第十一章--统计学-一元线性回归

合集下载

贾俊平《统计学》章节题库-第十一章至第十二章(圣才出品)

贾俊平《统计学》章节题库-第十一章至第十二章(圣才出品)
2 / 88
圣才电子书 十万种考研考证电子书、题库视频学习平台

5.根据下面的散点图,可以判断两个变量之间存在( )。
A.正线性相关关系 B.负线性相关关系 C.非线性关系 D.函数关系 【答案】B 【解析】在线性相关中,若两个变量的变动方向相反,一个变量的数值增加,另一个变 量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,则称为负线性相 关关系。
1 / 88
圣才电子书 十万种考研考证电子书、题库视频学习平台

3.下面的假定中,哪个属于相关分析中的假定( )。 A.两个变量之间是非线性关系 B.两个变量都是随机变量 C.自变量是随机变量,因变量不是随机变量 D.一个变量的数值增大,另一个变量的数值也应增大 【答案】B 【解析】在进行相关分析时,对总体主要有以下两个假定:①两个变量之间是线性关系; ②两个变量都是随机变量。
【答案】C 【解析】在线性相关中,若两个变量的变动方向相反,一个变量的数值增加,另一个变
5 / 88
圣才电子书 十万种考研考证电子书、题库视频学习平台

量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,即 x 值增大时 y 值随之变小,或 x 值变小时 y 值随之增大,则称为负相关。
12.如果相关系数 r=0,则表明两个变量之间( )。 A.相关程度很低 B.不存在任何关系 C.不存在线性相关关系 D.存在非线性相关关系 【答案】C 【解析】相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。如 果相关系数 r=0,说明两个变量之间不存在线性相关关系。
13.设产品产量与产品单位成本之间的线性相关系数为-0.87,这说明二者之间存在着 ( )。
2.下面的各问题中,哪个不是相关分析要解决的问题( )。 A.判断变量之间是否存在关系 B.判断一个变量数值的变化对另一个变量的影响 C.描述变量之间的关系强度 D.判断样本所反映的变量之间的关系能否代表总体变量之间的关系 【答案】B 【解析】相关分析就是对两个变量之间线性关系的描述与度量,它主要解决的问题包括: ①变量之间是否存在关系;②如果存在关系,它们之间是什么样的关系;③变量之间的关系 强度如何;④样本所反映的变量之间的关系能否代表总体变量之间的关系。

《一元线性回归》课件

《一元线性回归》课件
模型评价
使用评价指标对模型的性能进行评估。
《一元线性回归》PPT课 件
一元线性回归是一种用于探索变量之间关系的统计方法。本课件将介绍一元 线性回归的基本概念、模型、参数估计、模型评估以及Python实现。
一元线性回归-简介
一元线性回归是一种分析两个变量之间线性关系的方法。在这一节中,我们 将介绍一元线性回归的定义、使用场景以及它的重要性。
决定系数
4
方的平均值。
衡量模型对观测值的解释能力,取值范 围从0到1。
一元线性回归-Python实现
导入数据
使用Python的pandas库导入数据集。
划分数据集
将数据集划分为训练集和测试集。
预测结果
使用测试集数据对模型进行预测。
特征工程
选择合适的特征并对其进行处理。
训练模型
使用训练集数据训练线性Байду номын сангаас归模型。
一元线性回归-线性回归模型
1
简单线性回归模型
一个自变量和一个因变量之间的线性关
多元线性回归模型
2
系。
多个自变量和一个因变量之间的线性关
系。
3
线性回归模型的假设
包括线性关系、平均误差为零、误差具 有相同的方差、误差相互独立等。
一元线性回归-模型参数估计
1
最小二乘法
通过最小化观测值和模型预测值之间的平方误差来估计模型参数。
2
矩阵求导
使用矩阵求导的方法来计算模型参数的最优解。
3
梯度下降法
通过迭代的方式逐步优化模型参数,使得模型预测值与观测值之间的差距最小。
一元线性回归-模型评估
1
对模型误差的描述
通过各种指标来描述模型预测值和观测

定量分析方法(11-1)

定量分析方法(11-1)

第十一章 回 归 分 析本章以一元线性回归模型为重点介绍回归分析方法,对于一元线性回归模型所建立的理论与方法作适当的修改便可推广到多元线性回归模型。

§1 回归的概念一、变量之间的关系现实中,各种变量相互依赖、相互影响,存在着某种关系。

如:价格与需求量、利率与投资、收入与消费,等等。

大致可以归纳为两类关系:确定性关系(函数关系),非确定性关系(统计关系)。

1. 确定性关系:变量之间存在着某种完全确定的关系。

如:总收益Y 与产量X 之间的关系:X P Y ⋅=当价格一定时,Y 由X 完全确定。

表现在图形上,()Y X ,的所有点位于一条直线上。

一般地:()n X X X f Y ,,21= (多元函数)2. 非确定性关系:变量之间由于受到某些随机因素的影响而呈现出一种不确定的关系。

如:农业产量主要受到降雨量、施肥量、温度等的影响,但决定产量的并非完全是这些因素,还要受到许多其它因素的影响,如冰雹、蝗灾等自然灾害。

非确定性关系可以分为两大类:1) 相关关系:两个变量处于完全对等的位置,且两个变量皆为随机变量,常用相关系数来度量。

如:计量经济学成绩与统计学成绩,物价水平和股票价格,等等。

2) 回归关系:一个变量的变化是另一个变量变化的原因,而不是相反。

如:消费量Y 与可支配收入X 之间便是一种回归关系。

一般来讲,随着可支配收入的增加,消费增加,可支配收入是影响消费的主要因素,但并非唯一的因XYPX Y =素,影响消费的因素还有消费习惯、地区差异、年龄构成、宗教信仰等等。

同样收入的家庭,有的支出多,有的支出少,即使是同一家庭,其每个月的收入相同的话,各个月的支出也不会完全一样。

这样,对应于一个X 的值,Y 有多个不同的值相对应,X 与Y 呈现出不确定性的关系。

此时:()u X f Y += (u 为随机影响)表现在图形上,()Y X ,的点不是完全处于一条直线(或曲线)上,而是围绕在一条理论线的两旁变化。

第十章 一元线性回归

第十章 一元线性回归

第十一章 一元线性回归一、填空题1、对回归系数的显著性检验,通常采用的是 检验。

2、若回归方程的判定系数R 2=0.81,则两个变量x 与y 之间的相关系数r 为_________________。

3、若变量x 与y 之间的相关系数r=0.8,则回归方程的判定系数R 2为____________。

4、对于直线趋势方程bx a y c +=,已知∑=,0x ∑=130xy ,n=9,1692=∑x, a=b ,则趋势方程中的b=______。

5、回归直线方程bx a y c +=中的参数b 是_____________。

估计待定参数a 和 b 常用的方法是-_________________。

6、相关系数的取值范围_______________。

7、在回归分析中,描述因变量y 如何依赖于自变量x 和误差项的方程称为 。

8、在回归分析中,根据样本数据求出的方程称为 。

9、在回归模型εββ++=x y 10中的ε反映的是 。

10、在回归分析中,F 检验主要用来检验 。

11、说明回归方程拟合优度检验的统计量称为 。

二、单选题1、年劳动生产率(x :千元)和工人工资(y :元)之间的回归方程为1070y x =+,这意味着年劳动生产率没提高1千元,工人工资平均( )A 、 增加70元B 、 减少70元C 、增加80元D 、 减少80元 2、两变量具有线形相关,其相关系数r=-0.9,则两变量之间( )。

A 、强相关B 、弱相关C 、不相关D 、负的弱相关关系 3、变量的线性相关关系为0,表明两变量之间( )。

A 、完全相关B 、无关系C 、不完全相关D 、不存在线性关系 4、相关关系与函数关系之间的联系体现在( )。

A 、相关关系普遍存在,函数关系是相关关系的特例 B 、函数关系普遍存在,相关关系是函数关系的特例C 、相关关系与函数关系是两种完全独立的现象D 、相关关系与函数关系没有区别 5、已知x 和y 两变量之间存在线形关系,且δx =10, δy =8, δxy2=-7,n=100,则x 和y 存在着( )。

管理统计学习题参考答案第十一章

管理统计学习题参考答案第十一章

十一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。

回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。

相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。

相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。

既可以从描述统计的角度,也可以从推断统计的角度来说明。

所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。

所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。

它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。

只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。

由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。

在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。

需要指出的是,相关分析和回归分析只是定量分析的手段。

通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。

因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。

一元线性回归PPT演示课件

一元线性回归PPT演示课件

196.2
15.8
16.0
102.2
12.0
10.0
本年固定资产投资额 (亿元) 51.9 90.9 73.7 14.5 63.2 2.2 20.2 43.8 55.9 64.3 42.7 76.7 22.8 117.1 146.7 29.9 42.1 25.3 13.4 64.3 163.9 44.5 67.9 39.7 97.1
6. r 愈大,表示相关关系愈密切.
例 11.7
根据例11.6的样本数据,计算不良贷款、贷款余额、应收 贷款、贷款项目、固定资产投资额之间的相关系数.
解:用Excel计算的相关系数矩阵如下.
三、相关系数的显著性检验
(一) r 的抽样分布
当样本数据来自正态总体,且 0 时,则
t r n 2 ~ t(n 2) 1 r2
时,yˆ ˆ0 .
二、参数的最小二乘估计
假定样本数据 (xi , yi ) , i 1,2,, n ,满足一元线性回归模 型, 根据(11.6)式则样本回归方程为
yˆi ˆ0 ˆ1xi , i 1,2,, n
(11.7)
最小二乘法是使因变量的观察值 yi 与估计值 yˆi 之间的离差平
i1 i1
n
n
n
n
n xi2 ( xi )2 n yi2 ( yi )2
i 1
i 1
i 1
i 1
( 11.1 ) ( 10.2 )
相关系数的取值范围及意义
1. r 的取值范围为[-1,1].
2. r 1 ,称完全相关,既存在线性函数关系.
r =1,称完全正相关. r =-1,称完全负相关. 3. r =0,称零相关,既不存在线性相关关系. 4. r <0,称负相关. 5. r >0,称正相关.

统计学-第11章一元线性回归学习指导

统计学-第11章一元线性回归学习指导

第11章一元线性回归(相关与回归)学习指导一、本章基本知识梳理基本知识点含义或公式相关关系 客观现象之间确实存在的、但在数量表现上不是严格对应的依存关系。

函数关系 客观现象之间确实存在的、而且数量表现上是严格对应的依存关系。

因果关系有相关关系的现象中能够明确其中一种现象(变量)是引起另一种现象(变量)变化的原因,另一种现象是这种现象变化的结果。

起影响作用的现象(变量)称为“自变量”;而受自变量影响发生变动的现象(变量)称为“因变量”。

因果关系∊相关关系,但相关关系中还包括互为因果关系的情况。

相关关系的种类 按涉及变量多少分为单相关、复相关;按相关方向分为正相关、负相关;按相关形态分为线性相关、非线性相关等。

线性(直线) 相关系数 简称相关系数,反映具有直线相关关系的两个变量关系的密切程度。

()()∑∑∑∑∑∑∑---==2222y yn x xn yx xy n SS S r yx xy相关系数的 显著性检验 ——t 检验 ()().2;,212:0:,0:020221Hn t t Hn t t rn r t HH,拒绝不能拒绝检验统计量-〉-〈--=≠=ααρρ回归方程中的 参数β0和β1为回归直线的截距、起始值,表示在没有自变量x 的影响(即x =0)时,其他各种因素对因变量y 的平均影响;β1为回归系数、斜率,表示自变量x 每变动一个单位,因变量y 的平均变动量。

β1的最小平方估计:∑∑∑∑∑⎪⎭⎫ ⎝⎛--=221x x n yx xy nβ估计标准误差反映因变量实际值与其估计值之间的平均差异程度,表明其估计值对实际值的代表性强弱。

其值越大,实际值与估计值之间的平均差异程度越大,估计值的代表性越差。

()代替。

用大样本条件下,分母可;n n yyS e 2ˆ2--=∑总离差平方和S S T反映因变量的n 个观察值与其均值的总离差。

回归离差平方和S S R 反映自变量x 的变化对因变量y 取值变化的影响;或者说,是由于x 与y 之间的线性关系引起的y 取值的变化,也称为可解释的平方和。

第十一章(理) 第四节 正态分布、线性回归

第十一章(理)  第四节  正态分布、线性回归

第十一章(理) 第四节 正态分布、线性回归1.111222则有 ( )A .μ1<μ2,σ1<σ2B .μ1<μ2,σ1>σ2C .μ1>μ2,σ1<σ2D .μ1>μ2,σ1>σ2解析:μ反映正态分布的平均水平,x =μ是正态曲线的对称轴,由图知μ1<μ2,σ 反映正态分布的离散程度,σ越大,曲线越“矮胖”,表明越分散,σ越小,曲线越 “高瘦”,表明越集中,由图知σ1<σ2. 答案:A2.已知随机变量ξ服从正态分布N (3,σ2),则P (ξ<3)= ( ) A.15 B.14C.13D.12解析:根据正态分布的知识可知此正态分布图象的对称轴为x =3,而P (ξ<3)表示对 称轴左边图象的面积,对称轴左右两边图象面积相等,整个图象的面积为1. 答案:D3.设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ<c -1),则c = ( ) A .1 B .2 C .3 D .4解析:由题意得随机变量ξ相应的正态密度曲线关于直线x =2对称,又P (ξ>c +1) =P (ξ<c -1),因此(c +1)+(c -1)2=2,c =2.答案:B4.设随机变量ξ服从标准正态分布N (0,1),已知Φ(-1.96)=0.025,则P (|ξ|<1.96)=( ) A .0.025 B .0.050 C .0.950 D .0.975 解析:P (|ξ|<1.96)=Φ(1.96)-Φ(-1.96) =1-2Φ(-1.96)=0.950. 答案:C5.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ≤0)= ( ) A .0.16 B .0.32C .0.68D .0.84解析:根据正态分布曲线的对称性,得P (ξ≤0)=1-P (ξ≤4)=1-0.84=0.16. 答案:A6.对有线性相关关系的两个变量建立的回归直线方程y =a +bx 中,回归系数b ( ) A .可以小于0 B .大于0 C .能等于0 D .只能小于0解析:因为b =0时,r =0,这时不具有线性相关关系,但b 能大于0也能小于0. 答案:A7.以下是两个变量x 和y 的一组数据:则这两个变量间的回归直线方程为 ( ) A.y ^=x 2 B.y ^=x C.y ^=9x -15 D.y ^=15x -9 解析:根据数据可得x =4.5,y =25.5, ∑i =1n x 2i =204,∑i =1nx i y i =1 296.b =1221niii nii x ynx y xnx ==--∑∑=1 296-8×4.5×25.5204-8×4.52=9,a =y -b x =25.5-9×4.5=-15. ∴y ^=9x -15. 答案:C8.已知回归直线方程y ^=4.4x +838.19,则可估计x 与y 的增长速度之比约为________. 解析:x 与y 的增长速度之比即为回归直线方程的斜率的倒数14.4=1044=522.答案:5229.某肉食鸡养殖小区某种病的发病鸡只数呈上升趋势,统计近4个月这种病的新发病鸡只数的线性回归分析如下表所示:该养殖小区这种病的新发病鸡总只数约为________.解析:由上表可得:y ^=94.7x +1 924.7,当x 分别取9,10,11,12时,得估计值分别 为:2 777,2 871.7,2 966.4,3 061.1,则总只数约为2 777+2 871.7+2 966.4+3 061.1≈11 676. 答案:11 67610.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的 生产能耗y (吨标准煤)的几组对照数据:(1)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=bx +a ;(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的回归 直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解:(1)∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x —=3+4+5+64=4.5, y —=2.5+3+4+4.54=3.5,∑i =14x 2i =32+42+52+62=86,b =66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a =y —-b x —=3.5-0.7×4.5=0.35. 故回归直线方程为y ^=0.7x +0.35.(2)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35,故耗能减少了90-70.35=19.65(吨).。

贾俊平《统计学》(第5版)章节题库-第十一章至第十四章【圣才出品】

贾俊平《统计学》(第5版)章节题库-第十一章至第十四章【圣才出品】

2.下面的各问题中,哪个不是相关分析要解决的问题( )。 A.判断变量之间是否存在关系 B.判断一个变量数值的变化对另一个变量的影响 C.描述变量之间的关系强度 D.判断样本所反映的变量之间的关系能否代表总体变量之间的关系 【答案】B 【解析】相关分析就是对两个变量之间线性关系的描述与度量,它主要解决的问题包括: ①变量之间是否存在关系;②如果存在关系,它们之间是什么样的关系;③变量之间的关系 强度如何;④样本所反映的变量之间的关系能否代表总体变量之间的关系。
9.根据你的判断,下面的相关系数取值哪一个是错误的( )。 A.-0.86 B.0.78 C.1.25 D.0
4 / 166
圣才电子书

【答案】C
十万种考研考证电子书、题库视频学习平台
【解析】相关系数 r 的取值范围是[-1,1]。
10.下面关于相关系数的陈述中哪一个是错误的( )。 A.数值越大说明两个变量之间的关系就越强 B.仅仅是两个变量之间线性关系的一个度量,不能用于描述非线性关系 C.只是两个变量之间线性关系的一个度量,不一定意味着两个变量之间一定有因果关 系 D.绝对值不会大于 l 【答案】A 【解析】相关系数的性质有:①r 的取值范围是[-1,1];②r 具有对称性;③r 的数值
6 / 1பைடு நூலகம்6
圣才电子书 十万种考研考证电子书、题库视频学习平台
【答案】C 【解析】在线性相关中,若两个变量的变动方向相反,一个变量的数值增加,另一个变
5 / 166
圣才电子书 十万种考研考证电子书、题库视频学习平台

量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,即 x 值增大时 y 值随之变小,或 x 值变小时 y 值随之增大,则称为负相关。

贾俊平第四版统计学-第十一章一元线性回归练习答案

贾俊平第四版统计学-第十一章一元线性回归练习答案

第十一章一元线性回归练习题答案二.填空题 1. 不能;因为该相关系数为样本计算出的相关系数,它的大小受样本数据波动的影响,它是否显著尚需检验;t 检验;2.图1;不能;因为图1反映的是线性相关关系,图2反映的是非线性性相关关系,相关系数只能反映线性相关变量间的相关性的强弱,不能反映非线性相关性的强弱。

三.计算题1.(1) SSR 的自由度是1,SSE 的自由度是18。

(2)2418/6080220/1/==-=SSE SSR F(3)判定系数%14.57140802===SST SSR R 在y 的总变差中,由57.14%的变差是由于x 的变动说引起的。

(4)7559.05714.02-=-=-=R r相关系数为-0.7559。

(5)线性关系显著和:线性关系不显著和y x y x H 10H :因为414.424=>=αF F,所以拒绝原假设,x 与y 之间的线性关系显著。

2.(1)方差分析表df SS MS F Significance F回归分析 1 425 425 85 0.017 残差 15 75 5 - - 总计16500---(2)判定系数%8585.05004252====SST SSR R表明在维护费用的变差中,有85%的变差可由使用年限来解释。

(3)9220.085.02===R r二者相关系数为0.9220,属于高度相关(4)x y248.1388.6ˆ+= 分布;显著。

的自由度为t n r n r t 2);12||2---=回归系数为1.248,表示每增加一个单位的产量,该行业的生产费用将平均增长1.248个单位。

(5)线性关系显著性检验:线性关系显著:生产费用和产量之间性关系不显著生产费用和产量之间线10:H H因为Significance F=0.017<05.0=α,所以线性关系显著。

(6)348.3120248.1388.6248.1388.6ˆ==⨯++=x y当产量为10时,生产费用为31.348万元。

管理统计学习题参考答案第十一章

管理统计学习题参考答案第十一章

一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。

回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。

相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。

相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。

既可以从描述统计的角度,也可以从推断统计的角度来说明。

所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。

所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。

它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。

只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。

由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。

在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。

需要指出的是,相关分析和回归分析只是定量分析的手段。

通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。

因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。

贾俊平《统计学》配套题库 【课后习题】详解 第11章~第12章【圣才出品】

贾俊平《统计学》配套题库  【课后习题】详解  第11章~第12章【圣才出品】

第11章一元线性回归一、思考题1.解释相关关系的含义,说明相关关系的特点。

答:变量之间存在的不确定的数量关系,称为相关关系。

相关关系的特点:一个变量的取值不能由另一个变量唯一确定,当变量x取某个值时,变量y的取值可能有几个。

对这种关系不确定的变量是不能用函数关系进行描述的。

2.相关分析主要解决哪些问题?答:相关分析就是对两个变量之间线性关系的描述与度量,它要解决的问题包括:(1)变量之间是否存在关系;(2)如果存在关系,它们之间是什么样的关系;(3)变量之间的关系强度如何;(4)样本所反映的变量之间的关系能否代表总体变量之间的关系。

3.相关分析中有哪些基本假定?答:在进行相关分析时,对总体主要有以下两个假定:(1)两个变量之间是线性关系;(2)两个变量都是随机变量。

4.简述相关系数的性质。

答:相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。

若相关系数是根据总体全部数据计算的,称为总体相关系数,记为ρ;若是根据样本数据计算的,则称为样本相关系数,记为r 。

相关系数的性质:(1)r 的取值范围在-1~+1之间,即-1≤r ≤1。

若0<r ≤1,表明x 与y 之间存在正线性相关关系;若-1≤r <0,表明x 与y 之间存在负线性相关关系;若r =+1,表明x 与y 之间为完全正线性相关关系;若r =-1,表明x 与y 之间为完全负线性相关关系。

可见当|r |=1时,y 的取值完全依赖于x ,二者之间即为函数关系;当r =0时,说明y 的取值与x 无关,即二者之间不存在线性相关关系。

(2)r 具有对称性。

x 与y 之间的相关系数xy r 和y 与x 之间的相关系数yx r 相等,即xy r =yx r 。

(3)r 数值大小与x 和y 的原点及尺度无关。

改变x 和y 的数据原点及计量尺度,并不改变r 数值大小。

(4)r 仅仅是x 与y 之间线性关系的一个度量,它不能用于描述非线性关系。

统计学(贾5)课后练答案(11-14章)

统计学(贾5)课后练答案(11-14章)

第11章 一元线性回归分析11.1(1)散点图(略),产量与生产费用之间正的线性相关关系。

(2)920232.0=r(3) 检验统计量2281.24222.142=>=αt t ,拒绝原假设,相关系数显著。

11.2 (1)散点图(略)。

(2) 8621.0=r11.3 (1)0ˆβ表示当0=x 时y 的期望值。

(2)1ˆβ表示x 每变动一个单位y 平均下降0.5个单位。

(3) 7)(=y E 11.4 (1)%902=R (2)1=e s11.5 一家物流公司的管理人员想研究货物的运输距离和运输时间的关系,为此,他抽出了公司最近10(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形态: (2)计算线性相关系数,说明两个变量之间的关系强度。

(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。

(2)x 运送距离(km )y 运送时间(天)x 运送距离(km )Pearson 相关性 1.949(**) 显著性(双侧)0.000 N10 10 y 运送时间(天)Pearson 相关性 .949(**) 1显著性(双侧) 0.000 N**. 在 .01 水平(双侧)上显著相关。

有很强的线性关系。

(3)模型非标准化系数标准化系数t显著性B标准误Beta1 (常量)0.118 0.355 0.333 0.748 x 运送距离(km )a. 因变量: y 运送时间(天)回归系数的含义:每公里增加0.004天。

(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

(5)检验回归方程线性关系的显著性(a=0.05)。

(6)如果某地区的人均GDP 为5 000元,预测其人均消费水平。

第十一章 一元线性回归.ppt

第十一章 一元线性回归.ppt
由(11—1)式可推知,若总体不存在直线关 系,则总体回归系数β=0;若总体存在直线关系, 则β≠0。所以对直线回归系数b的假设检验为: HO:β=0;HA:β≠0。
在HO成立的条件下,回归系数b服从t分布。
统计量t b / Sb , df n 2.........(.11 3) 其中,Sb S yx / S XX ,称为回归系数标准误
(三)直线回归方程的建立 在x、y的坐标平面上可作出无数条直线,而
回归直线是所有直线中最接近散点图中全部散点
的直线。设样本直线回归方程为:yˆ = a +bx
其中a是的估计值,称为 回归截距;b是β的估计值,
称为回归系数;yˆ i是+βxi的
估计值。
图11—2 直线回归散点图
回归值 yˆi与yi观察值间的偏差(或称残差)为:
Sb S yx / S XX 60.9525/ 1685 1.4849 t b / Sb 21.7122/1.4849 14.62
当df = n-2 = 12-2 = 10,查附表4得
t 0.05(10) = 2.228,t 0.01(10) = 3.169
t = 14.62 > 3.169
函数关系-有确定的数学表达式
直线回归分析
(确定性的关系)
一元回归分析

曲线回归分析

间 的 关
因果关系 回归分析
多元线性回归分析

多元回归分析
多元非线性回归分析
相关关系
(非确定性的关系)
简单相关分析-直线相关分析
平行关系 相关分析
复相关分析
多元相关分析
偏相关分析
主要内容:
第一节 直线回归

【统计分析】简单线性回归

【统计分析】简单线性回归
34 36 38 40 42 44 46 48 50 年龄
年龄与运动后最大心率的回归方程
X =41.8
Y 166.8
lXX 381.2 lYY 4477.2 lXY
1226.8
b lXY lXX
1226.8 381.2
3.218
a 166.8-(-3.218) 41.8 301.3124
Yˆ 301.3124 3.218X
2.研究目的不同:回归用来说明两变量数量上的依存 变化关系,相关说明变量间的相关关系。
小结
简单线性回归是研究两个变量间线性关系的数量表 达式。根据最小二乘法原则,计算回归方程。
进行简单线性回归分析需要满足线性、独立 、正 态 与等方差4个条件。
在简单线性回归分析中,对回归方程的检验等价于 对回归系数的假设检验,可通过方差分析或t检验 完成。
区别
1.资料要求不同:回归要求y服从正态分布,x是可以 精确测量和严格控制的变量,一般称为Ⅰ型回归; 相关要求两个变量服从双变量正态分布。这种资料 若进行回归分析称为Ⅱ回归,可计算两个方程。
I型回归:X是精确控制的; II型回归:X是随机的。 由X推算Y: Yˆ aY .X bY .X X 由Y推算X: Xˆ aX .Y bX .YY
n
(X X )2
Y 的容许区间估计 个体Y值的容许区间
给定 X 时 Y 的估计值是 Y 的均数 Y的一个估计。
给定X 时 Y 值的容许区间是 Y 值的可能范围。
Y 的100(1- )%容许限:
1 (X X )2
Y t ,n2 sY Y t ,n2 sY .X
1 n
(X X )2
小的。(最小二乘)
三、总体回归系数的假设检验

贾俊平《统计学》复习笔记课后习题详解及典型题详解 第11章~第12章【圣才出品】

贾俊平《统计学》复习笔记课后习题详解及典型题详解  第11章~第12章【圣才出品】
3 / 97
圣才电子书 十万种考研考证电子书、题库视频学习平台
4 / 97
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 11-1 不同形态的散点图
(4)相关系数
通过散点图可以判断两个变量之间有无相关关系,并对变量间的关系形态作出大致的描
有所差异。样本相关系数是总体相关系数的一致估计量。样本相关系数记为 r,其计算公式
为:
r
n xy x y
n x2 ( x)2 n y2 ( y)2
按照上述计算公式计算的相关系数也称为线性相关系数,或 Pearson 相关系数。 ②相关系数的性质 a.r 的取值范围在-1~+1 之间,即-1≤r≤1。若 0<r≤1,表明 x 与 y 之间存在正 线性相关关系;若-1≤r<0,表明 x 与 y 之间存在负线性相关关系;若 r=+1,表明 x 与
5 / 97
圣才电子书 十万种考研考证电子书、题库视频学习平台

y 之间为完全正线性相关关系;若 r=-1,表明 x 与 y 之间为完全负线性相关关系。可见当 |r|=1 时,y 的取值完全依赖于 x,二者之间即为函数关系;当 r=0 时,说明 y 的取值与 x 无关,即二者之间不存在线性相关关系。|r|→1 说明两个变量之间的线性关系越强;|r|→0 说明两个变量之间的线性关系越弱。
b.r 具有对称性。x 与 r 之间的相关系数 rxy 和 y 与 x 之间的相关系数 ryx 相等,即 rxy =ryx。
c.r 数值大小与 x 和 y 的原点及尺度无关。改变 x 和 y 的数据原点及计量尺度,并不 改变 r 的数值大小。
述,但不能准确反映变量之间的关系强度。需要计算相关系数来准确度量两个变量之间的关
系强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相关系数的经验解释
1. |r|0.8时,可视为两个变量之间高度相 关
2. 0.5|r|<0.8时,可视为中度相关 3. 0.3|r|<0.5时,视为低度相关 4. |r|<0.3时,说明两个变量之间的相关程度
极弱,可视为不相关 5. 上述解释必须建立在对相关系数的显著性
进行检验的基础之上
相关系数(例题分析)
关系数 3. 若相关系数是根据总体全部数据计算的,称为总
体相关系数,记为
4. 若是根据样本数据计算的,则称为样本相关系数, 简称为相关系数,记为 r
• 也 称 为 线 性 相 关 系 数 (linear correlation coefficient)
• 或称为Pearson相关系数 (Pearson’s correlation coefficient)
i1
i1
3. 用最小二乘法拟合的直线来代表x与y之间的 关系与实际数据的误差比其他任何直线都小
Karl Gauss的最小化图
y
(xn , yn)



(x2 , y2)


ei = yi-^yi

(x1 , y1)
(xi , yi)
yˆ bˆ0 + bˆ1x
x
回归分析与相关分析
第11章 一元线性回归
11.1 变量间关系的度量 11.2 一元线性回归 11.3 利用回归方程进行估计和预测 11.4 残差分析
学习目标
1. 相关关系的分析方法 2. 一元线性回归的基本原理和参数的最小
二乘估计 3. 回归直线的拟合优度 4. 回归方程的显著性检验 5. 利用回归方程进行估计和预测 6. 用 Excel 进行回归
区别:
相关分析中x与y对等,回归分析中x与y 要确定自变量和因变量; 相关分析中x、y均为随机变量,回归分 析中只有y为随机变量; 相关分析测定相关程度和方向,回归分 析用回归模型进行预测和控制。
3. 因变量与自变量之间的关系用一个线性方 程来表示
回归模型(regression model)
1.回答“变量之间是什么样的关系?” 2.方程中运用
• 1 个数值型因变量(响应变量)
被预测的变量
• 1 个或多个数值型或分类型自变量 (解释变量)
用于预测的变量
3.主要用于预测和估计
一元线性回归模型
3.
E( y ) = b0+ b1 x
方程的图示是一条直线,也称为直线回归方程
b望0是值回归直线在 y 轴上的截距,是当 x=0 时 y 的期
b一1是个直单线位的时斜,率y 的,平称均为变回动归值系数,表示当 x 每变动
估计的回归方程
(estimated regression equation)



非线性相关

不相关
散点图(例题分析)
【例】一家大型商业银行在多个地区设有分行, 其业务主要是进行基础设施建设、国家重点项 目建设、固定资产投资等项目的贷款。近年来, 该银行的贷款额平稳增长,但不良贷款额也有 较大比例的增长,这给银行业务的发展带来较 大压力。为弄清楚不良贷款形成的原因,管理 者希望利用银行业务的有关数据做些定量分析, 以便找出控制不良贷款的办法。下面是该银行 所属的25家分行2002年的有关业务数据
相关关系(类型)
相关关系
线性相关 非线性相关 完全相关 不相关
正相关 负相关
正相关 负相关
相关关系的描述与测度
(散点图)
相关分析及其假定
1. 相关分析要解决的问题
• 变量之间是否存在关系? • 如果存在关系,它们之间是什么样的关系? • 变量之间的关系强度如何? • 样本所反映的变量之间的关系能否代表总体变量之
1.
总体回归参数
b

0
b1是未知的,必须利用样本数
据去估计
2. 用样本统计量 bˆ0 和 bˆ1代替回归方程中的未知参
数b0和 b1,就得到了估计的回归方程
3. 一元线性回归中估计的回归方程为
yˆ bˆ0 + bˆ1x
其中:bˆ0是估计的回归直线在 y 轴上的截距,bˆ1是直线 的斜率,它表示对于一个给定的 x 的值,yˆ 是 y 的估 计值,也表示 x 每变动一个单位时, y 的平均变动值
什么是回归分析?(Regression)
1. 从一组样本数据出发,确定变量之间的数学 关系式
2. 对这些关系式的可信程度进行各种统计检验, 并从影响某一特定变量的诸多变量中找出哪 些变量的影响显著,哪些不显著
3. 利用所求的关系式,根据一个或几个变量的 取值来预测或控制另一个特定变量的取值, 并给出这种预测或控制的精确程度
y
x=x1时y的分布 x=x2时y的分布 x=x3时y的分布
b0
x1
x=x1时的E(y)
x2
x=x2时的E(y)
x3
x=x3时的E(y)
b0+ b1x
x
回归方程 (regression equation)
1. 描述 y 的平均值或期望值如何依赖于 x 的方 程称为回归方程
2. 一元线性回归方程的形式如下
相关系数 (计算公式)
样本相关系数的计算公式
r (x x)( y y) (x x)2 (y y)2
或化简为 r
nxy x y
n x2 x2 n y2 y2
相关系数的性质
性质1:r 的取值范围是 [-1,1]
• |r|=1,为完全相关
确定显著性水平,并作出决策
• 若t>t,拒绝H0 • 若t<t,不拒绝H0
相关系数的显著性检验(例题分析)
对不良贷款与贷款余额之间的相关系数
进行显著性检验(0.05) 1.提出假设:H0: ;H1: 0
2.计算检验的统计量
t 0.8436 25 2 7.5344 1 0.84362
本章教学重点与难点
重点
1.一元线性回归分析 2.用软件进行回归分析
难点
最小二乘法的原理并用它解决实际问题
11.1 变量间关系的度量
11.1.1 变量间的关系 11.1.2 相关关系的描述与测度 11.1.3 相关系数的显著性检验
变量间的关系
函数关系
1. 是一一对应的确定关系
2.
设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完




4. 各观测点分布在直线周围
x
相关关系(几个例子)
父亲身高y与子女身高x之间的关系 收入水平y与受教育程度x之间的关系 粮食单位面积产量y与施肥量x1 、降雨量
x2 、温度x3之间的关系 商品的消费量y与居民收入x之间的关系 商品销售额y与广告费支出x之间的关系
用Excel计算相关系数
相关系数的显著性检验
相关系数的显著性检验(检验的步骤)
1.检验两个变量之间是否存在线性相关关系
2.等价于对回归系数 b1的检验
3.采用R.A.Fisher提出的 t 检验 4.检验的步骤为
• 提出假设:H0: ;H1: 0
计算检验的统计量:t r n 2 ~ t(n 2) 1 r2
是不能由 x 和 y 之间的线性关系所解释的变异性
• b0 和 b1 称为模型的参数
一元线性回归模型(基本假定)
1. 因变量x与自变量y之间具有线性关系 2. 在重复抽样中,自变量x的取值是固定的,即假定x是
非随机的
3. 误差项ε是一个期望值为0的随机变量,即E(ε)=0。对
于一个给定的 x 值,y 的期望值为E ( y ) =b 0+ b 1 x
1. 描述因变量 y 如何依赖于自变量 x 和误差项 的 方程称为回归模型
2. 一元线性回归模型可表示为

y = b + b1 x +
• y 是 x 的线性函数(部分)加上误差项
• 线性部分反映了由于 x 的变化而引起的 y 的变化
• 误差项 是随机变量
反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的 影响
4. 对于所有的 x 值,ε的方差σ2 都相同 5. 误差项ε是一个服从正态分布的随机变量,且相互独立。
即ε~N(0 ,σ2 )
• 独立性意味着对于一个特定的 x 值,它所对应的ε与其他 x 值所对应的ε不相关
• 对于一个特定的 x 值,它所对应的 y 值与其他 x 所对应的 y 值也不相关
一元线性回归模型(基本假定)
参数的最小二乘估计
最小二乘估计(method of least squares )
1. 德国科学家Karl Gauss(1777—1855)提出用 最小化图中垂直方向的误差平方和来估计参数
2. 使因变量的观察值与估计值之间的的方法。即
n
n
( yi yˆ)2 ( yi bˆ0 bˆ1xi )2 最小
性质3:r数值大小与x和y原点及尺度无关,即改变x 和y的数据原点及计量尺度,并不改变r数值大小
性质4:仅仅是x与y之间线性关系的一个度量,它不 能用于描述非线性关系。这意为着, r=0只表示两 个变量之间不存在线性相关关系,并不说明变量之 间没有任何关系
性质5:r虽然是两个变量之间线性关系的一个度量, 却不一定意味着x与y一定有因果关系
散点图(例题分析)
散点图(不良贷款对其他变量的散点图)
不良贷款
14
12
10
8
6
4
2
0
0
100
200
300
400
贷款余额 不良贷款与贷款余额的散点图
相关文档
最新文档