统计学贾俊平第11章 一元线性回归

合集下载

《统计学(第7版)》

《统计学(第7版)》
4. 财务分析 上市公司的财务数据是股民投资的重要参考依据。一些投资咨询公司主要是根据上市 公司提供的财务和统计数据进行分析,为股民提供投资参考。企业自身的投资也离不开对 财务数据的分析,其中要用到大量的统计方法。
5. 经济预测 企业要对未来的市场状况进行预测,经济学家也常常对宏观经济或某一方面进行预 测。在进行预测时要使用各种统计信息和统计方法。比如,企业要对产品的市场潜力作出 预测,以便及时调整生产计划,这就需要利用市场调查取得数据,并对数据进行统计分 析。经济学家在预测通货膨胀时,要利用有关生产价格指数、失业率、生产能力利用率等 统计数据,通过统计模型进行预测。
思考与练习 ……………………………………… 314
第14章 指数 ………………………………………… 318
14.1 基本问题 …………………………………… 319 14.2 总指数编制方法 …………………………… 321 14.3 指数体系 …………………………………… 328 14.4 几种典型的指数 …………………………… 332 14.5 综合评价指数 ……………………………… 338
思考与练习 ……………………………………… 282
第13章 时间序列分析和预测 …………………… 286
13.1 时间序列及其分解 ………………………… 287 13.2 时间序列的描述性分析 …………………… 289 13.3 时间序列预测的程序 ……………………… 293 13.4 平稳序列的预测 …………………………… 298 13.5 趋势型序列的预测 ………………………… 303 13.6 复合型序列的分解预测 …………………… 309
理解并掌握一些统计学知识对普通大众是有必要的。每天我们都会关心生活中的 一些事情,其中就包含统计知识。比如,在外出旅游时,需要关心一段时间内的天气 预报;在投资股票时,需要了解股票市场价格的信息,了解某只特定股票的有关财务 信息;在观看世界杯足球赛时,需要了解各支球队的技术统计等。

第十一章 统计学 一元线性回归分析

第十一章  统计学 一元线性回归分析
11.2.1 一元线性回归模型 11.2.2 参数的最小二乘估计 11.2.3 回归直线的拟合优度 11.2.4 显著性检验
什么是回归分析?(Regression)
1. 从一组样本数据出发,确定变量之间的数学 关系式
2. 对这些关系式的可信程度进行各种统计检验, 并从影响某一特定变量的诸多变量中找出哪 些变量的影响显著,哪些不显著
• 对于一个特定的 x 值,它所对应的 y 值与其他 x 所对应的 y 值也不相关
一元线性回归模型(基本假定)
y
x=x1时y的分布 x=x2时y的分布 x=x3时y的分布
b0
x1
x=x1时的E(y)
x2
x=x2时的E(y)
x3
x=x3时的E(y)
b0+ b1x
x
回归方程 (regression equation)
• 误差项 是随机变量
▪ 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的 影响
▪ 是不能由 x 和 y 之间的线性关系所解释的变异性
• b0 和 b1 称为模型的参数
一元线性回归模型(基本假定)
1. 因变量x与自变量y之间具有线性关系 2. 在重复抽样中,自变量x的取值是固定的,即假定x是
非随机的
3. 误差项ε是一个期望值为0的随机变量,即E(ε)=0。对
于一个给定的 x 值,y 的期望值为E ( y ) =b 0+ b 1 x
4. 对于所有的 x 值,ε的方差σ2 都相同 5. 误差项ε是一个服从正态分布的随机变量,且相互独立。
即ε~N(0 ,σ2 )
• 独立性意味着对于一个特定的 x 值,它所对应的ε与其他 x 值所对应的ε不相关
估计的回归方程

统计学-第11章一元线性回归学习指导

统计学-第11章一元线性回归学习指导

第11章一元线性回归(相关与回归)学习指导一、本章基本知识梳理基本知识点含义或公式相关关系 客观现象之间确实存在的、但在数量表现上不是严格对应的依存关系。

函数关系 客观现象之间确实存在的、而且数量表现上是严格对应的依存关系。

因果关系有相关关系的现象中能够明确其中一种现象(变量)是引起另一种现象(变量)变化的原因,另一种现象是这种现象变化的结果。

起影响作用的现象(变量)称为“自变量”;而受自变量影响发生变动的现象(变量)称为“因变量”。

因果关系∊相关关系,但相关关系中还包括互为因果关系的情况。

相关关系的种类 按涉及变量多少分为单相关、复相关;按相关方向分为正相关、负相关;按相关形态分为线性相关、非线性相关等。

线性(直线) 相关系数 简称相关系数,反映具有直线相关关系的两个变量关系的密切程度。

()()∑∑∑∑∑∑∑---==2222y yn x xn yx xy n SS S r yx xy相关系数的 显著性检验 ——t 检验 ()().2;,212:0:,0:020221Hn t t Hn t t rn r t HH,拒绝不能拒绝检验统计量-〉-〈--=≠=ααρρ回归方程中的 参数β0和β1为回归直线的截距、起始值,表示在没有自变量x 的影响(即x =0)时,其他各种因素对因变量y 的平均影响;β1为回归系数、斜率,表示自变量x 每变动一个单位,因变量y 的平均变动量。

β1的最小平方估计:∑∑∑∑∑⎪⎭⎫ ⎝⎛--=221x x n yx xy nβ估计标准误差反映因变量实际值与其估计值之间的平均差异程度,表明其估计值对实际值的代表性强弱。

其值越大,实际值与估计值之间的平均差异程度越大,估计值的代表性越差。

()代替。

用大样本条件下,分母可;n n yyS e 2ˆ2--=∑总离差平方和S S T反映因变量的n 个观察值与其均值的总离差。

回归离差平方和S S R 反映自变量x 的变化对因变量y 取值变化的影响;或者说,是由于x 与y 之间的线性关系引起的y 取值的变化,也称为可解释的平方和。

贾俊平统计学第7版课后习题答案

贾俊平统计学第7版课后习题答案
贾俊平的《统计学》是一本经典的统计学优秀教材。作为该教材的学习辅导书,本书具 有以下几个方面的特点:
1.针对性强,解决难点。精选人大、中央财大等名校统计学院的初试和复试的考研真 题,既注重基础知识的掌握,又对一些难题、易错题目给出了详细的解析。本书特别适用于 参加研究生入学考试和复试指定考研参考书目为贾俊平主编的《统计学》的考生。
要深深牢记:考研不同一般考试,概念题(名词解释)要当作简答题来回答,简答题要 当作论述题来解答,而论述题的答案要像是论文,多答不扣分。有的论述题的答案简直就是 一份优秀的论文(其实很多考研真题就是选自一篇专题论文),完全需要当作论文来回答!
统计类国内外经典教材习题详解系列是一套全面解析统计类国内外经典教材的辅导资 料。贾俊平的《统计学》、袁卫的《统计学》是国内最受欢迎的统计学经典教材。本书是各 个高校基础专业课统计学考研真题(含复试)与典型题详解,是参考统计学权威教材、全国 各大院校统计学考卷的结构和内容、统计硕士考试大纲、同等学力人员申请硕士学位试题来
2.题量充足,来源广泛。主要选自 40 余所高校的历年考研真题、名校题库以及参考 众多教材和相关资料改编而成。可以说本书的试题都经过了精心挑选,博选众书,取长补短。
3.解答详尽,条理清晰。本书所选部分考研真题有相当的难度,对每道题都尽可能给 出详细的参考答案,条理分明,便于理解。
需要特别说明的是:有些考题的时间较早或内容有点过时,但很值得参考,不失为优秀 考题,因此仍然选用。我们深深感谢贾俊平教授和中国人民大学出版社为我们提供了这样一 本优秀的统计学教材。
贾俊平《统计学》课后习题答案在线阅读:https:///cUb7v8DC
A.品质标志 B.数量标志 C.标志值 D.数量指标 【答案】A 【解析】“等级”属于分类型数据,只能用文字来描述,因此是品质标志,其标志值为“优 秀”“良好”“及格”。 4 下面不属于描述统计问题的是( )。[山东大学 2015 研] A.根据样本信息对总体进行的推断 B.了解数据分布的特征顺序数据 C.分析感兴趣的总体特征 D.利用图、表或其他数据汇总工具分析数据 【答案】A 【解析】描述统计研究的是数据收集、处理、汇总、图表描述、概括与分析等统计方法。 BCD 三项都是描述统计问题。A 项中根据样本信息对总体进行推断则是推断统计内容。 5 一项民意调查的目的是想确定年轻人愿意与其父母讨论的话题。调查结果表明:45%的年 轻人愿意与其父母讨论家庭财务状况,38%的年轻人愿意与其父母讨论有关教育的话题, 15%的年轻人愿意与其父母讨论爱情问题。该调查所收集的数据是( )。[山东大学 2015 研] A.分类数据 B.顺序数据 C.数值型数据

第11章 一元线性回归分析

第11章 一元线性回归分析
统计学
第11章 一元线性回归
方差分析能做什么? 不能做什么?

可以做:

比较多个总体均值是否相等。 一个或两个分类自变量对因变量是否有影响? 不能揭示因素之间的更确切的规律。 不能用于预测未知。

不可做:

回归分析
第11章 一元线性回归
11.1 11.2 11.3 11.4 变量间关系的度量 一元线性回归 利用回归方程进行预测 残差分析
高尔顿(Francis Galton)

达尔文的表弟。 “优生学的创始人” 在统计学方面的贡献


高尔顿在1877年提出回归到平均值(regression toward the mean)现象的存在,这个概念与现代统计学中的“回归” 并不相同,但是却是回归一词的起源。 在此后的研究中,高尔顿第一次使用了相关系数 (correlation coefficient)的概念。他使用字母“r”来表示相 关系数,这个传统一直延续至今。

变量间的函数关系与相关关系在一定条件下可 以相互转化。
当存在测量误差或随机因素的干扰时,函数关系有可能 表现为相关关系; 当我们对变量内在联系的规律性认识更深刻时,相关关 系有可能转化为函数关系或用函数关系来描述。
真实的相关关系 扭曲的因果关系
11.1.2 相关关系的描述与测 度
1. 散点图 2. 相关系数
11.1.3 相关系数的显著性检验
检验总体相关系数 ,要了解: - 样本相关系数 r服从何种分布
总体数据服从何种分布 样本容量n大小 总体正态分布,样本容量n较大, r →正态分布 - →0,则r→正态分布 - 远离0,样本容量n非常大, 则r →正态分布 →1, 则 r 是有偏分布 - →1,则r →左偏分布 - →-1,则r →右偏分布

统计学原理贾俊平期末考试重点

统计学原理贾俊平期末考试重点

统计学期末(单选、10个填空、5个判断、三个计算、一道论述)第一章导论1、统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。

分析数据:分为描述统计方法和推断统计方法两种方法。

描述统计:研究的是数据收集、处理、汇总、图表描述、概括与分析等统计方法。

推断统计:是研究如何利用样本数据来推断总体特征的统计方法。

推断统计内容包含参数估计和假设检验2、统计数据的类型:(1)按照采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据与数值型数据。

注意:分类数据和顺序数据都是表现事物的品质特征,通常是用文字来表述的,其结果均表现为类别,因此可以通称为定性数据或品质数据(qualitative data)。

数值型数据说明的是现象的数量特征,通常用数值来表现,因此可以统称为定量数据或数量数据(quantitative data)。

(2)按照统计数据的收集方法,可以将统计数据分为观测数据和实验数据。

(3)按照被描述的现象与时间的关系,可以将统计数据分为截面数据、时间序列数据(和面板数据 panal data)。

3、抽样独立性问题:总体区分为有限总体和无限总体,目的是为了判别在抽样中每次抽取是否独立(类似抽小球是否放回的问题)。

在统计推断中,通常是针对无限总体的,因而通常把总体看做随机变量(random variable)。

统计上的总体通常是一组观测数据,而不是一群人或者一些物品的简单集合。

4、统计指标按其所反映的数量特点和作用不同,分为数量指标、质量指标。

样本(sample)是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。

抽样的目的是根据样本提供的信息推断总体的特征。

5、总体参数(parameter)是用来描述总体特征的概括性数字度量,是研究者想要了解的某种特征值。

样本统计量(statistic)是用来描述样本特征的概括性数字度量,是根据样本数量计算出来的一个量。

贾俊平《统计学》(第5版)章节题库-第十一章至第十四章【圣才出品】

贾俊平《统计学》(第5版)章节题库-第十一章至第十四章【圣才出品】

2.下面的各问题中,哪个不是相关分析要解决的问题( )。 A.判断变量之间是否存在关系 B.判断一个变量数值的变化对另一个变量的影响 C.描述变量之间的关系强度 D.判断样本所反映的变量之间的关系能否代表总体变量之间的关系 【答案】B 【解析】相关分析就是对两个变量之间线性关系的描述与度量,它主要解决的问题包括: ①变量之间是否存在关系;②如果存在关系,它们之间是什么样的关系;③变量之间的关系 强度如何;④样本所反映的变量之间的关系能否代表总体变量之间的关系。
9.根据你的判断,下面的相关系数取值哪一个是错误的( )。 A.-0.86 B.0.78 C.1.25 D.0
4 / 166
圣才电子书

【答案】C
十万种考研考证电子书、题库视频学习平台
【解析】相关系数 r 的取值范围是[-1,1]。
10.下面关于相关系数的陈述中哪一个是错误的( )。 A.数值越大说明两个变量之间的关系就越强 B.仅仅是两个变量之间线性关系的一个度量,不能用于描述非线性关系 C.只是两个变量之间线性关系的一个度量,不一定意味着两个变量之间一定有因果关 系 D.绝对值不会大于 l 【答案】A 【解析】相关系数的性质有:①r 的取值范围是[-1,1];②r 具有对称性;③r 的数值
6 / 1பைடு நூலகம்6
圣才电子书 十万种考研考证电子书、题库视频学习平台
【答案】C 【解析】在线性相关中,若两个变量的变动方向相反,一个变量的数值增加,另一个变
5 / 166
圣才电子书 十万种考研考证电子书、题库视频学习平台

量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,即 x 值增大时 y 值随之变小,或 x 值变小时 y 值随之增大,则称为负相关。

贾俊平第四版统计学-第十一章一元线性回归练习答案

贾俊平第四版统计学-第十一章一元线性回归练习答案

第十一章一元线性回归练习题答案二.填空题 1. 不能;因为该相关系数为样本计算出的相关系数,它的大小受样本数据波动的影响,它是否显著尚需检验;t 检验;2.图1;不能;因为图1反映的是线性相关关系,图2反映的是非线性性相关关系,相关系数只能反映线性相关变量间的相关性的强弱,不能反映非线性相关性的强弱。

三.计算题1.(1) SSR 的自由度是1,SSE 的自由度是18。

(2)2418/6080220/1/==-=SSE SSR F(3)判定系数%14.57140802===SST SSR R 在y 的总变差中,由57.14%的变差是由于x 的变动说引起的。

(4)7559.05714.02-=-=-=R r相关系数为-0.7559。

(5)线性关系显著和:线性关系不显著和y x y x H 10H :因为414.424=>=αF F,所以拒绝原假设,x 与y 之间的线性关系显著。

2.(1)方差分析表df SS MS F Significance F回归分析 1 425 425 85 0.017 残差 15 75 5 - - 总计16500---(2)判定系数%8585.05004252====SST SSR R表明在维护费用的变差中,有85%的变差可由使用年限来解释。

(3)9220.085.02===R r二者相关系数为0.9220,属于高度相关(4)x y248.1388.6ˆ+= 分布;显著。

的自由度为t n r n r t 2);12||2---=回归系数为1.248,表示每增加一个单位的产量,该行业的生产费用将平均增长1.248个单位。

(5)线性关系显著性检验:线性关系显著:生产费用和产量之间性关系不显著生产费用和产量之间线10:H H因为Significance F=0.017<05.0=α,所以线性关系显著。

(6)348.3120248.1388.6248.1388.6ˆ==⨯++=x y当产量为10时,生产费用为31.348万元。

第十一章一元线性回归分析

第十一章一元线性回归分析

第十一章一元线性回归要求:(1)绘制产量与生产费用的散点图,判断二者之间的关系形态。

(2)计算产量与生产费用之间的线性相关系数。

(3)对相关系数的显著性进行检验(a= 0.05 ),并说明二者之间的关系强度。

解:⑴利用Excel的散点图绘制功能,绘制的散点图如下:产量(台)从散点图的形态可知,产量与生产费用之间存在正的线性相关。

(2)利用Excel的数据分析中的相关系数功能,得到产量与生产费用的线性相关系数r = 0.920232。

(3)计算t统计量,得到t = 7.435453,在a= 0.05的显著性水平下,临界值为2.6337,统计量远大于临界值,拒绝原假设,产量与生产费用之间存在显著的正线性相关关系。

r大于0.8,高度相关。

11.2学生在期末考试之前用于复习的时间(单位:h)和考试分数(单位:分)之间是否有关系?为研究这一问题,以为研究者抽取了由8名学生构成的一个随机样本,得到的数据如下:复习时间x考试分数y20641661348423702788329218722277要求:(1)绘制复习时间和考试分数的散点图,判断二者之间的关系形态(2)计算相关系数,说明两个变量之间的关系强度。

解:⑴利用Excel的散点图绘制功能,绘制的散点图如下:考试分数Y从散点图的形态来看,考试分数与复习时间之间似乎存在正的线性相关关系。

(2)r = 0.862109,大于0.8,高度相关。

11.3根据一组数据建立的线性回归方程为y =10-0.5x要求:(1)解释截距氏的意义。

(2)解释斜率?意义。

(3)计算当x = 6时的E(y)。

解:(1)在回归模型中,一般不能对截距项赋予意义C(2)斜率的意义为:当x增加1时,y减小0.5(3)当x = 6 时,E(y) = 10—0.5 * 6 = 7。

11.4 设SSR = 36, SSE = 4, n = 18。

要求:(1)计算判定系数R2并解释其意义。

(2)计算估计标准误差S e并解释其意义。

统计学:11 一元线性回归

统计学:11 一元线性回归

经管类 核心课程
统计学
11.1.1 变量间的关系
1. 变 量 之 间 存 在 的 不 确 定 的 数量关系称为相关关系 (correlation)。
2. 变 量 间 关 系 不 能 用 函 数 关 系精确表达
3. 一 个 变 量 的 取 值 不 能 由 另 一个变量唯一确定
4.当变量x取某个值时,变量 y的取值可能有几个
5. 线 性 相 关 关 系 时 各 观 测 点 分布在直线周围
y
x
经管类 核心课程
统计学
11.1.1 变量间的关系
相关关系的例子
【例11.3】从遗传学角度看,子女身高(y)与其父 母的身高(x)有很大关系。一般来说,父母身高 较高时,其子女的身高通常也较高,父母身高 较低时,其子女的身高通常也较低。但实际情 况并不完全是这样,因为它们之间并不是完全 确定的关系。显然,子女的身高并不是完全由 父母身高一个因素所决定,还有其他许多因素 的影响,因此二者之间属于相关关系。
4).相关与回归分析正是描述与探索变量之间相关关系 及其规律的统计方法。
经管类
核心课程统计学111.2相关关系的描述与测度
1.相关分析是对两个变量之间线性关系的描述与度量。 2.相关分析所要解决的问题是: (1).变量之间是否存在关系? (2).如果存在关系,它们之间是什么样的关系? (3).变量之间的关系强度如何? (4).样本所反映的变量之间的关系能否代表总体变量
【例11.1】某种产品的销售额(y)与销售量(x)之间的 关系。设销售价格为p,则x与y的关系可表示为 y= px ,是一种线性函数关系。
【例11.2】企业的原材料消耗额(y)与产量(x1) 、单 位产量消耗(x2) 、原材料价格(x3)之间的关系可 表示为y = x1 x2 x3,它们之间是一种确定的函数 关系,但不是线性函数关系。

贾俊平《统计学》配套题库 【课后习题】详解 第11章~第12章【圣才出品】

贾俊平《统计学》配套题库  【课后习题】详解  第11章~第12章【圣才出品】

第11章一元线性回归一、思考题1.解释相关关系的含义,说明相关关系的特点。

答:变量之间存在的不确定的数量关系,称为相关关系。

相关关系的特点:一个变量的取值不能由另一个变量唯一确定,当变量x取某个值时,变量y的取值可能有几个。

对这种关系不确定的变量是不能用函数关系进行描述的。

2.相关分析主要解决哪些问题?答:相关分析就是对两个变量之间线性关系的描述与度量,它要解决的问题包括:(1)变量之间是否存在关系;(2)如果存在关系,它们之间是什么样的关系;(3)变量之间的关系强度如何;(4)样本所反映的变量之间的关系能否代表总体变量之间的关系。

3.相关分析中有哪些基本假定?答:在进行相关分析时,对总体主要有以下两个假定:(1)两个变量之间是线性关系;(2)两个变量都是随机变量。

4.简述相关系数的性质。

答:相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。

若相关系数是根据总体全部数据计算的,称为总体相关系数,记为ρ;若是根据样本数据计算的,则称为样本相关系数,记为r 。

相关系数的性质:(1)r 的取值范围在-1~+1之间,即-1≤r ≤1。

若0<r ≤1,表明x 与y 之间存在正线性相关关系;若-1≤r <0,表明x 与y 之间存在负线性相关关系;若r =+1,表明x 与y 之间为完全正线性相关关系;若r =-1,表明x 与y 之间为完全负线性相关关系。

可见当|r |=1时,y 的取值完全依赖于x ,二者之间即为函数关系;当r =0时,说明y 的取值与x 无关,即二者之间不存在线性相关关系。

(2)r 具有对称性。

x 与y 之间的相关系数xy r 和y 与x 之间的相关系数yx r 相等,即xy r =yx r 。

(3)r 数值大小与x 和y 的原点及尺度无关。

改变x 和y 的数据原点及计量尺度,并不改变r 数值大小。

(4)r 仅仅是x 与y 之间线性关系的一个度量,它不能用于描述非线性关系。

统计学(贾5)课后练答案(11-14章)

统计学(贾5)课后练答案(11-14章)

第11章 一元线性回归分析11.1(1)散点图(略),产量与生产费用之间正的线性相关关系。

(2)920232.0=r(3) 检验统计量2281.24222.142=>=αt t ,拒绝原假设,相关系数显著。

11.2 (1)散点图(略)。

(2) 8621.0=r11.3 (1)0ˆβ表示当0=x 时y 的期望值。

(2)1ˆβ表示x 每变动一个单位y 平均下降0.5个单位。

(3) 7)(=y E 11.4 (1)%902=R (2)1=e s11.5 一家物流公司的管理人员想研究货物的运输距离和运输时间的关系,为此,他抽出了公司最近10(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形态: (2)计算线性相关系数,说明两个变量之间的关系强度。

(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。

(2)x 运送距离(km )y 运送时间(天)x 运送距离(km )Pearson 相关性 1.949(**) 显著性(双侧)0.000 N10 10 y 运送时间(天)Pearson 相关性 .949(**) 1显著性(双侧) 0.000 N**. 在 .01 水平(双侧)上显著相关。

有很强的线性关系。

(3)模型非标准化系数标准化系数t显著性B标准误Beta1 (常量)0.118 0.355 0.333 0.748 x 运送距离(km )a. 因变量: y 运送时间(天)回归系数的含义:每公里增加0.004天。

(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

(5)检验回归方程线性关系的显著性(a=0.05)。

(6)如果某地区的人均GDP 为5 000元,预测其人均消费水平。

《贾俊平 统计学 考研真题 含复试 与典型习题详解 第6版 》读书笔记PPT模板思维导图下载

《贾俊平 统计学 考研真题 含复试 与典型习题详解 第6版 》读书笔记PPT模板思维导图下载

内容简介
第1章 导论
1.2 课后习题详 解
1.1 复习笔记
1.3 典型习题详 解
第2章 数据的搜集
2.2 课后习题详 解
2.1 复习笔记
2.3 典型习题详 解
第3章 数据的图表展示
3.2 课后习题详 解
3.1 复习笔记
3.3 典型习题详 解
第4章 数据的概括性度量
4.2 课后习题详 解
4.1 复习笔记
4.3 典型习题详 解
第5章 概率与概率分布
5.2 课后习题详 解
5.1 复习笔记
5.3 典型习题详 解
第6章 统计量及其抽样分布
6.2 课后习题详 解
6.1 复习笔记
6.3 典型习题详 解
第7章 参数估计
7.2 课后习题详 解
7.1 复习笔记
7.3 典型习题详 解
第8章 假设检验
8.2 课后习题详 解
8.1 复习笔记
8.3 典型习题详 解
第9章 分类数据分析
9.2 课后习题详 解
9.1 复习笔记
9.3 典型习题详 解
第10章 方差分析
10.2 课后习题 详解
10.1 复习笔记
10.3 典型习题 详解
第11章 一元线性回归
11.2 课后习题 详解
11.1 复习笔记
11.3 典型习题 详解
第12章 多元线性回归
12.2 课后习题 详解
12.1 复习笔记
12.3 典型习题 详解
第13章 时间序列分析和预测
13.2 课后习题 详解
13.1 复习笔记
13.3 典型习题 详解
第14章 指数
14.2 课后习题 详解
14.1 复习笔记

贾俊平版统计学课件 第11章

贾俊平版统计学课件  第11章
根据例11.6的样本数据,计算不良贷款、贷款余额、应收 贷款、贷款项目、固定资产投资额之间的相关系数. 解:用Excel计算的相关系数矩阵如下.
从相关矩阵可以看出,在不良贷款与其他几个变量的关 系中,与贷款余额的相关系数最大,而与固定资产投资额的 相关系数最小。
11.1.3 相关系数的显著性检验
1. r 的抽样分布
回归模型
1、回答“变量之间是什么样的关系?” 2、方程中运用 1 个数值型因变量(响应变量) 被预测的变量 1 个或多个数值型或分类型自变量 (解释变量) 用于预测的变量 3、主要用于预测和估计
11.2.1 一元线性回归模型
1.回归模型(regression model)
y 0 1 x
i 1 i 1 i 1
n
n
n
相关系数的取值范围及意义
1. r 的取值范围为[-1,1]. 2. r 1 ,称完全相关,即存在线性函数关系. r =1,称完全正相关. r =-1,称完全负相关. 3. r =0,称零相关,即不存在线性相关关系.
4. r <0,称负相关.
5. r >0,称正相关. 6. r 愈大,表示相关关系愈密切.
t 0.05 (23) 2.069
2
由于
t 7.5344 t 0.05 (23) 2.069
2
因此,拒绝 H 0,认为 x 和 y 的相关系数 0 ,即不良贷 款与贷款余额之间的线性相关关系显著.
表11-3 各相关系数显著性检验的t 统计量值
11.2 一元线性回归
11.2.1 一元线性回归模型 11.2.1 参数的最小二乘估计
相关系数的性质
性质 1 : r 具有对称性。即 x 与 y 之间的相关系数和 y 与 x 之间 的相关系数相等,即rxy= ryx 性质 2 : r 数值大小与 x 和 y 原点及尺度无关 ,即改变 x 和 y 的 数据原点及计量尺度,并不改变r数值大小 性质3:仅仅是x与y之间线性关系的一个度量,它不能用 于描述非线性关系。这意味着, r=0只表示两个变量之间 不存在线性相关关系,并不说明变量之间没有任何关系 性质 4 : r 虽然是两个变量之间线性关系的一个度量,却不 一定意味着x与y一定有因果关系

贾俊平《统计学》复习笔记课后习题详解及典型题详解 第11章~第12章【圣才出品】

贾俊平《统计学》复习笔记课后习题详解及典型题详解  第11章~第12章【圣才出品】
3 / 97
圣才电子书 十万种考研考证电子书、题库视频学习平台
4 / 97
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 11-1 不同形态的散点图
(4)相关系数
通过散点图可以判断两个变量之间有无相关关系,并对变量间的关系形态作出大致的描
有所差异。样本相关系数是总体相关系数的一致估计量。样本相关系数记为 r,其计算公式
为:
r
n xy x y
n x2 ( x)2 n y2 ( y)2
按照上述计算公式计算的相关系数也称为线性相关系数,或 Pearson 相关系数。 ②相关系数的性质 a.r 的取值范围在-1~+1 之间,即-1≤r≤1。若 0<r≤1,表明 x 与 y 之间存在正 线性相关关系;若-1≤r<0,表明 x 与 y 之间存在负线性相关关系;若 r=+1,表明 x 与
5 / 97
圣才电子书 十万种考研考证电子书、题库视频学习平台

y 之间为完全正线性相关关系;若 r=-1,表明 x 与 y 之间为完全负线性相关关系。可见当 |r|=1 时,y 的取值完全依赖于 x,二者之间即为函数关系;当 r=0 时,说明 y 的取值与 x 无关,即二者之间不存在线性相关关系。|r|→1 说明两个变量之间的线性关系越强;|r|→0 说明两个变量之间的线性关系越弱。
b.r 具有对称性。x 与 r 之间的相关系数 rxy 和 y 与 x 之间的相关系数 ryx 相等,即 rxy =ryx。
c.r 数值大小与 x 和 y 的原点及尺度无关。改变 x 和 y 的数据原点及计量尺度,并不 改变 r 的数值大小。
述,但不能准确反映变量之间的关系强度。需要计算相关系数来准确度量两个变量之间的关
系强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相关分析(续)
相关系数(correlation coefficient)



对变量之间关系密切程度的度量 对两个变量之间线性相关程度的度量称为 简单相关系数 若相关系数是根据总体全部数据计算的, 称为总体相关系数,记为 若是根据样本数据计算的,则称为样本相 关系数,记为 r
15
All rights reserved
r 的取值范围是 [-1,1] |r|=1,为完全相关 r =1,为完全正相关 r =-1,为完全负相关 r = 0,不存在线性相关关系相关 -1r<0,为负相关 0<r1,为正相关 |r|越趋于1表示关系越密切;|r|越趋于0表示关系越 不密切
18
All rights reserved
第11章 一元线性回归
11.1 11.2 11.3 11.4 数值型变量间相关分析 一元线性回归 利用回归方程进行预测 残差分析
1
All rights reserved
引例
回顾:不同类型变量的关系
自变量 分类型 因 变 量 分类型 数值型 顺序型 顺序型 数值型
2
All rights reserved
7
All rights reserved
相关与回归分析

人口数与GDP规模的相关系数
人口数与GDP规模的相关系数(1000-2003)
8
All rights reserved
相关与回归分析

The Kuznets curve and the great U-turn: a common developmental path?
Y 960 X
31
All rights reserved
f ( x)
9 5
x 32
回归模型
华氏与摄氏的关系为确定模型(deterministic)
50
F
40
9 C 32 5
f ( x)
30
20
所有的数据点都刚 好落在在线
10
10
5
32
0 x
5
10
All rights reserved
若干自变量变量对因变量的综合影响
26
All rights reserved
11.2 一元线性回归
27
All rights reserved
回归分析
回归分析


从一组样本数据出发,确定变量之间的数学关系式 对这些关系式的可信程度进行各种统计检验,并从 影响某一特定变量的诸多变量中找出哪些变量的影 响显著,哪些不显著 利用所求的关系式,根据一个或几个变量的取值来 预测或控制另一个特定变量的取值,并给出这种预 测或控制的精确程度
28
All rights reserved
回归分析
回归分析的目的有四:



将X与Y的关系以一种量化的方式来表达 检验有关于X与Y之间关系的理论 测量X与Y之间的关系强度 已知X值得条件下对Y作预测
29
All rights reserved
回归模型
1 解释变量 2+ 解释变量
回归模型
单个
多个
20
All rights reserved
相关系数
Y = -1 Y =0 Y =1
X
X
X
Y
= -.8
Y
=0
Y
= .8
X
X
X
21
All rights reserved
相关系数
相关系数检验

r 的抽样分布随总体相关系数和样本容量的 大小而变化

当样本数据来自正态总体时,随着n的增大,r 的抽样 分布趋于正态分布,尤其是在总体相关系数很小或接 近0时,趋于正态分布的趋势非常明显。而当远离0时 ,除非n非常大,否则r的抽样分布呈现一定的偏态。

当为较大的正值时,r 呈现左偏分布;当为较大 的负值时,r 呈现右偏分布。只有当接近于0,而 样本容量n很大时,才能认为r是接近于正态分布的 随机变量
22
All rights reserved
相关系数

检验方法
采用R.A.Fisher提出的 t 检验 检验的步骤为: 提出假设:H0: ;H1: 0 计算检验的统计量 n2 tr ~ t (n 2) 2 1 r 确定显著性水平,并作出决策

Yi β0 βxi εi
33
All rights reserved
回归模型
12
All rights reserved
相关关系描述与测量
相关表
家庭编号 1 2 家庭月收入X(元 ) 800 1100 家庭月支出Y(元 ) 594 638
3 4
5 6 7 8 9 10
1400 1700
2000 2300 2600 2900 3200 3500
13
1122 1155
1408 1595 1969 2078 2585 2530
相关系数
性质2:r具有对称性。即x与y之间的相关系数和y与x之间 的相关系数相等,即rxy= ryx 性质3:r数值大小与x和y原点及尺度无关,即改变x和y的 数据原点及计量尺度,并不改变r数值大小 性质4:仅仅是x与y之间线性关系的一个度量,它不能用 于描述非线性关系。这意为着, r=0只表示两个变量 之间不存在线性相关关系,并不说明变量之间没任何 关系 性质5:r虽然是两个变量之间线性关系的一个度量,却不 一定意味着x与y一定有因果关系
相关系数
样本相关系数
r
( x x )( y y ) (x x) ( y y)
2
2
或 r
n x x n y y
2 2 2
n xy x y
2
17
All rights reserved
相关系数
性质1:


相关系数
Pearson积矩相关系数
随机变量 X 和 Y的协方差 : Cov (X,Y) E[(X )(Y )] X Y 其中 和 分别表示 X 和 Y 的总体均值 X
Y
总体相关系数: Cov ( X , Y ) =
X Y
16
All rights reserved
All rights reserved 13
相关关系描述与测量
相关图(散点图)
3000 2500 家庭月支出Y(元) 2000 1500 1000 500
0
0 500 1000 1500 2000 2500 3000 3500 4000
家庭月收入X(元)
14
All rights reserved 14
回归模型

随机(统计)关系 Stochastic Relationships: 若
X=xi时,Y值不确定,而是服从某一概率分布,则 X, Y之的函数关系称为概率模型 令X为每家庭的月收入,Y为每个家庭消费支出。 对于某个特定的值X=xi而言,我们无法准确地预测 出对应于Y的单一值,因为除了收入外,还有很多 其它因素会影响消费支出。但是知道一个家庭的 月收入有助于我们预测消费支出,第i个家庭的消 费支出可以用下列概率模型表达:
19
All rights reserved 19
相关系数
经验解释:



|r|=1,为完全相关|r|0.8时,可视为两个变量之 间高度相关 0.5|r|<0.8时,可视为中度相关 0.3|r|<0.5时,视为低度相关 |r|<0.3时,说明两个变量之间的相关程度极弱, 可视为不相关 上述解释必须建立在对相关系数的显著性进行检 验的基础之上
9
All rights reserved
11.1 数值型变量间的相关分析
10
All rights reserved
相关关系
相关关系类型
相关关系
线性相关
负相关
非线性相关
完全相关
正相关 负相关
不相关
正相关
11
All rights reserved
相关关系描述与测量
相关关系的测量


相关表——将一个变量按大小顺序排序,另一个 变量对应排列而成的表格 相关图——也称为散点图。一对数据对应坐标图 上一个点,将成对的观察数据表现为坐标图的散 点而形成的图 编制相关表、图的意义——有助于分析者判断 相 关的有无、方向、形态、密切程度
引例
引例: 财富与幸福
3
All rights reserved
引例
引例: 数学的学与用
4
All rights reserved
4
相关与回归分析
相关关系


相关和回归这个术语是由英国著名统计学家Francis Galton在19世纪末期研究孩子及他们的父母的身高 时提出来的。Galton发现身材高的父母,他们的孩 子也高 但这些孩子平均起来并不像他们的父母那样高。 对于比较矮的父母情形也类似:他们的孩子比较 矮,但这些孩子的平均身高要比他们的父母的平 均身高高
5
All rights reserved
相关与回归分析


Galton把孩子的身高向中间值靠近的趋势称 之为一种回归效应,而他发展的研究两个数 值变量的方法称为回归分析 卡尔· 皮尔逊在继续这一遗传学研究的过程 中,测量了1078个父亲及其成年儿子的身高
6
All rights reserved
相关与回归分析
t 0. 005 2.807 < 25.25 H 0 rejected at 1% leve l
相关文档
最新文档