 2.30942s s F s s s s φ=+-- 以外界作用力作为输入的系统状态空间表达式为:222222222201000()00()()()00010()00()()()x x I ml b m gl I ml x x I M m Mml I M m Mml I M m Mml u mlb mgl M m ml I M m Mml I M m Mml I M m Mml φφφφ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++++++⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎢⎥⎢⎥++++++⎣⎦⎣⎦&&&&&&&&1000000100x x x y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦&& 将上述参数代入,以外界作用力作为输入的系统状态空间表达式为:0100000.08831670.62931700.8831670001000.23565527.82850 2.356551000000100x x x x u x x x y u φφφφφφφ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦&&&&&&&&&& 以小车加速度作为输入的系统系统状态空间表达式:'0100000001000103300044x x x x u gl l φφφφ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦&&&&&& '1000000100x x x y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦&& 将上述参数代入,以小车加速度作为输入的系统系统状态空间表达式:0100000001000100029.4031000000100x x x x u x x x y u φφφφφφφ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦&&&&&&&&&& 2系统的可控性、可观测性分析对于连续时间系统:Bu AX X+=& Du CX y +=系统状态完全可控的条件为:当且仅当向量组B A AB B n 1,...,,-是线性无关的,或n ×n 维矩阵[]B A AB B n 1-M ΛM M 的秩为n 。

二级倒立摆的数学模型推导

二级倒立摆的数学模型推导

二级倒立摆的数学模型推导一、二级倒立摆系统的结构二级倒立摆系统的结构如图1如示,机械部分主要有小车、下摆、上摆、导轨、皮带轮、传动皮带等,控制对象由小车、下摆、上摆组成,电气部分由电机、晶体管直流功率放大器、传感器以及保护电路组成。

图1 二级倒立摆结构示意图二、二级倒立摆的数学模型 (一)假设条件为了简化二级倒立摆的数学模型,作如下假设:1. 小车与导轨间的摩擦力与小车速度成正比;电机摩擦转矩与电机转矩成正比;上、下摆连接处摩擦力矩与二摆相对角速度成正比;下摆与小车连接处摩擦力矩与下摆相对角速度成正比。

2. 整个对象系统除皮带外视为刚体。

3. 皮带伸长忽略不计且传递作用力的延迟忽略不计。

4. 电路系统的传递延迟及功率放大器的非线性忽略不计。

5. 电机电感忽略不计。

6. 检测电位器设为线性的,即设检测信号分别为与r 、1θ、21θθ-成正比的电信号,且假设标定完全准确。

(二)系统参数说明推导中各符号的意义如下:0M :小车、皮带、电机转子、皮带轮归算到小车运动上的等效质量; 1M :下摆质量; 2M :上摆质量;1J :下摆转动惯量; 2J :上摆转动惯量;r :小车位移;1θ:下摆角位移;2θ:上摆角位移;1L :下摆全长(轴心到轴心); 1l :下摆质心与小车——下摆连接轴心距离; 2l :上摆质心与上摆——下摆连接轴心距离;'0F :小车与导轨间摩擦力,电机机械摩擦转矩,皮带轮摩擦转矩归算到小车运动上的等效摩擦系数,由下式定义等效摩擦力:'00f F r =⋅1F :下摆与小车摩擦力矩的等效摩擦系数,由下式定义等效摩擦力矩:111T F θ=⋅2F :上、下摆间摩擦力矩的等效摩擦系数,由下式定义等效摩擦力矩:2221()T F θθ=⋅-P :电机提供的控制力;U :电机外加电压即功率放大器输出电压; E :电机反电势; I :电机电流;R :电机等效电阻;i R :功率放大器等效输出电阻;d :皮带轮直径;θ:电机转速(/rad s );n 电机转速(转/分);K :功率放大器电压增益 ;e K :电势系数; t K :转矩系数;e :功率放大器的输入电压;参阅相关资料后,对各参数的取如下值:0M =1.328kg ,1M =0.220kg ,2M =0.187kg ,1J =0.004962kg m ⋅,2J =0.004822kg m ⋅,1L =0.490m ,1l =0.304m ,2l =0.226m ,'0F =22.947kg/s ,1F =0.00705/kg m s ⋅,2F =0.00264/kg m s ⋅,R =8.550Ω,i R =1.252Ω,d =0.130m ,K =8.000,t K =0.946/N m A ⋅(三)数学模型推导 此处少图3-2(P7)图3-2中,'i i f f =(1,2)i =小车在y 方向上无运动,小车受导轨垂直方向力示标出,推导中iy f ,ir f (1,2)i =分别表示i f 在y ,r 方向的分力。

直线一级倒立摆建模

直线一级倒立摆建模

一、直线一级倒立摆建模1、微分方程的推导对于倒立摆系统,经过小心假设忽略掉一些次要因素后,倒立摆系统就是一个典型的刚体运动系统,可以在惯性坐标系统内应用景点力学理论建立系统的动力学方程。

微分方程的推导:在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示.图1做如下假设:M 小车质量m 摆杆质量b 小车摩擦系数L 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑带摆杆初始位置为竖直向下)图2图2是系统中小车和摆杆的受力分析图。

其中,N和P为小车和摆杆的相互作用力的水平和垂直方向的分量。

在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,所以矢量方向定义如图2所示,图示方向为矢量的正方向。

分析小车水平方向所受合力,可以得到方程:(式1)由摆杆水平方向的受力进行分析可以得到下面等式:= (式2、式3)将式3代入式1可得系统第一个运动方程:(式4)为了推出系统第二个运动方程,对摆杆垂直向上的合力进行分析可得方程:= (式5 式6)力矩平衡方程如下:(式7)式中:合并式6、式7得第二个运动方程:(式8)设θ = π +φ(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ <<1,则可以进行近似处理:用u来代表被控对象的输入力F,线性化后两个运动方程如下:(式9)对式(3-9)进行拉普拉斯变换(推导传递函数时假设初始条件为0。

):(式10)整理后得到传递函数:(式11)其中:2、状态空间方程设系统状态空间方程为:(式12)方程组对解代数方程,得到解如下:(式13)整理后得到系统状态空间方程:(式14)3、实际系统模型假定系统物理参数设计如下:M 小车质量 1.08Kg m 摆杆质量 0.1Kgb 小车摩擦系数 0.1N/m/sec l 摆杆转动轴心到杆质心的长度 0.3mI 摆杆惯量 0.0027Kg*m*m将上述参数带入,可以得到以外界作用力作为输入的系统状态方程:======+++++++=⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅u x x x y u x x x x 000100001034577.20914849.0008966.26234577.0010000689655.00914849.000010φφφφφφφ二、对象的性能分析1、分析系统的单位阶跃响应:a=[0 1 0 0;0 -0.0914849 0.689655 0;0 0 0 1;0 -0.234577 26.8966 0] b=[0;0.914849;0;2.34577] c=[1 0 0 0;0 0 1 0] d=[0;0] a =0 1.0000 0 0 0 -0.0915 0.6897 0 0 0 0 1.0000 0 -0.2346 26.8966 0b =0.91482.3458c =1 0 0 00 0 1 0d =利用传递函数得到如下响应曲线[num,den]=ss2tf(a,b,c,d)num =0 -0.0000 0.9148 0.0000 -22.98860 -0.0000 2.3458 -0.0000 0 den =1.0000 0.0915 -26.8966 -2.2989 0 step(num,den)从图上可知其阶跃响应不稳定。

倒立摆的动力学模型

倒立摆的动力学模型

倒立摆的动力学模型倒立摆是一个经典的物理实验,同时也是控制系统领域中的一个重要研究对象。

本文将介绍倒立摆的动力学模型以及相关的理论背景。

一、背景介绍倒立摆是由一个杆和一个连接在其上方的质点组成的,它在重力作用下呈现出不稳定的平衡状态。

倒立摆的动力学模型可以通过建立质点与杆之间的力学关系来描述。

二、质点的动力学方程假设质点质量为m,位置用x表示,杆的最低点为平衡位置,根据牛顿第二定律,可以得到质点的动力学方程:m * d^2x / dt^2 = Fg + Fc其中Fg表示质点受到的重力,Fc表示质点受到的摩擦力。

重力可以表示为:Fg = -mg * sinx摩擦力一般可以近似为:Fc = -b * dx / dt其中b为摩擦系数。

将上述方程带入质点的动力学方程中,可以得到:m * d^2x / dt^2 + b * dx / dt + mg * sinx = 0这就是质点的动力学方程。

三、杆的动力学方程杆的运动可以由转动惯量和力矩平衡来描述。

假设杆的质量为M,长度为l,转动惯量为I,杆绕其一端的转动中心转动,可以得到杆的动力学方程:I * d^2θ / dt^2 = -Mgl * sinθ其中θ表示杆的角度。

四、控制方法倒立摆的控制方法可以分为开环和闭环控制。

开环控制是通过输入外部力或力矩来控制摆的位置或角度,而闭环控制是通过测量摆的位置或角度,并根据目标位置或角度来调整输入力或力矩。

闭环控制往往使用PID控制器。

PID控制器是一种经典的控制器,可以根据目标位置与当前位置之间的差异来调整输入力或力矩,从而实现对倒立摆的控制。

五、应用领域倒立摆的研究在控制系统领域具有广泛的应用。

例如,在工业自动化中,倒立摆可以用来模拟和控制各种平衡问题。

此外,倒立摆还可以用于教育和科普领域,帮助人们更好地理解动力学和控制原理。

六、结论倒立摆的动力学模型是控制系统领域中一个重要的研究对象。

通过建立质点与杆之间的力学关系,可以得到质点和杆的动力学方程。

倒立摆的数学模型

倒立摆的数学模型

倒立系统的数学建模和线性化处理 为使问题简明,数学模型不包括小车内的拖动电机和机械传动系统,只考虑它施于小车的力出发,根据牛顿定律小车在X 方向上``u H M x -= (1)对于摆,在 X 方向上22(sin )d H mx L dtθ=+ (2)在 Y 方向上22(cos )d V m g mL dtθ-= (3)摆绕其中心的转矩为2``sin cos 12m L VL H L θθθ-=(4)假定θ很小,sin θ→θ,cos θ→1``u H M x -=````H m x m L θ=+0V mg -=2``12m L VL H L θθ-=上述四个方程五个变量x ,θ ,V ,H ,u .消去V 和H 后,并写成矩阵的形式,即式(5).系统中小车的质量 M=2.00 kg ,摆的质量m=0.20 kg ,摆长2 L=0.80 m ,重力加速度g=9.80m /s2````````()10001313()()121213/12001313()()1212100000100m M g m L m M Lm L m M L x m g x u m M mm M m x x θθθθ+⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤-+-+⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ (5)并设向量X =``Tx xθθ⎡⎤⎢⎥⎣⎦和向量 :```````Tx x xθθ⎡⎤=⎢⎥⎣⎦, 系统的输出为摆的偏角0和小车```````TX x x θθ⎡⎤=⎢⎥⎣⎦,系统的输出为摆的偏角θ和小车运动的距离x ,则系统的方程`X AX Bu Y C X=+= (6)0024.6960000.89801000010A -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦状态矩阵 (7) -1.1450.49600⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦输入矩阵B (8) 001001⎡⎤=⎢⎥⎣⎦输出矩阵C (9) 系统状态可控的条件为:当且仅当向量组B,AB,```` 1n A B -是线性无关的,或n*n 维矩阵1```n B ABAB -⎡⎤⎣⎦的秩为n 。

倒立摆系统的建模(拉格朗日方程)

倒立摆系统的建模(拉格朗日方程)

系统的建模及性能分析倒立摆系统的构成及其参数1倒立摆系统的基本结构本设计所用到的倒立摆模型直线一级倒立摆系统。

整个系统是由6大部分所组成的一个闭环系统,包括计算机、数据采集卡、电源及功率放大器、直流伺服电机、倒立摆本体和两个光电编码器等模块。

如图2.1所示:图2.1 倒立摆系统的结构组成示意图Fig 2.1 Structure of the linear single inverted pendulum system2系统主要组成部分简介直线一级倒立摆装置如图2.2所示[13]:图2.2直线一级倒立摆装置Fig 2.2 Straight linear 1-stage inverted pendulum device Quanser倒立摆系统包含倒立摆本体、数据采集电控模块以及控制平台等三大部分,其中控制平台是由装有Quanser专用实时控制软件的通用PC机组成。

1.直线倒立摆主体倒立摆主体是由Quanser直线运动控制伺服单元IP02与直线一级摆杆组成,并配有专用的小车直线轨道。

这里主要介绍下Quanser直线运动控制伺服单元IP02(即倒立摆运动小车)及导轨的组成:图2.3伺服单元IP02的组成Fig 2.3 Servo unit IP02 parts编号名称英文(01)IP02小车IP02 Cart(02)不锈钢滑轨Stainless Steel Shaft(03)齿轮导轨Rack(04)小车位移齿轮Cart Position Pinion(05)小车电机传动齿轮Cart Motor Pinion(06)小车电机传动齿轮轴Cart Motor Pinion Shaft(07)摆杆传动轴Pendulum Axis(08)IP02小车位移编码器IP02 Cart Encoder(09)IP02摆杆角度编码器IP02 Pendulum Encoder(10)IP02小车位移编码器接口IP02 Cart Encoder Connector(11)IP02摆杆角度编码器接口IP02 Pendulum Encoder Connector(12)电机接口Motor Connector(13)直流伺服电机DC Motor(14)变速器Planetary Gearbox(15)直线滑轨支撑轴Linear Bearing(16)摆杆连接套Pendulum Socket(17)IP02配重模块IP02 Weight图2.4系统导轨结构图Fig 2.4 System guide rail structure编号名称英文(22)导轨末端挡板Rack End Plate(23)导轨固定螺丝Rack Set Screw(24)小车运动限位Track Discontinuity直线一级倒立摆系统的倒立摆的摆杆连接在IP02小车的摆杆连接套上,IP02小车由电机通过齿轮传动机构在导轨上来回运动,保持摆杆平衡。

直线一级倒立摆的牛顿—欧拉方法建模

直线一级倒立摆的牛顿—欧拉方法建模

直线一级倒立摆的牛顿—欧拉方法建模首先,我们需要定义系统的坐标和状态变量。

在这个问题中,我们可以选择将质点的位置和角度作为系统的状态。

令x表示质点的水平位置,θ表示摆杆与竖直方向的夹角。

其次,我们需要确定系统的动力学方程。

根据牛顿第二定律和欧拉定理,可以得到如下的动力学方程:m * x'' = -m * g * sin(θ) - c * x';I * θ'' = m * g * cos(θ) * L - J * θ'其中,m是质点的质量,g是重力加速度,c是摩擦系数,L是摆杆的长度,I是质点关于摆杆固定点的转动惯量,J是摆杆的转动惯量。

最后,我们可以采用数值方法来求解这个动力学方程。

牛顿-欧拉方法是一种常用的数值方法,它基于一阶泰勒级数展开近似,并使用离散时间步长来进行数值计算。

具体步骤如下:1.将时间t离散化为n个时间步长Δt的序列:t_0,t_1,...,t_n。

2.初始化系统的状态变量:x(0),θ(0),x'(0),θ'(0)。

3.对于每个时间步长i,计算状态变量的更新:a. 计算加速度:x''(i) = (1/m) * (-m * g * sin(θ(i)) - c * x'(i))θ''(i) = (1/I) * (m * g * cos(θ(i)) * L - J * θ'(i))b.使用泰勒级数展开逼近位置和速度:x(i+1)=x(i)+Δt*x'(i)+0.5*Δt^2*x''(i)θ(i+1)=θ(i)+Δt*θ'(i)+0.5*Δt^2*θ''(i)c.使用泰勒级数展开逼近速度和加速度:x'(i+1)=x'(i)+Δt*x''(i)θ'(i+1)=θ'(i)+Δt*θ''(i)d.根据实际情况对状态进行调整,如质点位置不能超过摆杆范围等。

倒立摆实验

倒立摆实验

第一章直线一级倒立摆的数学模型1.1直线一级倒立摆数学模型的推导倒立摆系统可以等效为典型的运动刚体系统,在惯性坐标系内应用经典力学理论建立系统的动力学方程。

下面将运用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。

在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图所示。

图1-1直线一级倒立摆模型本系统内部各相关参数定义如下:M 小车质量;m 摆杆质量;b 小车摩擦系数;l 摆杆转动轴心到杆质心的长I 摆杆惯量;F加在小车上的力;x 小车位置;摆杆与垂直向上方向的夹角摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。

其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

图1-2 小车及摆杆受力分析应用Newton方法来建立系统的动力学方程过程如下:分析小车水平方向所受的合力,可以得到以下方程:M+m x+bx+mlθcosθ−mlθsinθ=FI+ml2θ+mgl sinθ=−mlx cosθ1.微分方程模型设θ=π+Φ,当摆杆与垂直向上方向之间的夹角与1(单位是弧度)相比很小,即Φ≪1时,则可以进行近似处理:cosθ=−1,sinθ=−Φ,(dθdt)2=0。

为了与控制理论的表达习惯相统一,即u一般表示控制量,用u来代表被控对象的输入力F,线性化后得到该系统数学模型的微分方程表达式:M+m x+bx−mlΦ=uI+ml2Φ+mglΦ=−mlx2.传递函数模型对以上的方程组进行拉普拉斯变换,得到M+m X(s)s2+bX(s)s−mlΦ(s)s2=U(s)I+ml2Φ(s)s2+mglΦ(s)=−mlX(s)s2注意:推导传递函数时假设初始条件为0。

对上述方程组进行化简,可得到以摆杆摆角为输出量的传递函数:Φ(s)=mlq s2s4+b(I+ml2)q s3−(M+m)mglq s2−bmglq s其中,q=[M+m I+ml2−(ml)2]3.状态空间数学模型由现代控制理论原理可知,控制系统的状态空间方程可写成如下形式:X=AX+BuY=CX+Du对于本系统,可得状态方程为:xx ΦΦ=0100−(I+ml2)bI M+m+Mml2m2gl2I M+m+Mml20001−mlb mgl(M+m)xxΦΦ+I+ml2I M+m+Mml2ml2u4.实际系统参数小车质量M=1.096 Kg;摆杆质量m= 0.109 Kg;小车摩擦系数b=0 .1N/m/sec;摆杆转动轴心到杆质心的长度l=0.25m;摆杆惯量I=0.0034 kg m2。

旋转倒立摆

旋转倒立摆

旋转倒立摆简介旋转倒立摆是一种经典的机械系统,由一个悬挂于支架上的刚体组成,刚体下方通过一个铰链与电动机相连。

通过电动机的转动,刚体可以在支架上进行旋转(同时保持倒立)的运动。

旋转倒立摆在控制系统设计、稳定性分析、非线性控制等领域具有重要的研究意义。

动力学模型在分析旋转倒立摆的运动时,我们可以采用动力学模型进行描述。

假设旋转倒立摆的杆的长度为L,质量为m,倒立摆与竖直方向的夹角为θ,转动角速度为ω,则可以得到以下动力学方程:m*L^2 * d^2(θ)/dt^2 + m*g*L*sin(θ) =L*m*ω^2*c os(θ)其中,m表示杆的质量,L表示杆的长度,g表示重力加速度。

这个动力学方程描述了倒立摆受到的力和角度的关系。

控制策略为了使旋转倒立摆能够稳定地保持倒立状态,需要设计合适的控制策略。

常见的控制策略包括PID控制器、模糊控制器和神经网络控制器等。

PID控制器PID控制器是一种经典的控制策略,由比例(P)、积分(I)和微分(D)三个部分组成。

PID控制器根据当前的偏差(即期望角度与实际角度之间的差异)计算出一个控制量,控制摆杆的转动。

通过调节PID控制器的参数,可以实现旋转倒立摆的稳定控制。

模糊控制器模糊控制器是一种基于模糊逻辑的控制策略,可以根据输入的模糊规则来计算控制量。

模糊控制器的优点是能够对非线性系统进行稳定控制,并且具有较好的鲁棒性。

在旋转倒立摆控制中,可以利用模糊控制器对杆的倾斜角度进行控制,从而实现倒立的稳定。

神经网络控制器神经网络控制器是一种基于神经网络的控制策略,通过训练神经网络来实现对控制系统的控制。

在旋转倒立摆的控制中,可以利用神经网络来学习倒立摆的动力学模型,并根据学到的模型来进行控制,从而实现倒立的稳定。

神经网络控制器具有较好的非线性逼近能力,可以在复杂的控制系统中取得较好的控制效果。

稳定性分析对于旋转倒立摆的稳定性分析,可以采用Lyapunov稳定性方法。

利用Lyapunov函数可以判断系统是否达到稳定状态。

倒立摆的数学模型

倒立摆的数学模型

倒立摆的数学模型质量为m 的小球固结于长度为L 的细杆(可忽略杆的质量)上,细杆又和质量为M 的小车铰接相连。

由经验知:通过控制施加在小车上的力F (包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。

在忽略其他零件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型。

倒立摆模型如图所示。

小车由电机通过同步带驱动在滑杆上来回运动,保持摆杆平衡。

电机编码器和角编码器向运动卡反馈小车和摆杆位置(线位移和角位移)。

导轨截面成H 型,小车在轨道上可以自由滑动,其在轨道上的有效运行长度为1米。

轨道两端装有电气限位开关,以防止因意外失控而撞坏机构。

以摆角θ、角速度θ’、小车位移x 、加速度x ’为系统状态变量,Y 为输出,F 为输入X=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡x'x 'θθ Y=⎥⎦⎤⎢⎣⎡x θ=⎥⎦⎤⎢⎣⎡31x x 由线性化后运动方程组得x1’=θ’=x2 x2’=''θ=()Ml g m M +x1-Ml1 F X3’ =x ’=x4 x4’=x ’’=-M mg x1+M1 F 故空间状态方程如下: X ’=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'4'3'2'1x x x x =()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-+00010000000010Mm gMl g m M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-M Ml 1010 FY= ⎥⎦⎤⎢⎣⎡31x x =⎥⎦⎤⎢⎣⎡01000001 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + 0⨯F 其中,M=1 kg ,m=0.1kg ,l=.1m ,g=10m/s 。

由倒立摆系统数学模型,倒立摆系统是一个具有两输出变量的不稳定系统,按照传统模糊控制设计方法,一个两输入的模糊控制器不可能实现对输出变量摆角和小车位移的控制,得需要一个四输入的模糊控制器。

倒立摆模型推导

倒立摆模型推导

倒立摆系统模型研究控制系统的数学模型是描述系统内部物理量或变量之间关系的数学表达式。

在静态条件下(即变量各阶导数为零),描述变量之间关系的代数方程称为静态数学模型;而描述变量各阶导数之间关系的微分方程称为动态数学模型。

如果已知输入量及变量的初始条件,对微分方程求解,则可以得到系统输出量的表达式,并由此对系统进行性能分析。

因此,建立控制系统的数学模型是进行控制系统分析和设计的首要工作。

系统建模可以分为两种方式:实验建模和机理建模。

实验建模是通过在研究对象上加入各种由研究者事先确定的输入信号,激励研究对象,并通过传感器检测其可观测的输出,应用系统辩识的手法分析输入-输出关系,建立适当的数学模型逼近实际系统。

机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统的运动方程。

对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难,故而选用机理建模的方法。

为了在数学上推导和分析的方便,可作出如下假设:1) 摆杆在运动中是不变形的刚体;2) 齿型带与轮之间无相对滑动,齿型带无拉长现象; 3) 各种摩擦系数固定不变; 4) 忽略空气阻力;在忽略掉这些次要的因素后,倒立摆系统就是一个典型的运动刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。

本文采用分析力学Lagrange 方程建立一、二级倒立摆的数学模型。

Lagrange 方程有如下特点:1) 它是以广义坐标表达任意完整系统的运动方程式,方程的数目和系统的自由度数是一致的。

2) 理想的约束反力不出现在方程组中,因此在建立系统的运动方程时,只需分析已知的主动力,而不必分析未知的约束反力。

3) Lagrange 方程是以能量的观点建立起来的运动方程式,为了列出系统的运动方程式,只需从两个方面进行分析,一个是表征系统运动的动力学能量——系统的动能,另一个是表征主动力作用的动力学量——广义力。

因此,用Lagrange 建模可以大大简化系统的建模过程。

自动控制原理实验倒立摆

自动控制原理实验倒立摆

自动控制原理实验倒立摆1.实验目的通过倒立摆实验,理解自动控制原理在实际应用中的原理和方法,在实际操作中学习掌握自动控制原理的设计方法和技巧。

2.实验原理倒立摆是一种具有非线性、强耦合和不稳定性质的系统。

其基本原理是通过对摆杆作用力的调节,使摆杆保持在竖直稳定位置上。

系统的数学模型如下:- 摆杆的运动方程为m*l^2θ'' + mgl*sin(θ) = u - c*l^2θ',其中m为摆杆的质量,l为摆杆的长度,θ为摆杆的摆动角度,g为重力加速度,u为控制输入,c为摩擦系数。

- 考虑到系统的非线性特性,可以通过线性化方法将系统模型线性化为m*l^2θ'' + mgl*θ = u - c*l^2θ'。

在小偏角范围内,可以近似将系统模型简化为m*l^2θ'' + mgl*θ = u。

3.实验器材-倒立摆实验台-直流电机-电位器-电压放大器-数据采集卡-电脑4.实验步骤1)将倒立摆装置固定在实验台上,通过电流循环控制直流电机提供动力。

2)将电位器与电压放大器连接,通过测量摆杆的角度θ,输出电压信号。

3)将输出信号通过数据采集卡传输给电脑进行数据处理和分析。

4)设计控制算法,将控制输入u与测量角度θ进行比较,实现对摆杆位置的稳定控制。

5)调节控制输入u,对摆杆位置进行控制。

6)观察摆杆的运动轨迹和稳定性,记录数据进行分析和评价。

5.实验结果分析通过实验数据,可以得到摆杆角度随时间的变化曲线。

通过分析曲线的特征,可以评估控制系统性能的好坏,如响应时间、超调量、稳定性等。

实验结果与理论模型进行对比,检验控制算法的有效性和准确性。

6.实验应用倒立摆系统广泛应用于工业生产中的平衡控制、姿态控制、自动导航和机器人控制等领域。

通过对倒立摆系统的研究,可以深入理解自动控制原理及其在实际应用中的应用。

7.实验总结通过本次实验,深入了解了自动控制原理在倒立摆系统中的应用。

二级倒立摆模型

二级倒立摆模型

二级倒立摆模型1 系统数学模型在忽略空气阻力及各种摩擦力之后,可将倒立摆系统抽象成小车、匀质杆和质量块组成的系统。

利用拉格朗日方程推导倒立摆运动学方程,如下:),(),(),(...q q V q q T q q L -=其中,L 为拉格朗日算子,q 为系统的广义坐标,T 为系统的动能,V 为系统的势能。

拉格朗日方程由广义坐标i q 和L 表示为:i if q Lq L dt d =∂∂-∂∂.其中,i f n i ,,,2,1 =为系统沿该广义坐标方向上的外力,在本系统中,设系统的三个广义坐标分别为21,,θθx 。

由于在广义坐标21,θθ上均无外力作用,有以下等式成立:01.1=∂∂-∂∂θθLL dt d (1) 02.2=∂∂-∂∂θθLL dt d (2) 求解代数方程,表示成一下形式:),,,,,,(...2.1.211..1x x x f θθθθθ= (3)),,,,,,(...2.1.212..2x x x f θθθθθ= (4)取平衡位置时各变量初值为零)0,0,0,0,0,0,0(),,,,,,(...2.1.21=x x x θθθθ,将(3)(4)式在平衡位置进行泰勒级数展开,并线性化,)..17213112..1x K K K ++=θθθ (5))..27223122..2x K K K ++=θθθ (6)现在得到了两个线性微分方程,由于我们采用了加速度作为输入,因此还需要加上一个方程..x u = (7)取状态变量如下:.26.15.423121,,,,,θθθθ======x x x x x x x x 由(5) (6)(7)式得到状态空间方程如下:u K K x x x x x x K K K K x x x x x x ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡271765432123221311.6.5.4.3.2.11000000000000000001000000100000010002 线性二次型最优控制器的设计我们要设计一个线性二次型最优控制器,使得当给系统施加一个阶跃输入时,摆杆会摆动,然后仍然回到垂直位置,这里没有考虑小车位置。

一阶倒立摆动力学方程推导

一阶倒立摆动力学方程推导

(3) 简单的二阶动力学方程如何化为传递函数
x Ax Bu y Jy ku y Cx Du
x 为 n 维状态向量; y 为 m 维输出向量; u 为 r 维输入向量; A 为
B 为 n r 维输入矩阵; n n 维系统矩阵, C 为m n 由系统参数决定;
梅科尔工作室
根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为(以重心为转动中心)
J Fyl sin Fxl cos ..........(1)
(2) 摆杆重心的运动方程为(直线运动)
d2 ( x l sin )..........(2) d 2t d2 Fy mg m 2 (l cos ).........(3) d t 得 Fx m
梅科尔工作室
(3-8) 设θ=φ+π( φ是摆杆与垂直向上方向之间的夹角) ,假设φ与1(单位是弧 度)相比很小,即φ<<1,则可以进行近似处理:
用u 来代表被控对象的输入力F,线性化后两个运动方程如下:
(3-9) 对式(3-9)进行拉普拉斯变换,得到
(3-10) 注意:推导传递函数时假设初始条件为0。 由于输出为角度φ,求解方程组的第一个方程,可以得到:
由(3-9)的第一个方程为: (只用了第一个方程式为了建立水平加速度与转角之间 的关系)
对于质量均匀分布的摆杆有:
梅科尔工作室
于是可以得到:
化简得到:

则有:
另外, 也可以利用MATLAB 中tf2ss 命令对(3-13)式进行转化, 求得上述状态方程。 在固高科技所有提供的控制器设计和程序中,采用的都是以小车的加速度作为 系统的输入,如果用户需要采用力矩控制的方法,可以参考以上把外界作用力作 为输入的各式。 2.2 拉格朗日法 拉格朗日方程的表达式:

倒立摆机器人系统的数学模型描述

倒立摆机器人系统的数学模型描述

倒立摆机器人的模型倒立摆动力学模型示意图如图1.1所示。

图1.1倒立摆动力学模型示意图表1.1 参数说明参数名称参数定义1l 主动臂的长度1c l主动臂相对于连接点到质心的距离2c l 欠驱动臂相对于连接点到质心的距离1q主动臂相对于坐标轴的角度2q 欠驱动臂相对于主动臂的角度1I 主动臂相对于质心转动惯量2I 欠驱动臂相对于质心转动惯量1m 主动臂质量2m 欠驱动臂质量g重力加速度拉格朗日动力学方程拉格朗日方程以广义坐标为自变量,通过拉格朗日函数来表示。

拉格朗日体系分析力学处理问题时以整个力学系统作为对象,用广义坐标来描述整个力学系统,着眼于能量概念。

对于机械系统,其拉格朗日函数都可以定义成该系统动能k E 和势能p E 之差,即:k pL E E =-(1.1)系统的动能和势能可以用任意选取的坐标系来表示。

系统的动力学方程(第二类拉格朗日方程)为:d L Ldt qq τ∂∂=-∂∂ (1.2)由于势能不含速度项,因此动力学方程也可以写成:pk k E E E d dt q q qτ∂∂∂=-+∂∂∂ (1.3)由此可见,对于Pendubot 系统,其拉格朗日运动方程则为:()()()1,,[ 0]()()()1,2T i i i d K q q K q q P q dt q q qi τ∂∂∂-+=∂∂=∂(1.4)其中,(),K q q为Pendubot 系统的动能之和,()P q 为Pendubot 系统的势能总和。

摆臂受到的力矩为τ,只有摆臂与电机相连接的主动关节受力,而另一个关节是欠驱动的。

由于两杆均为刚体,所以摆臂的动能与势能可根据每一根杆的总质量与相对于重心的惯量来唯一确定。

欠驱动机械臂动力学模型根据式(1.4),分析Pendubot 摆臂的动能和势能。

计算平移动能的一般表达式为22mv K =。

由上图可知,系统两个摆臂的角速度可以表示为:11212ωωqq q ==+ , (1.5)对于系统的主动臂,其平移动能可以直接描述成以下形式:22111112c K m l q =(1.6)由于系统的势能大小与机械臂的质心位置有关系,这里可以用y 坐标来表示摆臂的其位置高度,于是势能可以直接描述为:1111 sin()c P m l g q =(1.7)对于系统的欠驱动臂,要先得到其质心位置的笛卡儿坐标表达式,然后通过微分处理得到关节角速度。

一级倒立摆数学模型

一级倒立摆数学模型

一级倒立摆数学模型一、啥是一级倒立摆嘿,小伙伴们!咱们来聊聊一级倒立摆这个有趣的玩意儿。

其实啊,一级倒立摆就是一个简单又神奇的系统。

想象一下,一根杆子,上面顶着个重物,然后这根杆子还能自由地转动。

咱们要研究的就是怎么让这个杆子不倒,还能稳定地保持平衡。

是不是感觉有点难理解?没关系,接着往下看!二、为啥要研究它你可能会问,研究这东西有啥用啊?这用处可大了去啦!它能帮助我们理解和控制很多不稳定的系统。

比如说走路、飞机的平衡控制,甚至是火箭的姿态调整。

通过研究一级倒立摆,咱们能掌握让这些复杂系统稳定运行的方法和技巧。

而且,这也是学习控制理论的一个很好的例子,能让我们更深入地理解那些抽象的数学概念。

三、数学模型咋建立好啦,重点来啦!咱们来说说怎么建立一级倒立摆的数学模型。

咱们得搞清楚这个系统的物理特性,像杆子的长度、重物的质量、转动的摩擦力等等。

然后,根据牛顿定律和一些数学知识,就能列出一堆方程啦。

这里面会涉及到微分方程、线性代数这些知识,可别被吓到哦!其实就是把物理现象用数学语言描述出来。

比如说,咱们可以用一个角度来表示杆子的倾斜程度,然后根据力和力矩的平衡关系,就能得到描述这个系统动态变化的方程。

当然,这只是个简单的介绍,真正的模型建立可要复杂得多,但只要咱们一步一步来,也能搞明白的!四、模型有啥特点这个数学模型有一些很有趣的特点哦!比如说,它是非线性的,这就意味着它不像咱们平时学的那些简单方程那么好处理。

而且,它对初始条件很敏感,一点点小的变化可能就会导致系统的行为完全不同。

不过,咱们可以通过一些方法,把它近似地转化为线性模型,这样就能用我们熟悉的控制方法来研究啦。

好啦,小伙伴们,关于一级倒立摆的数学模型就先讲到这里,希望大家能对它有个初步的认识和了解,要是感兴趣的话,还可以自己深入研究研究哦!。

旋转式倒立摆模型推导和仿真[1]

旋转式倒立摆模型推导和仿真[1]

旋转式倒立摆模型推导和仿真初步设定系统结构进行建模和仿真,在此基础上考虑一定的余量选择主要元部件。

()()()()112011111111120111111111112101101122222111112222222221111sin cos cos sin sin cos 2cos 4sin cos sin 2sin 4N N m g m l m l F F m l m l J M N N l F F l m l l l l F N m g m l l θθθθθθθθθμθμθθθθθθθθθθθθθθθ--=---=-=-+-++++-+-=--=-+ ()()222212222222222221sin sin sin cos sin l l J Fl Nl θθθθθθθθμθθ⎧⎪⎪⎪⎪⎪⎨⎪⎪++⎪⎪=+--⎪⎩()()()()120101111112101101211222,120N N m g F F m l J M N N l F F lm l l F N m g θθθθμθμθθθθθ--=⎧⎪-=⎪⎪=-+-++++⎪⎨+=-⎪⎪-=⎪()()()()()()()()1112121211211221112112212221122222221222J M m g m g m g l m l l m l m l l l J m l l l m gl θμθμθθθθθθθθθθθθμθθ⎧=-+-+++⎪⎪+-+--+⎨⎪⎪=-++--⎩()()()()1112211122211122111222112222222122 222J M m m gl m l l l m l J m l l l m gl θμθμθθθθθθθθθμθθ⎧=-+++⎪⎪-+-⎨⎪=-++--⎪⎩ ()()()()22121111212212211122121222222221221112224222222;33J m l m l m l l M m m gl m l l J m l m gl J m l J m l θθμθμθθθθθμθθ⎧+++=⎪⎪=-+++⎨⎪++=--⎪⎩== ()()22112112122122111221212222122254232252m l m l m l l M m m gl m l l m l m gl θθμθμθθθθμθθθ⎧⎛⎫++= ⎪⎪⎝⎭⎪⎪=-+++⎨⎪⎪+=--+()()1122311422221121321243421112212322443222,,,542322523x x x x x x m l m l x m l l x M x x m m gl x m l l x m l xx x m gl x θθθθμμμ======⎧⎛⎫++= ⎪⎪⎝⎭⎪⎪=-+++⎨⎪⎪+=--+⎪⎩()()222111212212321242213241324342111334443222554,2,2,3322s m l m l s m l l s m l l s m l x x xx s xs x M x x m m gl xs x s xx x m gl x μμμ⎛⎫=+=== ⎪⎝⎭⎧=⎪=⎪⎪+=⎨⎪=-+++⎪⎪+=--+⎩ ()11221232113344224100000100010000010002021000x x x x M s s xm m gl x s s xm gl x μμμμ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ ()312113334422243441122123133343334424344442,2,,,,1000001000100000100001000p m m gl p p p m gl p p x x x x M s s p p p xx s s p p p xx μμμμ=+=-====-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦11112212313334123334424344344410000010100000100001010000000100000x x x x M s s p p p s s x x s s p p p s s x x --⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦11212343411221231333413334424344344100010000100010000000000100000100010000010000000s s q q s s q q x x x x q q p p p q x x q q p p p q x x -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎢⎥⎢⎥⎢⎥⎢⎥⎢⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦M ⎥⎥⎥12122212322243142344333440.1,0.2,0.1,0.2,0.0097,0.008,0.0133,0.49/0.49,0.392,0.01,0.02,0.01.m kg m kg l m l m s kgm s s kgm s kgm p kgm s Nm pNm p p Nms p Nms p Nms ==============-=-1122334411122230010000010100.6849-48.3288 -5.3425 3.2877205.4795-60.411058.3973 3.9555-2.7226-123.287710000100xx x x Mx x x x x x x y x x θθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 4x ⎧⎪⎪⎪⎪⎪⎨⎡⎤⎪⎢⎥⎪⎢⎥⎪⎢⎥⎪⎢⎥⎪⎣⎦⎩q=[0.1 0 0 0;0 1 0 0;0 0 0.01 0;0 0 0 0.1] ; r=10;k=lqr(a,b,q,r)k =[-0.0101 -6.6974 -0.5158 -1.0987]假设摩擦力矩为0.1Nm,饱和力矩为0.5Nm,初始有小角度偏移,仿真结果如下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倒立摆模型数学模型推导
倒立摆模型是一种经典的数学模型,它可以用来描述倒立摆的运动规律。

倒立摆是一个由一个质点和一个固定在一根杆上的支点组成的系统,其特点是质点可以在杆的竖直方向上自由运动。

倒立摆模型的推导过程可以帮助我们更好地理解倒立摆的运动行为。

我们需要确定倒立摆模型中的各个物理量。

倒立摆模型包括杆的长度l、质点的质量m、杆与竖直方向夹角θ以及杆与竖直方向的角速度ω。

我们假设杆是质量均匀分布的,忽略空气阻力和摩擦力的影响。

根据牛顿第二定律和力的平衡条件,我们可以得到倒立摆的运动方程。

首先考虑沿杆方向的受力平衡,可以得到以下方程:
m * l * ω^2 * sinθ = m * g * sinθ
进一步考虑垂直于杆方向的受力平衡,可以得到以下方程:
m * l * ω * cosθ = m * g * cosθ + T
其中,T表示杆对质点的拉力。

由于杆是刚性的,因此可以认为杆上各点的速度相同,即杆的线速度为v = l * ω。

根据牛顿第二定律,可以得到以下方程:
m * l * ω * cosθ = m * g * cosθ + T = m * a
其中,a表示质点的加速度。

将上述方程带入到沿杆方向的受力平衡方程中,可以得到以下方程:
m * l * ω^2 * sinθ = m * g * sinθ + m * a * sinθ
进一步化简上述方程,可以得到倒立摆的运动方程:
l * ω^2 + g * sinθ = a * sinθ
倒立摆的运动方程是一个非线性微分方程,可以通过数值解或近似解的方法求解。

在实际应用中,可以利用控制理论和控制算法来实现倒立摆的控制。

倒立摆模型的推导过程可以帮助我们更好地理解倒立摆的运动规律。

通过倒立摆模型,我们可以研究倒立摆的稳定性、控制方法以及应用领域等问题。

倒立摆模型不仅在物理学和工程学中有广泛的应用,也成为了控制理论和控制工程的经典案例之一。

总结起来,倒立摆模型是一种用数学方法描述倒立摆运动规律的模型。

通过推导倒立摆的运动方程,我们可以更好地理解倒立摆的运动行为,并且可以利用控制理论和控制算法来实现倒立摆的控制。

倒立摆模型在物理学、工程学以及控制理论和控制工程等领域都有着重要的应用。

通过研究倒立摆模型,我们可以深入探究倒立摆的稳定性、控制方法以及应用前景,为相关领域的发展和应用提供有益的参考。

相关文档
最新文档