典型的轴对称图形练习题(带答案)
轴对称练习题(含答案)
轴对称练习题(含答案)一.选择题1.下列图形中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.3.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.16 C.8 D.104.点A(4,﹣2)关于x轴的对称点的坐标为()A.( 4,2 )B.(﹣4,2)C.(﹣4,﹣2)D.(﹣2,4)5.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°6.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°7.在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.108.如图,Rt△ACB中,∠ACB=90°,∠A=60°,CD、CE分别是△ABC的高和中线,下列说法错误的是()A.AD=ABB.S△CEB =S△ACEC.AC、BC的垂直平分线都经过ED.图中只有一个等腰三角形9.如图,a∥b,△ABC的顶点A在直线a上,AC=BC,∠1=50°,∠2=20°,则∠C的度数为()A.70°B.30°C.40°D.55°10.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90°.则小意同学判断的依据是()A.等角对等边B.线段中垂线上的点到线段两段距离相等C.垂线段最短D.等腰三角形“三线合一”11.如图,在△ABC中,∠CDE=64°,∠A=28°,DE垂直平分BC;则∠ABD=()A.100°B.128°C.108°D.98°12.如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°二.填空题13.在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则b a的值是.14.已知一个等腰三角形腰上的高与底边的夹角为37°,则这个等腰三角形的顶角等于度.15.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC 的垂直平分线交BC于N,交AC于F,若MN=2,则NF=.16.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是.三.解答题17.如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.18.如图,AD⊥BC于D,且DC=AB+BD,若∠C=26°,求∠BAC的度数.19.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.20.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. (1)若∠A 4=9°,则∠BAA 4的度数为 ; (2)若∠BAA 4=α,则∠B n ﹣1A n A n ﹣1的度数为 ; (3)过A 做AC ∥A 3B 2,若∠BAC =100°,求∠B 3A 4A 3的度数.参考答案一.选择题1.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)] =360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.3.解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.4.解:点A(4,﹣2)关于x轴的对称点为(4,2).故选:A.5.解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.6.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.7.解:如图:∴最多画9条,故选:C.8.解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE =S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.9.解:延长AB交直线b于E,∵a∥b,∴∠3=∠1=50°,∴∠ABC=∠2+∠3=20°+50°=70°,∵CA=CB,∴∠BAC=∠ABC=70°,∴∠C=180°﹣70°﹣70°=40°,故选:C.10.解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形的三线合一),∴∠AOB=90°.故选:D.11.解:∵DE垂直平分BC,∴BD=DC,∴∠BDE=∠CDE=64°,∴∠ADB=180°﹣64°﹣64°=52°,∵∠A=28°,∴∠ABD=180°﹣28°﹣52°=100°.故选:A.12.解:∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.二.填空题(共4小题)13.解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,∴b a=1,故答案为:1.14.解:如图(1)顶角是钝角时,∵等腰三角形腰上的高与底边的夹角为37°,∴∠OCB=37°,∵OC⊥OB,∴∠ABC=90°﹣37°=53°,∴∠BAC=180°﹣53°﹣53°=74°,即△ABC为锐角三角形,顶角是钝角这种情况不成立;(2)顶角是锐角时,∠B=90°﹣37°=53°,∠A=180°﹣2×53°=74°.因此,顶角为74°.故答案为:74.15.解:∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=(180°﹣∠A)=30°,连接AN,AM,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠C=∠NAC=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴AM=AN,∴△AMN是等边三角形,∵MN=2,∴AN=2=CN,在Rt△NFC中,∠C=30°,∠NFC=90°,CN=2,∴NF=CN=1,故答案为:1.16.解:∵BC的垂直平分线分别交AB、BC于点D和点E,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠DCB=25°+25°=50°.∵AC=DC,∴∠CAD=∠ADC=50°,∴∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣50°﹣50°=80°.故答案为:80°.三.解答题(共4小题)17.(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.18.解:截取DE=BD,连接AE,如右图所示,∵DC=AB+BD,BD=DE,∴AB=CE,∵AD⊥BE,∴∠ADB=∠ADE=90°,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴AB=AE,∠B=∠AED,∴AE=CE,∴∠EAC=∠C,∵∠C=26°,∠AED=∠EAC+∠C,∴∠AED=52°,∴∠B=52°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣52°﹣26°=102°,即∠BAC的度数是102°.19.解:(1)如图所示,△A1B1C1即为所求;A 1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.20.解:(1)∵AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4….,∴∠B 2A 3A 2=2∠A 4=18°, ∴∠B 1A 2A 1=2∠B 2A 3A 2=36°, ∴∠BAA 4=∠BA 1A =2∠B 1A 2A 1=72°;(2)∵AB =A 1B ,∴∠BAA 4=BA 1A =α, ∵A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. ∴∠B 1A 2A 1=∠BA 1A =α; 同理可得,∠B 2A 3A 2=α,∠B 3A 4A 3=α, 以此类推,∠B n ﹣1A n A n ﹣1=,故答案为:72°,; (3)设∠B 3A 4A 3=x °, ∵A 3B 3=A 3A 4,∴∠A 3B 3A 4=∠A 4,∴∠B 2A 3A 2=2x °,同理,∠BAA 4=8x °, ∵AC ∥A 3B 2,∴∠A 4AC =∠A 4,∴8x +2x =100,∴x =10,∴∠B 3A 4A 3的度数为10°.。
轴对称练习题(含答案)
轴对称练习题13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25° B.45° C.30° D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A=8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ; (2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为()A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.轴对称13.1.1轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB与A′B′是对应线段,∴AB=A′B′=6cm.又∵AC与A′C′是对应线段,∴A′C′=AC=8cm.(2)∵∠A′与∠A是对应角,∴∠A′=∠A=90°,∴S△A′B′C′=A′B′·A′C′÷2=24(cm2).13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD.∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm.∵AC=4cm,∴BC=7cm.第2课时线段垂直平分线的有关作图1.D2.解:如图所示.3.解:(1)图略.(2)中点垂直平分线4.解:连接AB,作线段AB的垂直平分线MN交直线l于点P,则点P即为所求位置.图略.13.2画轴对称图形第1课时画轴对称图形1.(1)M,P,N(2)G,H,I GM DM HP EP IN FN(3)GH HI IG2.解:如图所示.3.解:如图所示.第2课时用坐标表示轴对称1.C 2.C 3.A 4.B 5.(-5,-3) 6.217.解:(1)如图.(2)A1(1,5),B1(1,0),C1(4,3).(3)7.5。
轴对称图形习题及详细解答
轴对称图形习题及详细解答一.解答题(共30小题)1.(2016•宁夏)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.2.(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt △ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.3.(2016•十堰)如图,将矩形纸片ABCD(AD >AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.4.(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.5.(2016•漳州模拟)数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.6.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE 垂直平分AB于D,求证:BE+DE=AC.7.(2016•萧山区二模)已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC的中垂线.8.(2016•怀柔区一模)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.9.(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC 的度数.10.(2016•东城区一模)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).11.(2016•怀柔区二模)如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.12.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.13.(2016•门头沟区一模)如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.14.(2016•吉林校级二模)如图,等边三角形ABC的边长是2,D、E分别为AB、AC的中点,点F在BC延长线上,且CF=,求四边形DEFB 的面积.15.(2016•门头沟区二模)如图,在△ABC中,∠BAC=90°,∠C=30°,AE为BC边上的中线.求证:△ABE是等边三角形.16.(2016•泗水县一模)如图,把矩形纸片ABCD 沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)若AE=3,AB=4,求BF的长.17.(2016•北京一模)如图1,四边形ABCD中,AB=AD,BC=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究“筝形”的性质和判定方法.小聪根据学习四边形的经验,对“筝形”的判定和性质进行了探究.下面是小聪的探究过程,请补充完整:(1)如图2,连接筝形ABCD的对角线AC,BD交于点O,通过测量边、角或沿一条对角线所在直线折叠等方法探究发现筝形有一组对角相等,请写出筝形的其他性质(一条即可):,这条性质可用符号表示为:;(2)从边、角、对角线或性质的逆命题等角度进行探究,写出筝形的一个判定方法(定义除外),并证明你的结论.18.(2016•拱墅区二模)如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC 于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A 正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.19.(2016春•吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.20.(2016春•金堂县期末)如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.21.(2016春•滕州市期末)如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.22.(2016春•淅川县期末)如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.23.(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.25.(2016春•高平市期末)已知a、b满足方程组(1)求a,b的值;(2)若a、b是一个等腰三角形的两边长,求这个等腰三角形的周长.26.(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.27.(2016春•吉林期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是边AB的中点,连接DE,若AD=12,BC=10,求DE的长.28.(2016春•安岳县期末)等腰三角形一腰上的中线将三角形的周长分成了21和27两个部分,求等腰三角形的底边和腰长.29.(2016春•西藏校级期末)如图,在△ABC 中,AB=AC,点D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F.(1)求证:点O在AB的垂直平分线上;(2)若∠CAD=20°,求∠BOF的度数.30.(2016春•鄄城县期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.参考答案与试题解析一.解答题(共30小题)1.(2016•宁夏)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【分析】先证明△DEC是等边三角形,再在RT △DEC中求出EF即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.【点评】不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.2.(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt △ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【解答】解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;(2)∵将Rt△ABC向下翻折,使点A与点C 重合,折痕为DE.∴∠AED=∠CED=90°,∴∠AED=∠ACB=90°,∴DE∥BC.【点评】本题考查的是图形的翻折变换,涉及到平行线的判定,熟知折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.3.(2016•十堰)如图,将矩形纸片ABCD(AD >AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D 的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.【分析】(1)由四边形ABCD是矩形,根据折叠的性质,易证得△EFG是等腰三角形,即可得GF=EC,又由GF∥EC,即可得四边形CEGF 为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF为菱形;(2)如图1,当G与A重合时,CE取最大值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;如图2,当F 与D重合时,CE取最小值,由折叠的性质得AE=CE,根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)由(1)得四边形CEGD是菱形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,∴线段CE的取值范围3≤CE≤5.【点评】本题考查了翻折变换﹣折叠问题,菱形的判定,线段的最值问题,矩形的性质,勾股定理,正确的作出图形是解题的关键.4.(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.【分析】作EH⊥AB于H,作FG⊥BC于G,根据角平分线的性质可得EH=ED,再证ED=FG,则EH=FG,通过证明△AEH≌△CFG 即可.【解答】解:作EH⊥AB于H,作FG⊥BC于G,∵∠1=∠2,AD⊥BC,∴EH=ED(角平分线的性质)∵EF∥BC,AD⊥BC,FG⊥BC,∴四边形EFGD是矩形,∴ED=FG,∴EH=FG,∵∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,又∵∠AHE=∠FGC=90°,∴△AEH≌△CFG(AAS)∴AE=CF.【点评】本题考查了角平分线的性质;综合利用了角平分线的性质、同角的余角相等、全等三角形的判定等知识点.5.(2016•漳州模拟)数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.【分析】结合已知条件,根据全等三角形的判定定理,推出△POD≌△POE即可.【解答】证明:∵OC是∠AOB的平分线,∴∠POD=∠POE,∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△POD与△POE中,,∴△POD≌△POE,∴PD=PE.【点评】本题主要考查了全等三角形的判定和性质、角平分线的性质,解题的关键在于找到对应角相等、公共边.6.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE 垂直平分AB于D,求证:BE+DE=AC.【分析】根据角平分线性质得出CE=DE,根据线段垂直平分线性质得出AE=BE,代入AC=AE+CE求出即可.【解答】证明:∵∠ACB=90°,∴AC⊥BC,∵ED⊥AB,BE平分∠ABC,∴CE=DE,∵DE垂直平分AB,∴AE=BE,∵AC=AE+CE,∴BE+DE=AC.【点评】本题考查了角平分线性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.7.(2016•萧山区二模)已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC的中垂线.【分析】由AD是△ABC的角平分线,DE⊥AB,DF⊥AC,根据角平分线的性质,可得DE=DF,∠BED=∠CFD=90°,继而证得Rt△BED≌Rt △CFD,则可得∠B=∠C,证得AB=AC,然后由三线合一,证得AD是BC的中垂线.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴∠B=∠C,∴AB=AC,∵AD是△ABC的角平分线,∴AD是BC的中垂线.【点评】此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质.注意掌握三线合一性质的应用.8.(2016•怀柔区一模)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.【分析】根据线段垂直平分线的性质得出AE=BE,再由直角三角形的性质即可得出结论.【解答】证明:∵DE是线段AB的垂直平分线,∴AE=BE,∠ADE=90°,∴∠EAB=∠B.在Rt△ABC中,∵∠C=90°,∴∠CAB+∠B=90°.在Rt△ADE中,∵∠ADE=90°,∴∠AED+∠EAB=90°,∴∠CAB=∠AED.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.9.(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC 的度数.【分析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°.【点评】本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC与∠C的度数.10.(2016•东城区一模)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).ACB=70°,由角平分线的性质得到∠ABD=∠CBD=35°,根据平行线的性质得到∠E=∠EAB=35°,于是得到结论.【解答】解:∠EAC=75°,∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=35°,∵AE∥BD,∴∠E=∠EAB=35°,∴∠EAC=∠EAB+∠BAC=75°.【点评】此题考查了等腰三角形的性质、平行线的性质以及角平分线的定义.注意等边对等角定理的应用.11.(2016•怀柔区二模)如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.CAD,∠ADB=∠ADC=90°,根据等腰三角形的判定定理得到∠CAD=∠ADE.根据余角的性质得到∠BAD=∠BDF,等量代换即可得到结论.【解答】证明:∵AB=AC,AD是△ABC点的中线,∴∠BAD=∠CAD,∠ADB=∠ADC=90°,∵E是AC的中点,∴DE=AE=EC,∴∠CAD=∠ADE.在Rt△ABD中,∠ADB=90°,∴∠B+∠BAD=90°.∵DF⊥AB,∴∠B+∠BDF=90°,∴∠BAD=∠BDF,∴∠BDF=∠CAD,∴∠BDF=∠ADE,【点评】本题考查了等腰直角三角形的性质,余角的性质,熟练掌握等腰三角形的性质是解题的关键.12.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【分析】根据等腰三角形的性质得到BD=BC,AD⊥BC根据角平分线的判定定理即可得到结论..【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.【点评】本题考查了等腰三角形的性质,角平分线的性质,熟练掌握等腰三角形的性质是解题的关键.13.(2016•门头沟区一模)如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.【分析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.【解答】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).【点评】此题主要考查学生对等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到∠CDE=30°是正确解答本题的关键.14.(2016•吉林校级二模)如图,等边三角形ABC的边长是2,D、E分别为AB、AC的中点,点F在BC延长线上,且CF=,求四边形DEFB 的面积.【分析】由三角形的中位线定理得到DE=CF,DE∥CF,证得四边形DEFC是平行四边形,即可证得S△ECF=S△DEC=S△ADE,即可证得S四边形DEFB=S△ABC,求得△ABC的面积即可.【解答】解:∵点D、E分别是AB、AC的中点,∴DE=BC,DE∥BF,∵CF=,∴DE=CF,DE∥CF,∴四边形DEFC是平行四边形,∴S△ECF=S△DEC=S△ADE,∵△ABC是等边三角形,D是AB的中点,∴CD⊥AB,AD=BD=1,BC=2,∴DC==∴S 四边形DEFB=S△ABC=×2×=.【点评】本题考查了三角形中位线定理,平行四边形的判定和性质,勾股定理的应用,证得S△ECF=S△DEC=S△ADE是本题的关键.15.(2016•门头沟区二模)如图,在△ABC中,∠BAC=90°,∠C=30°,AE为BC边上的中线.求证:△ABE是等边三角形.【分析】根据直角三角形的性质得出AE=BE=CE=AB,即可得出答案.【解答】证明:∵∠BAC=90°,∠C=30°,∴AB=BC,∵AE为BC边上的中线,∴AE=BE=CE,∴AB=AE=BE,∴△ABE是等边三角形.【点评】本题考查了等边三角形的性质,掌握等边三角形的判定:三边都相等的三角形是等边三角形.16.(2016•泗水县一模)如图,把矩形纸片ABCD 沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)若AE=3,AB=4,求BF的长.【分析】(1)根据折叠的性质以及平行线的性质可以证明∠B'FE=∠B'EF,根据等角对等边证明B'E=B'F,然后根据折叠的性质可证得;(2)直角△A'B'E中利用勾股定理求得B'E的长,然后根据(1)的结论即可求解.【解答】(1)证明:∵矩形ABCD中,AD∥BC,∴∠B'EF=∠EFB,又∵∠B'FE=∠EFB,∴∠B'FE=∠B'EF,∴B'E=B'F,又∵BF=B'F,∴B'E=BF;(2)解:∵直角△A'B'E中,A'B'=AB=4,∴B'E===5,∴BF=N'E=5.【点评】本题考查了折叠的性质以及勾股定理,在折叠的过程中认识到相等的角和相等的边是关键.17.(2016•北京一模)如图1,四边形ABCD中,AB=AD,BC=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究“筝形”的性质和判定方法.小聪根据学习四边形的经验,对“筝形”的判定和性质进行了探究.下面是小聪的探究过程,请补充完整:(1)如图2,连接筝形ABCD的对角线AC,BD交于点O,通过测量边、角或沿一条对角线所在直线折叠等方法探究发现筝形有一组对角相等,请写出筝形的其他性质(一条即可):对角线互相垂直,这条性质可用符号表示为:已知四边形ABCD是筝形,则AC⊥BD.;(2)从边、角、对角线或性质的逆命题等角度进行探究,写出筝形的一个判定方法(定义除外),并证明你的结论.【分析】(1)根据筝形的定义可以证明△BAC ≌△DAC,依据全等三角形的性质即可证得边和对角线的关系;(2)利用△BAC≌△DAC,根据边、角、对角线的性质证得.【解答】解:(1)筝形的性质:两组邻边分别相等;对角线互相垂直,即已知四边形ABCD是筝形,则AC⊥BD;有一条对角线被另一条平分;有一条对角线平分对角;是轴对称图形.(写出一条即可);故答案是:对角线互相垂直;已知四边形ABCD 是筝形,则AC⊥BD;(2)筝形的判定方法:有一条对角线平分一组对角的四边形是筝形.已知:四边形ABCD中,AC是一条对角线,∠BAC=∠DAC,∠BCA=∠DCA.求证:四边形ABCD是筝形.证明:在△BAC和△DAC中,,∴△BAC≌△DAC,∴AB=AD,BC=CD,即四边形ABCD是筝形.其他正确的判定方法:有一条对角线垂直平分令一条对角线的四边形是筝形;有一组邻边相等且互相垂直的四边形是筝形.【点评】本题考查了图形的对称以及全等三角形的判定,正确证明△BAC≌△DAC是解决本题的关键.18.(2016•拱墅区二模)如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC 于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A 正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.【分析】(1)利用尺规作出∠ABC的平分线BD 即可.(2)首先利用勾股定理求出BC,再求出A1C,根据△A 1DC的面积=•A1C•A1D计算即可.【解答】解:(1)∠ABC的平分线BD,交AC 于点D,如图所示,(2)在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A 1C=,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC是等腰直角三角形,∴=.【点评】本题考查尺规作图、翻折变换、勾股定理、三角形面积等知识,熟练掌握基本尺规作图是解题的关键,属于基础题,中考常考题型.19.(2016春•吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC 和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.20.(2016春•金堂县期末)如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.【分析】(1)先根据AB∥CD得出∠BAC=∠DCA,再由∠BAE=∠DCF可知∠EAM=∠FCM,故可得出结论;(2)先由AM平分∠FAE得出∠FAM=∠EAM,再根据∠EAM=∠FAM可知∠FAM=∠FCM,故△FAC是等腰三角形,由等腰三角形三线合一的性质即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA,又∵∠BAE=∠DCF,∴∠EAM=∠FCM,∴AE∥CF;(2)证明:∵AM平分∠FAE,∴∠FAM=∠EAM,又∵∠EAM=∠FCM,∴∠FAM=∠FCM,∴△FAC是等腰三角形,又∵AM=CM,∴FM⊥AC,即EF垂直平分AC.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.21.(2016春•滕州市期末)如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△BCE的周长=AC+BC,再求解即可;(2)根据等腰三角形两底角相等求出∠C=72°,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,根据等边对等角可得∠ABE=∠A,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,从而得到∠BEC=∠C,然后根据等角对等边求解.【解答】(1)解:∵AB的垂直平分线MN交AB于点D,∴AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC,∵AC=15cm,∴BC=25﹣15=10cm;(2)证明:∵∠A=36°,AB=AC,∴∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵AB的垂直平分线MN交AB于点D,∴AE=BE,∴∠ABE=∠A,由三角形的外角性质得,∠BEC=∠A+∠ABE=36°+36°=72°,∴∠BEC=∠C,∴BC=BE.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,综合题难度不大,熟记各性质并准确识图是解题的关键.22.(2016春•淅川县期末)如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.【分析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC﹣60°=∠C﹣60°,最后根据三角形内角和定理得出关系式∠C﹣60°+∠C=90°解出即可.【解答】解:∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC则∠EBC=∠ABC﹣60°=∠C﹣60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C﹣60°+∠C=90°解得∠C=75°.【点评】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.23.(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?【分析】根据已知条件“上午8时,一条船从A 处出发以30海里/时的速度向正北航行,12时到达B处”可以求得AB=120海里,然后根据三角形的内角和定理求得∠C=32°,所以△ABC是等腰三角形;最后由等腰三角形的两腰相等的性质来求从B处到灯塔C的距离.【解答】解:根据题意,得AB=30×4=120(海里);在△ABC中,∠NAC=32°,∠ABC=116°,∴∠C=180°﹣∠NAC﹣∠ABC=32°,∴∠C=∠NAC,∴BC=AB=120(海里),即从B处到灯塔C的距离是120海里.【点评】本题考查了等腰三角形的性质、方向角.解答该题时充分利用了三角形的内角和定理.24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【分析】(1)由在△ABC中,AB=AC,∠A=40°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(2)由在△ABC中,AB=AC,∠A=70°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(3)由在△ABC中,AB=AC,根据等腰三角形的性质,即可用∠A表示出∠ABC,又由AB点M,即可求得答案.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.25.(2016春•高平市期末)已知a、b满足方程组(1)求a,b的值;(2)若a、b是一个等腰三角形的两边长,求这个等腰三角形的周长.【分析】(1)直接利用加减消元法,即可求得a,b的值;(2)分别从若7为腰长,2为底边长与若2为腰长,7为底边长,去分析求解即可求得答案.【解答】解:(1),①+3②得:10a=70,解得:a=7,把a=7代入2a+b=16,得:b=2,∴;(2)①若7为腰长,2为底边长,则周长为:7×2+2=16;②若2为腰长,7为底边长,∵2+2<7,∴不能组成三角形,舍去;∴这个等腰三角形的周长为16.【点评】此题考查了等腰三角形的性质以及二元一次方程组的解法.注意掌握分类讨论思想的应用是解此题的关键.26.(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.【分析】(1)先解方程组用含a的代数式表示x,y的值,再代入有关x,y的不等关系得到关于a 的不等式求解即可;(2)根据绝对值的定义即可得到结论;(3)首先用含m的式子表示x和y,由于x、y 的值是一个等腰三角形两边的长,所以x、y可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.【解答】解:(1)解得∴,∵若关于x、y的二元一次方程组的解都为正数,∴a>1;(2)∵a>1,∴|a+1|﹣|a﹣1|=a+1﹣a+1=2;(3)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为9,∴2(a﹣1)+a+2=9,解得:a=3,∴x=2,y=5,不能组成三角形,∴2(a+2)+a﹣1=9,解得:a=2,∴x=1,y=5,能组成等腰三角形,∴a的值是2.【点评】主要考查了方程组的解的定义和不等式的解法.理解方程组解的意义用含m的代数式表示出x,y,找到关于x,y的不等式并用a表示出来是解题的关键.27.(2016春•吉林期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是边AB的中点,连接DE,若AD=12,BC=10,求DE的长.【分析】先根据勾股定理求得AC的长,根据条件可知DE是△ABC的中位线,所以利用中位线定理可知DE的长.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD,∴CD=BC=5,∵AD=12,∴在Rt△ADC中,AC==13,。
典型的轴对称图形练习习题(带答案
精心整理一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂2)3对称,B.顶. 4与BE 相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°5.等腰梯形两底长为4cm和10cm,面积为21cm2,则这个梯形较小的底角是()度.A.45°B.30°C.60°D.90°6.已知点P在线段AB的中垂线上,点Q在线段AB的中垂线外,则A.D.7.CD8PC(A.4B.3C.2D.19.∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5B.PQ≥5C.PQ<5D.PQ≤510.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为()A.3cm或5cm B.3cm或7cm C.3cm D.5cm111213CD=4,1415AB=6,的周1610且有一底角为60°,则它的两底长分别为____________.17.若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,则∠BAC=____________.18.△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=115°,则∠EAF=___________.三.解答题19.如图:已知∠AOB和C、D两点,求作两边20C,2122AC于E、23ABP=结论.参考答案第一章 轴对称图形 1.A 2.B 3.C 4.C 5.A 6.D 7.C 8.C 9.B 10.C1116.4、6 19202123=AQ ,。
第2章《轴对称图形》常考题集:2.2轴对称的性质(含答案)
度.(第1题) (第2题) (第3题)2.如图,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则∠A 的大小等于 度.3.如图,△ABC 沿DE 折叠后,点A 落在BC 边上的A ′处,若点D 为AB 边的中点,∠B=50°,则∠BDA ′的度数为 .4.如图,三角形纸片ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为 度.(第4题) (第7题) (第8题) cm..第2章 《轴对称图形》常考题集:2.2 轴对称的性质填空题1.如图,D 、E 为△ABC 两边AB 、AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,若∠B=55°,则∠BDF=5.小宇同学在一次手工制作活动中,先把一张长方形纸片按左图方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按右图的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是6.把图一的矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD 的面积为cm . 度. cm.(第9题) (第10题) (第12题)10.如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在点G 处,若∠CFE=60°,且DE=1,则边BC 的长为 . .13.将一张长方形纸片按如图所示折叠,如果∠1=64°,那么∠2等于 .(第13题) (第14题) (第15题) 14.如图,矩形ABCD 中(AD >AB ),M 为CD 上一点,若沿着AM 折叠,点N 恰落在BC 沿直线AD 折过来,点C 落到点C 1的位置,如果BC=10,那么BC 1= .16.如图,长方形纸片ABCD 中,AB=3cm ,BC=4cm ,现将A 、C 重合,使纸片折叠压平,设折痕为EF ,则S △AEF = cm 2.(第16题) (第18题)17.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则B=原三角形的∠B= 度.7.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知CE=3 cm ,AB=8 cm ,则图中阴影部分面积为8.如图(1)是四边形纸片ABCD ,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR ,恰使CP ∥AB ,RC ∥AD ,如图(2)所示,则∠C=9.如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿着直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为11.已知Rt △ABC 中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于E ,交斜边于F ,则△CDE 的周长为12.如图,折叠宽度相等的长方形纸条,若∠1=70°,则∠2= 度.上,则∠ANB+∠MNC= 度.15.如图,AD 是△ABC 的中线,∠ADC=60°,把△ADCb 的值为 . 解答题A 1B 1C 1D 1; (2)在给出的方格纸中,画出四边形ABCD 关于直线l 对称的四边形A 2B 2C 2D 2.18.如图一张长方形纸片ABCD ,其长AD 为a ,宽AB 为b (a >b ),在BC 边上选取一点M ,将△ABM 沿AM 翻折后B 至B ′的位置,若B ′为长方形纸片ABCD 的对称中心,则a19.如图,把△ABC 纸片沿DE 折叠,当点A 在落在四四边形BCDE 内部时, (1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED 的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.20.如图,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点,且点M 的坐标是(1,2). (1)写出点A 、B 的坐标;(2)求直线MN 所对应的函数关系式;(3)利用尺规作出线段AB 关于直线MN 的对称图形.(保留作图痕迹,不写作法)21.作图题:(不要求写作法)如图,在10×10的方格纸中,有一个格点四边形ABCD (即四边形的顶点都在格点上).(1)在给出的方格纸中,画出四边形ABCD 向下平移5格后的四边形的面积.. (3)写出点A 1,B 1,C 1的坐标.的坐标: ; (2)求经过第2008次跳动之后,棋子落点与点P 的距离.22.如图,在平面直角坐标系xoy 中,A (-1,5),B (-1,0),C (-4,3). (1)求出△ABC(2)在图中作出△ABC 关于y 轴的对称图形△A 1B 1C 123.如图,在平面直角坐标系中,一颗棋子从点P 处开始依次关于点A 、B 、C 作循环对称跳动,即第一次跳到点P 关于点A 的对称点M 处,接着跳到点M 关于点B 的对称点N 处,第三次再跳到点N 关于C 的对称点处,…如此下去.(1)在图中画出点M 、N ,并写出点M 、N, ).24.如图所示,在直角坐标系xOy 中,A (-1,5),B (-3,0),C (-4,3). (1)在图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′; (2)写出点C 关于y 轴的对称点C ′的坐标(25.如图,已知网格上最小的正方形的边长为1. (1)分别写出A 、B 、C 三点的坐标;(2)作△ABC 关于y 轴的对称图形△A ′B ′C ′.(不写作法)26.如图,在正方形网格上有一个△ABC .(1)作△ABC 关于直线MN 的对称图形(不写作法); (2)若网格上的最小正方形的边长为1,求△ABC 的面积27.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”,如图1中四边形ABCD 就是一个“格点四边形”. (1)求图1中四边形ABCD 的面积;(2)在图2方格纸中画一个格点三角形EFG ,使△EFG 的面积等于四边形ABCD 的面积且为, )..轴对称图形.28.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1. (1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法); (3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形的边长为单位长度建立直角坐标系,可得点A 的坐标是(29.认真画一画.如图,在正方形网格上有一个△DEF .(1)作△DEF 关于直线HG 的轴对称图形△D ′E ′F ′(不写作法); (2)作EF 边上的高(不写作法);(3)若网格上的最小正方形边长为1,则△DEF 的面积为30.如图,写出△ABC 的各顶点坐标,并画出△ABC 关于Y 轴的对称图形,并直接写出△ABC 关于x 轴对称的三角形的各点坐标.答案:填空题1.故答案为:70.考点:翻折变换(折叠问题). 专题:压轴题.分析:利用折叠的性质求解.利用折叠的性质求解. 解答:解:由折叠的性质知,解:由折叠的性质知,AD=DF AD=DF AD=DF,,∵点D 是AB 的中点,∴AD=BD,由折叠可知AD=DF AD=DF,, ∴BD=DF,∴BD=DF,∴∠DFB=∠B=55°,∠BDF=180°∴∠DFB=∠B=55°,∠BDF=180°--2∠B=70°.2∠B=70°. 故答案为:故答案为:707070..点评:本题利用了:①折叠的性质:折叠是一种本题利用了:①折叠的性质:折叠是一种对称对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,位置变化,对应边和对应角相对应边和对应角相等;②中点的性质,等边对等角,等;②中点的性质,等边对等角,三角形内角和三角形内角和定理求解. 2.故本题答案为50°.°.考点:翻折变换(折叠问题). 专题:压轴题.分析:根据折叠的性质可知.根据折叠的性质可知.解答:解:连接AA′,AA′,易得AD=A′D,AE=A′E;AD=A′D,AE=A′E;故∠1+∠2=2(∠DAA′+∠EAA′)=2∠A=100°;3.故填80.考点:翻折变换(折叠问题). 分析:由折叠的性质可知 点评:本题利用了:本题利用了:11对应边和对应角等;三角形内角和为180°;四边形内角和等于360度.度. 5.故应填1cm cm...考点:翻折变换(折叠问题). 专题:压轴题.分析:有关图形的折叠与拼接最好的解决方法是亲自动手操作.先求第一次折痕,再求第二次,从而求它们的关系.故∠A=50°.故∠A=50°.点评:本题通过折叠本题通过折叠变换变换考查学生的逻辑思维能力,考查学生的逻辑思维能力,解决此类问题,解决此类问题,应结合题意,最好最好实际操作实际操作图形的折叠,易于找到图形间的关系. AD=A′D,再根据AD=A′D,再根据中点中点的性质得AD=BD AD=BD,BD=A′D,,BD=A′D,∠DA′B=∠B=50°,从而求解∠BDA'的度数.解答:解:由折叠的性质知,AD=A′D,解:由折叠的性质知,AD=A′D,∵点D 为AB 边的中点边的中点∴AD=BD,BD=A′D,∠DA′B=∠B=50°, ∴∠BDA′=180°∴∠BDA′=180°--2∠B=80°.、折叠的性质:折叠是一种、折叠的性质:折叠是一种对称对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,相等;相等;22、中点的性质,、中点的性质,等边对等角等边对等角,三角形的内角定理求解. 4.故填60.分析:根据题意,已知∠A=65°,∠B=75°,可结合根据题意,已知∠A=65°,∠B=75°,可结合三角形内角和三角形内角和定理和折叠变换的性质求解.解答:解:∵∠A=65°,∠B=75°,解:∵∠A=65°,∠B=75°,∴∠C=180°∴∠C=180°--(65°+75°)(65°+75°)=40=40度,度, ∴∠CDE+∠CED=180°∴∠CDE+∠CED=180°--∠C=140°,∠C=140°, ∴∠2=360°∴∠2=360°--(∠A+∠B+∠1+∠CED+∠CDE)=360°(∠A+∠B+∠1+∠CED+∠CDE)=360°--300°=60度.度.故填6060..点评:本题通过折叠变换考查三角形、本题通过折叠变换考查三角形、四边形四边形内角和定理.注意折叠前后图形全.故应填1445 .考点:翻折变换(折叠问题). 专题:压解答:解:由勾股定理得,等;②勾股定理,直角三角形和矩形的面积公式求解. 7.故应填30cm 2.考点:翻折变换(折叠问题). 专题:压轴题.分析:根据折叠的性质求出EF=DE=CD-CE=5EF=DE=CD-CE=5,,AD=AF=BC AD=AF=BC,再根据勾股定理列出,再根据勾股定理列出,再根据勾股定理列出方方程求解即可.解答:解:由折叠的性质知,解:由折叠的性质知,EF=DE=CD-CE=5EF=DE=CD-CE=5EF=DE=CD-CE=5,,AD=AF=BC AD=AF=BC,, 由勾股定理得,由勾股定理得,CF=4CF=4CF=4,,AF 2=AB 2+BF 2, 即AD 2=82+(AD-4AD-4))2, 解得,解得,AD=10AD=10AD=10,, ∴BF=6,∴BF=6,图中阴影部分面积图中阴影部分面积=S =S △A B F +S △C E F =30cm 2.点评:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,位置变化,对应边和对应角相对应边和对应角相等;②勾股定理,三角形的面积公式求解. 8.故应填95.考点:翻折变换(折叠问题).分析:根据折叠前后图形全等和平行线,根据折叠前后图形全等和平行线,先求出∠CPR 先求出∠CPR 和∠CRP,和∠CRP,再根据再根据再根据三角形内三角形内角和定理即可求出∠C.定理即可求出∠C.解答:解:第一次折痕的左侧部分比右侧部分短1cm 1cm,,第二次折痕的左侧部分比右侧部分长1cm 1cm,,其实这两条折痕是关于纸张的正中间的折痕成轴其实这两条折痕是关于纸张的正中间的折痕成轴对称对称的关系,它们到它们到中线中线的距离是0.5cm 0.5cm,,所以在纸上形成的两条折痕之间的距离是1cm 1cm..点评:考查图形的拆叠知识及学生动手操作能力和图形的翻折考查图形的拆叠知识及学生动手操作能力和图形的翻折变换变换,解题过程中应注意折叠是一种对称变换,应注意折叠是一种对称变换,它属于轴对称,它属于轴对称,它属于轴对称,根据根据根据轴对称的性质轴对称的性质,折叠前后图形的形状和大小不变. 6轴题.分析:利用折叠的性质和利用折叠的性质和勾股定理勾股定理可知. MN=5MN=5,,设Rt△PMN 的斜边上的高为h ,由,由矩形矩形的宽AB 也为h , 根据直角根据直角三角形的面积三角形的面积公式得,h=PM•PN÷MN=125, 由折叠的性质知,由折叠的性质知,BC=PM+MN+PN=12BC=PM+MN+PN=12BC=PM+MN+PN=12,, ∴矩形的面积=AB•BC=1445. 点评:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,位置变化,对应边和对应角相对应边和对应角相解答:解:因为折叠前后两个图形全等,故∠CPR=12 ∠B=12 ×120°=60°,×120°=60°,∠CRP ∠CRP==12 ∠D=1250°=25°;50°=25°;∴∠C=180°∴∠C=180°--25°25°--60°=95°;∠C=95度;度;故应填9595..点评:折叠前后图形全等是解决折叠问题的关键.9.故应填3cm cm..考点:翻折变换(折叠问题). 分析:由折叠的性质知CD=DE 对应边和对应角相等;相等;22、勾股定理求解.、勾股定理求解. 10.故应填3 .考点:翻折变换(折叠问题). 分析:根据翻折变换的特点可知.解答:解:根据翻折变换的特点可知:解:根据翻折变换的特点可知:DE=GE DE=GE因为∠CFE=60°,因为∠CFE=60°, 所以∠GAE=30°,所以∠GAE=30°, 则AE=2GE=2DE=2AE=2GE=2DE=2,, 所以AD=3AD=3,, 所以BC=3BC=3..点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,于轴对称,根据轴对称的性质,根据轴对称的性质,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,如本题中折叠如本题中折叠前后角相等.前后角相等.11.故应填11或10 . 考点:翻折变换(折叠问题). 专题:压轴题.分析:解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变. 解答:解:当角B 翻折时,翻折时,B B 点与D 点重合,点重合,DE DE 与EC 的和就是,AC=AE AC=AE.根据题意在.根据题意在Rt△BDE 中运用中运用勾股定理勾股定理求DE DE..解答:解:由勾股定理得,解:由勾股定理得,AB=10AB=10AB=10..由折叠的性质知,由折叠的性质知,AE=AC=6AE=AC=6AE=AC=6,,DE=CD DE=CD,∠AED=∠C=90°.,∠AED=∠C=90°.,∠AED=∠C=90°.∴BE=AB ∴BE=AB-AE=10-6=4-AE=10-6=4-AE=10-6=4,,在Rt△BDE 中,由勾股定理得,中,由勾股定理得, DE 2+BE 2=BD 2即CD 2+42=(8-CD 8-CD))2, 解得:解得:CD=3cm CD=3cm CD=3cm.. 点评:本题利用了:本题利用了:11、折叠的性质:折叠是一种、折叠的性质:折叠是一种对称对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,BC BC,也就是说等,也就是说等8,CD 为AC 的一半,故△CDE 的周长为8+3=118+3=11;; 当A 翻折时,翻折时,A A 点与D 点重合.同理DE 与EC 的和为AC=6AC=6,,CD 为BC 的一半,所以CDE 的周长为6+4=106+4=10.故△CDE .故△CDE 的周长为1010.. 点评:本题考查图形的翻折变换.12.故填40.故填4040..点评:本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.∵∠1=64°,∵∠1=64°,∴∠3=∠1=64°,∴∠3=∠1=64°,∴∠4=180°∴∠4=180°--2∠1=180°∠ANB+∠MNC=180°∠ANB+∠MNC=180°--∠ANM=90°.∠ANM=90°.点评:综合考查了折叠得到的对应角相等及平角定义.15.故应填5.考点:翻折变换(折叠问题).考点:翻折变换(折叠问题);平行线的性质.专题:计算题.分析:根据两根据两直线直线平行内错角相等和同旁内角互补,以及折叠关系列出方程解则可.可.解答:解:根据题意:2∠1与∠2互补,互补,得到:2∠1+∠2=180°,得到:2∠1+∠2=180°,∵∠1=70°,∵∠1=70°,∴140°+∠2=180°,∴140°+∠2=180°,∴∠2=40°∴∠2=40° 13.故应填52°.考点:翻折变换(折叠问题). 专题:计算题.分析:根据根据补角补角的定义、折叠的性质和平行线的性质可求解. 解答:解:由折叠的性质可得∠3=∠1,解:由折叠的性质可得∠3=∠1,-2×64°=52°2×64°=52°∵长方形的对边平行,的对边平行,∴∠2=∠4=52°.∴∠2=∠4=52°.点评:此题主要利用了折叠的性质和平行线的性质:两直线平行,内错角相等. 14.故应填90°.考点:翻折变换(折叠问题). 分析:易得∠ANM=∠ADM=90°,那么根据平角定义即可得到所求的两个角的度数之和.解答:解:根据折叠的性质,有∠ANM=∠ADM=90°;故 专题:应用题.分析:根据AD 是△ABC 的中线,BC=10BC=10,,先求得BD=5BD=5,,由折叠的性质知BC 1=BD=5=BD=5.. 解答:解:由折叠可知DC=DC 1,∠ADC=∠ADC 1=60°,∴∠BDC 1=60°,=60°,又∵AD 是△ABC 的中线,的中线,BC=10BC=10BC=10,,∴BD=DC=DC 1=5=5,,∴△B ∴△BDC DC 1为等边三角形,∴BC 1=BD=5=BD=5..16.故本题答案为7516. 考点:翻折变换(折叠问题). 分析:由翻折的性质知D′F=DF,D′F=DF,CE=AE CE=AE CE=AE,且,且CE=BC-BE 长,再证得△ABE≌△AD′F,有AF=AD-FD AF=AD-FD,则,则S△A E F =12AF•AB.AF•AB. 解答:解:由题意知,D′F=DF,解:由题意知,D′F=DF,CE=AE CE=AE CE=AE,, 在Rt△ABE 中,中,AB AB 2+BE 2=AE 2,AB 2+BE 2=(BC-BE BC-BE))2,即32+BE 2=(4-BE 4-BE))2,解得:解得:BE=BE=78, ∵∠D′AF+∠EAF=∠EAF+∠BAE=90°,∴∠D′AF=∠BAE ∴∠D′AF=∠BAE又∵∠D′=∠B=90°,AD′=CD=AB 又∵∠D′=∠B=90°,AD′=CD=AB∴△D′AF≌△BAE ∴△D′AF≌△BAE∴FD=D′F=BE=78. ∴AF=AD ∴AF=AD-FD=4- -FD=4- 78 =258∴S △A E F =12 AF•AB=12 ×258 ×3=7516 . 故本题答案为7516 .考点:翻折变换(折叠问题).点评:本题利用了折叠的性质:折叠是一种对称本题利用了折叠的性质:折叠是一种对称变换变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.,故由,故由勾股定理勾股定理求得BE 的点评:本题考查了翻折的性质,本题考查了翻折的性质,全等三角形全等三角形的判定和性质、勾股定理. 17.故应填78°. 专题:压轴题.分析:在图①的△ABC 中,根据中,根据三角形内角和三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD 中,得到另一个关于∠B、∠C 度数的等量关系式,联立两式即可求得∠B 的度数.的度数.解答:解:在△ABC 中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD 中,则有:∠CBD+∠BCD=180°中,则有:∠CBD+∠BCD=180°--82°,即:82°,即:13 ∠B+∠C=98°…②;①-②,得:23∠B=52°,∠B=52°, 故应填 3 .考点:翻折变换(折叠问题). 专题:压:解:连接CB′.cos∠ACB=cos30°=a:解答题19.考点:全等三角形的判定;三角形内解得∠B=78°.解得∠B=78°.点评:此题主要考查的是图形的折叠此题主要考查的是图形的折叠变换变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解答此题的关键.关系是解答此题的关键.18.轴题. 分析:连接CB′.由于B'B'为长方形纸片为长方形纸片ABCD 的对称中心,∴AB′C 是矩形的对角线.角线.由折叠的性质知可得△ABC 三边关系求解.三边关系求解.解答由于B'B'为长方形纸片为长方形纸片ABCD 的对称中心,∴AB′C 是矩形的是矩形的对角对角线.线.由折叠的性质知,AC=2AB′=2AB=2b,由折叠的性质知,AC=2AB′=2AB=2b,∴sin∠ACB=AB:∴sin∠ACB=AB:AC=1AC=1AC=1::2,∴∠ACB=30°.∴∠ACB=30°.b= 3 3 ..点评:本题利用了:本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、矩形的性质,锐角三角函数的概念求解.角和定理;翻折变换(折叠问题). 专题:操作型;探究型.分析:(1)根据折叠就可写出一对全等三角形,根据折叠,则重合的)根据折叠就可写出一对全等三角形,根据折叠,则重合的顶点顶点是对应点,重合的角是对应角;点,重合的角是对应角;(2)根据全等三角形的对应角相等,以及平角的定义进行表示;(3)根据()根据(22)中的表示方法,可以求得∠1+∠2,再找到∠A 和x 、y 之间的关系,就可建立它们之间的联系.系,就可建立它们之间的联系.解答:解:(1)△EAD≌△EA'D,其中∠EAD=∠EA'D,∠AED=∠A'ED,∠ADE=∠A'DE;(2)∠1=180°)∠1=180°-2x -2x -2x,∠2=180°,∠2=180°,∠2=180°-2y -2y -2y;;(3)∵∠1+∠2=360°)∵∠1+∠2=360°-2-2-2((x+y x+y)=360°)=360°)=360°-2-2-2(180°(180°(180°--∠A)=2∠A.∠A)=2∠A.规律为:∠1+∠2=2∠A.)(8分)分)点评:根据图形,找出需要的点的坐标即可根据图形,找出需要的点的坐标即可21.考点评:在研究折叠问题时,有全等形出现,要充分利用全等的性质.20.考点:作图-轴对称变换.专题:作图题;压轴题;网格型.分析:考查平面直角坐标系的基本知识,但同时也考查了考查平面直角坐标系的基本知识,但同时也考查了待定系数法待定系数法, 解答:解:(1)A (-1-1,,3),B (-4-4,,2.(2分)分)(2)解法1:∵:∵直线直线MN 经过坐标原点,经过坐标原点,∴设所求函数的关系式是y=kx y=kx,,又点M 的坐标为(的坐标为(11,2), ∴k=2.(3分)分)∴直线MN 所对应的函数关系式是y=2x y=2x..(4分)分)解法2:设所求函数的关系式是y=kx+b y=kx+b,,则由题意得:îïíïìb =0 k +b =2, 解这个解这个方程组方程组,得îïíïìk =2 b b==0 ,(6分)分)∴直线MN 所对应的函数关系式是y=2x y=2x..(3)利用)利用直尺直尺和圆规,作线段AB 关于直线MN 的对称图形A′B′,如图所示.点:作图-轴对称变换.专题:作图题;压轴题;网格型.分析:在平移时要注意平移的方向和平移的距离.确定平移的方向和距离,先确定一组对应点;确定图形中的确定图形中的关键点关键点;利用第一组对应点和平移的性质确定图中所有关键点的对应点;按原图形顺序依次连接对应点,按原图形顺序依次连接对应点,所得到的图形即为平移后所得到的图形即为平移后的图形.的图形.轴对称图形轴对称图形对应点到对称轴的距离相等,对应点到对称轴的距离相等,利用此性质找对应点,利用此性质找对应点,利用此性质找对应点,顺次连顺次连接即可.接即可.解答:解:作图如右图:解:作图如右图:分析:(1)根据网格可以看出三角形的底AB 是5,高是C 到AB 的距离,是3,解:(1)画出对应点的位置,连接即可.画出对应点的位置,连接即可.点评:本题考查的是平移变换与轴对称变换本题考查的是平移变换与轴对称变换作图作图.作平移图形时,作平移图形时,找找关键点的对应点也是关键的一步.的对应点也是关键的一步.平移作图的一般步骤为:平移作图的一般步骤为:平移作图的一般步骤为:①①确定平移的方向和距离,确定平移的方向和距离,先确定一组对应点;先确定一组对应点;先确定一组对应点;②确定图形中的关键点;②确定图形中的关键点;②确定图形中的关键点;③利用第③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作轴对称后的图形的依据是作轴对称后的图形的依据是轴对称的性质轴对称的性质,基本作法是①先确定图形的关键点;②利用轴②利用轴对称性对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.22.考点:作图-轴对称变换.专题:综合题.利用面积公式计算.利用面积公式计算. (2)从三角形的各)从三角形的各顶点顶点向y 轴引轴引垂线垂线并延长相同长度,找对应点.顺次连接即可.可.(3)从图中读出新三角形三点的坐标.)从图中读出新三角形三点的坐标.解答:S △A B C =12 ×5×3=152(或7.57.5))(平方单位).(2)如图.)如图.(3)A 1(1,5),B 1(1,0),C 1(4,3).点评:本题综合考查了三角形的面积,网格,本题综合考查了三角形的面积,网格,轴对称图形轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.对所学的知识要会灵活运用.23.故本题答案为(-2,0),(4,4). 考点:作图-轴对称变换.专题:压轴题;规律型.分析:(1)点P 关于点A 的对称点M ,即是连接PA 延长到M 使PA=AM PA=AM,所以,所以M 的坐标是,N (4,4); 故答案为:故答案为:M M (-2-2,,0),N (4,4);(2)棋子跳动3次后又回点P 处,且2008÷3=669…1,所以经过第2008次跳动后,棋子落在点M 处,处,∴PM ∴PM==OM 22+OP 22 =22+22 =2 2 2 ..答:经过第2008次跳动后,棋子落点与P 点的距离为2 2 2 ..点评:考查学生对点对称意义的理解及学生在新的知识环境下运用所学知识的能力.本题着重考查学生探索规律和计算能力.24.考点:作图-轴对称变换.专M (-2-2,,0),点M 关于点B 的对称点N 处,即是连接MB 延长到N 使MB=BN MB=BN,,所以N 的坐标是N (4,4);(2)棋子跳动3次后又回点P 处,所以经过第2008次跳动后,棋子落在点M 处,根据处,根据勾股定理勾股定理可知PM 的值.的值.解答:解:(1)M (-2-2,,0)题:网格型.分析:(1)从三角形的三边向y 轴引轴引垂线垂线,并延长相同的距离找到三点的对称点,顺次连接.顺次连接.(2)从图形中找出点C′,并写出它的坐标.C′,并写出它的坐标.解答:解:(1)如图;)如图;(2)根据)根据轴对称图形轴对称图形的性质可:C′(的性质可:C′(44,3). 点评:本题主要考查了轴对称图形的作法,注意本题主要考查了轴对称图形的作法,注意画轴对称图形画轴对称图形找关键点的对称点然后顺次连接是关键.然后顺次连接是关键.25.考点:作图-轴对称变换.专题:网格型.分析:根据点关于y 轴对称的特点找出各点的对称点,然后顺次连线即可. 解答:解:(1)A (-3-3,,3),B (-5-5,,1),C (-1-1,,0);(3分)分)(2)如上图.)如上图.26.考点:作图-轴对称变换.专题:网格型.分析:(1)分别作A、B 、C 关于MN 的对称点,顺次连接即可;的对称点,顺次连接即可;(2)可在△ABC 所在的2×3的网格中求面积.解答:解:(1)作图正确给5分;分;(2)此三角形面积为:)此三角形面积为:S △A B C =S 矩形D E C F -S △A B D -S △A C F -S △B E C=2×3=2×3--2×(较到位,学生需要学会触类旁通,举一反三.27.考点:作图-轴对称变换.专题:网格型.分析:(1)用矩形面积减去周围三角形面积即可;(2)画一个面积为解答:解:(1)根据面积公式得:方法一:)根据面积公式得:方法一:S=S=12×6×4=12;×6×4=12; 方法二:S=4×6方法二:S=4×6- - 12 ×2×1×2×1- - 12 ×4×1×4×1- - 12 ×3×4×3×4- - 12×2×3=12;×2×3=12; (2)(只要画出一种即可)(只要画出一种即可) 12 ×1×2)×1×2)- - 12 ×1×3=6×1×3=6-2- -2- 32 =52.(5分)分) 点评:此题考查此题考查轴对称图形轴对称图形的作法、动手操作、面积的计算,对综合能力考查比12的等腰三角形,即底和高相乘为24即可.即可.(8分)对称轴:折痕所在的这条直线叫做对称轴.28.故应填-4,1.考点:作图-轴对称变换.点评:解答此题要明确:如果一个图形沿着一条解答此题要明确:如果一个图形沿着一条直线直线对折,直线两侧的图形能够完全重合,这个图形就是完全重合,这个图形就是轴对称图形轴对称图形;专题:网格型.分析:将“小猪”所占的面积转化为三角形和将“小猪”所占的面积转化为三角形和四边形四边形面积的和来解答,合理地进行图形的移动和变换是做此题的关键.解答:解:(1)4×4×12 +8×3×12 +1×1×12=32.5 =32.5;;(3分)分) (2)(画图)(6分)分)(3)(-4-4,,1).(7分)分)点评:解答此题要明确解答此题要明确轴对称的性质轴对称的性质:①对称轴是一条直线.①对称轴是一条直线.②垂直并且平分一条②垂直并且平分一条线段线段的直线称为这条线段的垂直平分线,的直线称为这条线段的垂直平分线,或中或中或中垂线垂线.线段垂直平分线上的点到线段两端的距离相等.③在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等. ④在轴对称图形中,对称轴把图形分成完全相等的两份.⑤如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.直平分线.29.故应填3 .考点:作图-轴对称变换.专题:作图题.。
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。
生活中的轴对称试题总集含答案
第十二章 轴对称 全章测试一、选择题(每小题2分,共20分) 1、下列说法正确的是( ).A .轴对称涉及两个图形,轴对称图形涉及一个图形B .如果两条线段互相垂直平分,那么这两条线段互为对称轴C .所有直角三角形都不是轴对称图形D .有两个内角相等的三角形不是轴对称图形2、点M (1,2)关于x 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1) 3、下列图形中对称轴最多的是( ) .A .等腰三角形B .正方形C .圆D .线段4、已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( ). A .2cm B .4cm C .6cm D .8cm5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ).A .11cmB .7.5cmC .11cm 或7.5cmD .以上都不对6、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米.A .16B .18 C.26 D .287、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ).A .1个B .2个C .3个D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ).A .75°或15°B .75°C .15°D .75°和30°9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).A .对应点连线与对称轴垂直ACB图2图1 l O D CBABCAB .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是( ) .A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 二、填空题(每小题2分,共20分)11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 .16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm . 18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC , △A 1B 1C 1(1)分别画出与△ABC 关于x 轴、y 轴对称的图形和△A 2B 2C 2 ;(2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.ADEF BC DEC BAO ABCDE 23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.的长.25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC . 29、如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE=EF=FC的道理.30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,求证:AH=2BD . 答案: 一、 选择题: 1 2 3 4 5 6 7 8 9 10 ACCBCBCABA 二、填空题:11.MN ,AB 12.6 13.120 14.20 15.080,050或065,065 16.15 17.6 18.030 19.上,5 20.3 三、解答题 略第七章:生活中的轴对称一、中考要求:1.在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念. 2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质.3.探索并了解基本图形(线段、角、等腰三角形)的轴对称性及其相关性质.4.能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴.5.欣赏现实中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值.6.结合现实生活中的典型实例了解并欣赏物体的镜面对称.二、中考卷研究(一)中考对知识点的考查:2004、2005年部分省市课标中考涉及的知识点如下表:序号所考知识点比率1 轴对称图形2~6%2 轴对称的应用2~5%(二)中考热点:将图形的折叠问题,照镜问题转化为轴对称图形问题及将轴对称问题运用于综合题中是2006年的热点题型之一。
四年级数学-图形的运动-轴对称习题(有答案)
图形的运动第1节轴对称测试题一、画图题(在方格纸上画出对称图形的另一半)二、找出下面的轴对称图形,并画出对称轴。
三、判断题。
1、正方形有四条对称轴。
()2、平行四边形是轴对称图形。
()3、长方形有4条对称轴。
()4、五角星是轴对称图形。
()5、轴对称图形沿着对称轴折叠后能够完全重合。
()四、选择题。
1、圆有()条对称轴。
A、1条B、10条C、100条D、无数条2、正18边形有()条对称轴。
A、1条B、18条C、100条D、无数条3、下列图形中对称轴最多的是()A、正方形B、平行四边形C、等腰梯形D、正六边形4、下列图形是轴对称图形的是哪一种()5、下列图形中有三条对称轴的是()6、下列关于轴对称的说法正确的是( ) A 一个轴对称图形只能有一条对称轴。
B 轴对称图形可以有多条对称轴。
C 所有的三角形都是轴对称图形。
D 所有四边形都是轴对称图形。
7、下列汉字那个不是轴对称图形( )A天 B大A甲 D 龙8、下列图标不是轴对称图形的是( )A BC D9、下列有关轴对称的说法正确的是( ) A 所有三角形都是轴对称图形 B 轴对称图形一定有一条对称轴 C 等腰梯形是轴对称图形 D 直角梯形是轴对称图形10、下列有关轴对称图形的说法正确的是( ) A 轴对称图形折叠后可以重合 B 轴对称图形一定只有一条对称轴 C 轴对称图形的对称轴一定经过该图形 D 英文字母中有20个英文字母 五、简答题。
1、想一想你学过的那些声母的大写字母是轴对称图形?2、1到20这些阿拉伯数字中,那些数字式轴对称图形?【参考答案】一、画图题。
二、找出下面的轴对称图形,并画出对称轴。
是轴对称图形,有8条对称轴不是轴对称图形是轴对称图形,有1条对称轴。
是轴对称图形,有4条对称轴。
是轴对称图形,有1条对称轴。
是轴对称图形,有1条对称轴。
三、判断题1、√2、×3、×4、√5、√四、选择题。
1、D;2、B;3、D;4、A;5、C;6、B;7、D;8、C;9、C;10、C1、答:ABCDEHIKMOTUVWXY2、答:1;3;8;11;13;18。
八年级第十三章轴对称典型例题
八年级第十三章轴对称典型例题一、关于轴对称图形概念的例题。
例题1:下列图形中,是轴对称图形的是()A. 平行四边形。
B. 三角形。
C. 梯形。
D. 正方形。
解析:1. 首先分析平行四边形,沿任何一条直线对折后,直线两侧的部分都不能完全重合,所以平行四边形不是轴对称图形。
2. 三角形有多种类型,一般三角形不是轴对称图形,但等腰三角形和等边三角形是轴对称图形,这里说三角形太笼统,不能确定是轴对称图形。
3. 梯形中,一般梯形不是轴对称图形,等腰梯形是轴对称图形,这里说梯形不准确。
4. 正方形沿两条对角线所在直线以及两组对边中点连线对折,直线两侧的部分都能完全重合,所以正方形是轴对称图形。
答案为D。
例题2:正六边形的对称轴有()条。
A. 3.B. 6.C. 9.D. 12.解析:1. 正六边形可以分别沿三组对边中点连线以及三条对角线所在直线对折后完全重合。
2. 所以正六边形的对称轴有6条。
答案为B。
二、线段垂直平分线性质的例题。
例题3:如图,在△ABC中,AB = AC,DE是AB的垂直平分线,△BCE的周长为14,BC = 6,则AB的长为()A. 4.B. 6.C. 8.D. 10.解析:1. 因为DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AE = BE。
2. 已知△BCE的周长为14,即BE + EC+BC = 14。
3. 又因为AE = BE,所以AC+BC=14。
4. 已知BC = 6,所以AC = 14 - 6=8。
5. 因为AB = AC,所以AB = 8。
答案为C。
例题4:已知点P在直线l外,点A、B在直线l上,且PA = PB,则直线l与线段AB的关系是()A. l垂直但不平分AB。
B. l平分但不垂直AB。
C. l垂直且平分AB。
D. l与AB相交但不一定垂直平分。
解析:1. 因为点P在直线l外,PA = PB,所以点P在线段AB的垂直平分线上。
2. 又因为两点确定一条直线,所以直线l是线段AB的垂直平分线。
苏科版八年级上册数学第2章《轴对称图形》同步练习(7份)(全章含答案)初二数学试题.doc
2.5等腰三角形的轴对称性(3)【基础训练】在AABC 中,ZA=100° , ZB=40° ,则ZXABC 是 如图,求证:AE=AF. 6. 如图,在厶ABC 中,ZABC 和ZACB 的平分线相交于 点F,过点F 作DE 〃BC,交AB 于点D,交AC 于点E.若BD + CE=2013,则线段DE 的长为( ).A. 2014B. 2011C. 2012D. 20131.2. 三角形. CD 是 RtAABC 斜边 AB±的中线,CD=1006,贝ij AB= _______3・ 4. 长.如图, 如图, ZC=36° ZB = 72° 在ZXABC 中, 点D 、(第3题)找出图中所有的等腰三角形 ______ .cm,求Z\ADE 的周 E 在 BC 上,且Z1 = ZB, Z2=ZC, BC=10 5.如图,在AABC 中,AD 平分ZBAC, E 是CA 延长线上的一点,EG 〃AD, ,ZBAD=36° , DB交AB 于点F.7.如图,ZDAC是厶ABC的一个外角,AE平分ZDAC,且AE〃B(么?8.如图,在四边形ABCD中,ZABC=ZADC=90° , M. N分别是AC、BD的中点,试说明:(1)MD = MB:(2)M N 丄BD・【提优拔尖】9.已知:在RtAABC中,AB = BC;在RtAADE中,AD = DE;连接EC,取EC的中点M,连接DM 和BM.(1)若点D在边AC上,点E在边AB±且与点B不重合,如图(1),求证:BM = DM,且BM丄DM;(2)如果将图⑴中的AADE绕点A逆时针旋转小于45°的角,如图(2),那么⑴中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给出证明.(第9题)10.如图,在AABC屮,作ZABC的平分线BD,交AC于点D,作线段BD的垂直平分线EF, 分别交AB 于点E,交BC于点F,垂足为O,连接DF.在所作图中,寻找一对全等三角形,并加以证明.(不写作法,保留作图痕迹)11.⑴如图⑴,O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求ZAEB的大小;(2)如图(2), AOAB固定不动,保持AOCD的形状和大小不变,将AOCD绕着点O旋转(△ OAB 和AOCD不能重叠).求ZAEB的大小.12・如图,在AABC 中,AB = AC=10, BC = 8, AD 平分ZBAC交 BC 于点 D,点,连接DE,则ACDE 的周长为().4. 10cm5. 略6. D7. AB = AC8. 略9. ⑴略(2)当AADE 绕点A 逆时针旋转小于45°的角时,⑴中的结论仍成立. 10.13. A. 20 B. 12C ・14 如图,己知AC 丄BC, BD 丄AD, D. 13AC 与BD 交于点O, AC=BD ・求证:(1) B C = AD :(2) A OAB 是等腰三角形.参考答案1.等腰2. 20123. AABD, AABC, AADC 点E 为AC 的中△BOFMABOF、ABOF^ADOF 等,证明略.11.(l)ZAEB=60°(2)2AEB = 60° .12. C13.略我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。
轴对称图形及性质专项练习30题(有答案)ok
25.如图,点P在∠AOB内,点M,N分别是点P关于AO,BO的对称点,若△PEF的周长是30cm,求MN的长.
26.如图,△ABC和△A′B′C′关于直线m对称.
轴对称图形及性质专项练习30题(有答案)
1.下列四个图形:
其中是轴对称图形,且对称轴的条数为2的图形的个数是( )
A.
1
B.
2
C.
3
D.
4
2.如本题图所示,这是我国四所著名大学的校微图案,如果忽略各个图案中的文字、字母和数字,只关注图形.其中不是轴对称图形的是( )
A.
B.
C.
D.
3.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是( )
∴对称轴的条数为2的图形的个数是3;
故选:C
2.解:根据轴对称图形的概念可得:A、B和C选项中的图案是轴对称图形,D选项中的图案不是轴对称图形,
故选D
3.解:根据镜面对称的性质,题中所显示的时刻与10:51成轴对称,
所以此时实际时刻为10:51.
故选C
4.解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.
A.
2种
B.
3种
C.
4种
D.
5种
13.下列说法错误的是( )
A.
线段是轴对称图形,它的对称轴是线段的垂直平分线
八年级上册数学第十三章 轴对称 测试卷(含答案)
八年级上册数学第十三章轴对称测试卷一、选择题。
(每小题3分,共24分)1.以下四个图形中,对称轴条数最多的是()A B C D2.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击中(球可以经过多次反弹),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋第2题图第3题图3.如图所示,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A. 30°B.36°C.45°D.70°4.小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A B C D5.下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.等腰三角形一边不可以是另一边的二倍D.等腰三角形的两个底角相等6.小朋友文文把一张长方形的纸对折了两次(如图所示),使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为()A. 60 °B.75°C.90°D.120°第6题图第8题图7.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数是()A. 60°B. 120°C. 60°或150°D.60°或120°8.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A. 3B. 2.5C. 2D. 1二、填空题(每小题3分,共24分)1.仔细观察如图所示的图案,并按规律在横线上画出合适的图形.______2,则该汽车的车牌号是______.3.已知么MON= 45°,其内部有一点P,它关于OM的对称点是A,关于ON的对称点是B,且OP =2cm,则S△AOB=______4.如图所示,DE是AB的垂直平分线,D是垂足,DE交BC于E,若BC=32cm,AC=18cm,则△AEC的周长为______cm.第4题图第6题图第7题图5.在直角坐标系中,点A,B,C,D的坐标分别为(-1,3),(-2,-4),(1,3),(2,-4),则线段AB与CD的位置关系是______.6.如图,在△ABC中,∠ACB = 90°,AB=10,AC=8,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点B',连接B'A,则B’A长度的最小值是______.7.如图所示,△ABD、△ACE是正三角形,BE和CD交于O点,则∠BOC =______.8.如图所示,有一块形状为等边△ABC的空地,DE,EF为空地中的两条路,且D为AB的中点,DE⊥AC于E,EF∥AB,现已知AE=5m,则地块△EFC的周长为______.三、解答题(共72分)1.如图所示,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.2.用围棋棋子可以在棋盘中摆出许多有趣的图案,如图甲,在棋盘上建立平面直角坐标系,以直线y=x为对称轴,我们可以摆出一个轴对称图形(其中A与A’是对称点),你看它像不像一条美丽的鱼?(1)请你在图乙中,也用10枚以上的棋子摆出一个以直线y=x为对称轴的轴对称图案,并在所摆的图形中找出两组对称点,分别标为B—B',C—C'(注意棋子要摆在格点上).(2)在给定的平面直角坐标系中,你标出的B,B',C,C'的坐标分别是:B( ),B'( ),C( ),C'( ).根据以上对称点的坐标规律,写出点P(a,b)关于对称轴y=x对称点p’的坐标是( ).甲乙3.如图所示,△ABC和△A’B’C’关于直线MN对称,△A’B’C'和△A’’B’’C’’关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB’’与直线MN, EF所夹锐角α的数量关系.4.如图所示,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB +BD与DE的长度有什么关系?并加以证明.5.如图所示,在等边三角形ABC中,∠B,∠C的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.6.元旦联欢会上,同学们在礼堂四周摆了一圈条桌,其中北边条桌上摆满了苹果,东边条桌上摆满了香蕉,礼堂中间放一把椅子B.游戏规则是这样的:甲、乙二人从A 处同时出发,先去拿苹果再去拿香蕉,然后回到B处,谁先坐到椅子上谁赢.小张和小李比赛,比赛一开始,只见小张直奔东北两张条桌的交点处,左手抓苹果,右手拿香蕉,回头直奔B处,可是还未跑到B处,只见小李已经手捧苹果和香蕉稳稳地坐在B处的椅子上了,如果小李不比小张跑得快,那他是不是有捷径呢?如果有,请把捷径画出来,并说明理由.参考答案一、1.B 2.B 3.B 4.D 5.D 6.C 7.D 8.C 二、1. 2.M645379 3.2cm ² 4. 50 5.关于y 轴对称 6.2 7. 120° 8. 45m三、1.连接AF. ∵AB=AC,∴∠B= ∠C=︒=︒-︒=∠-︒3021201802A 180.又∵EF 垂直平分AC ,∴AF = CF ∴∠CAF =∠C= 30°. ∴∠BAF= ∠BAC- ∠CAF=120°-30°=90°.在Rt △BAF 中,∵∠B=30°,∴BF =2AF.叉∵AF= CF,∴BF=2CF .2.(1)按要求摆出图形并标出两组对称点B-B ’,C-C';(2)答案不唯一,只要满足点B 的横坐标等于点B ’的纵坐标,点B 的纵坐标等于点B ’的横坐标,点C 的横坐标等于点C ’的纵坐标,点C 的纵坐标等于点C ’的横坐标即可;根据以上对称点坐标的规律,可以发现P(a ,b)关于对称轴y=x 的对称点P ’的坐标为(b ,a).3.(1)如图所示,连接B'B ’’,作线段B'B ’’的垂直平分线EF,则直线EF 是△A ’B ’C ’和△A ’’B ’’C ’’的对称轴.(2)连接BO .因为△ABC 和△A'B'C'关于MN 对称,所以∠BOM=∠B 'OM.又因为△A ’B ’C ’和△A ’’B ’’C ’’关于EF 对称,所以∠B 'OE= ∠B ''OE.所以∠BOB''=∠BOM+ ∠B 'OM+∠B'OE+ ∠B ‘’OE =2(∠B'OM+∠B 'OE) =2a .即∠BOB ’’= 2a.4. AB+BD= DE ,证明略.5.同意,连接OE ,OF.由题意可知:BE= OE,CF= OF,∠OBC=∠OCB= 30°, ∴∠BOE=∠OBC=30°,∠COF=∠OCB=30°,∴∠BOC=120°,∴∠EOF=60°, ∠OEF=60°, ∠OFE=60°.∴△OEF 是等边三角形,∴OE = OF= EF= BE=CF.∴E ,F 是BC 的三等分点.6.分别以北条桌和东条桌为对称轴,作A ,B 的对称点A ’,B ’,连接A'B ’,交两长条桌于C ,D 两点,则折线ACDB 就是捷径.连接A'M 和B'M 因为A ,A ’于CM 对称,B ,B ’关于DM 对称,所以AC=A'C ,AM=A'M ,BD=B'D,BM=B'M.所以折线ACDB 的长=AC+CD+DB=A'C+CD+DB'=A'CDB'=A'B ’,而AM+BM=A'M+B'M> A'B',所以拆线ACDB 是捷径.。
八年级轴对称经典题型
八年级轴对称经典题型一、选择题(每题3分,共15分)1. 下列图形中,是轴对称图形的是()A. 平行四边形。
B. 三角形。
C. 圆。
D. 梯形。
解析:- 圆沿着任意一条直径所在的直线折叠,直线两旁的部分都能完全重合,所以圆是轴对称图形。
- 平行四边形无论沿哪条直线折叠,直线两旁的部分都不能完全重合,不是轴对称图形。
- 三角形不一定是轴对称图形,只有等腰三角形和等边三角形是轴对称图形。
- 梯形不一定是轴对称图形,只有等腰梯形是轴对称图形。
所以答案是C。
2. 点P(3, - 2)关于x轴对称的点的坐标是()A. (3,2)B. (-3, - 2)C. (-3,2)D. (2, - 3)- 关于x轴对称的点,横坐标相同,纵坐标互为相反数。
- 点P(3, - 2)关于x轴对称的点的坐标是(3,2)。
所以答案是A。
3. 等腰三角形的一个内角为50^∘,则这个等腰三角形的顶角为()A. 50^∘B. 80^∘C. 50^∘或80^∘D. 40^∘或65^∘解析:- 当50^∘的角为顶角时,答案就是50^∘。
- 当50^∘的角为底角时,因为等腰三角形两底角相等,根据三角形内角和为180^∘,则顶角为180^∘-50^∘×2 = 80^∘。
所以这个等腰三角形的顶角为50^∘或80^∘,答案是C。
4. 如图,在ABC中,AB = AC,∠ A = 30^∘,DE垂直平分AC,则∠ BCD的度数为()A. 80^∘B. 75^∘C. 65^∘D. 45^∘- 因为AB = AC,∠ A=30^∘,所以∠ B=∠ ACB=(1)/(2)(180^∘-∠A)=(1)/(2)(180^∘ - 30^∘) = 75^∘。
- 因为DE垂直平分AC,所以AD = CD,∠ A=∠ ACD = 30^∘。
- 则∠ BCD=∠ ACB-∠ ACD=75^∘-30^∘=45^∘。
所以答案是D。
5. 下列说法正确的是()A. 两个全等的三角形一定关于某条直线对称。
八年级数学:轴对称图形与轴对称练习(含答案)
八年级数学:轴对称图形与轴对称练习(含答案)八年级数学:轴对称图形与轴对称练习(含答案)一、选择题(共8小题)1.下列各图,不是轴对称图形的是()A.B.] C.D.2.下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是()A.上海自来水来自海上B.有志者事竞成C.清水池里池水清D.蜜蜂酿蜂蜜3.下列说法错误的是()A.等边三角形有3条对称轴B.正方形有4条对称轴C.角的对称轴有2条D.圆有无数条对称轴4.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变5.观察图形…并判断照此规律从左到右第四个图形是( )A .B .C.D.6.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分 D.对应点连线互相平行第5题图第6题图第7题图7.如图,两个三角形关于某条直线成轴对称,其中已知某些边的长度和某些角的度数,则x的度数是()A.55°B.60°C.65°D.70°8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A.B.C.D.二、填空题(共10小题)9.2011年11月2日,即20111102,正好前后对称,因而被称为“完美对称日”,请你写出本世纪的一个“完美对称日”:_________ .10.写出一个至少具有2条对称轴的图形名称_________ .11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是_________ (填出所有符合要求的小正方形的标号)12.在轴对称图形中,对应点的连线段被_________ 垂直平分.13.下列图形中,一定是轴对称图形的有_________ ;(填序号)(1)线段(2)三角形(3)圆(4)正方形(5)梯形.14.如图是汽车牌照在水中的倒影,则该车牌照上的数字是_________ .15.请同学们写出两个具有轴对称性的汉字_________ .16.如图,国际奥委会会旗上的图案由5个圆环组成.每两个圆环相交的部分叫做曲边四边形,如图所示,从左至右共有8个曲边四边形,分别给它们标上序号.观察图形,我们发现标号为2的曲边四边形(下简称“2”)经过平移能与“6”重合,2又与_________ 成轴对称.(请把能成轴对称的曲边四边形标号都填上)第11题图第14题图第16题图17.如图,长方形ABCD中,长BC=a,宽AB=b,(b<a<2b),四边形ABEH和四边形ECGF都是正方形.当a、b满足的等量关系是_________ 时,图形是一个轴对称图形.18.请利用轴对称性,在下面这组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形:三、解答题(共5小题)19.判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.20.如图,五边形ABCDE是轴对称图形,线段AF所在直线为对称轴,找出图中所有相等的线段和相等的角.21.如图,l是该轴对称图形的对称轴.(1)试写出图中二组对应相等的线段:;(2)试写出二组对应相等的角:;(3)线段AB、CD都被直线l .22.如图是由两个等边三角形(不全等)组成的图形.请你移动其中的一个三角形,使它与另一个三角形组成轴对称图形,并且所构成的图形有尽可能多的对称轴.画出你所构成的图形,它有几条对称轴?23.有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:22,131,1991,123321,…,像这样的数,我们叫它“回文数”.回文数实际上是由左右排列对称的自然数构成的,有趣的是,当你遇到一个普通的数(两位以上),经过一定的计算,可以变成“回文数”,办法很简单:只要将这个数加上它的逆序数就可以了,若一次不成功,反复进行下去,一定能得到一个回文数,比如:①132+231=363②7299+9927=17226,17226+62271=79497,成功了!(1)你能用上述方法,将下列各数“变”成回文数吗?①237 ②362(2)请写出一个四位数,并用上述方法将它变成回文数.参考答案一、选择题(共8小题)1.A 2.B 3.C 4.A 5.D 6.B 7.B 8.D二.填空题(共10小题)9.20011002,20100102(答案不唯一);10.矩形;11.2,3,4,5,712.对称轴;13.(1)(3)(4);14.21678 .;15.甲、由、中、田、日等.;16.1,3,7 ;17.;18.三.解答题(共5小题)19.解:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.则(1)(3)(5)(6)(9)不是轴对称图形;(2)(4)有1条对称轴;(7)有4条对称轴;(8)有1条对称轴;(10)有2条对称轴.20.解:相等的线段:AB=AE,CB=DE,CF=DF;相等的角:∠B=∠E,∠C=∠D,∠BAF=∠EAF,∠AFD=∠AFC.21.(1)AC=BD,AE=BE,CF=DF,AO=BO ;(2)∠BAC=∠ABD,∠ACD=∠BDC;(3)垂直平分.22.解:如图,小正三角形再大正三角形的内部,该图形有3条对称轴.23.解:(1)①237+732=969,②362+263=625,(2)1151+1511=2662;。
八年级数学上册第十三章轴对称经典大题例题(带答案)
八年级数学上册第十三章轴对称经典大题例题单选题1、如图,三条笔直的公路两两相交,交点分别在点A、B、C处,有两户村民分别在点D和点E处,现准备建造一个蓄水池,要求水池到两条公路AB、BC的距离相等,且到两户村民D、E的距离相等,则水池修建的位置应该是()A.在∠B的平分线与DE的交点处B.在线段AB、AC的垂直平分线的交点处C.在∠B的平分线与DE的垂直平分线的交点处D.在∠A的平分线与DE的垂直平分线的交点处答案:C分析:根据角平分线的性质得到水池修建在∠ABC的平分线上,根据线段的垂直平分线的性质得到水池修建在DE的垂直平分线上,从而可对各选项进行判断.解:作∠ABC的平分线和DE的垂直平分线,它们相交于P点,如图,则水池修建的位置应该为P点.故选:C.小提示:本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了线段垂直平分线的性质.2、如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=7,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且BM=1,则PM+PN的最小值为()A.3B.2√3C.3.5D.3√3答案:A分析:作点M关于BD的对称点M′,连接PM′,则PM′=PM,BM=BM′=1,当N,P,M′在同一直线上,且M′N⊥AC时,PN+PM′的最小值等于垂线段M′N的长,利用含30°角的直角三角形的性质,即可得到PM+ PN的最小值.解:如图所示,作点M关于BD的对称点M′,连接PM′,则PM′=PM,BM=BM′=1,∴PN+PM=PN+PM′,当N,P,M′在同一直线上,且M′N⊥AC时,PN+PM′的最小值等于垂线段M′N的长,此时,∵Rt△AM′N中,∠A=30°,∴M′N=12AM′=12(7−1)=3,∴PM+PN的最小值为3,故选择A.小提示:本题主要考查了最短路线问题,30°直角三角形性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.3、若点P (a +1,2−2a )关于x 轴的对称点在第四象限,则a 的取值范围为( )A .a >−1B .a <1C .−1<a <1D .a <−1答案:C分析:根据关于x 轴对称的点,横坐标不变,纵坐标互为相反数,求出对称点,再由第四象限内点的坐标符号为(+,-),据此列不等式解答.解:∵点P (a +1,2−2a )关于x 轴的对称点坐标为(a +1,2a -2),且在第四象限,∴a +1>0,且2a -2<0,解得-1<a <1,故选:C .小提示:此题考查了轴对称的性质,各象限内点的坐标特点,熟记各象限内点的坐标符号特点是解题的关键.4、将三角形纸片(△ABC )按如图所示的方式折叠,使点C 落在AB 边上的点D ,折痕为EF .已知AB =AC =3,BC =4,若以点B 、D 、F 为顶点的三角形与△ABC 相似,那么CF 的长度是( )A .2B .127或2C .127D .125或2答案:B分析:分两种情况:若∠BFD=∠C或若∠BFD=∠A,再根据相似三角形的性质解题∵△ABC沿EF折叠后点C和点D重合,∴FD=CF,设CF=x,则FD=CF=x,BF=4−x,以点B、D、F为顶点的三角形与△ABC相似,分两种情况:①若∠BFD=∠C,则BFBC =FDAC,即4−x4=x3,解得x=127;②若∠BFD=∠A,则BFAB =FDAC,即4−x3=x3,解得x=2.综上,CF的长为127或2,故选:B.小提示:本题考查相似三角形的性质,是重要考点,掌握相关知识是解题关键.5、如图,△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点E,BF⊥AC于点F,BF=8,则DE的长为()A.2B.3C.4D.5答案:C分析:根据等腰三角形的性质可得CD=BD,从而得到S△ABC=2S△ABD,从而得到12AC⋅BF=2×12AB⋅DE,即可求解.解:∵AB=AC,AD⊥BC,∴CD=BD,∴S△ABC=2S△ABD,∵DE⊥AB,BF⊥AC,∴S△ABC=12AC⋅BF,S△ABD=12AB⋅DE,∴12AC⋅BF=2×12AB⋅DE,∵BF=8,∴DE=4.故选:C小提示:本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.6、如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=7∠BAE,则∠C的度数为()A.41°B.42°C.43°D.44°答案:B分析:设∠BAE=x°,则∠C=7x°,根据ED是AC的垂直平分线,有AE=EC,即有∠EAC=∠C=7x°,根据直角三角形中两锐角互余建立方程,解方程即可求解.设∠BAE=x°,则∠C=7x°,∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C=7x°,∵∠B=90°,∴∠C+∠BAC=90°,∴7x+7x+x=90,解得:x=6,∴∠C=7×6°=42°,故选:B.小提示:本题考查了直角三角形的性质,等腰三角形的性质,线段垂直平分线的性质等知识点,能根据线段垂直平分线性质求出AE=CE是解此题的关键.7、如图,在△ABC中,∠ABC=45°,AD,BE分别为BC,AC边上的高,AD,BE相交于点F,连接CF,则下列结论:①BF=AC;②∠FCD=∠DAC;③CF⊥AB;④若BF=2EC,则△FDC周长等于AB的长.其中正确的有()A.①②B.①③④C.①③D.②③④答案:B分析:证明△BDF≌△ADC,可判断①;求出∠FCD=45°,∠DAC<45°,延长CF交AB于H,证明∠AHC=∠ABC+∠FCD=90°,可判断③;根据①可以得到E是AC的中点,然后可以推出EF是AC的垂直平分线,最后由线段垂直平分线的性质可判断④.解:∵△ABC中,AD,BE分别为B C、AC边上的高,∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC(ASA),∴BF=AC,FD=CD,故①正确,∵∠FDC=90°,∴∠DFC=∠FCD=45°,∵∠DAC=∠DBF<∠ABC=45°,∴∠FCD≠∠DAC,故②错误;延长CF交AB于H,∵∠ABC=45°,∠FCD=45°,∴∠AHC=∠ABC+∠FCD=90°,∴CH⊥AB,即CF⊥AB,故③正确;∵BF=2EC,BF=AC,∴AC=2EC,∴AE=EC=1AC,2∵BE⊥AC,∴BE垂直平分AC,∴AF=CF,BA=BC,∴△FDC的周长=FD+FC+DC=FD+AF+DC=AD+DC=BD+DC=BC=AB,即△FDC的周长等于AB,故④正确,综上:①③④正确,故选B.小提示:本题考查了全等三角形的性质与判定,也考查了线段的垂直平分线的性质与判定,也利用了三角形的周长公式解题,综合性比较强,对学生的能力要求比较高.<8、如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30∘,则CE的长是()A.1cmB.2cmC.3cmD.4cm答案:B分析:根据等边三角形的性质得AC=AB=4,由等边三角形三线合一得到CD,由∠ACB=60°,∠E=30°,求出∠CDE,得出CD=CE,即可求解.∵△ABC是等边三角形,∴AC= AB=BC=4cm,∠ACB = 60°,∵BD平分∠ABC,∴AD=CD(三线合一)∴DC=12AC=12×4=2cm,∵∠E = 30°∴∠CDE=∠ACB-∠E=60°-30°=30°∴∠CDE=∠E所以CD=CE=2cm故选:B.小提示:本题考查的是等边三角形的性质、等腰三角形的判定,直角三角形的性质,直角三角形中30°角所对的直角边等于斜边的一半.9、如图,点P为∠AOB内一点,分别作点P关于OB、OA的对称点P1,P2,连接P1P2交OB于M,交OA于N,P1P2=15,则△PMN的周长为()A.16B.15C.14D.13答案:B分析:根据轴对称的性质可得P1M=PM,P2N=PN,然后根据三角形的周长定义,求出△PMN的周长为P1P2,从而得解.解:∵点P关于OB、OA的对称点P1,P2,∴P1M=PM,P2N=PN,∴△PMN的周长=MN+PM+PN=MN+P1M+P2N=P1P2,∵P1P2=15∴△PMN的周长为15.故选:B.小提示:本题考查轴对称的性质,解题时注意:对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.10、△ABC为等边三角形,点E为边AB的中点,点Q为边BC上一动点,以EQ为边作等边△EQF(点F在EQ 的右侧),连接AF、FC,点P在射线CB上,且满足PE=EQ,有以下四个结论①∠FQC=∠QEB;②FQ=FC;③PB+QC=AE;④当AF⊥AB时,BC=4PB,其中正确的结论的个数是()A.1个B.2个C.3个D.4个答案:C分析:取BC中点H,连接EH、FH,作EG⊥BC于G,根据三角形内角和定理和平角的定义得出∠FQC+∠EQF+∠EQB=∠QEB+∠EBQ+∠EQB=180°,进而可得∠FQC=∠QEB,故①正确;根据点E为边AB的中点,点H为边BC的中点,可得AE=EB=BH=HC,△EBH是等边三角形,然后求出PB=HQ即可得出PB+QC=HC=AE,故③正确;通过证明△PEH≌△FEH可得∠EHP=∠EHF=60°,求出∠EHF=∠CHF,再证△EHF≌△CHF,求出FC =EF即可得出FQ=FC,故②正确;当CQ=HQ时,BC=4PB,由AF⊥AB无法推出Q为HC中点,故④错误.解:取BC中点H,连接EH、FH,作EG⊥BC于G,∵△ABC为等边三角形,△EQF为等边三角形,∴∠EQF=∠EBQ=60°,∵∠FQC+∠EQF+∠EQB=∠QEB+∠EBQ+∠EQB=180°,∴∠FQC=∠QEB,故①正确;∵EG⊥BC,PE=EQ,∴PG=GQ,∵点E为边AB的中点,点H为边BC的中点,∠ABC=60°,∴AE=EB=BH=HC,∴△EBH是等边三角形,∵EG⊥BH,∴BG=GH,∴PB=HQ,∴PB+QC=HC=AE,故③正确;∵EG⊥BC,PE=EQ,△EBH是等边三角形,∴∠BEG=∠HEG,∠PEG=∠QEG,∠BEH=∠EHB=60°,EH=EB,∴∠PEB=∠QEH,∵在等边三角形△EQF中,∠FEQ=60°,EF=EQ=FQ,∴∠PEH=∠FEH,PE=FE,又∵EH=EH,∴△PEH≌△FEH(SAS),∴∠EHP=∠EHF=60°,∴∠FHC=60°,即∠EHF=∠CHF,∵AE=EB=BH=HC,EH=EB,∴EH=HC,又∵HF=HF,∴△EHF≌△CHF(SAS),∴FC=EF,∴FQ=FC,故②正确;④∵BH=CH,BG=GH,BP=HQ,∴当CQ=HQ时,BC=4PB,由AF⊥AB无法推出Q为HC中点,故④错误;综上,正确的有3个,故选:C.小提示:本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,全等三角形的判定和性质等知识,作出合适的辅助线,构造出等边三角形和全等三角形是解题的关键.填空题11、如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD.若CD=1,则AD的长为________.答案:2分析:根据线段垂直平分线的性质得到AD=BD,∠ABD=∠A=30°,求得∠CBD=30°,即可求出答案.解:∵∠C=90°,∴∠A+∠ABC=90°,∵线段AB的垂直平分线分别交AC、AB于点D、E,∴AD=BD,∴∠ABD=∠A=30°,∴∠CBD=30°,∵CD=1,∴AD=BD=2CD=2,所以答案是:2.小提示:此题考查线段垂直平分线的性质,直角三角形30度角的性质,熟记线段垂直平分线的性质是解题的关键.12、在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.答案: 5 圆、正六边形、五角星、等边三角形、锐角分析:根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线就叫做对称轴,进行求解即可.解:锐角时轴对称图形,对称轴为1条;五角星是轴对称图形,对称轴有5条;等边三角形是轴对称图形,对称轴有3条;圆是轴对称图形,对称轴有无数条;正六边形是轴对称图形,对称轴有6条,所以答案是:5;圆,正六边形,五角星,等边三角形,锐角.小提示:本题主要考查了轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.13、如图,在ΔABC中,AB=7cm,BC=5cm,AC的垂直平分线分别交AB,AC于点D,E,点F是DE上的任意一点,则ΔBCF周长的最小值是________cm.答案:12分析:当F点于D重合时,ΔBCF的周长最小,根据垂直平分线的性质,即可求出ΔBCF的周长.∵DE垂直平分AC,∴点C与A关于DE对称,∴当F点于D重合时,即A、D、B三点在一条直线上时,BF+CF=AB最小,(如图),∴ΔBCF的周长为:CΔBCF=BD+CD+BC,∵DE是垂直平分线,∴AD=CD,又∵AB=7cm,∴BD+AD=BD+CD=7cm,∴CΔBCF=7+5=12cm,所以答案是:12.小提示:本题考查最短路径问题以及线段垂直平分线的性质:垂直平分线上的点到线段两端的距离相等,熟练掌握最短路径的求解方法以及垂直平分线的性质是解题的关键.14、如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=108°,则图1中的∠DEF的度数是______.答案:24°##24度分析:先根据平行线的性质,设∠DEF=∠EFB=a,图2中根据图形折叠的性质得出∠AEF的度数,再由平行线的性质得出∠GFC,图3中根据∠CFE=∠GFC﹣∠EFG即可列方程求得a的值.∵AD∥BC,∴设∠DEF=∠EFB=a,图2中,∠GFC=∠BGD=∠AEG=180°﹣2∠DEF=180°﹣2a,图3中,∠CFE=∠GFC﹣∠EFG=180°﹣2a﹣a=108°.解得a=24°.即∠DEF=24°,所以答案是:24°.小提示:本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.15、如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=_________°.答案:30分析:根据垂直平分线的性质得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC=60°,从而可得∠B.解:∵EF垂直平分BC,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.所以答案是:30.小提示:本题考查了垂直平分线的性质,等边三角形的性质,外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.解答题16、如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):(1)画出△ABC中BC边上的高AD;(2)画出先将△ABC向左平移5格,再向下平移2格后的△A1B1C1;(3)画一个△BCP(要求各顶点在格点上,P不与A点重合),使其面积等于△ABC的面积.并回答,满足这样条件的点P共______个.答案:(1)见解析;(2)见解析;(3)见解析;2分析:(1)根据三角形高的定义求解可得;(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;(3)过点A作平行于BC的直线,同样结合网格的特点在直线BC的另一侧也可以找出符合条件的格点P,共(1)解:如图:作BF⊥BC,再过A点作BF的平行线,交BC于点D,(2)解:如图:(3)解:如图符合条件的格点共有4个,小提示:本题用到的知识点为:三角形一边上的高为这边所对的顶点向这边所引的垂线段,对称的性质;图形的平移要归结为各顶点的平移,平行线间距离处处相等.17、如图,在△ABC中,AB=AC,∠B=30°,线段AB的垂直平分线MN交BC于D,求证:CD=2BD.答案:见解析分析:连接AD,首先根据垂直平分线的性质得到∠DAB=∠B=30°,然后根据AB=AC,求出∠B=∠C=30°,∠DAC=90°,最后根据30°角所对的直角边是斜边的一半即可证明出CD=2BD.证明:连接AD,∵直线MN是线段AB的垂直平分线,∴AD=BD,∴∠DAB=∠B,又∵∠B=30°,∴∠DAB=30°,又∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴∠DAC=90°,又∵∠C=30°,∴CD=2AD,又∵AD=BD,∴CD=2BD.小提示:此题考查了等腰三角形的性质,30°角直角三角形的性质,解题的关键是连接AD求出∠DAB=∠B=30°.18、如图,在△ABC中,BE是角平分线,AD⊥BE,垂足为D.求证:∠2=∠1+∠C.答案:见解析分析:延长AD交BC于点F,由BE是角平分线、AD⊥BE可知△ABF是等腰三角形且∠2=∠AFB,根据∠AFB=∠1+∠C可得证.证明:如图,延长AD交BC于点F,∵BE是∠ABC的角平分线,AD⊥BE,∴AB=FB,∴∠2=∠AFB,∵∠AFB=∠1+∠C,∴∠2=∠1+∠C.小提示:本题主要考查等腰三角形的判定与性质,解题的关键是掌握等腰三角形三线合一的性质.。
数学中考专题复习——轴对称图形作图练习(含答案)
数学中考专题复习——轴对称图形作图练习一.选择题(共27小题)1.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB1+PC最小.2.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C1P+C2P的值最小.3.如图,已知△ABC.(1)画出△A1B1C1,使△A1B1C1和△ABC关于直线MN成轴对称.(2)画出△A2B2C2,使△A2B2C2和△ABC关于直线PQ成轴对称.(3)△A1B1C1与△A2B2C2成轴对称吗?若成,请在图上画出对称轴;若不成,说明理由.4.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)五边形ACBB′C′的周长为;(3)四边形ACBB′的面积为;(4)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.5.在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各顶点坐标:A2;B2;C2.6.如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.7.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.8.△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.9.已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?10.如图,在平面直角坐标系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1、B1、C1的坐标.11.如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1.12.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小.13.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.14.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.15.在边长为1的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形的顶点上).(1)写出△ABC的面积;(2)画出△ABC关于y轴对称的△A1B1C1;(3)写出点A及其对称点A1的坐标.16.已知:如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)写出△A1B1C1和△A2B2C2各顶点坐标;(3)求△ABC的面积.27.如图,在平面直角坐标系中,每个小正方形的边长为1,点A的坐标为(﹣3,2).请按要求分别完成下列各小题:(1)把△ABC向下平移4个单位得到△A1B1C1,画出△A1B1C1,点A1的坐标是;(2)画出△ABC关于y轴对称的△A2B2C2;点C2的坐标是;(3)求△ABC的面积.二.解答题(共3小题)28.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.29.在正方形网格中建立如图的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题:(1)将△ABC向下平移5单位长度,画出平移后的△A1B1C1并写出点A对应点A1的坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2并写出A2的坐标;(3)S△ABC=.30.如图,在平面直角坐标系中,点A的坐标为(3,﹣3),点B的坐标为(﹣1,3),回答下列问题(1)点C的坐标是.(2)点B关于原点的对称点的坐标是.(3)△ABC的面积为.(4)画出△ABC关于x轴对称的△A′B′C′.参考答案与试题解析一.选择题(共27小题)1.(2016春•新蔡县期末)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB1+PC最小.【分析】(1)根据网格结构找出点A、B、C关于直线DE的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据轴对称确定最短路线问题,连接BC1,与直线DE的交点即为所求的点P.【解答】解:(1)△A1B1C1如图所示;(2)点P如图所示.【点评】本题考查了利用轴对称变换作图,利用轴对称确定最短路线问题,熟练掌握网格结构找出对应点的位置是解题的关键.2.(2016春•南江县期末)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C1P+C2P的值最小.【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)根据轴对称的性质画出△ABC关于直线m对称的△A2B2C2即可;(3)连接C1C2交直线m于点P,则点P即为所求点.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)连接连接C1C2交直线m于点P,则点P即为所求点.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.3.(2016秋•宜兴市期中)如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC 于点D、E.(1)若∠A=40°,求∠DCB的度数.(2)若AE=4,△DCB的周长为13,求△ABC的周长.【分析】(1)由在△ABC中,AB=AC,∠A=40°,根据等腰三角形的性质,可求得∠ACB 的度数,又由线段垂直平分线的性质,可得AD=CD,即可求得∠ACD的度数,继而求得答案;(2)由AE=4,△DCB的周长为13,即可求得△ABC的周长.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB==70°,∵DE垂直平分AC,∴DA=DC,∴在△DAC中,∠DCA=∠A=40°,∴∠DCB=∠ACB﹣∠ACD=30°;(2)∵DE垂直平分AC,∴DA=DC,EC=EA=4,∴AC=2AE=8,∴△ABC的周长为:AC+BC+BD+DA=8+BC+BD+DC=8+13=21.【点评】此题考查了线段垂直平分线的性质与等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.4.(2016春•芦溪县期中)如图,△ABC中,AB=AC,∠A=50°,DE是腰AB的垂直平分线,求∠DBC的度数.【分析】已知∠A=50°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.【解答】解:∵∠A=50°,AB=AC,∴∠ABC=∠ACB=(180°﹣∠A)=65°又∵DE垂直且平分AB,∴DB=AD,∴∠ABD=∠A=50°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°.即∠DBC的度数是15°.【点评】本题考查的是等腰三角形的性质以及线段垂直平分线的性质.垂直平分线上任意一点,到线段两端点的距离相等.5.(2016秋•江阴市期中)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.【分析】(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC﹣∠DAB=120°﹣45°;(2)根据三角形外角性质得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.【解答】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.【点评】本题考查了等腰三角形的性质和判定定理:等腰三角形的两底角相等;有两个角相等的三角形为等腰三角形.也考查了三角形的内角和定理.6.(2016秋•吴江区期中)如图,BO平分∠CBA,CO平分∠ACB,且MN∥BC,若AB=12,△AMN的周长为29,求AC的长.【分析】根据BO平分∠CBA,CO平分∠ACB,BM=MO,NC=NO,从而知道,△AMN 的周长是AB+AC的长,从而得解.【解答】解:∵BO平分∠CBA,CO平分∠ACB,MN∥BC,∴BM=MO,CN=NO,∴AM+MB+AN+NC=AM+MO+AN+NO=29.∴AB+AC=29,∵AB=12,∴AC=17.【点评】本题考查等腰三角形的判定与性质,以及平行线的性质.7.(2016秋•江都区期中)如图,已知△ABC.(1)画出△A1B1C1,使△A1B1C1和△ABC关于直线MN成轴对称.(2)画出△A2B2C2,使△A2B2C2和△ABC关于直线PQ成轴对称.(3)△A1B1C1与△A2B2C2成轴对称吗?若成,请在图上画出对称轴;若不成,说明理由.【分析】(1)找出△ABC关于直线MN成轴对称的对应点,然后顺次连接即可;(2)找出△ABC关于直线PQ成轴对称的对应点,然后顺次连接即可;(3)观察所作图形即可得出答案.【解答】解:(1)(2)所画图形如下所示:(3)△A1B1C1与△A2B2C2不成轴对称,因为找不到使△A1B1C1与△A2B2C2重合的对称轴.【点评】本题考查轴对称变换作图的知识,难度适中,解题关键是正确作出关于直线MN和PQ的对称图形.8.(2016秋•常熟市期中)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)五边形ACBB′C′的周长为4+2+2;(3)四边形ACBB′的面积为7;(4)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.【分析】(1)根据轴对称的性质,可作出△ABC关于直线l成轴对称的△AB′C′;(2)由勾股定理即可求得AC与BC的长,由对称性,可求得其它边长,继而求得答案;(3)由S△ABC=S梯形AEFB﹣S△AEC﹣S△BCF,可求得△ABC的面积,易求得△ABB′的面积,继而求得答案;(4)由点B′是点B关于l的对称点,连接B′C,交l于点P,然后由B′C的长即可.【解答】解:(1)如图:△AB′C′即为所求;(2)∵AC′=AC==2,B C=BC′==,BB′=2,∴五边形ACBB′C′的周长为:2×2+2×+2=4+2+2;故答案为:4+2+2;(3)如图,S△ABC=S梯形AEFB﹣S△AEC﹣S△BCF=×(1+2)×4﹣×2×2﹣×2×1=3,S=×2×4=4,△ABB′∴S四边形ACBB′=S△ABC+S△ABB′=3+4=7.故答案为:7;(4)如图,点B′是点B关于l的对称点,连接B′C,交l于点P,此时PB+PC的长最短,∴PB=PB′,∴PB+PC=PB′+PC=B′C==.故答案为:.【点评】此题考查了轴对称变换、三角形的面积以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.9.(2016秋•南开区期中)在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各顶点坐标:A2(1,﹣2);B2(3,﹣1);C2(﹣2,1).【分析】(1)利用关于y轴对称点的性质得出各对应点位置得出答案;(2)利用关于x轴对称点的性质得出各对应点位置得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;A2(1,﹣2);B2(3,﹣1);C2(﹣2,1).故答案为:(1,﹣2),(3,﹣1),(﹣2,1).【点评】此题主要考查了关于坐标轴对称点的性质,正确把握横纵坐标关系是解题关键.10.(2016秋•微山县期中)如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接,并写出A′,B′,C′的坐标;(2)用△ABC所在的矩形的面积减去三个小三角形的面积即可求解.【解答】解:(1)所作图形如图所示:A′(﹣4,6),B′(﹣5,2),C′(﹣2,1);(2)S△ABC=3×5﹣×1×3﹣×1×4﹣×2×5=6.5.【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.11.(2016秋•无锡校级月考)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于E、F.(1)若BC=10,求△AEF周长.(2)若∠BAC=128°,求∠FAE的度数.【分析】(1)由在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,易得AE=BE,AF=CF,即可得△AEF周长=BC;(2)由∠BAC=128°,可求得∠B+∠C的值,即可得∠BAE+∠CAF的值,继而求得答案.【解答】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,∴AE=BE,AF=CF,∵BC=10,∴△AEF周长为:AE+EF+AF=BE+EF+CF=BC=10;(2)∵AE=BE,AF=CF,∴∠B=∠BAE,∠C=∠CAF,∵∠BAC=128°,∴∠B+∠C=180°﹣∠BAC=52°,∴∠BAE+∠CAF=∠B+∠C=52°,∴∠FAE=∠BAC﹣(∠BAE+∠CAF)=76°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.12.(2016秋•夏津县月考)(1)已知等腰三角形的一边长等于8cm,一边长等于9cm,求它的周长;(2)等腰三角形的一边长等于6cm,周长等于28cm,求其他两边的长.【分析】(1)分8cm是腰长和底边两种情况讨论求解;(2)分6是底边和腰长两种情况讨论求解.【解答】解:(1)8cm是腰长时,三角形的三边分别为8cm、8cm、9cm,能组成三角形,周长=8+8+9=25cm,8cm是底边时,三角形的三边分别为8cm、9cm、9cm,能组成三角形,周长=8+9+9=26cm,综上所述,周长为25cm或26cm;(2)6cm是腰长时,其他两边分别为6cm,16cm,∵6+6=12<16,∴不能组成三角形,6cm是底边时,腰长为×(28﹣6)=11cm,三边分别为6cm、11cm、11cm,能组成三角形,所以,其他两边的长为11cm、11cm.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系判断是否能组成三角形.13.(2016秋•沭阳县校级月考)如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.(2)S四边形A1B1C1D1=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2=12﹣1﹣1﹣﹣2=.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.14.(2015•聊城)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.【分析】(1)直接利用平移的性质得出平移后对应点位置进而得出答案;(2)利用轴对称图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;点B1坐标为:(﹣2,﹣1);(2)如图所示:△A2B2C2,即为所求,点C2的坐标为:(1,1).【点评】此题主要考查了轴对称变换以及平移变换,根据图形的性质得出对应点位置是解题关键.15.(2015•安徽)如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.【分析】(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出平移后对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了轴对称变换以及平移变换,根据图形的性质得出对应点位置是解题关键.16.(2015•应城市二模)如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.【分析】要证明线段相等,只要过点A作BC的垂线,利用三线合一得到P为DE及BC的中点,线段相减即可得证.【解答】证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.【点评】本题考查了等腰三角形的性质;做题时,两次用到三线合一的性质,由等量减去等量得到差相等是解答本题的关键;17.(2015•本溪三模)△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.【分析】(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;(2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;(3)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=3;【解答】解:(1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;(2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);(3)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=3.【点评】本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.18.(2015秋•吴忠校级期末)已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?【分析】先作出两条公路相交的角平分线OC,再连接ED,作出ED的垂直平分线FG,则OC与FG的交点H即为工厂的位置.【解答】解:①以O为圆心,以任意长为半径画圆,分别交直线a、b于点A、B;②分别以A、B为圆心,以大于AB为半径画圆,两圆相交于点C,连接OC;③连接ED,分别以E、D为圆心,以大于ED为半径画圆,两圆相交于F、G两点,连接FG;④FG与OC相交于点H,则H即为工厂的位置.故点H即为工厂的位置.【点评】本题考查的是角平分线及线段垂直平分线的作法,是一道比较简单的题目.19.(2015秋•崆峒区期末)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.【分析】设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.【解答】解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.【点评】本题考查等腰三角形的性质;利用了三角形的内角和定理得到相等关系,通过列方程求解是正确解答本题的关键.20.(2015秋•东平县期末)如图,在平面直角坐标系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1、B1、C1的坐标.【分析】(1)利用轴对称性质,作出A、B、C关于y轴的对称点,A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到关于y轴对称的△A1B1C1;(2)观察图形即可得出点A1、B1、C1的坐标.【解答】解:(1)所作图形如下所示:(2)点A1、B1、C1的坐标分别为:(1,5),(1,0),(4,3).【点评】本题考查了轴对称变换作图,作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.21.(2015秋•平南县期末)如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1(﹣1,2)B1(﹣3,1)C1(2,﹣1).【分析】(1)利用轴对称性质,作出A、B、C关于y轴的对称点A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到关于y轴对称的△A1B1C1;(2)根据点关于y轴对称的性质,纵坐标相同,横坐标互为相反数,即可求出A1、B1、C1各点的坐标.【解答】解:(1)所作图形如下所示:(2)A1,B1,C1的坐标分别为:(﹣1,2),(﹣3,1),(2,﹣1).故答案为:(﹣1,2),(﹣3,1),(2,﹣1).【点评】本题主要考查了轴对称变换作图,难度不大,注意作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.22.(2015秋•天门期末)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小.【分析】(1)根据网格结构找出点A、B、C关于直线DE对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据轴对称确定最短路线问题连接A1C与DE的交点即为所求点Q.【解答】解:(1)△A1B1C1如图所示;(2)点Q如图所示.【点评】本题考查了利用轴对称变换作图,轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(2015秋•连州市期末)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.【分析】(1)根据顶点A,C的坐标分别为(﹣4,5),(﹣1,3)建立坐标系即可;(2)作出各点关于y轴的对称点,再顺次连接即可;(3)根据点B′在坐标系中的位置写出其坐标即可.【解答】解:(1)如图所示;(2)如图所示;(3)由图可知,B′(2,1).【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.24.(2015秋•泸县期末)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.【分析】(1)根据关于x轴对称的点的坐标特点画出△A1B1C1,并写出点C1的坐标即可;(2)根据关于y轴对称的点的坐标特点画出△A2B2C2,并写出点C2的坐标即可.【解答】解:(1)如图所示,点C1的坐标(3,﹣2);(2)如图2所示,点C2的坐标(﹣3,2).【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.25.(2015秋•夏津县期末)在边长为1的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形的顶点上).(1)写出△ABC的面积;(2)画出△ABC关于y轴对称的△A1B1C1;(3)写出点A及其对称点A1的坐标.【分析】(1)△ABC中,AC∥y轴,以AC为底边求三角形的面积;(2)对称轴为y轴,根据轴对称性画图;(3)根据所画图形,写出点A及其对称点A1的坐标.【解答】解:(1)△ABC的面积=×7×2=7;(1分)(2)画图如图所示;(3分)(3)由图形可知,点A坐标为:(﹣1,3),(4分)点A1的坐标为:(1,3).(5分)【点评】本题考查了轴对称变换的作图.关键是明确图形的位置,对称轴,根据轴对称的性质画图.26.(2015秋•莘县期末)已知:如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)写出△A1B1C1和△A2B2C2各顶点坐标;(3)求△ABC的面积.【分析】(1)根据关于x、y轴对称的点的坐标特点画出图形即可;(2)根据各点在坐标系内的位置写出各点坐标;(3)根据S△ABC=S四边形CDEF﹣S△ACD﹣S△ABE﹣S△BCF即可得出结论.【解答】解:(1)如图所示:(2)由图可知,△A1(0,2),B1(2,4),C1(4,1),A2(0,﹣2),B2(﹣2,﹣4),C2(﹣4,﹣1).(3)S△ABC=S四边形CDEF﹣S△ACD﹣S△ABE﹣S△BCF=3×4﹣×1×4﹣×2×2﹣×2×3=12﹣2﹣3﹣2=5.【点评】本题考查的是轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.27.(2015秋•南陵县期末)如图,在平面直角坐标系中,每个小正方形的边长为1,点A的坐标为(﹣3,2).请按要求分别完成下列各小题:(1)把△ABC向下平移4个单位得到△A1B1C1,画出△A1B1C1,点A1的坐标是A1(﹣3,﹣2);(2)画出△ABC关于y轴对称的△A2B2C2;点C2的坐标是C2(5,3);(3)求△ABC的面积.【分析】(1)根据图形平移的性质画出△A1B1C1,得出点A1的坐标即可;(2)画出△ABC关于y轴对称的△A2B2C2;根据点C2在坐标系中的位置,写出此点坐标;(3)根据△ABC的面积等于长方形的面积减去△ABC三个顶点上三角形的面积.【解答】解:(1)如图所示:由图可知A1(﹣3,﹣2).故答案为:A1(﹣3,﹣2);(2)如图所示:由图可知C2(5,3).故答案为:C2(5,3);(3)S△ABC=2×3﹣×2×1﹣×1×2﹣×1×3=6﹣1﹣1﹣=.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称及平移的性质是解答此题的关键.二.解答题(共3小题)28.(2015秋•连州市期末)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.【分析】(1)根据顶点A,C的坐标分别为(﹣4,5),(﹣1,3)建立坐标系即可;(2)作出各点关于y轴的对称点,再顺次连接即可;(3)根据点B′在坐标系中的位置写出其坐标即可.【解答】解:(1)如图所示;(2)如图所示;(3)由图可知,B′(2,1).【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.29.(2014•盘锦三模)在正方形网格中建立如图的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题:(1)将△ABC向下平移5单位长度,画出平移后的△A1B1C1并写出点A对应点A1的坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2并写出A2的坐标;(3)S△ABC=2.【分析】(1)根据网格结构找出点A、B、C向下平移5个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;(2)根据网格结构找出点A、B、C关于点y轴对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可;(3)根据三角形的面积公式求出△ABC的面积.【解答】解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1的坐标(4,﹣1);(2)如图所示,△A2B2C2即为所求作的三角形;A2(﹣4,﹣1);(3)S△ABC=×2×2=2.【点评】本题考查了利用轴对称变换作图,利用平移变换作图,以及三角形的面积计算,熟练掌握网格结构,准确找出对应点的位置是解题的关键.30.(2014•诏安县校级模拟)如图,在平面直角坐标系中,点A的坐标为(3,﹣3),点B 的坐标为(﹣1,3),回答下列问题(1)点C的坐标是(﹣3,﹣2).(2)点B关于原点的对称点的坐标是(1,﹣3).(3)△ABC的面积为16.(4)画出△ABC关于x轴对称的△A′B′C′.【分析】(1)根据平面直角坐标系写出即可;(2)根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解;(4)根据网格结构找出点A、B、C关于x轴的对称点A′、B′、C′的位置,然后顺次连接即可.【解答】解:(1)点C的坐标是(﹣3,﹣2);(2)点B关于原点的对称点的坐标是(1,﹣3);(3)△ABC的面积=6×6﹣×2×5﹣×1×6﹣×4×6,=36﹣5﹣3﹣12,=36﹣20,=16;(4)如图所示,△A′B′C′即为所求作的三角形.故答案为:(1)(﹣3,﹣2),(2)(1,﹣3),(3)16.【点评】本题考查了利用轴对称变换作图,平面直角坐标系的相关知识,熟练掌握网格结构,准确找出对应点的位置是解题的关键.。
第二章 轴对称图形(压轴题专练)(解析版)
第二章轴对称图形(压轴题专练)一、三角形综合应用(选择压轴)H Q 为等腰直角BCD △斜边BC 的中点,DH BC \^,即90GHB Ð=°,又BE Q 平分ABC Ð,GM BD ^,GM GH \=,又BD BH >Q ,BDG BGH S S \>V V ,又ABE CBE≌QV V ABE CBE S S \=V V ,ABE BDG ADGE S S S \=-V V 四边形,CBE BGH GHCE S S S =-V V 四边形,ADGE GHCE S S \<四边形四边形,故④错误;⑤18090HBG BGH GHB Ð+Ð=°-Ð=°,18090DBF DFG BDF Ð+Ð=°-Ð=°,HBG DBF Ð=Ð,BGH DFG \Ð=Ð,又BGH DGF Ð=ÐQ ,DGF DFG \Ð=Ð,DGF \V 为等腰三角形,故⑤正确.\正确的为①②③⑤,共计4个,故选:C .2.如图,已知ABC V 中高AD 恰好平分边BC ,30B Ð=°,点P 是BA 延长线上一动点,点O 是线段AD 上一动点,且OP OC =,下面的结论:AB AC=Q,AD BC^,BD CD \=,12 BADÐ=ÐOB OC\=,90ABCÐ=18060PAE BAC Ð=°-Ð=°Q ,AE PA =,APE \V 是等边三角形,60PEA APE \Ð=Ð=°,PE PA =,60APO OPE \Ð+Ð=°,60OPE CPE CPO Ð+Ð=Ð=°Q ,APO CPE \Ð=Ð,在OPA D 和CPE D 中,PA PE APO CPE OP CP =ìïÐ=Ðíï=î,(SAS)OPA CPE \V V ≌,AO CE \=,AB AC AE CE AO AP \==+=+;故①正确;OPC Q △是等边三角形,OP OC PC \==,∴2OP OC PC +=,∴当CP AB ^时,OP OC +的值最小,此时CP AB ≠;故②错误;OPC Q △是等边三角形,60OCP \Ð=°,30APO DCO Ð+Ð=°Q ,\90APO PCB Ð+Ð=°,故③正确;过点C 作CH AB ^于H ,60PAC DAC Ð=Ð=°Q ,AD BC ^,CH CD \=,∴BD CE =,AEF ADF Ð=Ð,故①②符合题意;设BD 与AC 交于点G ,∵BAD CAE ≌△△,∴ABF ACF Ð=Ð,∵90ABF BGA Ð+Ð=°,BGA CGF Ð=Ð,∴90ACF CGF Ð+Ð=°,∴90CFG Ð=°,即BD CE ^,故③符合题意;分别过A 作AM BD ^,AN CE ^垂足分别为M 、N ,∵BAD CAE ≌△△,∴AM AN =,∴FA 平分BFE Ð,∴BFA EFA Ð=Ð,若AF 平分CAD Ð,∴CAF DAF Ð=Ð,∴BAF EAF Ð=Ð,而FA FA =,∴BAF EAF V V ≌,∴AB AE =,与题干条件互相矛盾,故④不符合题意;∵FA 平分BFE Ð,BF CF ^,∴45AFE Ð=°,故⑤符合题意.综上,正确的是①②③⑤,故选:D .4.如图,在等腰三角形ABC 中,AB AC =,120BAC Ð=°,AD BC ^于点D ,点P 是CA 的延长线上一点,点O 在AD 的延长线上,OP OB =,下面的结论:①30APO OBD Ð-Ð=°;②BPO △是正三角形;③AB AP AO -=;④2BOC AOBP S S =四边形△其中正确的是( )A .①②③B .①②④C .①③④D .②③④【答案】A 【分析】如图,设AB 交OP 于点J .由OB OP OC ==,推出APO ABO Ð=Ð,推出60PAB POB Ð=Ð=°,可证①②正确,延长AO 到T ,使得AT AB =,证明(SAS)PBA OBT △≌△,推出PA OT =,可得③正确,推出四边形AOBP 的面积是定值,可得④错误.【详解】解:设AB 交OP 于点J ,如图所示:AB AC =Q ,AD BC ^,BD DC \=,OB OC \=,OP OB =Q ,OP OB OC \==,OPC OCP ACB OCB \Ð=Ð=Ð+Ð,OCB OBC Ð=Ð,AB AC =Q ,120BAC Ð=°,30ABC ACB \Ð=Ð=°,3030OPC OCB OBC ABO \Ð=°+Ð=°+Ð=Ð,30APO OBD \Ð-Ð=°,故①正确;AJP BJO Ð=ÐQ ,60POB PAJ \Ð=Ð=°,OP OB =Q ,BPO \△是正三角形,故②正确;延长AO 到T ,使得AT AB =,连接BT ,如图所示:60BAT Ð=°Q ,AT AB =,ABT \V 是等边三角形,60ABT PBO Ð=Ð=°Q ,PBA OBT \Ð=Ð,在PBA △和OBT △中,BP BO PBA OBT BA BT =ìïÐ=Ðíï=î,(SAS)PBA OBT \△≌△,PA OT \=,AB AT AO OT AO PA \==+=+,AB AP AO \-=,故③正确;PBA OBT Q △≌△,PBA OBT S S \=△△,ABT AOBP S S \=△四边形,且ABT S △为定值,BOC QV 是变化的,2BOC AOBP S S \=V 四边形是错误(与上面定值矛盾),故④错误;综上所述:正确的是①②③,故选:A .二、探究线段之间的数量关系【答案】2BM NC=【分析】作60HAN MAN Ð=Ð=°,使得AH AM =,连接HN ,HC ,先证MAN HAN V V ≌,推导得NH MC ^;再证BAM CAH V V ≌,推导得30NHC AHC AHN Ð=Ð-Ð=°,最后得到2BM NC =.【详解】解:如图,作60HAN MAN Ð=Ð=°,使得AH AM =,连接HN ,HC ,在MAN △中,∵7560AMN MAN Ð=°Ð=°,,∴180180756045ANM AMN MAN Ð=°-Ð-Ð=°-°-°=°.在MAN △与HAN △中,∵AM AH MAN HAN AN AN =ìïÐ=Ðíï=î,∴()MAN HAN SAS V V ≌,∴ANM ANH Ð=Ð,AMN AHN Ð=Ð,∵45ANM Ð=°,75AMN Ð=°,∴45ANH Ð=°,75AHN Ð=°,∵45ANM Ð=°,45ANH Ð=°,∴90ANM ANH Ð+Ð=°,即NH MC ^.∵75AMN Ð=°,30B Ð=°,∴=753045BAM AMN B ÐÐ-Ð=°-°=°,∵ABC V 中,30AB AC B =Ð=°,,∴30C B Ð=Ð=°,∴180120BAC C B Ð=°-Ð-Ð=°,∵45BAM Ð=°,60MAN Ð=°,120BAC Ð=°∴120456015NAC BAC BAM MAN Ð=Ð-Ð-Ð=°-°-°=°,∵60HAN Ð=°,15NAC Ð=°,故答案为:2BM NC=6.(1)已知,如图1,若ABC V 是直角三角形,(2)由(1)可得出定理:“直角三角形斜边上的中线等于斜边的一半【答案】(1)见解析;(2)①QE QF =;②QE QF=【分析】(1)延长CD 至E ,使DE CD =,连接AE ,证明(SAS ADE BDC ≌△△()Rt Rt SAS CAE ACB ≌△△,可得CE AB =,从而可得结论;(2)①Q 是AB 的中点,过Q 分别过点A 、B 向直线CP 作垂线垂足分别为E∵在ADE V 和BDC V 中AD BD ADE BDCCD ED =ìïÐ=Ðíï=î∴(SAS ADE BDC ≌△△②延长EQ 交BF 于G∵AE CP ^,BF CP ^,∴90AEP BFP Ð=Ð=°,∴AE BF ∥,∴QAE QBG Ð=Ð,BC=,则CE=;(1)如图1,连接EC,若4(2)如图2,点M是线段CA延长线上的一点(不与点A重合),以BM为一边,在BM的下方作MG交DE延长线于点G.在DG边上取一点H,使DH DM=.①求证:DMB HMG△≌△;②请你写出MD,DG与DE之间的数量关系,并证明你的结论;(3)如图3,当点M运动到线段AC延长线上的某个位置时,以BM为一边.在BM的左侧作,与DE之间的数量关系.交DE于点G.请直接写出MD DG求解;(2)①证明DMH △是等边三角形,进而得出DMB HMG Ð=Ð,证明DMB HMG △≌△()ASA ;②由①可知DMB HMG △≌△,得出HG DB =,DMH △是等边三角形.则DH MD =,即可得证.(3)在ED 的延长线上截取DN DM =,连接MN ,先证DMN V 是等边三角形,可得60MN DM DN N NMD ==Ð=Ð=°,,由“ASA ”可证MNG MDB V V ≌,可得NG BD =,即可求解.【详解】(1)解:∵DE AB ^,90ACB Ð=°,∴90BCD BED Ð=Ð=°,∵BD 是ABC V 的角平分线,∴CBD EBD Ð=Ð,又∵BD BD =,∴()AAS CBD EBD V V ≌,∴CB EB =,∵90ACB Ð=°,30A Ð=°,∴60ABD Ð=°,∴ECB V 是等边三角形,∴4==CE BC ;故答案为:4;(2)①证明:∵30CBD DBA CAB Ð=Ð=Ð=°,DE AB ^,∴60ADE BDE Ð=Ð=°,2DB DE=又∵DH DM =,∴DMH △是等边三角形.∴DM DH MH ==,60DMH DHM Ð=Ð=°∴DMH BMG Ð=Ð,120MHG ADB Ð=Ð=°.∴DMB HMG Ð=Ð.在DMB V 和HMG △中,DMB HMG DM MH MDB MHG Ð=Ðìï=íïÐ=Ðî,∴DMB HMG △≌△()ASA ;②2DG MD DE =+,由①可知DMB HMG △≌△,则HG DB =.∴2HG DE =,∵DMH △是等边三角形.则DH MD =,∴2DG DH HG MD DE =+=+;(3)解:结论:2DM DG DE+=,理由:如图,在ED 的延长线上截取DN DM =,连接MN ,∵60ADE NDM DN DM Ð=Ð=°=,,∴DMN V 是等边三角形,∴60MN DM DN N NMD ==Ð=Ð=°,,∴60NMD GMB Ð=Ð=°,∴NMG DMB Ð=Ð,在MNG V 和MDB △中,60N BDM MN DM NMG DMB Ð=Ð=°ìï=íïÐ=Ðî,∴()ASA MNG MDB V V ≌,∴NG BD =,∴2NG DE =,∴2DG DN DM DG DE +=+=.三、探究角之间的数量关系【答案】120°+α【分析】延长CB 到E ,使CE ==∠EDC ,再证明△EDA 为等边三角形,得到的计算即可求解.【详解】解:如图,延长CB 到∵CD 平分∠ACB ,∴∠ACD =∠BCD 12ACB a =Ð=,在△ADC 与△EDC 中,AC EC ACD ECD =ìïÐ=Ðí,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型的轴对称图形练习题
一、选择题
1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个 2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个 A .1个 B .2个 C .3个 D .4个 3.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 ( ) A .含30°角的直角三角形; B .顶角是30的等腰三角形;
C .等边三角形
D .等腰直角三角形.
4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则 ∠APE 的度数是 ( ) A .45° B .55° C .60° D .75°
5. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小
的底角是( )度. A .45° B .30° C .60° D .90° 6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定
7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O , 则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对
8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,
PD ⊥OA ,若PC=4,则PD= ( ) A .4 B .3
C .2
D .1 9.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5
C .PQ <5
D .PQ≤5
10.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm 二.填空题
11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.
A
O P
A
E
C
B D
13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距
离是__________. 14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC
的周长是____________.
16.等腰梯形的腰长为2,上、下底之和为10且有一底角为
60°,则它的两底长分别为____________.
17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD , 则∠BAC=____________.
18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠
EAF=___________. 三.解答题
19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离
相等.
20.如图:AD 为△ABC 的高,∠B=2∠C ,用轴对称图形说明:CD=AB+BD .
21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕
EF 的长.
O
B
22.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,
①若△BCD的周长为8,求BC的长;
②若BC=4,求△BCD的周长.
23.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问
△APQ是什么形状的三角形?试说明你的结论.
参考答案
第一章轴对称图形
1.A 2.B 3.C 4.C5.A6.D7.C8.C9.B10.C 11.212.30°、75°、120°13.414.515.1516.4、617.72°18.50°19.提示:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P;
20.提示:在CD上取一点E使DE=BD,连结AE;
21.EF=20㎝;22.①BC=3,②9;
23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.。