中考数学基础知识要点归纳(新人教版).doc

合集下载

人教版初三数学知识点总结

人教版初三数学知识点总结

人教版初三数学知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如公文写作、报告体会、演讲致辞、党团资料、合同协议、条据文书、诗词歌赋、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as official document writing, report experience, speeches, party and group materials, contracts and agreements, articles and documents, poems and songs, teaching materials, essay collections, other sample essays, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!人教版初三数学知识点总结人教版初三数学知识点总结(通用15篇)人教版初三数学知识点总结篇1等腰三角形的判定方法1.有两条边相等的三角形是等腰三角形。

中考人教版数学知识点归纳

中考人教版数学知识点归纳

中考人教版数学知识点归纳中考数学是对学生初中数学知识掌握程度的一次全面考察,涵盖了代数、几何、统计与概率等多个领域。

以下是中考人教版数学知识点的归纳:代数部分:1. 数与式:包括有理数的四则运算,绝对值,代数式的基本运算,幂的运算法则,因式分解等。

2. 方程与不等式:一元一次方程、一元二次方程的解法,不等式的基本性质和解法。

3. 函数:函数的概念,一次函数、二次函数的图像和性质,反比例函数等。

4. 统计与概率:数据的收集、整理与描述,平均数、中位数、众数的计算,概率的基础知识。

几何部分:1. 图形的性质:点、线、面、角的基本性质,平行线的性质,三角形的分类和性质,四边形的性质,圆的性质等。

2. 图形的变换:平移、旋转、反射等几何变换,图形的相似和全等。

3. 图形的计算:面积和体积的计算,包括三角形、四边形、圆、多边形等的面积,以及长方体、圆柱、圆锥、球等的体积。

4. 坐标与图形:坐标系的基本概念,点在平面直角坐标系中的坐标,以及坐标与图形之间的关系。

解题技巧与策略:1. 审题:仔细阅读题目,理解题意,明确已知条件和求解目标。

2. 画图:对于几何题,画出图形可以帮助理解问题,找出解题思路。

3. 分类讨论:对于需要分类讨论的问题,要全面考虑所有可能的情况。

4. 转化思想:将复杂问题转化为简单问题,利用已知知识解决新问题。

结束语:中考数学的知识点广泛,但只要同学们能够系统地复习,掌握每个知识点,结合适当的解题技巧,就能在考试中取得优异的成绩。

希望以上的归纳能够帮助同学们更好地准备中考,祝大家考试顺利!。

2023年人教版中考数学知识点复习总结

2023年人教版中考数学知识点复习总结

2023年人教版中考数学知识点复习总结
一. 几何
1. 平面图形
掌握正方形、长方形、菱形、平行四边形、梯形、三角形等常见图形的性质、面积和周长计算方法。

2. 空间图形
掌握长方体、正方体、圆柱、圆锥、球等常见空间图形的性质和计算公式。

二. 代数
1. 一元一次方程与解法
理解一元一次方程的含义,能够列方程、解方程,掌握等式的性质和解方程的基本方法。

2. 一元一次不等式与解法
掌握一元一次不等式的基本性质和解法。

3. 二元一次方程组与解法
掌握二元一次方程组的定义和解法。

4. 平方根与解法
了解平方根的含义和性质,能够进行平方根的开放和合并。

5. 算式化简与因式分解
掌握算式化简和因式分解的基本方法。

三. 函数
1. 函数概念
了解函数的基本概念和函数符号的含义。

2. 线性函数
掌握线性函数的概念和计算方法。

3. 幂函数
了解幂函数的基本概念和特征。

4. 根式函数
掌握根式函数的特征和计算方法。

四. 统计与概率
1. 统计图与刻度
掌握条形图、折线图、饼图等统计图的绘制和解读,理解刻度的意义和分类。

2. 统计量的含义与计算
了解平均数、中位数、众数等统计量的含义和计算方法。

3. 概率
了解概率的概念,掌握基本事件概率的计算方法。

总结以上知识点,认真复习,相信你能在考试中取得优异的成绩!。

(完整word版)人教版初三数学知识点总结(良心出品必属精品)

(完整word版)人教版初三数学知识点总结(良心出品必属精品)

初三知识整理全套教科书包含了课程标准(实验稿)规定的“数与代数” “空间与图形”“统计与概率”“实践与综合应用”四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。

包含以下章节:第21章二次根式第22章一元二次方程第23章旋转第24章圆第25章概率初步本册书内容分析如下:第21章二次根式学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。

解决与数量关系有关的问题还会遇到二次根式。

“二次根式”一章就来认识这种式子,探索它的性质,掌握它的运算。

在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:(1)是一个非负数;(2),「…亠0);(3)〔■ (a > 0).注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。

“二次根式的乘除”一节的内容有两条发展的线索。

一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到/ (a >0, b>0), k 恥(a >0, b>0),并运用它们进行二次根式的化简。

“二次根式的加减” 一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。

在本节中,注意类比整式运算的有关内容。

例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。

这些处理有助于学生掌握本节内容。

第22章一元二次方程学生已经掌握了用一元一次方程解决实际问题的方法。

在解决某些实际问题时还会遇到一种新方程一元二次方程。

“一元二次方程” 一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

初三数学知识点全总结人教(三篇)

初三数学知识点全总结人教(三篇)

初三数学知识点全总结人教初三数学知识点总结(人教版)一、整数整数是由正整数、负整数和0组成的集合。

整数的四则运算(加法、减法、乘法、除法)以及整数的比较运算。

二、分数分数是表示整体中的一部分的数。

分数的基本概念、分数的加法、减法、乘法和除法运算。

三、小数小数是有整数部分和小数部分的数。

小数的基本概念、小数的读法、小数的加法、减法、乘法和除法运算。

四、代数1. 代数式的基本概念和代数式的运算法则;2. 一元一次方程式的解法;3. 一次关系;4. 一元一次方程式的应用:字母代数字题、几何问题。

五、平方根与三次方根1. 平方根的概念和性质;2. 三次方根的概念和性质。

六、比例与相似1. 比例的概念和性质;2. 相似的概念和性质。

七、图形的认识1. 角的概念和性质;2. 三角形的概念和性质;3. 梯形和平行四边形的概念和性质。

八、图形的运动1. 平移;2. 旋转;3. 对称;4. 识字母的对称轴;5. 线段的中垂线。

九、运算的顺序运算符号“+”、“-”、“×”、“÷”的顺序;括号的应用。

十、比1. 百分数的概念及运用;2. 中学生应学习的几种常见比。

十一、数据的统计和分析1. 统计调查和统计资料的整理与展示;2. 平均数、中位数、众数的概念。

以上是初三数学知识点的总结,希望对你的学习有所帮助。

如有其他问题,欢迎继续提问。

初三数学知识点全总结人教(二):1. 整数的概念和运算- 整数的概念及表示方法- 整数的加减乘除运算- 整数的绝对值和相反数- 整数的大小比较及性质- 整数的混合运算2. 小数的概念和运算- 小数的概念及表示方法- 小数的加减乘除运算- 小数的大小比较及性质- 小数的混合运算3. 分数的概念和运算- 分数的概念及表示方法- 分数的基本性质- 分数的加减乘除运算- 分数与整数的关系- 分数的混合运算4. 百分数的概念和应用- 百分数的概念及表示方法- 百分数与分数、小数的转换- 百分数的加减乘除运算- 百分数在实际生活中的应用5. 有理数的概念和运算- 有理数的概念及表示方法- 有理数的加减乘除运算- 有理数的大小比较及性质- 有理数的混合运算6. 代数式的概念和运算- 代数式的概念及基本性质- 同类项合并与合并同类项- 代数式的加减乘除运算- 代数式的因式分解与乘法公式7. 一元一次方程- 一元一次方程的概念和基本性质- 解一元一次方程的基本方法- 一元一次方程在实际生活中的应用8. 比例与相似- 比与比例的概念和性质- 比例的化简和计算- 相似的概念和性质- 判断图形是否相似的条件及应用9. 数据的概念和统计- 数据的收集和处理- 数据的图表表示和分析- 数据的平均数和中位数10. 三角形的性质和计算- 三角形的概念和性质- 三角形内角和定理及外角和定理- 特殊三角形的性质与判定- 三角形的面积及计算11. 直线与角的相关知识- 直线的概念和性质- 角的概念和性质- 直线与角的关系及计算- 分角线和对顶角的性质和应用12. 不等式的概念和解法- 不等式的概念和性质- 解一元一次不等式的基本方法- 解一元一次不等式组的方法13. 平面图形的性质和计算- 点、线、面的概念和性质- 四边形、多边形的性质和判定- 圆的概念和性质- 平行线和垂直线的性质和证明14. 空间几何的性质和计算- 空间几何的相关概念和性质- 空间图形的表达和计算- 空间几何的投影和旋转15. 算术和几何平均值的求法和性质- 算术平均值的概念和计算- 几何平均值的概念和计算- 平均值的性质及应用以上是初三数学的主要知识点归纳总结。

(完整word版)人教版初中数学讲义大纲(适用于中考复习)

(完整word版)人教版初中数学讲义大纲(适用于中考复习)

人教版初中中考数学复习提纲第一章有理数一、 正数和负数 1、正数、负数: 大于零的数叫做正数,小于零的数叫做负数。

应用:生产收入,海拔高低,气温的冷热,方位的指向,比赛的胜负,比例的增长等等。

二、 有理数 1、概念:整数和分数统称为有理数。

”正整数 正数/ 正分数 分类」零 合粉负整数 负数/ 负分数 •正整数 整数(零 或] 负整数 正分数 分数』 负分数注:分数和小数可以互化,所以小数可以归为分数类。

3、“ 0”表示的意义: (1)0既不是正数也不是负数(2)0是整数(3)0不是表示没有,有时表示一种趋于正负的状态( 4)0 是最小的自然数,即是最小的非负整数( 5)0不能作为分母(6)0等相反数是0 (7)0的绝对值是0 (8) 0没有倒数(9)0乘以任何数都为0 ( 10)0除以任何不为0的数都为0. 4、数轴:通常用一条直线上的点表示数,这条直线叫做数轴。

数轴的三要素:原点,正方向,单位长度。

数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边 的数。

5、 相反数:只有符号不同的两个数叫做互为相反数。

与原点距离相等的两个数互为相反数。

互为相反数的两个数相加得 0( a , b 互为相反数,则 a+b=0) 6、 绝对值:一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a| 两个负数,绝对值大的反而小。

三、有理数的加减法 1、有理数的加法: (1)加法法则: 同号两数相加,取相同的符号,并把绝对值相加; 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得 0. 一个数同0相加,仍得这个数。

(2 )运算律:加法交换律: a+b=b+a ;加法结合律:(a+b )+c=a+ ( b+c ) 2、有理数的减法: 减法法则:减去一个数,等于加上这个数的相反数。

人教版初中数学中考复习知识点归纳总结全册

人教版初中数学中考复习知识点归纳总结全册

人教版初中数学中考复习知识点归纳总结
全册
第一章:有理数
1. 有理数的概念和表示方法
- 有理数是可以表示为两个整数的比例的数,包括整数、分数
和小数。

- 有理数可以用分数的形式表示,也可以用小数的形式表示。

2. 有理数的比较和大小关系
- 有理数可以通过大小关系进行比较,可以使用大小符号(<, >, =)进行表示。

3. 有理数的加法和减法
- 有理数之间可以进行加法和减法运算,运算结果仍为有理数。

...
第二章:代数式及其计算
1. 代数式的概念和性质
- 代数式是由数、字母和运算符号组成的表达式。

- 代数式可以进行加法、减法、乘法和除法运算。

2. 代数式的加法和减法
- 代数式之间可以进行加法和减法运算,运算结果仍为代数式。

...
第三章:方程及其应用
1. 方程的概念和解的概念
- 方程是含有未知数的等式。

- 方程的解是能使方程成立的值。

2. 一元一次方程
- 一元一次方程是一个未知数的一次方程。

- 解一元一次方程的方法包括移项、合并同类项、化简和求解。

...
(继续列举下一章节的内容)
总结
本文档总结了人教版初中数学中考的重点知识点,包括有理数、代数式及其计算、方程及其应用等多个章节的内容。

每个章节介绍
了该主题的概念、性质和解题方法。

这些知识点是中考数学复习的
重点内容,希望能对同学们的复习提供帮助。

人教版中考数学知识点总结

人教版中考数学知识点总结

初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

人教版数学中考知识点总结

人教版数学中考知识点总结

人教版数学中考知识点总结一、代数1. 有理数有理数的概念:所有可以表示为分子和分母都是整数的数叫做有理数。

绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数。

有理数的比较:同号比较大小,异号比较绝对值。

有理数的加减法:同号两数相加或相减,异号两数相减取它们的绝对值再用较大数的符号。

有理数的乘除法:同号两数相乘为正,异号两数相乘为负,零不能做除数。

有理数的各种化简。

2. 整式基本概念:由常数、变量和它们的积、商及和差构成的代数式就叫做整式。

整式化简:同类项合并。

整式的加减法:合并同类项后进行加减法。

3. 一元一次方程及不等式基本概念:方程是含有未知数的式子,它的特点是含有等号。

一元一次方程解法:变形法,相消法,代入法。

一元一次不等式解法:变形法。

一元一次方程的应用:实际问题的应用解题。

4. 二元一次方程组基本概念:由两个含有两个未知数的一次方程组成的方程组。

二元一次方程组的解法:代入法,消元法。

5. 实数的乘方正数的乘方:一般乘方,零、一的乘方。

负数的乘方:正负性的规律。

分数的乘方:用同底数乘方化成一次分数乘方。

6. 四则运算整数的四则运算:加法,减法,乘法,除法;整除与带余除法。

有理数的四则运算:同号相乘为正,异号相乘为负。

二、几何1. 图形的基本概念点、线、角、图形的定义。

平面图形:直线、射线、线段、角、三角形、四边形、多边形。

立体图形:正方体、长方体、棱柱、棱锥、球、圆柱。

2. 相似形相似三角形:对应角相等则为相似三角形。

3. 直角三角形勾股定理:直角三角形斜边的平方等于两条直角边的平方和。

勾股定理的应用:解决实际问题的计算和证明。

4. 圆圆的基本概念:圆心、半径、直径、弦、弧、圆周角。

5. 角角的概念:角的内部、外部,相邻角、对顶角、平角。

角的分角:等分一角,角的平分线。

6. 三视图图形的三视图:主视图、俯视图、侧视图。

量积图。

7. 平面直角坐标系平面直角坐标系的相关概念点的坐标表示平面图形和直角坐标系的关系三、空间与图形1. 空间相关概念点、直线、平面、立体图形的定义。

(完整word版)新人教版九年级数学知识点归纳

(完整word版)新人教版九年级数学知识点归纳
(完整 word 版)新人教版九年级数学知识点归纳(word 版可编辑修改)
(完整 word 版)新人教版九年级数学知识点归纳(word 版可编辑修改)
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整 word 版)新人教版九年 级数学知识点归纳(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的 希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为(完整 word 版)新人教版九年级数学知识点归纳(word 版可编辑修改)的全部内容。
第二十二章 二次函数
22。1 二次函数及其图像
二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数
可以表示为 y=ax2+bx+c(a 不为 0)。其图像是一条主轴平行于 y 轴的抛物线。
一般的,自变量 x 和因变量 y 之间存在如下关系:
ቤተ መጻሕፍቲ ባይዱ
一般式 y=ax2+bx+c(a≠0,a、b、c 为常数),顶点坐标为(-b/2a,(b2—4ac)
用函数观点看一元二次方程
1。 如果抛物线 y ax 2 bx c 与 x 轴有公共点,公共点的横坐标是 x0 ,那么当 x x0 时,函数 的值是 0,因此 x x0 就是方程 ax 2 bx c 0 的一个根。 2. 二次函数的图象与 x 轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。 这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数 根。

初中数学知识点中考总复习总结归纳(人教版)

初中数学知识点中考总复习总结归纳(人教版)

初中数学知识点中考总复习总结归纳(人教版)2023年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等;(4)一些三角函数,如sin60o等π+8等;3第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如3?5a3b2c是6次单项式。

考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

初三数学知识点归纳人教版

初三数学知识点归纳人教版

初三数学知识点归纳人教版一、一元二次方程。

1. 定义。

- 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

2. 解法。

- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。

例如(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。

- 配方法:将一元二次方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后再用直接开平方法求解。

例如x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。

- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。

- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。

例如x^2-3x+2 = 0,分解因式得(x - 1)(x -2)=0,解得x = 1或x = 2。

3. 根的判别式。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。

- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。

4. 一元二次方程根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),若方程的两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。

二、二次函数。

1. 定义。

- 一般地,形如y = ax^2+bx + c(a≠0)的函数叫做二次函数,其中a、b、c是常数,x是自变量。

人教版初三数学知识点

人教版初三数学知识点

人教版初三数学知识点人教版初三数学知识点概述一、代数知识1. 代数表达式- 单项式与多项式的定义和性质- 同类项的概念- 代数式的加减运算法则- 代数式的乘除运算法则- 幂的乘方与积的乘方- 同底数幂的除法2. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 一元一次方程的应用问题- 不等式及其解集- 不等式的性质- 解一元一次不等式3. 二元一次方程组- 用代入消元法解二元一次方程组- 用加减消元法解二元一次方程组- 三元一次方程组的解法- 线性方程组的应用问题4. 函数的基本概念- 函数的定义- 函数的表示方法:列表法、图像法、解析法- 函数的性质:单调性、奇偶性- 一次函数、二次函数、反比例函数的图像和性质二、几何知识1. 平面图形- 平行线的性质- 三角形的分类:按边分类、按角分类- 特殊三角形的性质:等腰三角形、等边三角形、直角三角形- 全等三角形的判定与性质- 四边形的分类与性质:平行四边形、矩形、菱形、正方形、梯形 - 圆的基本性质:圆心、半径、直径、弦、弧、切线等2. 空间图形- 空间图形的观察与画法- 空间图形的测量:体积与表面积的计算- 棱柱、棱锥、圆柱、圆锥的几何特征- 多面体与旋转体的表面积与体积计算3. 相似与全等- 相似图形的判定与性质- 全等三角形的判定与性质- 相似三角形的性质与应用- 相似多边形的性质- 比例线段的概念与性质4. 解析几何- 坐标系的基本概念- 点的位置由坐标确定- 距离公式、中点公式- 直线方程的几种形式- 圆的方程三、统计与概率1. 统计- 统计调查的步骤- 频数与频率的概念- 统计图表的绘制与解读:条形图、折线图、饼图 - 统计量:平均数、中位数、众数、方差、标准差2. 概率- 随机事件的概念- 可能性的大小- 概率的计算- 用树状图法解决简单的概率问题四、数列1. 数列的概念- 数列的定义- 常见的数列类型:等差数列、等比数列2. 等差数列- 等差数列的定义- 等差数列的通项公式- 等差数列的前n项和公式3. 等比数列- 等比数列的定义- 等比数列的通项公式- 等比数列的前n项和公式五、解题技巧与策略1. 解题步骤- 仔细审题- 确定解题思路- 计算过程的准确性- 检查答案的正确性2. 解题策略- 分类讨论- 转化与化归- 利用图形解题- 归纳与类比3. 常见错误分析- 计算错误- 理解题意不清- 应用公式不当- 忽视题目条件以上是人教版初三数学的主要知识点概述,学生应根据这些知识点进行系统的复习和练习,以确保对每个概念都有深刻的理解和掌握。

新人教版数学九年级知识点

新人教版数学九年级知识点

新人教版数学九年级知识点一、代数与函数1. 方程与不等式1.1 一元一次方程及应用1.2 一次不等式及应用1.3 二元一次方程组及应用2. 平方根与立方根2.1 平方根的概念及性质2.2 立方根的概念及性质3. 整式与分式运算3.1 整式的加减乘除3.2 分式的加减乘除4. 函数的概念与性质4.1 函数的定义与表示4.2 函数的增减性与单调性二、几何与图形1. 三角形1.1 三角形的分类及性质1.2 三角形的面积计算2. 圆与圆的性质2.1 圆的定义与性质2.2 弧长与扇形面积计算3. 空间几何体3.1 空间几何体的分类及性质3.2 空间几何体的表面积与体积计算4. 直角三角形与勾股定理4.1 直角三角形的性质及应用4.2 勾股定理的概念及应用三、数据与统计1. 统计图与统计量1.1 条形图、折线图和饼图的绘制与分析 1.2 中心位置和离散程度的统计量计算2. 概率2.1 随机事件与样本空间2.2 概率的概念与计算3. 抽样调查与统计推断3.1 问卷设计与样本选择3.2 通过样本推断总体特征四、数学实际问题解决能力1. 建立数学模型1.1 通过实际问题建立数学模型1.2 利用数学模型解决实际问题2. 运用数学方法解决问题2.1 使用代数方法解决实际问题2.2 使用几何方法解决实际问题3. 数学证明与推理3.1 利用数学理论进行证明3.2 运用逻辑推理解决问题以上是新人教版数学九年级的知识点概览,通过学习这些知识,同学们能够夯实数学基础,提高自己的数学能力。

希望同学们能够认真学习,勤于练习,善于思考,养成良好的数学学习习惯,并能将数学知识运用到实际生活中解决问题。

祝同学们在数学学习中取得优秀的成绩!。

初三数学知识点全总结人教版

初三数学知识点全总结人教版

初三数学知识点全总结人教版初三数学知识点全总结有理数、整式的加减、一元一次方程、图形的初步认识。

(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。

【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。

(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。

【考察内容】①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式法和公式法分解因式。

(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。

中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。

【考察内容】①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程。

题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。

(4)几何:角和线段,为下册学三角形打基础相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。

(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。

通常以填空,选择题形式出现。

分值为3-4分,难易度为易。

【考察内容】①平行线的性质(公理)②平行线的判别方法③构造平行线,利用平行线的性质解决问题。

(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。

【考察内容】①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析。

(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。

【考察内容】①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。

(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。

初三数学人教版知识点总结

初三数学人教版知识点总结

初三数学人教版知识点总结一、代数与函数1.1 线性方程组•解线性方程组的方法:–相消法–代入法–消元法•解线性方程组的应用:–平面图形的交点–混合物的成分计算1.2 一元二次方程与因式分解•解一元二次方程的方法:–公式法–完全平方式–因式分解法•利用因式分解解题:–平方差公式–方程的解的情况(无解、一个解、两个解)1.3 平方根与特殊代数式•平方根的性质:–非负数的平方根–平方根的运算性质–解方程中平方根的应用•特殊代数式的运算:–二次根式的相加减与乘法–两个二次根式相除二、图形的性质及应用2.1 四边形•矩形、正方形、菱形、平行四边形的性质•矩形、菱形的应用:计算面积和周长2.2 平面直角坐标系•平面直角坐标系的表示方法•坐标系中点、线段的距离公式•研究线段的中点和坐标关系2.3 相似三角形•相似三角形的判定条件•相似三角形的性质:对应角相等、边长成比例•利用相似三角形解决问题:求长度、面积、高度等三、概率与统计3.1 概率•随机事件的概念•事件发生的概率计算•事件的互斥和对立事件3.2 统计•统计调查的方法•样本的选择及统计推断•数据的图表表示四、立体几何4.1 空间图形的表示和计算•空间图形的正视图、侧视图、俯视图表示•对称图形的判定•空间图形的计算:体积、表面积、边长等4.2 平行与垂直•平行线、平面和垂直线的判定•平行线与夹角、数位的关系•平行线与三角形的性质以上内容是初三数学人教版的主要知识点总结,理解和掌握这些知识点对于学习和提高数学水平至关重要。

希望同学们能认真学习,并通过练习题巩固所学知识,为高中数学打下坚实的基础。

最新人教版中考数学核心考点归纳梳理总结

最新人教版中考数学核心考点归纳梳理总结

中考基本考点归纳总结(概念、定理、推论、法则)第一章 实数与代数式第1讲 实数的概念与应用考点1:正负数的意义:正负数表示 。

考点2:非负数a 、2a 、a 性质:(1)a (2a ,a )≥0;(2)非负数之和为0,当且仅当每一个非负数为0。

考点3:能根据相反数、倒数、绝对值的概念及其有关性质解题,理解相反数、绝对值的几何意义。

(1)实数:可分为 、无理数;还可分为 、0、 。

(2)数轴:规定了 、 、 的直线。

数轴上的点与 一一对应。

(2)相反数:是只有___________不同的两个数,即若a 、b 互为相反数,那么___________,0在相反数仍是0;在数轴上表示相反数的两个点。

实数a 的相反数是 ,0的相反数是0。

(3)绝对值的概念:___________;一个数a 的绝对值等于在数轴上表示数a 的点___________。

(4)倒数:乘积是1的两个数互为倒数,若a 、b 互为倒数,那么___________,0没有倒数。

考点4:科学记数法:把一个数写成___________形式,其中___________,这种计数方法叫做___________。

第2讲 实数的运算及大小比较考点1:实数的加、减、乘、除、乘方、开方运算。

(1)实数加法法则:①同号两数相加,取_______ 的符号,并把_________②绝对值不相等的异号两数相加,取________________的符号,并用____________________。

互为相反数的两个数相加得 。

③一个数同0相加,__________________。

(2)实数减法法则:减去一个数,等于加上 。

(3)实数乘法法则:①两数相乘,同号____,异号_____,并把_________。

任何数同0相乘,都得________。

②几个不等于0的数相乘,积的符号由____________决定。

当______________, 积为负,当_____________,积为正。

中考数学人教版知识点归纳

中考数学人教版知识点归纳

中考数学人教版知识点归纳中考数学是学生在中学阶段非常重要的一次考试,它不仅考察学生对数学基础知识的掌握,还考察学生解决问题的能力。

以下是人教版中考数学的知识点归纳:一、数与代数1. 有理数的四则运算和性质。

2. 绝对值、相反数的概念和应用。

3. 代数式的基本运算,包括加减乘除以及幂的运算。

4. 因式分解的方法,如提取公因式、公式法等。

5. 一元一次方程和一元二次方程的解法。

6. 不等式的性质和解法。

7. 函数的概念,包括一次函数、二次函数、反比例函数等。

二、几何1. 线段、角、三角形的基本性质和分类。

2. 四边形的性质,包括平行四边形、矩形、菱形、正方形等。

3. 圆的性质,包括圆周角、切线、弧长、扇形面积等。

4. 相似三角形和全等三角形的判定与性质。

5. 三角函数,包括正弦、余弦、正切等。

6. 空间几何,如立体图形的表面积和体积计算。

三、统计与概率1. 数据的收集、整理和描述,包括条形统计图、折线统计图、饼图等。

2. 平均数、中位数、众数的计算和意义。

3. 方差和标准差的计算,以及它们在数据分析中的作用。

4. 概率的基本概念,包括事件的独立性、互斥性等。

5. 简单事件的概率计算。

四、综合应用1. 解决实际问题,如速度、距离、时间问题,成本、利润问题等。

2. 数学建模,将实际问题抽象成数学问题进行求解。

3. 逻辑推理能力,包括演绎推理和归纳推理。

结束语:掌握中考数学的知识点是基础,但更重要的是学会如何运用这些知识解决实际问题。

希望以上的知识点归纳能够帮助同学们更好地复习和准备中考数学,祝大家取得优异的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学基础知识要点归纳(新人教版)实数⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 练习:(略)数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫_______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 . ⑶ =2a ⎩⎨⎧<-≥=)0( )0( a a a a a 。

3. 实数的分类: 和 统称实数. 4.=0a (其中a 0 且a 是 )=-pa (其中a 0)练习:(略)整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n= . 练习:(略)因式分解1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ , ⑶ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a⑵ =++222b ab a ,⑶ =+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2.6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.分式1. 分式:整式A 除以整式B ,可以表示成 AB 的形式,如果除式B 中含有 ,那么称A B 为分式.若 ,则 A B 有意义;若 ,则 A B 无意义;若 ,则 AB =0. 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 .用式子表示为 .3. 约分:把一个分式的分子和分母的 约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,把异分母的分式化为 的分式,这一过程称为分式的通分.二次根式1.二次根式的有关概念⑴式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 .并且根式. ⑵简二次根式:被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式.(3)同类二次根式:化成最简二次根式后,被开方数 的几个二次根式,叫做同类二次根式.2.二次根式的性质:⑴; ⑵()=2a (a ≥0); =2a ; ⑶ =ab (0,0≥≥b a );⑷ =ba(0,0>≥b a ).方程(组)和不等式(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.一元二次方程的常用解法(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,240)x b ac =-≥.(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.一元二次方程根的判别式关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x .(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.不等式的基本性质(1)若a <b ,则a +c c b +;(2)若a >b ,c >0则ac bc (或c a c b ); (3)若a >b ,c <0则ac bc (或c a cb).平面直角坐标系1.第三象限第四象限2. x 0.3. P (x,y)关于x 轴对称的点坐标为__________,关于y 轴对称的点坐标为________,关于原点对称的点坐标为___________.练习: ⑴ 在平面直角坐标系中,点A 、B 、C 的坐标分别为A (-•2,1),B (-3,-1),C (1,-1).若四边形ABCD 为平行四边形,那么点D 的坐标是_______.(2)将点A (3,1)绕原点O 顺时针旋转90°到点B ,则点B•的坐标是_____.一次函数1.正比例函数的一般形式是__________.一次函数的一般形式是__________________. 2. 一次函数y kx b =+的图象是经过 和 两点的 . 3. 求一次函数的解析式的方法是 ,其基本步骤是:⑴ ; ⑵ ;⑶ ;⑷ . 4.一次函数y kx b =+的图象与性质反比例函数1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k 、b 的符号 k >0b >0k >0 b <0k <0 b >0k <0b <0图像的大致位置经过象限 第 象限第 象限 第 象限 第 象限 性质y 随x 的增大 而 y 随x 的增大而y 随x 的增大而y 随x 的增大而k 的符号k >0 k <0y xoyxO3.k 的几何含义:反比例函数y =kx(k ≠0)中比例系数k 的几何意义,即过双曲线y =kx(k ≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 .二次函数1. 二次函数2()y a x h k =-+的图像和性质a >0a <0图 象开 口 对 称 轴 顶点坐标最 值当x = 时,y 有最 值当x = 时,y 有最 值增减性 在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而y 随x 的增大而2. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = , k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.图像的大致位置经过象限 第 象限 第 象限 性质在每一象限内y 随x 的增大而在每一象限内y 随x 的增大而oy x要点归纳:1.二次函数c bx ax y ++=2通过配方可得224()24b ac b y a x a a-=++, ⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ; ⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 .统计知识1.平均数的计算公式___________________________.2. 加权平均数公式_____________________________.3. 中位数是___________________________,众数是__________________________. 4.极差是__________________,方差的计算公式_____________________________. 标准差的计算公式:_________________________.概率知识【知识要点】1.__________________叫确定事件,________________叫不确定事件(或随机事件),__________________叫做必然事件,______________________叫做不可能事件. 2._________________________叫频率,_________________________叫概率. 3.求概率的方法:(1)利用概率的定义直接求概率;(2)用树形图和________________求概率;(3)用_________________的方法估计一些随机事件发生的概率.相交线与平行线【知识要点】1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.三角形【知识再现】一、三角形的分类:1.三角形按角分为______________,______________,_____________.2.三角形按边分为_______________,__________________.二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________.三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________.3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线)【考点提要】一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________.二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.三.直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.全等三角形【知识回顾】1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.【典例精析】相似三角形【要点罗列】一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法1. 若DE ∥BC (A 型和X 型)则______________.2. 射影定理:若CD 为Rt △ABC 斜边上的高(双直角图形)则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=________,CD 2=_______,BC 2=__ ____.E A D CBEADCBA D CB3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________. 三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k 表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.锐角三角函数【知识回顾】1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值解直角三角形【知识回顾】30° 45° 60° sin α cos α tan αα abc1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 2.解直角三角形的类型:已知____________;已知___________________.3.如图(1)解直角三角形的公式:(1)三边关系:__________________.(2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______. cosB=____,tanA=_____ ,tanB=_____. 4.如图(2)仰角是____________,俯角是____________. 5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tan α=i =____.(图2) (图3) (图4)四边形【知识回顾】 1. 四边形有关知识⑴ n 边形的内角和为 .外角和为 .⑵ 如果一个多边形的边数增加一条,那么这个多边形的内角和增加 , 外角和增加 .⑶ n 边形过每一个顶点的对角线有 条,n 边形的对角线有 条. 2. 平面图形的镶嵌⑴ 当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个____________时,就拼成一个平面图形.⑵ 只用一种正多边形铺满地面,请你写出这样的一种正多边形____________. 3.易错知识辨析O A B C多边形的内角和随边数的增加而增加,但多边形的外角和随边数的增加没有变化,外角和恒为360 º.平行四边形【知识要点】1. 特殊的平行四边形的之间的关系2. 特殊的平行四边形的判别条件成为矩形,需增加的条件是_______ _____ ;要使成为菱形,需增加的条件是_______ _____ ;要使矩形ABCD 成为正方形,需增加的条件是______ ____ ;要使菱形ABCD 成为正方形,需增加的条件是______ ____ .3. 特殊的平行四边形的性质梯形【知识回顾】1.梯形的面积公式是________________.2.等腰梯形的性质:边 __________________________________.角 __________________________________.对角线 __________________________________.3. 等腰梯形的判别方法__________________________________.4. 梯形的中位线长等于__________________________.圆【要点再现】1. 圆上各点到圆心的距离都等于 .平矩正行四边形形菱形方形2. 圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又是 对称图形, 是它的对称中心.3. 垂直于弦的直径平分 ,并且平分 ;平分弦(不是直径)的 垂直于弦,并且平分 .4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量 ,那么它们所对应的其余各组量都分别 .5. 同弧或等弧所对的圆周角 ,都等于它所对的圆心角的 .6. 直径所对的圆周角是 ,90°所对的弦是 .1. 点与圆的位置关系共有三种:① ,② ,③ ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为:①d r ,②d r ,③d r .2. 直线与圆的位置关系共有三种:① ,② ,③ .对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为:①d r ,②d r ,③d r .3. 圆与圆的位置关系共有五种:① ,② ,③ ,④ ,⑤ ;两圆的圆心距d 和两圆的半径R 、r (R ≥r )之间的数量关系分别为:①d R -r ,②d R -r ,③ R -r d R +r ,④d R +r ,⑤d R +r.4. 圆的切线 过切点的半径;经过 的一端,并且 这条的直线是圆的切线.5. 从圆外一点可以向圆引 条切线, 相等, 相等.6. 三角形的三个顶点确定 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫 心,是三角形 的交点.7. 与三角形各边都相切的圆叫做三角形的 ,内切圆的圆心是三角形 的交点,叫做三角形的 .1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n °的圆心角所对的弧长为 ,弧长公式为 .2. 圆的面积为 ,1°的圆心角所在的扇形面积为 ,n °的圆心角所在的扇形面积为S= 2R π⨯ = = .3. 圆柱的侧面积公式:S=2rl π.(其中r 为 的半径,l 为 的高)4. 圆锥的侧面积公式:S=rl π.(其中r 为 的半径,l 为 的长)平移与变幻【要点再现】1. 如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是 ,这条直线就是它的 .2. 如果一个图形沿一条直线折叠,如果它能与另一个图形 ,那么这两个图形成 ,这条直线就是 ,折叠后重合的对应点就是 .3. 如果两个图形关于 对称,那么对称轴是任何一对对应点所连线段的 .4. 把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做 图形,这个点就是它的 .5. 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .6. 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.7. 两个点关于原点对称时,它们的坐标符号 ,即点),(y x P 关于原点的对称点1P 为 .8. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为______,它是由移动的 和 所决定.9. 平移的特征是:经过平移后的图形与原图形的对应线段 ,对应 ,图形的 与 都没有发生变化,即平移前后的两个图形 ;且对应点所连的线段 .10. 图形旋转的定义:把一个图形 的图形变换,叫做旋转,叫做旋转中心, 叫做旋转角.11. 图形的旋转由 、 和 所决定.其中①旋转 在旋转过程中保持不动.②旋转 分为 时针和 时针. ③旋转 一般小于360º.12. 旋转的特征是:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应 相等,对应 相等,图形的 都没有发生变化.也就是旋转前后的两个图形 .。

相关文档
最新文档