《大学物理学》机械振动练习题

合集下载

《大学物理学》机械振动练习题

《大学物理学》机械振动练习题

《大学物理学》机械振动自主学习材料一、选择题9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )【旋转矢量转法判断初相位的方法必须掌握】9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( )(A )222cos()33x t ππ=-;(B )222cos()33x t ππ=+;(C )422cos()33x t ππ=-;(D )422cos()33x t ππ=+。

【考虑在1秒时间内旋转矢量转过3ππ+,有43πω=】9-3.两个同周期简谐运动的振动曲线如图所示,1x 的相位比2x 的相位( )(A )落后2π; (B )超前2π; (C )落后π; (D )超前π。

【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A )2ν; (B )ν; (C )2ν; (D )4ν。

【考虑到动能的表达式为22211sin ()22kE mv kA t ωϕ==+,出现平方项】9-5.图中是两个简谐振动的曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相位为( )(A )32π; (B )2π; (C )π; (D )0。

【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则()A ()B()C()D )s--'/T T 为( )(A )2; (B )1; (C; (D )12。

【弹簧串联的弹性系数公式为12111k k k =+串,弹簧对半分割后,其中一根的弹性系数为2k ,两弹簧并联后形成新的弹簧整体,弹性系数为4k ,公式为12k k k =+并,利用ω=2T πω=,所以,'22T T π==】9--2.一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的( ) (A )12;(B;(C)2;(D )34。

机械振动试题(含答案)

机械振动试题(含答案)

机械振动试题(含答案)一、机械振动 选择题1.甲、乙两弹簧振子,振动图象如图所示,则可知( )A .甲的速度为零时,乙的速度最大B .甲的加速度最小时,乙的速度最小C .任一时刻两个振子受到的回复力都不相同D .两个振子的振动频率之比f 甲:f 乙=1:2E.两个振子的振幅之比为A 甲:A 乙=2:1 2.如图为某简谐运动图象,若t =0时,质点正经过O 点向b 运动,则下列说法正确的是( )A .质点在0.7 s 时的位移方向向左,且正在远离平衡位置运动B .质点在1.5 s 时的位移最大,方向向左,在1.75 s 时,位移为1 cmC .质点在1.2 s 到1.4 s 过程中,质点的位移在增加,方向向左D .质点从1.6 s 到1.8 s 时间内,质点的位移正在增大,方向向右3.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m 的A 、B 两物体,平衡后剪断A 、B 间细线,此后A 将做简谐运动。

已知弹簧的劲度系数为k ,则下列说法中正确的是( )A .细线剪断瞬间A 的加速度为0B .A 运动到最高点时弹簧弹力为mgC .A 运动到最高点时,A 的加速度为gD .A 振动的振幅为2mg k4.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( )A .p EB .12p EC .13p E D .14p E 5.如图甲所示,一个有固定转动轴的竖直圆盘转动时,固定在圆盘上的小圆柱带动一个T 形支架在竖直方向振动, T 形支架的下面系着一个由弹簧和小球组成的振动系统.圆盘静止时,让小球做简谐运动,其振动图像如图乙所示.圆盘匀速转动时,小球做受迫振动.小球振动稳定时.下列说法正确的是( )A .小球振动的固有频率是4HzB .小球做受迫振动时周期一定是4sC .圆盘转动周期在4s 附近时,小球振幅显著增大D .圆盘转动周期在4s 附近时,小球振幅显著减小6.如图所示的弹簧振子在A 、B 之间做简谐运动,O 为平衡位置,则下列说法不正确的是( )A .振子的位移增大的过程中,弹力做负功B .振子的速度增大的过程中,弹力做正功C .振子的加速度增大的过程中,弹力做正功D .振子从O 点出发到再次回到O 点的过程中,弹力做的总功为零7.如图所示,固定的光滑圆弧形轨道半径R =0.2m ,B 是轨道的最低点,在轨道上的A 点(弧AB 所对的圆心角小于10°)和轨道的圆心O 处各有一可视为质点的静止小球,若将它们同时由静止开始释放,则( )A .两小球同时到达B 点B .A 点释放的小球先到达B 点C .O 点释放的小球先到达B 点D .不能确定8.某质点做简谐运动,其位移随时间变化的关系式为5sin 4x t π=(cm) ,则下列关于质点运动的说法中正确的是( )A .质点做简谐运动的振幅为 10cmB .质点做简谐运动的周期为 4sC .在 t=4s 时质点的加速度最大D .在 t=4s 时质点的速度最大9.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后A .摆动的周期为56T B .摆动的周期为65T C .摆球最高点与最低点的高度差为0.3hD .摆球最高点与最低点的高度差为0.25h10.如图(甲)所示,小球在内壁光滑的固定半圆形轨道最低点附近做小角度振动,其振动图象如图(乙)所示,以下说法正确的是( )A .t 1时刻小球速度为零,轨道对它的支持力最小B .t 2时刻小球速度最大,轨道对它的支持力最小C .t 3时刻小球速度为零,轨道对它的支持力最大D .t 4时刻小球速度 为零,轨道对它的支持力最大11.如图所示,用绝缘细线悬挂的单摆,摆球带正电,悬挂于O 点,摆长为l ,当它摆过竖直线OC 时便进入或离开匀强磁场,磁场方向垂直于单摆摆动的平面向里,A ,B 点分别是最大位移处.下列说法中正确的是( )A .A 点和B 点处于同一水平面B .A 点高于B 点C .摆球在A 点和B 点处线上的拉力大小相等D .单摆的振动周期仍为2l T gπ= E.单摆向右或向左摆过D 点时,线上的拉力大小相等12.如图所示,弹簧下端挂一质量为m 的物体,物体在竖直方向上做振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好为原长,则物体在振动过程中( )A .物体在最低点时的弹力大小应为2mgB .弹簧的弹性势能和物体动能总和不变C .弹簧的最大弹性势能等于2mgAD .物体的最大动能应等于mgA13.如图所示,在一根张紧的水平绳上,悬挂有 a 、b 、c 、d 、e 五个单摆,让a 摆略偏离平衡位置后无初速释放,在垂直纸面的平面内振动;接着其余各摆也开始振动,当振动稳定后,下列说法中正确的有( )A .各摆的振动周期与a 摆相同B .各摆的振动周期不同,c 摆的周期最长C .各摆均做自由振动D.各摆的振幅大小不同,c摆的振幅最大14.如图所示是两个理想单摆的振动图象,纵轴表示摆球偏离平衡位置的位移,以向右为正方向.下列说法中正确的是___________(填入正确选项前的字母.选对1个给2分,选对2个给4分,选对3个给5分,每选错一个扣3分,得分为0分)A.同一摆球在运动过程中前后两次经过轨迹上的同一点,加速度是相同的B.甲、乙两个摆的频率之比为1︰2C.甲、乙两个摆的摆长之比为1︰2;D.从t=0时起,乙第一次到达右方最大位移处时,甲位于平衡位置,速度方向向左E.t=2s时,甲摆的重力势能最小,乙摆的动能为零;15.如图所示,一个弹簧振子在A、B两点之间做简谐运动,其中O为平衡位置,某时刻物体正经过C点向上运动,速度大小为v c,已知OC=a,物体的质量为M,振动周期为T,则从此时刻开始的半个周期内A.重力做功2mgaB.重力冲量为mgT 2C.回复力做功为零D.回复力的冲量为016.一个质点沿直线ab在平衡位置O附近做简谐运动.若从质点经O点时开始计时,经过5s质点第一次经过M点(如图所示);再继续运动,又经过2s它第二次经过M点;则该质点第三次经过M点还需要的时间是()A.6s B.4s C.22s D.8s17.如图,大小相同的摆球a和b的质量分别为m和3m,摆长相同,并排悬挂,平衡时两球刚好接触,现将摆球a向左边拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是A.第一次碰撞后的瞬间,两球的速度大小相等B.第一次碰撞后的瞬间,两球的动量大小相等C.第一次碰撞后,两球的最大摆角不相同D.发生第二次碰撞时,两球在各自的平衡位置18.如图所示,虚线和实线分别为甲、乙两个弹簧振子做简谐运动的图象.已知甲、乙两个振子质量相等,则()A.甲、乙两振子的振幅分别为2cm、1cmB.甲、乙两个振子的相位差总为πC.前2秒内甲、乙两振子的加速度均为正值D.第2秒末甲的速度最大,乙的加速度最大19.如图所示,弹簧振子在光滑水平杆上的A、B之间做往复运动,O为平衡位置,下列说法正确的是( )A.弹簧振子运动过程中受重力、支持力和弹簧弹力的作用B.弹簧振子运动过程中受重力、支持力、弹簧弹力和回复力作用C.振子由A向O运动过程中,回复力逐渐增大D.振子由O向B运动过程中,回复力的方向指向平衡位置20.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议,可行的是()A.适当加长摆线B.质量相同,体积不同的摆球,应选用体积较大的C.单摆偏离平衡位置的角度要适当大一些D.当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期二、机械振动实验题21.利用如图1所示的装置做“用单摆测重力加速度”的实验。

机械振动试题(含答案)(1)

机械振动试题(含答案)(1)

机械振动试题(含答案)(1)一、机械振动 选择题1.沿某一电场方向建立x 轴,电场仅分布在-d ≤x ≤d 的区间内,其电场场强与坐标x 的关系如图所示。

规定沿+x 轴方向为电场强度的正方向,x =0处电势为零。

一质量为m 、电荷量为+q 的带点粒子只在电场力作用下,沿x 轴做周期性运动。

以下说法正确的是( )A .粒子沿x 轴做简谐运动B .粒子在x =-d 处的电势能为12-qE 0d C .动能与电势能之和的最大值是qE 0d D .一个周期内,在x >0区域的运动时间t ≤20md qE 2.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中( )A .甲的最大速度大于乙的最大速度B .甲的最大速度小于乙的最大速度C .甲的振幅大于乙的振幅D .甲的振幅小于乙的振幅3.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A 放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( )A .p EB .12p EC .13p E D .14p E 4.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是A .t =2×10-3s 时刻纸盆中心的速度最大B .t =3×10-3s 时刻纸盆中心的加速度最大C .在0〜l×10-3s 之间纸盆中心的速度方向与加速度方向相同D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m )5.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。

大学物理 机械振动 试题(附答案)

大学物理 机械振动 试题(附答案)

w w w .z h i n a n ch e.com《大学物理》AI 作业No No..01机械振动一、选择题1.把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相位为[C ](A)θ;(B)23;(C)0;(D)π21。

解:t =0时,摆角处于正最大处,角位移最大,速度为零,用余弦函数表示角位移,0=ϕ。

2.轻弹簧上端固定,下系一质量为1m 的物体,稳定后在1m 下边又系一质量为2m 的物体,于是弹簧又伸长了x ∆。

若将2m 移去,并令其振动,则振动周期为[B](A)gm x m T 122∆=π(B)gm x m T 212∆=π(C)gm xm T 2121∆=π(D)()gm m x m T 2122+∆=π解:设弹簧劲度系数为k ,由题意,x k g m ∆⋅=2,所以xgm k ∆=2。

弹簧振子由弹簧和1m 组成,振动周期为gm xm k m T 21122∆==ππ。

3.一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示。

则振动系统的频率为[B](A)m k π21(B)mk 621π(C)mk 321π(D)mk 321π解:每一等份弹簧的劲度系数k k 3=′,两等份再并联,等效劲度系数k k k 62=′=′′,所以振动频率mk m k 62121ππν=′′=4.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量E 变为[D ](A)1E /4(B)1E /2(C)21E (D)41E 解:原来的弹簧振子的总能量212112112121A m kA E ω==,振动增加为122A A =,质量增加+w w w .z h i n a n ch e为124m m =,k 不变,角频率变为1122214ω===m k m k ,所以总能量变为()1212112121122222242142242121E A m A m A m E =⎟⎠⎞⎜⎝⎛=×⎟⎠⎞⎜⎝⎛××==ωωω5.一质点作简谐振动,周期为T 。

大学物理答案机械振动作业答案.ppt

大学物理答案机械振动作业答案.ppt

3. 质点作周期为T,振幅为A的谐振 动,则质点由平衡位置运动到离平 衡位置A/2处所需的最短时间是: ( )
A.T/4 B.T/6 C.T/8 D.T/12
4. 一质点在x轴上作谐振动振幅A=4cm, 周期T=2s,其平衡位置取作坐标原点, 若t=0时刻近质点第一次通过x=-2cm处, 且向x轴正方向运动,则质点第二次通过 x=-2cm,处时刻为:[]
A.1s B.3s/2 C.4s/3 D.2s
5. 一质点同时参与两个在同一直线上的
谐振动,其振动方程分别为
7
x1 4cos(2t 6 ), x2 3cos(2t 6 )
则关于合振动有结论:[]
A.振幅等于1cm, 初相等于
B.振幅等于7cm, 初相等于 4
3
C.振幅等于1cm, 初相等于 7
7.上面放有物体的平台,以每秒5周的频 率沿竖直方向做简谐振动,若平台振幅 超过(1cm),物体将会脱离平 台.(g=9.8m/s)
8.两个同方向同频率的简谐振动,其合振 动的振幅20cm,与第一个简谐振动的相
位差为Ф- Ф1= π/6.若第一个简谐振动
的振幅为 10 3cm 17.3c则m 第二个简谐振 动的振幅为( 10 )cm,第一,二个简谐振
12.两个线振动合成为一个圆振动的条件 是(1)同频率;(2)同振幅;(3) 两振动相互垂直;(4)相位差为 (2k+1)π/2, k=0, ±1, ±2,……
计算题
1. 一倔强系数为k的轻弹簧,竖直悬挂一质量为m 的物体后静止,再把物体向下拉,使弹簧伸长 后开始释放,判断物体是否作简谐振动?
解:设物体平衡时弹簧的伸长量为x0 ,则有 以 该平衡位置为坐标原点,向下为正方向建立坐

大学物理习题机械振动机械波

大学物理习题机械振动机械波

机械振动机械波一、选择题1.对一个作简谐振动的物体,下面哪种说法是正确的A 物体处在运动正方向的端点时,速度和加速度都达到最大值;B 物体位于平衡位置且向负方向运动时,速度和加速度都为零;C 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;D 物体处在负方向的端点时,速度最大,加速度为零;2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =T 为周期时,质点的速度为A φωsin A v -=;B φωsin A v =;C φωcos A v-=; D φωcos A v =;3.一物体作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+=4cos πωt A x ;在4T t =T 为周期时刻,物体的加速度为 A 2221ωA -; B 2221ωA ; C 2321ωA -; D 2321ωA ; 4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相A 落后2π;B 超前2π; C 落后π; D 超前π;5.一质点沿x 轴作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+⨯=-ππ312cos 1042t x SI ;从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 A s 8/1; B s 4/1;C s 2/1;D s 3/1; 6.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为7.一个简谐振动的振动曲线如图所示;此振动的周期为A s 12;B s 10;C s 14;D s 11;8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是A 动能为零,势能最大;B 动能为零,机械能为零;C 动能最大,势能最大;D 动能最大,势能为零;9.一个弹簧振子做简谐振动,已知此振子势能的最大值为1600J;当振子处于最大位移的1/4时,此时的动能大小为A250J ; B750J ; C1500J ; D 1000J;10.当质点以频率ν作简谐振动时,它的动能的变化频率为 A ν; B ν2 ; C ν4; D2ν;11.一质点作简谐振动,已知振动周期为T,则其振动动能变化的周期是 AT /4; BT/2; CT ; D2T;12.两个同振动方向、同频率、振幅均为A 的简谐振动合成后,振幅仍为A ,则这两个振动的相位差为A π/3;B π/3; C2π/3; D5π/6;xABC D)s21-13.已知一平面简谐波的波动方程为()bx at A y -=cos ,a 、b 为正值,则 A 波的频率为a ; B 波的传播速度为a b /; C 波长为b /π; D 波的周期为a /2π;14.一个波源作简谐振动,周期为,以它经过平衡位置向正方向运动时为计时起点,若此振动的振动状态以s m u 400=的速度沿直线向右传播;则此波的波动方程为A ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=23400200cos ππx t A y ; B ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=23400200cos ππx t A y ; C ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=2400200cos ππx t A y ; D ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=2400200cos ππx t A y ; 15.当波从一种介质进入另一种介质中时,下列哪个量是不变的 A 波长; B 频率; C 波速; D 不确定;16.一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图所示,则该时刻 AA 点相位为π; BB 点静止不动; CC 点向下运动; DD 点向下运动;17.一简谐波沿x 轴正方向传播,4/T t =时的波形曲线如图所示;若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 A 0点的初位相为00=φ;B1点的初位相为2/1πφ-=;C2点的初位相为πφ=2;D3点的初位相为2/3πφ-=;18.频率为Hz 100,传播速度为s m /300的平面简谐波,波线上两点振动的相位差为3/π,则此两点相距A m 2;B m 19.2;C m 5.0;D m 6.28;二、填空题1.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示;若0=t 时,uOYX1 2 3 4第题图1振子在负的最大位移处,则初位相为______________________; 2振子在平衡位置向正方向运动,则初位相为________________; 3振子在位移为2/A 处,且向负方向运动,则初位相为______; 2.一物体作余弦振动,振幅为m 21015-⨯,圆频率为16-sπ,初相为π5.0,则振动方程为=x ________________________SI ;3.一放置在水平桌面上的弹簧振子,振幅为A ,周期为T ;当0=t 时,物体在2/A x =处,且向负方向运动,则其运动方程为 ;4.一物体沿x 轴作简谐运动,振幅为cm 10,周期为s 0.4;当0=t 时物体的位移为cm x 0.50-=,且物体朝x 轴负方向运动;则s t 0.1=时,此物体的位移为 m ;5.一简谐运动曲线如图a 所示,图b 是其旋转矢量图,则此简谐振动的初相位为 ;s t 1=与0=t 的相位差φ∆= ;运动周期是 ;6.两列满足相干条件的机械波在空间相遇将发生干涉现象,其中相干条件包括:1频率_____________;2振动方向_____________和相差恒定; 7.两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为___________; 8.同方向同频率振幅均为A ,相位差为2π的两个简谐运动叠加后,振幅为________;9.一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为 ()6/2cos 10421π+⨯=-t x ,()6/52cos 10322π-⨯=-t x SI则其合成振动的振幅为___________,初相为_______________;10.两个同方向同频率的简谐振动,其合振动的振幅为cm 20,与第一个简谐振动的位相差为6/1πφφ=-;若第一个简谐振动的振幅为cm cm 3.17310=,则第二个简谐振动的振幅为__________cm ,第一、二两个简谐振动的位相差21φφ-为__________;11.一平面简谐波沿x 轴正方向传播,波速s m u /100=,0=t 时刻的波形曲线如图所示;波长=λ____________;12.惠更斯原理表明,介质中波动传播到的各点都可以看作是发射子波的波源,而在其后的任意时刻,这些子波的_______________就是新的波前; 包络包迹或包络面13.干涉型消声器结构原理如图所示,构可以消除噪声;达点A 时,分成两路而在点B 相遇,而相消;已知声波速度为s m /340,如果要消除频率为Hz 300的发动机排气噪声,则图中弯道与直管长度差至少应为____________;三、判断题1.对于给定的振动系统,周期或频率由振动系统本身的性质决定,而振幅和初相则由初始条件决定;2.对于一定的谐振子而言,振动周期与振幅大小无关; 3.简谐振动的能量与振幅的平方成正比;4.在简谐振动的过程中,谐振子的动能和势能是同相变化的; 5.两个同方向同频率简谐运动合成的结果必定是简谐运动;6.在简谐波传播过程中,沿传播方向相距半个波长的两点的振动速度必定大小相同,方向相反7.在平面简谐波传播的过程中,波程差和相位差的关系是21122x ∆=∆λπφ;8.频率相同、传播方向相同、相差恒定的两列波在空间相遇会发生干涉;第题图) 0-0。

物理机械振动考试题及答案

物理机械振动考试题及答案

物理机械振动考试题及答案一、单项选择题(每题3分,共30分)1. 简谐运动的振动周期与振幅无关,与以下哪个因素有关?A. 质量B. 弹簧常数C. 初始位移D. 初始速度答案:B2. 阻尼振动中,振幅逐渐减小的原因是:A. 摩擦力B. 重力C. 弹力D. 空气阻力答案:A3. 以下哪个量描述了简谐运动的振动快慢?A. 振幅B. 周期C. 频率D. 相位答案:C4. 两个简谐运动的合成,以下哪个条件可以产生拍现象?A. 频率相同B. 频率不同C. 振幅相同D. 相位相反答案:B5. 以下哪个量是矢量?A. 位移B. 速度C. 加速度D. 以上都是答案:D6. 单摆的周期与以下哪个因素无关?A. 摆长B. 摆球质量C. 重力加速度D. 摆角答案:B7. 以下哪个量描述了简谐运动的能量?A. 振幅C. 频率D. 相位答案:A8. 以下哪个因素会影响单摆的周期?A. 摆长B. 摆球质量C. 摆角D. 重力加速度答案:A9. 阻尼振动中,振幅减小到原来的1/e时,经过的时间为:A. 1/2TB. TC. 2T答案:C10. 以下哪个现象不是简谐运动?A. 弹簧振子B. 单摆C. 弹簧振子的振幅逐渐减小D. 单摆的振幅逐渐减小答案:C二、填空题(每题4分,共20分)11. 简谐运动的周期公式为:T = 2π√(____/k),其中m为质量,k为弹簧常数。

答案:m12. 单摆的周期公式为:T = 2π√(L/g),其中L为摆长,g为重力加速度。

答案:L13. 阻尼振动的振幅公式为:A(t) = A0 * e^(-γt),其中A0为初始振幅,γ为阻尼系数,t为时间。

答案:A014. 简谐运动的频率公式为:f = 1/T,其中T为周期。

答案:1/T15. 简谐运动的相位公式为:φ = ωt + φ0,其中ω为角频率,t 为时间,φ0为初始相位。

答案:ωt + φ0三、计算题(每题10分,共50分)16. 一个质量为2kg的物体,通过弹簧连接在墙上,弹簧的弹簧常数为100N/m。

机械振动试题(含答案)(1)

机械振动试题(含答案)(1)

机械振动试题(含答案)(1)一、机械振动 选择题1.如图所示,在一根张紧的水平绳上,悬挂有 a 、b 、c 、d 、e 五个单摆,让a 摆略偏离平衡位置后无初速释放,在垂直纸面的平面内振动;接着其余各摆也开始振动,当振动稳定后,下列说法中正确的有( )A .各摆的振动周期与a 摆相同B .各摆的振动周期不同,c 摆的周期最长C .各摆均做自由振动D .各摆的振幅大小不同,c 摆的振幅最大2.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍 B .若2T t ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于m kx m M+ 3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。

物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。

图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。

已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( )A .212()x x g L π-B .212()2x x g L π-C .212()4x x g L π-D .212()8x x g Lπ- 4.如图所示,弹簧下面挂一质量为m 的物体,物体在竖直方向上做振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A .弹簧的弹性势能和物体动能总和不变B .物体在最低点时的加速度大小应为2gC .物体在最低点时所受弹簧的弹力大小应为mgD .弹簧的最大弹性势能等于2mgA5.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是A .t =2×10-3s 时刻纸盆中心的速度最大B .t =3×10-3s 时刻纸盆中心的加速度最大C .在0〜l×10-3s 之间纸盆中心的速度方向与加速度方向相同D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m )6.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议,可行的是( ) A .适当加长摆线B .质量相同,体积不同的摆球,应选用体积较大的C .单摆偏离平衡位置的角度要适当大一些D .当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期7.图(甲)所示为以O 点为平衡位置、在A 、B 两点间做简谐运动的弹簧振子,图(乙)为这个弹簧振子的振动图象,由图可知下列说法中正确的是( )A.在t=0.2s时,弹簧振子可能运动到B位置B.在t=0.1s与t=0.3s两个时刻,弹簧振子的速度相同C.从t=0到t=0.2s的时间内,弹簧振子的动能持续地增加D.在t=0.2s与t=0.6s两个时刻,弹簧振子的加速度相同8.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值9.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。

大学物理机械振动习题附答案要点

大学物理机械振动习题附答案要点

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。

则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。

若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。

其运动速度与时间的曲线如图所示。

若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 v 与a5.3552期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为1T '和2T '。

则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。

从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 31 (E)[ ]7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。

大学物理 第五章机械振动习题集答案

大学物理 第五章机械振动习题集答案

一、选择题B C D A B B B B B A 二、填空题22121221. cos() , cos() ;232 2. 100; 3. A -A , (A -A )cos()2x A t x A t T T t T πππππππ=-=++ 三、计算题 1、解:3223220.09(-)0.0100,, 0.01cos()33gl gl b b m gl b x gl gl x A m t x A v k gl x t ρρρρρϕπρωπ'=⇒=''-=-⇒===-=⇒='=⇒==⇒=+设物体在平衡位置时被浸没深度为b ,则物体受合外力F=物体作简谐振动当物体全被浸没时可知时,令简谐振动方程2、解:222222221d sin sin 2d 1sin 3d 1d 300d 2d 22πM Mgl kl J tJ Ml l Mg kl Mg kl t J t Ml T θθθθθθθθθθθθ=--=≈=⎡⎤+=⇒+=⎢⎥⎣⎦⇒=当杆向右摆动角时,重力矩与弹力矩均与相反,有很小,,,(+2)(+)3、解:设物体平衡时两弹簧分别伸长X 1, X 2由物体受力平衡得:1122121222211122111212121212sin (1)x sin sin (2)(1)(2) (3), mg k x k x x x x x x x F mg k x x mg k x x F k x k x FFx x x x x k k k k F x kx k k θθθω==''''=+''=-+=-+''=-=-''''=-=-=+⋅=-=-⇒=+物体沿轴移动位移时,两弹簧又分别被拉长,即则()() 将代入得:2v πω==4、解:04140000.05,02340,02-54245π0.1cos()243-0, 1.6P P A t x m t x st x t t sπϕπϕϕϕφπωπϕϕφϕωω-===>⇒=-==<⇒=∆===∆⇒=-∆=∆===由振动方程为,0v v5、解:222,22 0-0.05-,0232π0.1cos()237(1)1,0.1cos,620(2),8000==2s, =2s24(4)==s33TAt x mx tt s x mF kx m x Nt t tt tππωπϕππωφωππφω=====<⇒=⇒=+===-=-=-=∆∆=⇒∆∆∆=⇒∆振动方程为,(3)由,即由,v6、解:21-211221122313323π3ππ(1)-44210m sin sin tan 11 =1.48radcos cos 3π(2)2, =2+ (0 1, )45π2+1, =2+ (0 1, )4A A A A A k k k k k k ϕϕϕϕϕϕϕϕϕϕϕϕπϕπϕϕϕπϕπ∆=-=-==⨯+==⇒+∆=-=⇒=±∆=-=⇒=± ,,,,(),,。

大学物理机械振动试题

大学物理机械振动试题

专业班级 学号 姓名 批阅机械振动本章知识点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,简谐运动的合成,阻尼振动,受迫振动,共振本章重点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,同方向同频率简谐运动的合成 一、填空题1.一个给定系统做简谐振动时,其振幅和初相位决定于 、 和 ;弹簧振子做简谐振动时,其频率决定于 和 .2.一弹簧振子,弹簧的劲度系数为0.32 N/m ,重物的质量为0.02 kg ,则这个系统的固有角频率为 rad/s ,相应的振动周期为 s .3.在两个相同的弹簧下各悬挂一物体,两物体的质量比为4:1,则两者做简谐运动的周期之比为 . 4.质点做简谐运动的位移和时间关系如图1所示,则其运动方程为 . 5.两个同频率的简谐运动曲线如图2所示,则2x 的相位比1x 的相位落后 .6.两个简谐振动曲线如图3所示,两个简谐振动的频率之比12:νν= ,加速度最大值之比a 1m :a 2m = ,初始速率之比1020:=v v .7.简谐振动的方程为)cos(ϕω+=t A x ,势能最大时位移x= ,此时动能E k = .8.已知一质点做简谐运动曲线如图4所示,由图可确定振子在t= s 时速度为零;在t= s 时弹性势能最小;在(__________)s 时加速度取正的最大值.9.两个同方向同频率的简谐振动,其合振动的振幅为0.20m ,合振动与第一分振动的相位差为60度,已知第一分振动的振幅为0.10m ,则第二分振动的振幅为 m ,第二分振动与第一分振动的相位差为 .10.某谐振子同时参与两个同方向的简谐运动,其运动方程分别为))(3/4cos(10321m t x ππ+⨯=-;))(4cos(10422m t x ϕπ+⨯=-当ϕ= 时合振动的振幅最大,其值max A = ;当ϕ= 时合振动的振幅最小,其值min A = .11.图5中所示为两个简谐振动的振动曲线,若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=11x x x(____________________)。

N考核《大学物理学》机械振动与机械波部分练习题(解答)

N考核《大学物理学》机械振动与机械波部分练习题(解答)

《大学物理学》机械振动与机械波部分练习题(解答)一、选择题1.一弹簧振子,当把它水平放置时,它作简谐振动。

若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 ( C )(A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。

2.两个简谐振动的振动曲线如图所示,则有 ( A )(A )A 超前/2π; (B )A 落后/2π; (C )B 超前/2π; (D )B 落后/2π。

3.一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: ( D )(A )/4T ; (B )/6T ; (C )/8T ; (D )/12T 。

4.分振动方程分别为13cos(50)4x t ππ=+和234cos(50)4x t ππ=+(SI 制)则它们的合振动表达式为: ( C )(A )5cos(50)4x t ππ=+; (B )5cos(50)x t π=;(C )115cos(50)27x t tg ππ-=++; (D )145cos(50)23x t tg ππ-=++。

5.两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ∆和2l ∆,且1l ∆=22l ∆,两弹簧振子的周期之比T 1:T 2为 ( B )(A )2; (B )2; (C )1/2; (D )2/1。

6.一个平面简谐波沿x 轴负方向传播,波速u=10m/s 。

x =0处,质点振动曲线如图所示,则该波的表式为(A ))2202cos(2πππ++=x t y m ;-(B ))2202cos(2πππ-+=x t y m ; (C ))2202sin(2πππ++=x t y m ;(D ))2202sin(2πππ-+=x t y m 。

物理机械振动考试题及答案

物理机械振动考试题及答案

物理机械振动考试题及答案一、选择题1. 简谐振动的频率与振幅无关,这是由什么决定的?A. 振子的质量B. 振子的弹性系数C. 振子的阻尼D. 振子的初始条件答案:B2. 在阻尼振动中,振幅随时间如何变化?A. 保持不变B. 逐渐减小C. 逐渐增大D. 先增大后减小答案:B3. 以下哪个不是简谐振动的特点?A. 周期性B. 振幅不变C. 频率恒定D. 振子质量不变答案:D4. 什么是共振现象?A. 振子的振动频率等于系统固有频率时的现象B. 振子的振幅达到最大时的现象C. 振子的振动频率等于外部驱动频率时的现象D. 振子的振动频率等于外部阻尼频率时的现象答案:A5. 以下哪个公式描述了简谐振动的位移?A. \( x = A \sin(\omega t + \phi) \)B. \( x = A \cos(\omega t + \phi) \)C. \( x = A \tan(\omega t + \phi) \)D. \( x = A \sec(\omega t + \phi) \)答案:B二、填空题6. 一个物体在水平面上做简谐振动,其振动周期 \( T \) 与振动频率 \( f \) 的关系是 \[ T = \frac{1}{f} \]。

7. 阻尼振动中,振幅随时间的衰减速度与振子的________成正比。

8. 共振现象中,振子的振动频率等于系统的________频率。

9. 简谐振动的位移公式中,\( \omega \) 表示________,\( \phi \) 表示________。

10. 阻尼振动的振幅随时间的衰减可以表示为 \( A(t) = A_0 e^{-\alpha t} \),其中 \( \alpha \) 表示________。

三、简答题11. 简述什么是阻尼振动,并说明其振幅随时间的变化趋势。

答案:阻尼振动是指在振动过程中,由于存在阻力(如空气阻力、摩擦力等),振子的振动能量逐渐减小,导致振幅逐渐减小的振动。

1大学物理习题_机械振动机械波

1大学物理习题_机械振动机械波

机械振动机械波一、选择题1.对一个作简谐振动的物体,下面哪种说法是正确的(A )物体处在运动正方向的端点时,速度和加速度都达到最大值; (B )物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C )物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D )物体处在负方向的端点时,速度最大,加速度为零。

2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为(A )φωsin A v -=; (B )φωsin A v =; (C )φωcos A v-=; (D )φωcos A v =。

3.一物体作简谐振动,振动方程为⎪⎭⎫⎝⎛+=4cos πωt A x 。

在4T t =(T 为周期)时刻,物体的加速度为 (A )2221ωA -; (B )2221ωA ; (C )2321ωA -; (D )2321ωA 。

4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相(A )落后2π; (B )超前2π;(C )落后π; (D )超前π。

5.一质点沿x 轴作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+⨯=-ππ312cos 1042t x (SI )。

从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 (A )s 8/1; (B )s 4/1; (C )s 2/1; (D )s 3/1。

6.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为7.一个简谐振动的振动曲线如图所示。

此振动的周期为(A )s 12; (B )s 10;(C )s 14; (D )s 11。

8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是(A )动能为零,势能最大; (B )动能为零,机械能为零; (C )动能最大,势能最大; (D )动能最大,势能为零。

大学物理机械振动与机械波综合练习题(含答案)

大学物理机械振动与机械波综合练习题(含答案)
则合振动的振幅为 (A) A = 61 cm ; (B) A = 11 cm ; (C) A = 11cm ; (D) A = 61cm 。
解: A1 = 5cm , A2 = 6 cm ,1 = 0.75 , 2 = 0.25
A = A12 + A22 + 2 A1 A2 cos( 2 − 1 ) = 52 + 62 + 2 5 6 cos(0.25 − 0.75 )
= 120 Hz ,另一列火车 B 以 u2 = 25 m/s 的速度行驶。当 A 、B 两车相向而行时,B 的 司机听到汽笛的频率 为137 Hz ;当 A 、 B 两车运行方向相同时,且 B 车在 A 车前方, B 的司机听到汽笛的频率 为118 Hz 。
解:波源与观察者相向运动: = u + vR = 331+ 20 120 = 137 H z
A
=
2.00 cm
。x
= 10cm
处有一点 a
在t
=
3s

ya
=
0
,d y dt
|a
0
;当 t
=
5s
时,x
=
0处
的位移 y0 = 0 ,此刻该点速度 v = − 6.28 cm/s 。
解:
y0
=
A cos( 2 T
t
+0),
ya
=
Acos[2 ( t T

x
)
+

0
]
x = 10 cm , t = 3s , = vT = 10 cm
= 61cm

u
5.图为 t = 0 时刻,以余弦函数表示的沿 x 轴

大学物理机械振动习题含答案

大学物理机械振动习题含答案

t (s )v (m.s -1)12m v m vo1.3题图题图 第三章 机械振动一、选择题1.质点作简谐振动,距平衡位置2。

0cm 时,加速度a=4.0cm 2/s ,则该质点从一端运动到另一端的时间为(一端运动到另一端的时间为( C )A:1.2s B: 2.4s C:2.2s D:4.4s 解:解:s T t T xax a 2.2422,2222,22===\=====p pw pw w2.一个弹簧振子振幅为2210m -´,当0t =时振子在21.010m x -=´处,且向正方向运动,则振子的振动方程是:[ A ] A :2210cos()m3x t p w -=´-;B :2210cos()m 6x t pw -=´-;C :2210cos()m 3xt pw -=´+ ;D :2210cos()m 6x t pw -=´+;解:由旋转矢量可以得出振动的出现初相为:3p-3.用余弦函数描述一简谐振动,若其速度与时间(v —t )关系曲线如图示,则振动的初相位为:[ A ] A :6p ;B :3p ;C :2p ;D :23p ;E :56p解:振动速度为:max 0sin()v v t w j =-+0t =时,01sin2j =,所以06p j =或056p j = 由知1.3图,0t =时,速度的大小是在增加,由旋转矢量图知,旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有06pj =是符合条件的。

符合条件的。

4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。

1秒,则此钟摆的摆长为(长为( B )A:15cm B:30cm C:45cm D:60cm 解:单摆周期解:单摆周期 ,2glT p=两侧分别对T ,和l 求导,有:求导,有:cm m m T dT dl l l dl T dT 3060)1.0(2121,21=-´-==\= 1.2题图题图xyoxy二、填空题1.有一放置在水平面上的弹簧振子。

《大学物理》振动练习题及答案解析

《大学物理》振动练习题及答案解析

《大学物理》振动练习题及答案解析一、简答题1、如果把一弹簧振子和一单摆拿到月球上去,它们的振动周期将如何改变? 答案:弹簧振子的振动周期不变,单摆的振动周期变大。

2、完全弹性小球在硬地面上的跳动是不是简谐振动,为什么?答案:不是,因为小球在硬地面上跳动的运动学方程不能用简单的正弦或余弦函数表示,它是一种比较复杂的振动形式。

3、简述符合什么规律的运动是简谐运动答案:当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数()ϕω+=t A x cos 时,该质点的运动便是简谐振动。

或:位移x 与加速度a 的关系为正比反向关系。

4、怎样判定一个振动是否简谐振动?写出简谐振动的运动学方程和动力学方程。

答案:物体在回复力作用下,在平衡位置附近,做周期性的线性往复振动,其动力学方程中加速度与位移成正比,且方向相反:x dtxd 222ω-=或:运动方程中位移与时间满足余弦周期关系:)cos(φω+=t A x 5、分别从运动学和动力学两个方面说明什么是简谐振动?答案:运动学方面:运动方程中位移与时间满足正弦或余弦函数关系)cos(φω+=t A x 动力学方面:物体在线性回复力作用下在平衡位置做周期性往复运动,其动力学方程满足 6、简谐运动的三要素是什么? 答案: 振幅、周期、初相位。

7、弹簧振子所做的简谐振动的周期与什么物理量有关?答案: 仅与振动系统的本身物理性质:振子质量m 和弹簧弹性系数k 有关。

8、如果弹簧的质量不像轻弹簧那样可以忽略,那么该弹簧的周期与轻弹簧的周期相比,是否有变化,试定性说明之。

答案:该振子周期会变大,作用在物体上的力要小于单纯由弹簧形变而产生的力,因为单纯由形变而产生的弹力中有一部分是用于使弹簧产生加速度的,所以总体的效果相当于物体质量不变,但弹簧劲度系数减小,因此周期会变大。

9、伽利略曾提出和解决了这样一个问题:一根线挂在又高又暗的城堡中,看不见它的上端而只能看见其下端,那么如何测量此线的长度?答案:在线下端挂一质量远大于线的物体,拉开一小角度,让其自由振动,测出周期T ,便可依据单摆周期公式glT π2=计算摆长。

大学物理机械振动习题附答案要点

大学物理机械振动习题附答案要点

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。

则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。

若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。

其运动速度与时间的曲线如图所示。

若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 v 与a5.3552期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为1T '和2T '。

则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。

从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 31 (E)[ ]v v 217.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。

大学物理习题

大学物理习题

机械振动 机械波 练习题1(3003) 轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为(A ) g m x m T 122∆π=. (B ) gm xm T 212∆π=. (C ) g m xm T 2121∆π=. (D ) gm m x m T )(2212+π=∆.2(5186) 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A )222cos()33x t ππ=+. (B ) 222cos()33x t ππ=-.(C )422cos()33x t ππ=+. (D )422cos()33x t ππ=-.(E ) 412cos()34x t ππ=-.3(3028) 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为(A ) E 1/4. (B ) E 1/2.(C ) 2E 1. (D ) 4 E 1 .4(3562) 图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A ) 32π. (B ) π.(C ) 12π. (D ) 0.5(3066) 机械波的表达式为y = 0.03cos6?(t + 0.01x )(SI ) ,则(A ) 其振幅为3 m . (B ) 其周期为s 31.(C ) 其波速为10 m/s . (D ) 波沿x 轴正向传播.6(5204)一平面余弦波在t = 0时刻的波形曲线如图所示,则O点的振动初相??为:(A) 0.(B)12π.(C)?.(D)32π(或12π-).7(3382)在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振动的周期之比为_______________________.8(3819)两质点沿水平x轴线作相同频率和相同振幅的简谐振动,平衡位置都在坐标原点.它们总是沿相反方向经过同一个点,其位移x 的绝对值为振幅的一半,则它们之间的相位差为______________.9(3033)一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_________;? =_________;? =_________.10(5314)一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为)41cos(05.01π+=t x ω (SI ), )129cos(05.02π+=t x ω (SI ) 其合成运动的运动方程为x = __________________________.11(3135) 如图所示为一平面简谐波在t = 2 s 时刻的波形图,该简谐波的表达式是__________________________________;P 处质点的振动方程是____________________________.(该波的振幅A 、波速u 与波长? 为已知量)12(3344) 一简谐波沿Ox 轴负方向传播,x 轴上P 1点处的振动方程为()10.04cos /2P y t ππ=- (SI),x 轴上P 2点的坐标减去P 1点的坐标等于3/4λ(λ为波长),则P 2点的振动方程为__________________________________________.13(5517) S 1,S 2为振动频率、振动方向均相同的两个点波源,振动方向垂直纸面,两者相距λ23(?为波长)如图.已知S 1的初相为π21.(1) 若使射线S 2C 上各点由两列波引起的振动均干涉相消,则S 2的初相应为________________________.(2) 若使S 1 S 2连线的中垂线MN 上各点由两列波引起的振动均干涉相消,则S2的初位相应为_______________________.14(5506)一物体质量m= 2 kg,受到的作用力为F= -8x(SI).若该物体偏离坐标原点O的最大位移为A = 0.10 m,则物体动能的最大值为多少15(5189)一物体同时参与两个同方向的简谐振动:11 0.04cos(2)2x tππ=+(SI),20.03cos(2)x tππ=+(SI)求此物体的振动方程.16(3265)在一轻弹簧下端悬挂m0= 100 g砝码时,弹簧伸长8 cm.现在这根弹簧下端悬挂m= 250 g的物体,构成弹簧振子.将物体从平衡位置向下拉动4 cm,并给以向上的21 cm/s的初速度(令这时t= 0).选x轴向下, 求振动方程的数值式.17(3384)一台摆钟每天快1分27秒,其等效摆长l= 0.995 m,摆锤可上、下移动以调节其周期.假如将此摆当作质量集中在摆锤中心的一个单摆来考虑,则应将摆锤向下移动多少距离,才能使钟走得准确18(3825)有一单摆,摆长为l = 100 cm,开始观察时(t = 0 ),摆球正好过 x 0 = -6 cm 处,并以v 0 = 20 cm/s 的速度沿x 轴正向运动,若单摆运动近似看成简谐振动.试求(1) 振动频率; (2) 振幅和初相. 19(3335) 一简谐波,振动周期21T s ,波长? = 10 m ,振幅A = 0.1 m .当 t = 0时,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求:(1) 此波的表达式;(2) t 1 = T /4时刻,x 1 = ? /4处质点的位移;(3) t 2 = T /2时刻,x 1 = ? /4处质点的振动速度.20(3860) 一振幅为 10 cm ,波长为200 cm 的简谐横波,沿着一条很长的水平的绷紧弦从左向右行进,波速为 100 cm/s .取弦上一点为坐标原点,x 轴指向右方,在t = 0时原点处质点从平衡位置开始向位移负方向运动.求以SI 单位表示的波动表达式(用余弦函数)及弦上任一点的最大振动速度.21(3138) 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求 (1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点); (3) 该波的波长.22(3140) 如图所示,一平面简谐波沿Ox 轴正向传播,波速大小为u ,若P 处质点的振动方程为 )cos(φω+=t A y P ,求(1) O 处质点的振动方程; (2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些质点的位置.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《大学物理学》机械振动自主学习材料一、选择题9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )【旋转矢量转法判断初相位的方法必须掌握】9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( )(A )222cos()33x t ππ=-;(B )222cos()33x t ππ=+;(C )422cos()33x t ππ=-;(D )422cos()33x t ππ=+。

【考虑在1秒时间内旋转矢量转过3ππ+,有43πω=】9-3.两个同周期简谐运动的振动曲线如图所示,1x 的相位比2x 的相位( )(A )落后2π; (B )超前2π;(C )落后π; (D )超前π。

【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A )2ν; (B )ν; (C )2ν; (D )4ν。

【考虑到动能的表达式为22211sin ()22kE mv kA t ωϕ==+,出现平方项】9-5.图中是两个简谐振动的曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相位为( )()A ()B()C()D )s--(A )32π; (B )2π; (C )π; (D )0。

【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则'/T T 为( )(A )2; (B )1; (C; (D )12。

【弹簧串联的弹性系数公式为12111k k k =+串,弹簧对半分割后,其中一根的弹性系数为2k ,两弹簧并联后形成新的弹簧整体,弹性系数为4k ,公式为12k k k =+并,利用ω=2T πω=,所以,'22T T π==】9--2.一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的( ) (A )12;(B;(C(D )34。

【考虑到动能的表达式为22211sin ()22k E mv kA t ωϕ==+,位移为振幅的一半时,有2,33t ππωϕ+=±±,那么,2212k E kA =⋅】9--3.两个同方向,同频率的简谐运动,振幅均为A ,若合成振幅也为A ,则两分振动的初相位差为( ) (A )6π; (B )3π; (C )23π; (D )2π。

【可用旋转矢量考虑,两矢量的夹角应为23πω=】9-10.如图所示,两个轻弹簧的劲度系数分别为1k 和2k ,物体在光滑平面上作简谐振动,则振动频率为:( ) (A(B(C)2(D)2π【提示:弹簧串联的弹性系数公式为12111k k k =+串,而简谐振动的频率为ν= 9-15.一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为:( )(A )/4T ; (B )/6T ; (C )/8T ; (D )/12T 。

【提示:由旋转矢量考察,平衡位置时旋转矢量在2π-处,最短时间到12最大位移处为3π-,那么,旋转矢量转过6π的角度,由比例式::2:6t T ππ=,有12T t =】9-17.两质点作同频率同振幅的简谐运动,M 质点的运动方程为1cos()x A t ωϕ=+,当M 质点自振动正方向回到平衡位置时,N 质点恰在振动正方向的端点。

则N 质点的运动方程为:( )(A )2cos()2x A t πωϕ=++;(B )2cos()2x A t πω=-; (C )2cos()2x A t πωϕ=+-;(D )2cos()2x A t πω=+。

【提示:由旋转矢量知N 落后M 质点2π相位】9-28.分振动方程分别为13cos(500.25)x t ππ=+和24cos(500.75)x t ππ=+(SI 制)则它们的合振动表达式为:( )(A )2cos(500.25)x t ππ=+; (B )5cos(50)x t π=;(C )145cos(50tan )43x t ππ-=++; (D )7=x 。

【提示:见图,由于x 1和x 2相位相差/2π合振动的相位为/4πθ+,而4arctan3θ=】 13.一弹簧振子,当把它竖直放置时,作振动周期为T 0的简谐振动。

若把它放置在与竖直方向成θ角的光滑斜面上时,试判断下列情况正确的是:( ) (A )在光滑斜面上不作简谐振动;(B )在光滑斜面上作简谐振动,振动周期仍为T 0; (C )在光滑斜面上作简谐振动,振动周期为0/cos T θ; (D )在光滑斜面上作简谐振动,振动周期为0T【提示:由题意弹簧振子竖直放置时的周期为02T =2所以弹簧振子的0T 是固有周期】14.两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ∆和2l ∆,且1l ∆=22l ∆,两弹簧振子的周期之比T 1:T 2为: ( )(A )2; (B )2; (C )21; (D )2/1。

【提示:可由弹簧的伸长量求出相应的劲度系数k ,再利用ω=二、填空题9--4.一质点在Ox 轴上的A 、B 之间作简谐运动,O 为平衡位置,质点每秒往返三次,若分别以Mx 1、x 2为起始位置,则它们的振动方程为:(1) ;(2) 。

【提示:O 为平衡位置,A 、B 之间振动,振幅为2cm ;每秒往返三次,说明3ν=,有6ωπ=,x 1为起始位置时,初相位的旋转矢量在第三象限与水平轴成60的位置,所以43πϕ=,则140.02cos(6)3x t ππ=+;同理,x 2为起始位置时,初相位的旋转矢量在第4象限与水平轴成60角的位置,所以3πϕ=-,则20.02cos(6)3x t ππ=-】9--5.由图示写出质点作简谐运动的振动方程: 。

【提示:图中可见振幅为0.1,周期为8秒,旋转矢量初相位在1秒后(即/8T 后)达最大,则初相位在第4象限与水平轴成45角的位置,所以4πϕ=-,则0.1cos ()44x t ππ=-】9--6.有两个简谐运动,其振动曲线如图所示,从图中可知A 的相位比振动B 的相位 ,A B ϕϕ-= 。

【提示:图中可见A 落后 B ,A B ϕϕ-应为负值,=2π-】9-20.如果地球上的秒摆在月球上的周期为4.9秒,地球表面的重力加速度取9.8m/s 2,月球上的重力加速度为 。

【秒摆在地球上的周期为2秒,由单摆的周期公式:2T =知224l g Tπ=,可见g =月21.63/m s 】5.一单摆的悬线长l ,在顶端固定点的铅直下方l /2处有一小钉,如图所示。

则单摆的左右两方振动周期之比T 1/T 2为 。

x【由单摆的周期公式:2T=知左边12T =T 1/T 2=】 6.有两个相同的弹簧,其倔强系数均为k ,(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为 ;(2)把它们并联起来,下面挂一质量为m 的重物,此系统作简谐振动的周期为 。

【提示:(1)弹簧串联公式为12111k k k =+串,得2k k =串,而周期公式为2T =有T =串2π(2)并联公式为12k k k =+并,可得2k k =并,有T =并2 7.一弹簧振子作简谐振动,其振动曲线如图所示。

则它的周期T = ,其余弦函数描述时初相位ϕ= 。

【提示:由旋转矢量图,考虑在2秒时间内旋转矢量转过332ππ+,有1112πω=,可算出周期T =2411s ,图中可见初相位ϕ=23π】8.两个同方向同频率的简谐振动,其合振动的振幅为0.2 m ,合振动的位相与第一个简谐振动的位相差为π/6,若第一个简谐振动的振幅为m ,则第二个简谐振动的振幅为 ,第一、二两个简谐振动的位相差为 。

【提示:∵合振动的振幅与第一个简谐振动的振幅恰满足cos θ=,可知第二个简谐振动与合振动的位相差为π/3,由勾股定理知第二个简谐振动的振幅为0.1m ;第一、二两个简谐振动的位相差为/2π】9.若两个同方向不同频率的谐振动的表达式分别为1cos10x A t π=和2cos12x A t π=,则它们的合振动频率为 ,每秒的拍数为 。

【提示:由和差化积公式,有12101210122coscos 22x x A t t ππππ+-+=()()2cos 11cos A t t ππ=,所以,合振动频率为5.5Hz ,合振动变化频率(即拍频)为1Hz ,即1/拍秒】10.质量为m 的物体和一轻弹簧组成弹簧振子其固有振动周期为T ,当它作振幅为A 的自)s -由简谐振动时,其振动能量E = 。

【提示:振动能量的公式为2221122Em A k A ω==,而2Tπω=,有E =2222mT A π-】11.李萨如图形常用来对于未知频率和相位的测定,如图所示的两个 不同频率、相互垂直的简谐振动合成图像,选水平方向为x 振动, 竖直方向为y 振动,则该李萨如图形表明:x y T T = 。

【提示:李萨如图形与x 的水平方向有2个切点,与y 的竖直方向有3个切点,表明:xy T T =2:3】三、计算题9-14.某振动质点的x-t 曲线如图所示,试求: (1)运动方程; (2)点P 对应的相位;(3)到达P 点相应位置所需的时间。

9-18.如图为一简谐运动质点的速度与时间的 关系图,振幅为2cm ,求 (1)振动周期; (2)加速度的最大值; (3)运动方程。

9-23.一质量为M 的盘子系于竖直悬挂的轻弹簧下端, 弹簧的劲度系数为k 。

现有一质量为m 的物体自离盘h 高处自由下落,掉在盘上没有反弹,以物体掉在盘上的瞬时作为计时起点,求盘子的振动表达式。

(取物体 掉入盘子后的平衡位置为坐标原点,位移以向下为正。

)9-25.质量m =0.10kg 的物体以A =0.01m 的振幅作简谐振动,其最大加速度为4.0m ·s -2,求:(1)振动周期;(2)物体通过平衡位置时的总能量与动能;(3)当动能和势能相等时,物体的位移是多少?(4)当物体的位移为振幅的一半时,动能、势能各占总能量的多少?sP1-9-27.质量m =10g 的小球与轻弹簧组成的振动系统运动方程为0.5cos(8)3x t ππ=+cm ,求(1)振动的角频率、周期、振幅和初相位;(2)振动的能量;(3)一个周期内的平均动能和平均势能。

9-28.有两个同方向、同频率的简谐振动,它们的振动表式为:130.05cos 104x t π⎛⎫=+ ⎪⎝⎭,210.06cos 104x t π⎛⎫=+ ⎪⎝⎭(SI 制)(1)求它们合成振动的振幅和初相位。

相关文档
最新文档