初中数学 5.2 平行线及其判定教案
初中平行线判定定理教案
初中平行线判定定理教案教学目标:知识与技能目标:学生能够理解平行线的定义,掌握平行线的判定定理,并能够运用判定定理判断两条直线是否平行。
过程与方法目标:通过观察、操作、交流等活动,培养学生的逻辑思维能力和空间想象能力。
情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
教学重点:平行线的判定定理。
教学难点:平行线的判定定理的理解和运用。
教学准备:三角板、直尺、铅笔、投影仪。
教学过程:一、导入新课1. 教师通过展示生活中的图片,如楼梯、铁轨等,引导学生观察并找出其中的平行线。
2. 学生分享观察到的平行线,教师总结并板书平行线的定义。
二、探究平行线的判定定理1. 教师提出问题:“如何判断两条直线是否平行?”引导学生进行思考和讨论。
2. 学生尝试用尺子和三角板画出两条直线,并判断它们是否平行。
3. 教师引导学生总结判断两条直线平行的方法,学生得出平行线的判定定理。
三、巩固练习1. 教师给出几组直线,要求学生判断它们是否平行,并说明判断的依据。
2. 学生独立完成练习,教师巡回指导。
四、课堂小结1. 教师引导学生总结本节课所学的平行线的判定定理。
2. 学生分享学习收获和感悟。
教学反思:本节课通过观察生活中的实例,引导学生发现平行线,激发学生的学习兴趣。
在探究平行线的判定定理时,教师引导学生通过操作和交流,培养学生的逻辑思维能力和空间想象能力。
练习环节,教师给予学生足够的自主空间,让学生在实践中巩固知识,提高运用能力。
总体来说,本节课达到了预期的教学目标,学生对平行线的判定定理有了较好的理解和掌握。
5.2平行线及其判定(导学案)
第五章 相交线与平行线第四课时:5.2.1 平行线【学习目标】1使学生知道平行线的概念,掌握平行公理;2了解平行线具有传递性,能够画出已知直线的平行线.【学习重点】平行线的概念和平行公理,利用直尺和三角板画已知直线的平行线. 【学习难点】用几何语言描述画图过程,根据几何语言画出图形. 【学习过程】 一、学前准备在上学期我们学过点和直线的位置关系,同学们还记得点和直线有几种位置关系吗?请画出来,并尝试用几何语言来表示.二、探索思考探索一:我们知道,火车行驶的两条笔直的铁轨、人行道上的斑马线等都给我们平行的形象.一般地,在同一平面内,不相交的两条直线叫做平行线.如图,记作“a ∥b ”或“AB ∥CD ”,读作“直线a 平行于直线b ”.请同学们思考一下:在同一平面内,两条不重合的直线有几种位置关系?动手画一画,并尝试用几何语言来表示..练习一:1.下列说法中,正确的是( ).A .两直线不相交则平行B .两直线不平行则相交C .若两线段平行,那么它们不相交D .两条线段不相交,那么它们平行 2.在同一平面内,有三条直线,其中只有两条是平行的,那么交点有( ).A .0个B .1个C .2个D .3个 探索二:请同学们仔细阅读课本P13页“平行线的讨论”,认真思考.通过观察和画图,可以体验一个基本事实(平行公理):经过直线外一点, 一条直线与这条直线平行. 同样,我们还有(平行线的传递性):如果两条直线都与第三条直线平行,那么这两条直线也互相平行.简单的说就是:平行于同一直线的两直线平行.用几何语言可表示为:如果b ∥a ,c ∥a ,那么 . 练习二:1.如图1所示,与AB 平行的棱有_______条,与AA ′平行的棱有_____条. 2.如图2所示,按要求画平行线. (1)过P 点画AB 的平行线EF ;(2)过P 点画CD 的平行线MN .3.如图3所示,点A ,B 分别在直线1l ,2l 上,(1)过点A 画到2l 的垂线段;(2)过点B 画直线3l ∥1l .(图1) (图2) (图3)4.下列说法中,错误的有( ).①若a 与c 相交,b 与c 相交,则a 与b 相交; ②若a ∥b ,b ∥c ,那么a ∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、•相交、垂线三种 A .3个 B .2个 C .1个 D .0个三、当堂反馈1.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.2.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________________. 3.判断题(1)不相交的两条直线叫做平行线.( )(2)在同一平面内,不相交的两条射线是平行线.( )(3)如果一条直线与两条平行线中的一条平行, 那么它与另一条也互相平行.( ) 4.读下列语句,并画出图形:⑴点P 是直线AB 外一点,直线CD 经过点P ,且与直线AB 平行,直线EF 也经过点P•且与直线AB 垂直.⑵直线AB ,CD 是相交直线,点P 是直线AB ,CD 外一点,直线EF 经过点P•且与直线AB 平行,与直线CD 相交于E .A B C D ab四、学习反思本节课你有哪些收获?第五课时:5.2.2 平行线的判定【学习目标】使学生掌握平行线的判定,并能应用这些知识判断两条直线是否平行,培养学生简单的推理能力.【学习重点】平行线的三种判定方法,并运用这三种方法判断两直线平行.【学习难点】运用平行线的判定方法进行简单的推理.【学习过程】一、学前准备还知道“三线八角”吗?请画一画,找出一组同位角、一组内错角、一组同旁内角.二、探索思考探索一:请同学们仔细阅读课本P13页“平行线判定的思考”,你知道在画平行线这一过程中,三角尺所起的作用吗?由此我们可以得到平行线的判定方法,如图,将下列空白补充完整(填1种就可以)判定方法1(判定公理)几何语言表述为:∵∠___=∠___ ∴ AB∥CD由判定方法1,结合对顶角的性质,我们可以得到:判定方法2(判定定理)几何语言表述为:∵∠___=∠___ ∴ AB∥CD由判定方法1,结合邻补角的性质,我们可以得到:判定方法3(判定定理)几何语言表述为:∵∠___+∠___=180°∴ AB∥CD练习一:(1题) (2题) (3题)1.如图1所示,若∠1=∠2,则_____∥______,根据是__ ____.若∠1=∠3,则______∥______,根据是_____ ____.2.如图2所示,若∠1=62°,∠2=118°,则_____∥_____,根据是_____ ___ 3.根据图3完成下列填空(括号内填写定理或公理)(1)∵∠1=∠4(已知)∴∥()(2)∵∠ABC +∠ =180°(已知)∴AB∥CD()(3)∵∠ =∠(已知)∴AD∥BC()(4)∵∠5=∠(已知)∴AB∥CD()探索二:木工师傅用角尺画出工件边缘的两条垂线,就可以再找出两条平行线,如图所示,a∥b,你能说明是什么道理吗?结论(判定推论):在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.简记为:如图,几何语言表述为:∵a⊥2l,b⊥2l∴练习二:1.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.三、当堂反馈1.如图所示,在下列条件中,不能判断L1∥L2的是().A.∠1=∠3 B.∠2=∠38362514 7F EDC BAC12345DABC .∠4+∠5=180°D .∠2+∠4=180°2.如图所示,已知∠1=120°,∠2=60°.试说明a 与b 的关系?3.如图所示,已知∠OEB=130°,∠FOD=25°,OF 平分∠EOD ,试说明AB ∥CD .四、学习反思本节课你有哪些收获?第六课时:5.3.1 平行线的性质【学习目标】1使学生掌握平行线的三个性质,并能应用它们进行简单的推理论证;2使学生经过对比后,理解平行线的性质和判定的区别和联系.【学习重点】平行线的三个性质及其应用.【学习难点】正确理解性质与判定的区别和联系,并正确运用它们去推理证明. 【学习过程】一、学前准备通过前面的学习,你知道判定两条直线平行有哪几种方法吗?⑴平行线的定义: ⑵平行线的传递性: ⑶平行线的判定公理: ⑷平行线的判定定理1: ⑸平行线的判定定理2:⑹平行线的判定推论: 二、探索思考探索一:请同学们仔细阅读课本P19页,完成课本上的探究.根据探究内容,我们可以得到平行线的性质,如图,将下列空白补充完整(填1种就可以)性质1(性质公理) 几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___ 由性质1,结合对顶角的性质,我们可以得到:性质2(性质定理)几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___由性质1,结合邻补角的性质,我们可以得到:性质3(性质定理) 几何语言表述为:∵ AB ∥CD ∴ ∠___+∠___=练习一:1. 根据右图将下列几何语言补充完整(1)∵AD ∥ (已知) ∴∠A+∠ABC=180°( ) (2)∵AB ∥ (已知)∴∠4=∠ ( )∠ABC=∠ ( ) 2. 如右图所示,BE 平分∠ABC ,DE ∥ BC ,图中相等的角共有( )A. 3对B. 4对C. 5对D. 6对3、如图,AB ∥CD,∠1=45°,∠D=∠C,求∠D 、∠C 、∠B 的度数.探索二:用三角尺和直尺画平行线,做成一张5×5个格子的方格纸.观察做出的方格纸的一部分(如图),线段11C B 、22C B 、…、55C B 都与两条平行的横线51B A 和52C A 垂直吗?它们的长度相等吗?像这样,同时垂直于两条平行直线,并且夹在这两条平行线间的线段的长度相等,叫做这两条 ,即平行线间的距离处处相等.练习二:1.如图所示,已知直线AB ∥CD ,且被直线EF 所截,若∠1=50°,则∠2=____,•∠3=______.1 2 ab3 c1A B C D 83625147FED CB AC 12 3 4 5BA D ED C B A 1A 2A 1B 2B 3B 4B 5B1C 2C 3C 5C 4C(1题) (2题) (3题) 2.如图所示,AB∥CD,AF交CD于E,若∠CEF=60°,则∠A=______.3.如图所示,已知AB∥CD,BC∥DE,∠1=120°,则∠2=______.三、当堂反馈1.如图所示,如果AB∥CD,那么().A.∠1=∠4,∠2=∠5 B.∠2=∠3,∠4=∠5C.∠1=∠4,∠5=∠7 D.∠2=∠3,∠6=∠8(1题) (2题) (3题) 2.如图所示,DE∥BC,EF∥AB,则图中和∠BFE互补的角有().A.3个 B.2个 C.5个 D.4个3.如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.四、学习反思本节课你有哪些收获?第七课时:平行线的判定及性质习题课【学习目标】加深对平行线的判定及性质的理解及其应用.【学习重点】平行线的判定及性质的应用.【学习难点】灵活运用平行线的判定及性质去推理证明.【学习过程】一、学前准备通过前面的学习,你知道判定两条直线平行有哪几种方法吗?⑴平行线的定义:⑵平行线的传递性:⑶平行线的判定公理:⑷平行线的判定定理1:⑸平行线的判定定理2:⑹平行线的判定推论:通过前面的学习,你还知道两条直线平行有哪些性质吗?⑴根据平行线的定义:⑵平行线的性质公理:⑶平行线的性质定理1:⑷平行线的性质定理2:⑸平行线间的距离.二、探索思考练习:让我先试试,相信我能行.1.如图1,若∠1=∠2,那么_____∥______,根据___ __.若a∥b,•那么∠3=_____,根据___ __.(图1) (图2) (图3) (图4)2.如图2,∵∠1=∠2,∴_______∥_______,根据___ _____.∴∠B=______,根据___ _____.3.如图3,若AB∥CD,那么________=•_______;•若∠1=•∠2,•那么_____•∥_____;若BC∥AD,那么_______=_______;若∠A+∠ABC=180°,那么______∥_____4.如图4,•一条公路两次拐弯后,•和原来的方向相同,•如果第一次拐的角是136°(即∠ABC),那么第二次拐的角(∠BCD)是度,根据___ .5.如右图,修高速公路需要开山洞,为节省时间,要在山两面A,B同时开工,•在A处测得洞的走向是北偏东76°12′,那么在B处应按什么方向开口,才能使山洞准确接通,请说明其中的道理.6.如右图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射∠1=∠2,∠3=∠4,请你解释为什么开始进入潜望镜的光线和最后离开潜望镜的光线是平行的.三、当堂反馈1.已知如图1,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=74°,那么吸管与易拉罐下部夹角∠2=_______.2.已知如图2,边OA,OB均为平面反光镜,∠AOB=40°,在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是().A.60° B.80° C.100° D.120°(图1)(图2)(图3)3.如图3,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.4.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=85°.⑴求∠DAB的度数;⑵求∠EAC的度数;⑶求∠BAC的度数;⑷通过这道题你能说明为什么三角形的内角和是180°吗?四、学习反思本节课你有哪些收获?第八课时:5.3.2命题、定理【学习目标】了解命题、定理的概念,能够区分命题的题设和结论. 【学习重点】能够区分命题的题设和结论.【学习难点】能够区分命题的题设和结论.【学习过程】一、学前准备歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“独路相逢”,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,边走边大声说道:“我从来不给傻子让路!”而对如此的尴尬的局面,歌德笑容可掏,谦恭的闪在一旁,有礼貌地回答道“呵呵,我可恰相反”,结果故作聪明的批评家,反倒自讨没趣.你知道为什么吗?二、探索思考探索:在日常生活中,我们会遇到许多类似的情况,需要对一些事情作出判断,例如:⑴今天是晴天;⑵对顶角相等;⑶如果两条直线都与第三条直线平行,那么这两条直线也互相平行.像这样,判断一件事情的语句,叫做命题.每个命题都是由_______和______组成.每个命题都可以写成.“如果……,那么……”的形式,用“如果”开始的部份是,用“那么”开始的部份是 .像前面举例中的⑵⑶两个命题,都是正确的,这样的命题叫做真命题,即正确的命题叫做______.例如:“如果一个数能被2整除,那么这个数能被4整除”,很明显是错误的命题,这样的命题叫做假命题,即错误的命题叫做______.我们把从长期的实践活动中总结出来的正确命题叫做公理;通过正确的推理得出的真命题叫做定理.练习:1.下列语句是命题的个数为()①画∠AOB的平分线; ②直角都相等; ③同旁内角互补吗?④若│a│=3,则a=3.A.1个 B.2个 C.3个 D.4个2.下列5个命题,其中真命题的个数为()①两个锐角之和一定是钝角; ②直角小于夹角; ③同位角相等,两直线平行; •④内错角互补,两直线平行; ⑤如果a<b,b<c,那么a<c.A.1个 B.2个 C.3个 D.4个3.下列说法正确的是()A.互补的两个角是邻补角 B.两直线平行,同旁内角相等C.“同旁内角互补”不是命题 D.“相等的两个角是对顶角”是假命题4.“同一平面内,垂直于同一条直线的两条直线互相平行”是命题,其中,题设是,结论是,5.将下列命题改写成“如果……那么……”的形式.AD E B C本节课你有哪些收获?(1)直角都相等.(2)末位数是5的整数能被5整除.(3)三角形的内角和是180°.(4)平行于同一条直线的两条直线互相平行.三、当堂反馈1.下列语句中不是命题的有()⑴两点之间,直线最短;⑵不许大声讲话;⑶连接A、B两点;⑷花儿在春天开放.A.1个 B.2个 C.3个 D.4个2.下列命题中,正确的是()A.在同一平面内,垂直于同一条直线的两条直线平行;B.相等的角是对顶角;C.两条直线被第三条直线所截,同位角相等;D.和为180°的两个角叫做邻补角.3.下列命题中的条件(题设)是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;(2)如果两条直线都与第三条直线平行,那么这两条直线也平行;4.将下列命题改写成“如果……那么……”的形式,并判断正误.(1)对顶角相等;(2)同位角相等;(3)同角的补角相等.四、学习反思。
《5.2.2平行线的判定》作业设计方案-初中数学人教版12七年级下册
《平行线的判定》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《平行线的判定》的学习,使学生能够:1. 理解平行线的概念及其基本性质;2. 掌握平行线的基本判定定理及推导过程;3. 能够运用所学知识解决实际问题,提升空间想象力和逻辑思维能力。
二、作业内容《平行线的判定》的作业内容主要包括以下几个部分:1. 理论学习:学生需仔细阅读教材,理解平行线的定义、性质及判定定理。
如“同位角相等,两直线平行”、“内错角相等,两直线平行”等。
2. 练习题:针对所学的平行线判定定理,布置适量的练习题。
题目类型包括选择题、填空题和解答题,涵盖不同难度的题目,从基础知识的巩固到拓展延伸的题目均有涉及。
3. 实例分析:选择几个典型的平行线问题,要求学生进行详细的分析和解答,强化对平行线判定定理的理解和运用。
4. 思维导图:鼓励学生在完成作业的过程中,使用思维导图整理所学知识,将各个知识点联系起来,形成完整的知识体系。
三、作业要求为保证作业的完成质量和效果,提出以下要求:1. 认真阅读教材,理解并掌握平行线的相关概念和性质;2. 独立完成练习题,不抄袭他人答案;3. 对每个问题都要有清晰的思路和解答过程;4. 实例分析要详细,思路清晰,步骤完整;5. 完成思维导图,将所学知识进行整理和归纳;6. 按时提交作业,不拖延。
四、作业评价作业评价将从以下几个方面进行:1. 知识的理解和掌握程度;2. 解题思路的清晰度和正确性;3. 解答过程的完整性和规范性;4. 实例分析的深入程度和准确性;5. 作业的提交时间和质量。
五、作业反馈作业反馈是提高学生学习效果的重要环节,具体包括:1. 对学生的作业进行批改,指出错误和不足之处;2. 针对共性问题,进行课堂讲解和答疑;3. 对优秀作业进行展示和表扬,激励学生;4. 根据作业反馈,调整教学计划和策略,提高教学质量。
通过以上作业设计,旨在让学生在掌握平行线基本概念和性质的基础上,通过理论学习、练习题、实例分析和思维导图等方式,全面理解和掌握平行线的判定定理,并能够灵活运用所学知识解决实际问题。
5.2平行线及其判定(1)
教学重点 与难点 教学方法 与手段
一. 前提测评 两条直线可以相交,那它们有不相交的时 候吗? 二.认定目标
(1)了解平行线的概念,会画已知直 线的平行线。 (2)掌握平行公理并能应用它进行简 单推理。
三.导学达标 1.问题:在同一平面内,两条直线有几种位置关 学 生 动 手 画一画, 系? 师生共同归纳: 在同一平面内两直线的位置关系是 相交或平行。 2.思考课本第 页并回答问题: 将一木条在 B 点处固定,然后转动木条,有几个 讨论 位置使木条与直线 a 平行?
四、达标测评
β 的度数是(
A.50° D.不能确定
) B.130° C.50°或 130°
五.布置作业 1 画图:点 p 是直线 AB 外一点,直线 CD 经过点 p,且与直线 AB 平行。
河北省县域基础教育教学改革实验课题
第
页
河北省县域基础教育教学改革实验课题 第 页
唐邱学区、中学协作备课
课堂教学设计专用
年级
Hale Waihona Puke 科目师生共同得到平行公理 3.用三角板和直尺教会学生画 已知直线的
学生画平 行线
平行线。
学生做练 1.在同一平面内,两条直线可能的位置关系 习 是 . 2.在同一平面内,三条直线的交点个数可能 是 . 3.下列说法正确的是( ) A.经过一点有且只有一条直线与已知直线平行 B.经过一点有无数条直线与已知直线平行 C.经过一点有一条直线与已知直线平行 D.经过直线外一点有且只有一条直线与已知直线 平行 4.若∠ α 与∠ β 是同旁内角,且∠ α =50°,则∠
唐邱学区、中学协作备课
课堂教学设计专用
年级
科目
教学设计者 教学课题
金勤平
平行线及其判定教案板书
平行线及其判定教案板书教案板书内容:【教学目标】了解平行线的定义掌握平行线的判定方法能够应用平行线的性质解决相关问题【教学重点】平行线的判定方法【教学难点】如何灵活运用平行线的判定方法解决问题【教学准备】黑板、彩色粉笔、教学课件【教学过程】一、导入(5分钟)教师引导学生回顾上节课所学内容,并出示一些领域中使用平行线的实际例子,如建筑、道路等,激发学生对平行线的兴趣。
二、新课讲解(15分钟)1. 平行线的定义教师在黑板上书写平行线的定义:如果两条直线在同一个平面内,且不相交,我们称这两条直线是平行线。
并强调平行线的性质:平行线上的任意两条线段之间的距离是相等的。
2. 平行线的判定方法(1)垂直线判定法教师解释垂直线判定法的原理,并在黑板上画出垂直线判定法的示意图。
要点突出:如果两条直线的斜率乘积为-1,则这两条直线互相垂直。
(2)同位角相等定理教师解释同位角相等定理的原理,并在黑板上画出同位角相等定理的示意图。
要点突出:如果两条直线被一条横截线所切割,同位角对应相等,则这两条直线互相平行。
(3)平行线判定法教师解释平行线判定法的原理,并在黑板上画出平行线判定法的示意图。
要点突出:如果两条直线被一组平行线所切割,对应角相等,则这两条直线互相平行。
三、示例演练(20分钟)教师给出一些具体的问题,引导学生根据所学的平行线判定方法解决问题。
示例题1:已知直线l和直线m,如何判断它们是否平行?学生尝试使用不同的判定方法,解答问题。
示例题2:已知直线n与直线l平行,直线l与直线m相交于点A,如何判断直线n与直线m的关系?学生根据同位角相等定理,得出结论。
四、拓展应用(15分钟)教师出示更复杂一些的问题,引导学生利用已学知识解决问题。
问题1:在直角梯形ABCD中,已知AD与BC平行,∠B=90°,∠ACD=45°,求证:∠BAD=45°。
问题2:在平行四边形ABCD中,已知AD与BC平行,证明:∠CAB = ∠CDA。
5.2平行线及其判定优质课件(
5.2 平行线及其判定优质课件()一、教学内容本节课我们将深入探讨平行线概念及其判定方法。
根据教材第八章第二节内容,详细内容包括:平行线定义、平行线判定公理、平行线性质,以及通过具体图形识别和应用平行线。
二、教学目标1. 让学生理解平行线定义,并能够识别日常生活中平行线现象。
2. 使学生掌握平行线判定方法,并能运用这些方法解决实际问题。
3. 培养学生空间想象能力,提高逻辑思维和推理能力。
三、教学难点与重点重点:平行线定义和判定方法。
难点:如何引导学生运用判定方法解决复杂图形中平行线问题。
四、教具与学具准备1. 教具:多媒体课件、几何画板、直尺、量角器。
2. 学具:练习本、铅笔、直尺、量角器。
五、教学过程1. 实践情景引入:展示生活中平行线实例,如铁轨、书本边缘等,引导学生发现平行线,激发兴趣。
2. 讲解平行线定义,让学生理解同一平面内两条永不相交直线称为平行线。
4. 例题讲解:选取典型例题,讲解如何运用平行线判定方法解题。
5. 随堂练习:让学生独立完成练习题,巩固平行线判定方法。
6. 小组讨论:分组讨论复杂图形中平行线问题,培养学生合作意识和解决问题能力。
六、板书设计1. 平行线定义2. 平行线判定公理3. 平行线性质4. 例题及解题步骤5. 随堂练习题目七、作业设计1. 作业题目:(1)判断下列各题中哪些图形中直线是平行线,并说明理由。
(2)已知直线AB和CD平行,求证∠A+∠C=180°。
(3)画出具有平行线性质两个图形,并标出相应角度。
2. 答案:(1)图形1、3、5中直线是平行线,理由:根据平行线判定公理。
(2)证明:由平行线性质,得∠A+∠B=180°,又∠B=∠C,所以∠A+∠C=180°。
(3)图形见附图。
八、课后反思及拓展延伸1. 反思:本节课学生对平行线定义和判定方法掌握程度较好,但对复杂图形中平行线问题还需加强练习。
2. 拓展延伸:引导学生思考平行线与垂直线联系与区别,为后续学习垂直线性质打下基础。
人教版初中数学教案(最新6篇)
人教版初中数学教案(最新6篇)平行线的判定教案篇一一、教学目标1、了解推理、证明的格式,理解判定定理的证法。
2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。
3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。
4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。
二、学法引导1、教师教法:启发式引导发现法。
2、学生学法:积极参与、主动发现、发展思维。
三、重点•难点及解决办法(一)重点判定定理的推导和例题的解答。
(二)难点使用符号语言进行推理。
(三)解决办法1、通过教师正确引导,学生积极思维,发现定理,解决重点。
2、通过教师指导,学生自行完成推理过程,解决难点及疑点。
四、课时安排1课时《·》五、教具学具准备三角板、投影仪、自制胶片。
六、师生互动活动设计1、通过设计练习,复习基础,创造情境,引入新课。
2、通过教师指导,学生探索新知,练习巩固,完成新授。
3、通过学生自己总结完成小结。
七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。
(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。
(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)。
学生活动:学生口答第1、2题。
师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。
教师将第3题图形画在黑板上。
学生活动:学生口答理由,同角的补角相等。
师:要求学生写出符号推理过程,并板书。
【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。
【大单元教学】初中数学人教版七年级下册5.2.2 平行线的判定(教学课件)
如图,已知∠2=∠3,求α∥b
1
3
∵∠2=∠3,∠1=∠3 ∴∠1=∠2 ∴α∥b(同位角相等,两直线平行)
a
2 b
总结归纳
平行线的判定方法2:两条直线被第三条直线所截 ,如果内错角相 等,那么这两条直线平行.
简记:内错角相等,两直线平行.
几何叙述: ∵∠2=∠3(已知)
【详解】解:A、a// b,b//c,则a//c,根据平行于同一直线的 两条直线互相平行,选项正确,符合题意; B、a⊥b,b⊥c,则a//c,根据同一平面内垂直于同一直线的两条 直线互相平行,选项错误,不符合题意; C、a//b,b⊥c,则a⊥c,选项错误,不符合题意; D、a⊥b,b//c,则a⊥c,选项错误,不符合题意; 故选:A.
2.如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是( )
A.∠2=∠3 C.∠C=∠CBE
B.∠1=∠4 D.∠C+∠ABC=180°
【详解】解:由∠1=∠4,可得AD∥BC; 由∠2=∠3或∠C=∠CBE或∠C+∠ABC=180°, 可得AB∥CD, 故选:B.
3.下列说法正确的是( )
知识点一 同位角相等,两直线平行 思考 (1)刚才的推平行线法可以看作是怎样的图形变换? (2)在画图过程中,有没有始终相等的角? (3)直线a,b位置关系如何?
A a
1
b
2
总结归纳
平行线的判定方法1:两条直线被第三条直线所截 ,如果同位角相 等,那么这两条直线平行.
简记:同位角相等,两直线平行.
例5 如图,E是AB上一点,F是DC上一点,G是BC延长线
上一点.
(1)如果∠B=∠DCG,可以判断哪两条直线平行? 为什么?
2022年初中数学《平行线的判定》导学案(推荐)
5.2 平行线及其判定5.2.2 平行线的判定一、新课导入1.导入课题:上节课我们学习了平行线的概念和画法,这节课我们来研究如何判定两条直线是不是平行线〔板书课题〕.2.学习目标:〔1〕学会并记住平行线的判定方法1、2、3.〔2〕能运用平行线的判定方法进行简单的推理论证.3.学习重、难点:重点:平行线的判定方法1、2、3.难点:运用平行线的判定方法进行简单的推理论证.二、分层学习1.自学指导:〔1〕自学内容:课本P12至P13的内容.〔2〕自学时间:10分钟.〔3〕自学要求:阅读教材,重点处做好圈点,遇到疑难相互研讨.〔4〕自学参考提纲:①12“思考〞中用直尺和三角尺画平行线示意图,可以发现,在画平行线时,三角尺在移动时紧靠直尺,并且三角尺的角的大小不变,又在移动前、后,三角尺的角恰好是直线AB、CD被EF所截形成的一对同位角,这说明:如果∠DEF=∠BGF,那么AB∥CD.b.这一事实揭示的就是平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简称为同位角相等,两直线平行.用符号语言表述是:如图1,假设∠1=∠2,那么a∥b.c.在课本图5.2-7中,你能说出木工用图中的角尺画平行线的道理吗?②a.在图1中,∠2与∠3是一对内错角.∠3=∠2,能得到直线a∥b吗?分析:假设能由∠3=∠2转化为∠1=∠2,那么由判定方法1,就可得a∥b,你能写出推理过程吗?②可得到平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称为内错角相等,两直线平行.③a.在图1中,∠2与∠4是一对同旁内角.∠2+∠4=180°,能得到直线a∥b吗?分析:假设能由∠2+∠4=180°转化为∠1=∠2〔或∠3=∠2〕,那么由判定方法1〔或判定方法2〕,就可得a∥b,你能写出推理过程吗?②可得到平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简称为同旁内角互补,两直线平行.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂,关注学生在自学中遇到的疑难问题.②差异指导:对个别学习有困难的学生进行点拨引导.〔2〕生助生:小组相互交流学习,纠正认知偏差.4.强化:〔1〕判定方法1、2、3及其几何表述.〔2〕练习:课本P15“复习稳固〞的第1、2题.1.自学指导:〔1〕自学内容:课本P14例题.〔2〕自学时间:4分钟.〔3〕自学要求:阅读教材,重点处做好圈点,有疑点处做上记号.〔4〕自学参考提纲:①仔细体会,揣摩例题的几何推理过程,你能仿照它用别的方法说明b∥c 吗?②本例的结论也可作为平行线的一种判定方法,简述为:在同一平面内,垂直于同一条直线的两直线平行.③如图2,BE是AB的延长线.∠CBE=∠A可以判定哪两条直线平行?根据是什么?答案:BC∥AD.根据是同位角相等,两直线平行.∠CBE=∠C可以判定哪两条直线平行?根据是什么?答案:AB∥CD.根据是内错角相等,两直线平行.④如图3,这是小明同学自己制作的英语抄写纸的一局部,其中的横线互相平行吗?你有多少种判别方法?答案:平行.理由不唯一.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:关注学生完成自学参考提纲的进度、存在的问题及疑点.②差异指导:对个别学习有困难或认知缺乏的学生进行点拨引导.〔2〕生助生:小组内学生相互交流,取长补短.4.强化:〔1〕判断两条直线平行的方法:①平行公理的推论:如果两条直线都与第三条直线平行,这两条直线也互相平行.②平行线判定方法1,即同位角相等,两直线平行.③平行线判定方法2,即内错角相等,两直线平行.④平行线判定方法3,即同旁内角互补,两直线平行.⑤在同一平面内,垂直于同一条直线的两条直线互相平行.〔2〕练习:课本P14“练习〞第2题.三、评价1.学生学习的自我评价:各小组针对学习收获和存在的困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习过程中的态度、方法和成效进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本节课通过“问题情境—合作探究—建立模型—求解—应用〞的根本过程,使学生体会到了数学知识之间的内在联系;通过对问题的探究,获得了一些研究问题的方法和经验;开展了思维能力,加深了对相关知识的理解,通过获得成功的体验和克服困难的经历,增强了学生学习数学、应用数学的自信心.(时间:12分钟总分值:100分)一、根底稳固〔70分〕1.〔20分〕如图,直线a,b,c被直线l所截,量得∠1=∠2=∠3.〔1〕假设∠1=∠2,那么a∥b,理由是同位角相等,两直线平行.〔2〕假设∠1=∠3,那么a∥c,理由是内错角相等,两直线平行.〔3〕直线a,b,c互相平行吗?为什么?解:平行,∵b∥a,c∥a,∴b∥c,∴a∥b∥c.第1题图第2题图第3题图第4题图2.(10分)如图,根据图中所给条件:〔1〕互相平行的直线有a∥b,c∥d;〔2〕互相垂直的直线有e⊥b,e⊥a.3.〔10分〕如图,如果∠3=∠7或∠4=∠8或∠2=∠6或∠1=∠5,那么a∥b,理由是同位角相等,两直线平行;如果∠5=∠3或∠2=∠8,那么a∥b,理由是内错角相等,两直线平行;如果∠2+∠5=180°或∠3+∠8=180°,那么a∥b,理由是同旁内角互补,两直线平行.4.〔10分〕如图,如果∠2=∠6,那么AD∥BC,如果∠3+∠4+∠5+∠6=180°, 那么AD∥BC;如果∠9 =∠DAB,那么AD∥BC;如果∠9=∠3+∠4,那么AB∥CD.5.〔20分〕如图,直线a,b被直线c所截,现给出以下四个条件:①∠1=∠5;②∠1=∠7;③∠4=∠7;④∠2+∠3=180°.其中能说明a∥b的条件序号为(A)A.①②B.①③C.①④D.③④二、综合应用〔20分〕6.如图,当∠1=∠3时,直线a,b平行吗?当∠2+∠3=180°时,直线a,b 平行吗?为什么?解:∵∠1=∠3,∠3=∠4,∴∠1=∠4,∴a∥b〔同位角相等,两直线平行〕.∵∠3=∠4,∠2=∠5,∠2+∠3=180°,∴∠4+∠5=180°,∴a∥b〔同旁内角互补,两直线平行〕.三、拓展延伸〔10分〕7.如下列图,直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,那么a与c平行吗?为什么?解:∵∠1=∠2,∴a∥b〔内错角相等,两直线平行〕.∵∠3+∠4=180°,∴b∥c〔同旁内角互补,两直线平行〕.又∵a∥b,∴a∥c〔如果两条直线都与第三条直线平行,那么这两条直线也互相平行〕.5.3.1 平行线的性质一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何表达的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.〔板书课题〕2.学习目标:〔1〕能表达平行线的三条性质.〔2〕能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:〔1〕自学内容:课本P18的内容.〔2〕自学时间:8分钟.〔3〕自学要求:正确画图、测量、验证、归纳.〔4〕探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交〔如图1所示〕.②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:〔1〕师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.〔2〕生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:〔1〕平行线的性质1及其几何表述.〔2〕经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:〔1〕自学内容:课本P19的内容.〔2〕自学时间:8分钟.〔3〕自学要求:阅读教材,重要的局部做好圈点,疑点处做好记号.〔4〕自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:〔1〕师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对局部感到困难的学生进行点拨引导.〔2〕生助生:小组内相互交流、研讨、订正.4.强化:〔1〕平行线的性质1、2、3及其几何表述.〔2〕判定与性质的区别:从角的关系得到两直线平行,就是判定;从直线平行得到角相等或互补,就是性质.〔3〕练习:课本P20“练习〞第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习中的态度、方法、成效及缺乏进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用标准性的几何语言.缺乏的是师生之间的互动配合和默契程度有待加强.(时间:12分钟总分值:100分)一、根底稳固〔60分〕1.〔10分〕如图,由AB∥CD可以得到〔C〕A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.〔10分〕如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=〔C〕A.180°B.270°C.360°D.540°3.〔10分〕如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.〔10分〕如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.〔20分〕如图,a∥b,c、d是截线,假设∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°〔两直线平行,内错角相等〕,∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用〔20分〕6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸〔20分〕7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.〔1〕∠DAB等于多少度?为什么?〔2〕∠EAC等于多少度?为什么?〔3〕∠BAC等于多少度?〔4〕由〔1〕、〔2〕、〔3〕的结果,你能说明为什么三角形的内角和是180°吗?解:〔1〕∵DE∥BC,∴∠DAB=∠B=44°〔两直线平行,内错角相等〕.〔2〕∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).〔3〕∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.。
初中数学_《平行线的判定》教学设计学情分析教材分析课后反思
5.2.2平行四边形的判定【整体设计】【教学目标】1、让学生记住平行线的判定方法,并能进行简单的推理说明。
2、逐步培养学生严谨推理能力.3、引导学生结合图形,探究由数量推出位置关系,进一步领会数形结合的思想方法.【教学重难点】重点:平行线的判定方法,在探究中理解推理过程。
难点:运用判定方法进行简单的推理说明。
【课前准备】 多媒体课件、学生准备三角板设计者-------------------------------------------------------------【教学过程设计】一、设计问题,创设情境回顾上节课学习的内容,思考那些结论可以判断两直线是否平行?1.定义:同一平面内不相交的两条直线互相平行.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行3.推论:如果两条直线 都与第三条直线平行,那 么这两条直线也互相平行。
∵a ∥ c ,b ∥c ∴a ∥b .【设计意图】回顾旧知,引入新知二、探索交流、揭示规律1、“思考”问题:考虑学过的画平行线的方法——使用三角板和直尺,如图所示: 分析体会,可以看出:画a 的平行线b,实际上就过点P 画与∠1相等的∠2,而∠1和∠2是直线a,b 被直线c 截得的同位角,这说明,如果同位角相等,那么两直线平行.这样得到了判定方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说成:同位角相等,两直线平行数学符号表示为:∵∠1= ∠2 (已知)∴a//b ( 同位角相等,,两直线平行 )a b cc 1 a. p b a b. p 2 1 2【设计意图】通过画平行线,引导学生观察由角的数量关系得出直线位置关系的过程,从而得出平行线判定方法。
三、运用规律,解决问题探究一:当∠3和 ∠2满足什么关系时,可推出a//b ? 如何推出?写出你的推理过程(此处学生可以用不同的方法进行推理说明)判定方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单地说成:内错角相等,两直线平行数学符号表示为:∵∠3= ∠2 (已知)∴a//b (内错角相等,,两直线平行)探究二:当∠1和 ∠2满足什么关系时,可推出a//b ?如何推出?写出你的推理过程(此处学生可以用不同的方法进行推理说明)判定方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单地说成:同旁内角互补,两直线平行数学符号表示为:∵∠1+ ∠2 =180° (已知)∴a//b (同旁内角互补,两直线平行)思考:同旁内角相等,两直线平行吗? 生: 不一定 如等边三角形等【思路点拨】理解间接条件向直接条件的转化的过程。
平行线及其判定的教案
平行线及其判定的教案教案标题:平行线及其判定教案目标:1. 了解平行线的定义及其判定方法。
2. 掌握使用直角、同位角和内错角等方法判断线段是否平行。
3. 能够应用所学知识解决相关问题。
教学内容:1. 平行线的定义:两条直线在同一平面内,且不相交,称为平行线。
2. 平行线的判定方法:a. 直角判定法:若两条直线与第三条直线相交时,形成的两组相等的直角相等,则这两条直线是平行线。
b. 同位角判定法:若两条直线与第三条直线相交时,形成的同位角相等,则这两条直线是平行线。
c. 内错角判定法:若两条直线与第三条直线相交时,形成的内错角相等,则这两条直线是平行线。
教学步骤:1. 导入:通过展示两条平行线的图片,引导学生思考平行线的特点和判定方法。
2. 知识讲解:a. 介绍平行线的定义,并与学生一起探讨平行线的特点。
b. 依次介绍直角判定法、同位角判定法和内错角判定法,并通过示例演示每种判定方法的应用。
3. 知识巩固:a. 给学生提供一些练习题,让他们应用所学知识判断给定的线段是否平行。
b. 鼓励学生互相交流,分享解题思路和答案。
4. 拓展应用:a. 提供一些实际问题,让学生应用所学知识解决。
b. 引导学生思考平行线在生活中的应用,并与他们分享一些实际应用场景。
5. 总结归纳:a. 总结平行线的定义和判定方法。
b. 强调学生在解题过程中要注意细节和准确性。
6. 作业布置:a. 布置练习题作为课后作业,巩固所学知识。
b. 鼓励学生自主寻找更多关于平行线的例子和应用场景,并进行记录。
教学辅助工具:1. 平行线的图片或示意图。
2. 教材或课件,包含相关知识点的介绍和示例题。
3. 练习题和解答。
教学评估:1. 在课堂上观察学生的参与度和理解程度。
2. 检查学生完成的练习题和作业,评估他们对平行线及其判定的掌握情况。
3. 针对学生的表现,及时给予反馈和指导。
教案撰写者:教案专家。
5.2.1平行线数学教案
5.2.1平行线数学教案
标题:平行线数学教案
一、教案目标
1. 理解并掌握平行线的基本概念
2. 学会如何识别和判断平行线
3. 掌握平行线的相关性质和定理
4. 能够运用所学知识解决实际问题
二、教学内容与教学步骤
1. 引入新课:
通过实例引入,让学生观察生活中的平行线现象,引导学生思考什么是平行线。
2. 新课讲解:
(1) 定义平行线:在同一平面内,永不相交的两条直线叫做平行线。
(2) 平行线的表示法:用符号“∥”表示,例如:“AB∥CD”表示直线AB与直线CD平行。
(3) 平行线的性质:平行线间的距离处处相等;过直线外一点有且只有一条直线与已知直线平行。
(4) 平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
3. 实例解析:
选取一些具体的例子,让学生理解和应用平行线的概念和性质。
4. 练习与讨论:
设计一些题目,让学生自己尝试解答,然后进行集体讨论,教师给予必要的指导。
三、教学方法与策略
1. 激发兴趣:以生活中的实例引入,激发学生的探索兴趣。
2. 启发式教学:引导学生主动思考,培养他们的逻辑思维能力。
3. 实践操作:通过动手操作,加深对理论知识的理解。
四、教学评估
1. 过程评价:观察学生在课堂上的表现,如参与程度、回答问题的质量等。
2. 结果评价:通过练习题的完成情况,评估学生对知识点的掌握程度。
五、教学反思与改进
1. 反思教学过程,找出存在的问题。
2. 根据反馈调整教学方法和策略。
广东省陆丰市内湖中学七年级数学下册《5.2 平行线及其
5.2 平行线及其判定一、教学目标1、理解平行线概念, 理解平行公理,了解其推论, 会用三角尺和直尺过直线外一点画这条直线的平行线。
2、经历动手操作、观察、归纳平行线概念及平行公理的过程,提高观察归纳、动手操作、空间想象及逻辑思维能力。
二、教学重难点:平行公理及其推论。
三、教学过程(一)自主学习1、一般地,在同一个平面内,_______________的两条直线叫做平行线。
2、平行公理:经过直线外一点,有且只有____________条直线与这条直线平行。
3、如果两条直线都与第三条直线平行,那么这两条直线也互相_________________。
(二)合作探究问题1:同一平面内,两条直线存在哪些位置关系?问题2:平行线在生活中很常见, 你能举出一些例子吗?平行线画法:问题3 如何画平行线呢?给一条直线a,你能画出直线a的平行线吗?问题4 在转动木条a的过程中有几个位置使得直线a与b平行? 过点B画直线a的平行线,能画出几条?再过点C画直线a的平行线,它和前面过点B画出的直线平行吗?归纳:1、_________________________________________________________________________.2、__________________________________________________________________________.巩固练习:1、读下列语句,并画出图形(1)如图1,过点A画EF ∥ BC;(2)如图2,在∠AOB内取一点P,过点P画PC ∥ OA交OB于C,PD ∥ OB交OA于D.1图 2图2、在平面上画四条直线,使它们分别满足下列条件:(1)没有交点;(2)只有一个交点;(3)有三个交点;(4)有四个交点;(5)有五个交点;(6)有六个交点。
四、课堂小结:1.平面内两条直线有哪些位置关系?2.平行公理及其推论的内容是什么?五、布置作业:课本第12页练习六、教学反馈(下课后填完,并交给科代表)可以另外书写小纸条上交听懂,并会解题听懂,不怎么会解题有点懂听不懂七、教学反思:一、教学目标1、理解平行线的判定方法。
平行线的判定教学设计
平行线的判定教学设计
教学设计:关于平行线的判定
一、教学目标:
1. 知识目标:学生能够准确理解平行线的定义,并能够准确判定两条线是否平行。
2. 能力目标:学生能够熟练运用平行线的判定方法,解决相关问题。
3. 情感目标:培养学生对几何知识的兴趣,提高学生的逻辑思维能力和解决问题的能力。
二、教学内容:
1. 平行线的定义
2. 平行线的判定方法
三、教学过程:
1. 导入:通过展示一些平行线的图形,引导学生思考如何判定两条线是否平行。
2. 学习:介绍平行线的定义,并讲解平行线的判定方法,包括同位角相等、内错角相等、同旁内角互补等。
3. 实践:让学生通过练习题来巩固所学知识,帮助他们熟练掌握平行线的判定方法。
4. 拓展:引导学生思考更复杂的问题,如如何判定三条线是否平行等。
5. 总结:对本节课所学内容进行总结,并强调平行线的重要性和应用。
四、教学方法:
1. 教师讲解结合示范
2. 学生合作学习
3. 练习题训练
4. 提问引导
五、教学评估:
1. 学生课堂表现
2. 练习题成绩
3. 课堂小测验
六、教学反思:
1. 教师应及时调整教学方法,根据学生的学习情况进行灵活处理。
2. 鼓励学生多思考,多提问,培养学生的主动学习能力。
3. 加强与学生的互动,及时纠正学生的错误,帮助学生掌握正确的知识。
[初中数学]平行线的性质和判定教案人教版
《平行线的性质和判定》教案●课题回顾与思考●教学目标(一)教学知识点1.证明的必要性,了解证明的书写格式.2.了解定义、命题、公理和定理的含义.3.平行线的性质定理和判定定理.4.三角形的内角和定理及推论.(二)能力训练要求1.理解证明的含义.2.通过具体例子,进一步了解定义、命题,定理、公理的含义,并会区分命题的条件和结论.3.掌握用综合法证明的格式.体会证明的过程要步步有依据.4.通过回顾与思考,进一步理解掌握平行线的性质定理和判定定理,并会灵活应用.5.通过回顾与思考,进一步理解掌握三角形内角和定理及推论,并会灵活应用.(三)情感与价值观要求通过学生回顾与思考,使他们进一步体会直观是重要的,但有时也会欺骗人,这时就需要通过逻辑推理来判断,培养学生的推理论证能力,进而发展他们的空间观念.●教学重点1.平行线的性质定理和判定定理的应用.2.三角形内角和定理及其推论的应用.3.证明的步骤及书写格式.●教学难点证明过程的书写.●教学方法自学,小组讨论法.●教具准备投影片三张第一张:问题(记作投影片“回顾与思考”A)第二张:平行线的判定与性质的关系图(记作投影片“回顾与思考”B)第三张:知识结构图(记作投影片“回顾与思考”C)●教学过程Ⅰ.巧设问题情境,引入课题[师]前面几节课我们探讨了第六章“证明”,在教学中为什么要证明?如何证明呢?今天我们就来对此进行回顾与思考.Ⅱ.回顾与思考[师]同学们先独立思考下列问题,然后以小组为单位进行讨论,共同回顾本章的内容.(出示投影片“回顾与思考”A)1.直观是重要的,但它有时也会欺骗人,你还能找到这样的例子吗?2.请你用自己的语言说一说什么叫定义、命题、公理和定理.3.什么条件下两条直线平行?两条直线平行又会怎样?这两类命题的条件和结论有什么关系?你会证明它们吗?4.三角形内角和定理怎样证明?三角形的外角与内角有什么关系?5.请你用自己的语言说一说证明的基本步骤.(学生通过讨论、归纳、举例、一个一个问题解决)[生甲]如:两棵一样高的树,但相距很远,当你站在其中一棵树旁边时,显得它很高,而另一棵较低.图6-69又如图6-69:直观看,图6-69(1)长,图6-69(2)短,实际上是一样长的.……(学生举出了许多生活中的实例,说明直观有时也会发生错误)[生乙]定义就是对名称和术语的含义加以描述,作出明确的规定.命题呢,就是判断一件事情的句子.公理:是人们在长期的实践中总结出来的,正确的命题.即公认的真命题.定理是经过推理的过程得到的真命题.[生丙]在同位角相等的情况下,两直线平行;在内错角相等或同旁内角互补的情况下,两直线平行.如果两条直线平行时,则同位角相等,内错角也相等,同旁内角是互补的.这两类命题的条件和结论正好相反.[生丁]两条直线平行的判定定理的条件是两条直线平行的性质定理的结论,它的结论又正好是两直线平行的性质定理的条件.[生戊]公理也是.[师]同学们讨论得很好,这两类命题的关系如下图(出示投影片“回顾与思考”B)[师]你们会证明它们吗?[生]会.主要利用平行线的性质公理证明其性质.利用平行线的判定公理证明判定定理.[师]很好.接下来看问题4、5.[生甲]证明三角形内角和定理的思路是将原三角形中的三个角“凑”到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.[生乙]三角形的外角与它相邻的内角是互为补角.与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.[生丙]证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.[生丁]在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据.[师]同学们讨论得真棒,通过分组活动,解决了具有能反映本章内容的一串问题.现在来梳理一下本章的知识结构图.(出示投影片“回顾与思考”C)[师]好,下面我们通过练习来进一步熟悉掌握本章内容.Ⅲ.课堂练习(一)课本P203复习题A组1~7图6-701.将正方形的四个顶点用线段连接,什么样的连法最短?研究发现,并非对角线最短.而是如图6-70的连法最短(即用线段AE、DE、EF、CF、BF把四个顶点连接起来),已知图中∠DAE=∠ADE=30°,∠AEF=∠BFE=120°,你能证明此时AB∥EF吗?答案:能.证明:∵四边形ABCD是正方形(已知)∴∠DAB=90°(正方形的性质)∵∠DAE=30°(已知)∴∠EAB=60°(等式性质)∵∠AEF=120°(已知)∴∠AEF+∠EAB=120°+60°=180°(等式的性质)∴AB∥EF(同旁内角互补,两直线平行)图6-712.已知,如图6-71,直线a,b被直线c所截,a∥b.求证:∠1+∠2=180°证明:∵a∥b(已知)∴∠1+∠3=180°(两直线平行,同旁内角互补)∵∠3=∠2(对顶角相等)∴∠1+∠2=180°(等量代换)图6-723.已知,如图6-72,∠1+∠2=180°,求证:∠3=∠4.证明:∵∠2=∠5(对顶角相等)∠1+∠2=180°(已知)∴∠1+∠5=180°(等量代换)∴CD∥EF(同旁内角互补,两直线平行)∴∠3=∠4(两直线平行,同位角相等)4.回答下列问题(1)三角形的一个内角一定小于180°吗?一定小于90°吗?(2)一个三角形中最多有几个直角?最多有几个钝角?(3)一个三角形的最大角不会小于60°,为什么?最小角不会大于多少度?答案:(1)是不一定(2)一个一个(3)如果一个三角形的最大角小于60°,则这个三角形的三个内角的和将小于180°,所以一个三角形的最大角不会小于60°.最小角不会大于60°.图6-735.“作一个立方体使它的体积等于已知立方体的2倍”,这是数学史上三个著名问题之一.今天人们已经知道,仅用圆规和直尺是不可能作出这样的立方体的.在探索这一问题的过程中,有人曾利用过如图6-73所示的图形.其中AB⊥BC,BC⊥CD,AC⊥BD,2PD=P A.如果∠A=α,那么∠ABP和∠PCD等于多少?解:∵AC⊥BD(已知)∴∠APB=90°(垂直的定义)∵∠A+∠APB+∠ABP=180°(三角形的内角和定理)∠A=α∴∠ABP=90°-α(等式的性质)∵AB⊥BC,BC⊥CD(已知)∴∠ABC=∠BCD=90°(垂直的定义)∴∠ABC+∠BCD=180°(等式的性质)∴AB∥CD(同旁内角互补,两直线平行)∴∠A=∠ACD(两直线平行,内错角相等)∵∠A=α(已知)∴∠PCD=α(等量代换)图6-746.已知,如图6-74,在△ABC中,DE∥BC,F是AB上一点,FE的延长线交BC的延长线于点G,求证:∠EGH>∠ADE.证明:∵DE∥BC(已知)∴∠ADE=∠B(两直线平行,同位角相等)∵∠EGH是△FBG的一个外角(已知)∴∠EGH>∠B(三角形的一个外角大于任何一个和它不相邻的内角)∴∠EGH>∠ADE(等量代换)7.已知,如图6-75,直线AB∥ED.求证:∠ABC+∠CDE=∠BCD.(1)(2)图6-75本题有多种证法.证法一:(如图6-75(1))过点C 作CF ∥AB. ∴∠ABC=∠BCF (两直线平行,内错角相等)∵AB ∥ED (已知)∴ED ∥CF (两直线都和第三条直线平行,则这两条直线平行)∴∠EDC=∠FCD (两直线平行,内错角相等)∴∠BCF +∠FCD =∠EDC +∠ABC (等式性质)即:∠BCD=∠ABC+∠CDE证法二:(如图6-75(2)),延长BC 交DE 于F 点∵AB ∥DE (已知)∴∠ABC=∠CFD (两直线平行,内错角相等)∵∠BCD 是△CDF 的一个外角(已知)∴∠BCD=∠CFD +∠CDE (三角形的一个外角等于和它不相邻的两个内角和)∴∠BCD=∠ABC+∠CDE (等量代换)Ⅳ.课时小结本节课我们复习了第六章“证明(一)”的主要内容.大家要掌握证明的基本步骤,要会灵活添加辅助线,把条件和结论联系起来.还要会应用平行线的性质,判定及三角形的内角和定理、推论来解决一些证明、计算问题.Ⅴ.课后作业(一)课本P 205复习题B 组1~5(二)写一份小结,总结自己在本章学习中的收获、困难和需要改进的地方.Ⅵ.活动与探究图6-761.已知,如图6-76,∠B=32°,∠D=38°,AM 、CM 分别平分∠BAD 、∠BCD ,求∠M 的度数. 你能把它一般化吗?你会证明如下结论吗?AM 、CM 分别平分∠BAD 和∠BCD. 求证:∠M=21(∠B+∠D )[过程]让学生在探索的活动过程中,体会由特殊到一般的过程.培养他们分析、综合、归纳的能力.[结果]解:∵AM 、CM 分别平分∠BAD 和∠BCD.∴∠BAM=21∠BAD ,∠MCB=21∠BCD. ∵∠B+∠BAD +∠AFB=180°∠D +∠BCD +∠DFC =180°∠AFB =∠DFC∴∠B+∠DAB =∠D +∠BCD ∴∠DAB -∠BCD =∠D -∠B ∵∠BEM=∠M+∠BCM ,∠BEM =∠B+∠BAM ∴∠M+∠BCM=∠B+∠BAM ∴∠M=∠B+∠BAM -∠BCM =∠B+21(∠DAB -∠BCD )=∠B+21(∠D -∠B )=21(∠B+∠D )∵∠B=32°∠D =38°∴∠M=21(32°+38°)=35°●板书设计回顾与思考一、问题串二、知识结构图证明的一般步骤真命题的证明概念证明.3.2.1三、课堂练习四、课时小结五、课后作业。
初中数学《平行线的判定》教案基于学科核心素养的教学设计及教学反思
基于学科核心素养的教学设计
课程名称:《平行线的判定》
姓名
教师姓名
任教学科
数学
学校
学校名称
教龄
9
教学目标
学会如何判定连两直线平行
教学重点与难点
重点:平行的公里和推论难点:如何用角与角之间的关系判断两直线平行
学科核心素养分析
数学学科核心素养包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。这些数学学科核心素养既相对独立、又相互交融,是一个有机的整体。
让学生知道平行性的判定是有什么的来的,让知识得到系统的链接在一起
板书设计
1.预习案4、当堂检测
2.探究案5、课堂小结
3.训练案6、布置作业
教学反思
1、反思教师:教学重难点是否讲清
2、反思学生:学生的当堂检测是否达标
学生学情分析
学生在学习这一部时,他们已经学习了什么是同位角、内错角、同旁内角,还有什么是平行线、已经平行线的推论,所以学习这一部分是有一定的基础的。
教学过程设计
教师活动
预设学生活动
设计意图
准备好课前需要的教学用品,告知学生这节课的重难点和学习目标,让学生联系生活,了解生活中如何得到线线平行
先用平行线的公理,过直线外一点做一条直线的平行线有且有一条,让学生探讨这种有一些什么信息,在老师的引导下,登出同位角氙灯,两直线平行
基于新课程标准的初中数学教学——以“平行线及其判定”教学设计为例
教育·现场基于新课程标准的初中数学教学———以“平行线及其判定”教学设计为例文|杨志英课程标准要求数学课程应致力于实现义务教育阶段的培养目标,即提高学生的数学素养,为其未来的学习和生活奠定坚实的基础。
教师需要关注学生的全面发展,特别是逻辑思维能力、创新思维能力和问题解决能力的培养。
在课堂教学中,教师可以通过具有挑战性的数学问题引导学生思考和讨论,激发学生的学习兴趣和求知欲;教师还应关注数学与现实生活的联系,让学生在实际情境中理解数学概念和原理,提高他们运用数学知识解决实际问题的能力。
同时,教师需要采用多样化的教学方法和手段,如小组合作、探究学习等,以适应不同学生的学习风格和需求。
总之,新课程标准下的初中数学教学需要注重学生的全面发展,培养学生的数学思维能力和实际应用能力,加强与现实生活的联系,采用多样化的教学方法和评价方式,以适应不同学生的需求和发展。
本文以“平行线及其判定”的教学为例进行说明。
一、教材分析“平行线及其判定”是人教版七年级下册的内容,课时为2课时,是在学习了相交线和平行线之后的一节内容,主要探索两直线平行的条件,既是学习几何的基础,也是在学习了角和线之后最基本的知识。
其在以后不管是学习三角形、四边形以及后面学习的圆中都是最常用的知识点,所以它是学生数学学习的重点。
二、教学目标1.学生可以在基本图形中找到内错角、同位角、同旁内角;会在简单的图形中利用直线平行的条件来判断两条直线是否平行。
2.通过观察、操作、想象、推理和交流等活动,培养学生的空间想象力和严格的逻辑推理能力及归纳、总结、概括能力。
3.参与探究知识的形成过程,从而得出结论也就是直线平行的条件,进一步感悟、理解、归纳、语言表达、转化等数学思想方法,深刻体会数学源于生活、用于生活的新课程理念。
三、教学重难点探索直线平行的条件,掌握直线平行的条件,并能应用这些条件来判断两条直线是否平行。
四、教学过程(一)问题引入学生活动:1.欣赏有平行线元素的漂亮图片。
5.2 平行线及其判定 人教版数学七年级下册大单元教学设计
5.2 平行线及其判定(单元教学设计)一、【单元目标】通过情景导入,归纳总结出图形出现的规律,从而得到平行线的概念;从平行线的关系可以发现存在同位角、内错角、同旁内角,我们就可以推导出平行线的判定方法;通过这种循序渐进的教育模式,提高学生的参与度,促进对知识点的理解,并且加强学生对数学学习的兴趣;(1)选择特点鲜明的图片,让学生从中归纳出平行线的概念,再由平行线的情况发现“三线八角”,就可以得到平行线的判定方法;学生通过完成相关的例题,加强对概念的理解和应用,同时对复杂的平行线判定方法有一个直观的感受;(2)通过小组合作探究,让学生参与教学过程,加深对基础概念的理解,提升了学生的数学抽象素养,进一步发展了学生的类比推理素养;(3)通过典型例题的训练,加强学生的做题技巧,训练做题的方法,提升学生的逻辑推理素养;(4)在师生共同思考与合作下,学生通过概括与抽象、类比的方法,体会了归因与转化的数学思想,同时提升了学生的数学抽象素养,并发展了学生的逻辑推理素养;(5)通过观察图片,提高学生的观察事物的能力,同时激发学生的学习兴趣,提升学生的人文素养;二、【单元知识结构框架】平行线及其判定1、平行线的概念2、平行线判定的方法同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行3、平行线判定方法的综合运用三、【学情分析】1.认知基础本节内容是本章的重点内容之一,是考试的常考点;这一节内容让我们学会了对平行线的证明,加强对证明方法的理解;“三线八角”证明平行线关系,也是我们学好几何证明的基础;2.认知障碍学生在理解同位角、内错角、同旁内角证明平行线关系时易产生混乱,导致做题的依据不充分,对于复杂的平行线判定问题,往往会出现束手无策的情况,这里需要加强对角的关联性计算,同时要灵活运用“三线八角”证明是否是平行线;四、【教学设计思路/过程】课时安排:约2课时教学重点:平行线的概念;掌握同位角相等、两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;教学难点:平行线判定方法的综合运用;五、【教学问题诊断分析】5.2.1平行线的概念问题1:(情境导入)数学来源于生活,生活中处处有数学,观察下面的图片,你发现了什么?【破解方法】学会观察周边的事物,总结图形中出现的规律,再形成基础概念;通过具体图片,帮助学生掌握两条线之间的位置关系,培养学生的洞察能力和总结能力,促进学生思维的发展。
七年级数学下册《平行线及其判定》优秀教学案例
-完成教材中的相关习题,巩固所学知识。
2.提醒学生认真完成作业,培养良好的学习习惯。
3.鼓励学生在课后进行自主学习和拓展,提高数学素养。
五、案例亮点
1.生活化的情境创设
本案例在教学过程中,充分运用生活化的情境创设,将平行线的概念和性质融入学生的生活经验中。通过展示生活中的平行线实例,让学生在实际问题中发现数学知识,增强数学与现实生活的联系,激发学生的学习兴趣和探究欲望。
-通过设置实际问题,让学生运用所学知识进行分析、推理和判断,培养他们解决实际问题的能力。
-引导学生将平行线的性质和判定方法应用于几何图形的绘制和计算,提高他们对几何图形的理解和应用能力。
(二)过程与方法
1.培养学生观察、思考、讨论、总结的能力。
-鼓励学生在课堂中积极参与,学会观察生活中的平行线现象,提出问题,进行思考。
在教学过程中,教师将结合教材内容,以学生为主体,充分调动他们的积极性,引导他们通过观察、思考、讨论等方式,掌握平行线的概念、性质和判定方法。本案例注重培养学生的实际操作能力和问题解决能力,鼓励学生在实际生活中发现数学、应用数学,使数学课堂变得生动有趣、富有实效。
二、教学目标
(一)知识与技能
1.理解平行线的定义,掌握平行线的性质和判定方法。
1.鼓励学生进行自我反思,总结自己在学习平行线过程中的收获和不足,明确今后的学习方向。
2.教师及时对学生的学习情况进行评价,既要关注学生的知识与技能掌握,也要关注学生的学习过程和方法,以及情感态度与价值观的培养。
3.教师应积极倾听学生的反馈,根据学生的需求调整教学策略,不断提高教学效果。
四、教学内容与过程
1.利用多媒体手段,呈现丰富的视觉资源,帮助学生建立平行线的直观形象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2平行线及其判定
教学目的:
1.使学生掌握平行线的判定公理及判定定理;理解判定公理的形成、判定定理的证法,了解表达推理证明的方式。
2.使学生能根据判定公理及定理进行简单的推理论证。
3.通过“转化”及“运动——变化”的数学思想方法的运用,培养学生的“观察——分析”和“归纳——概括”能力。
教学重点:
在观察、实验的基础上进行公理的概括与定理的证明。
教学难点:
定理形成过程中的逻辑推理及其书面表达。
教学方法:
启发式谈话法。
教学用具:
三角板、两根细铁棍;投影胶片、投影仪、计算机及教学软件。
教学过程:
一、复习上节课的知识
首先引导学生复习上节课所讲的平行线的定义、平行公理及其推论,然后让学生判断下列语句是否正确,并说明道理:
1.两条直线不相交,就叫做平行线;
2.与一条直线平行的直线只有一条;
3.如果直线a、b都和c平行,那么a、b就平行。
其中第一小题若学生答错,则作教具演示以矫正;第二小题若学生答错,使学生看横格纸以矫正;第三小题叫一名学生口答,而后师生共同纠正。
二、讲授新知识
1.平行线判定公理
(1)提出新问题:如果只有a、b两条直线,如何判断它们是否平行?由于前面已经复习了平行公理的推论,因为估计学生会说“再作一条直线c,让c//a,再看c是否平行于b就行了”。
而后再以“如何作c,使它与a平行?作出c后,又如何判断c是否与b平行”追问,使学生意识到刚才的回答似是而非、需要找新的方法后,进一步启发学生,能否由平行线的画法找到判断两直线平行的条件,并让学生过已知直线a外一点p画a的平行线b,而后作以下演示:
(2)进行观察比较,得出初步结论
由刚才的演示发现:画平行线仍借助了第三条直线,但是要用与a、b都相交的第三线,根据“三线八角”的名称,在画平行线的过程中,实际上是保证了同位的两个角
都是45°或60°,……因此,得出“猜想”:如果同位角相等,那么两直线平行。
(3)用计算机演示运动……变化过程,得出最后结论。
先提出问题“会不会有某一特定时刻,即使同位角不等两直线也平行呢?”以引出运动——变化的实验。
在观察实验之前,首先让学生认清a和角(如图),而后开始实验。
使学生充分观察,并得出结论:当≠α时,a不平行于b;而不论a取何值,只要=α,a、b就平行。
再引导学生自己表达出结论,并告诉学生这个结论称为“平行线的判断公理”:两条直线被第三条直线所截,如果同位角相等,那么就两条直线平行。
如图1,如何判断这块玻璃板的上、下两边平行?添加出截线后(图2),比照
判定公理图,发现无法定出∠1的同位角,再结合图3,让学生思考、试答。
至发现内
错角相等的条件后,让学生说明道理,而后师生共同修改。
最后,用投影仪投出完整的“证明”,并作详细的解释,让学生总结出结论。
(2)以实际需要引出新问题,(“同旁内角互补,两直线平行”的判定)。
如何判断如图4所示的玻璃板的上下两边平行?至发现“同旁内角互补”的条件后,让学生结合图5说明道理,而后师生共同修改。
最后,让学生仿照“内错角相等,两直线平行”的证明,写出完整的证明,并让一名学生写在胶片上,然后就此修改并总结结论。
三、新知识的应用
练习1:由∠DCE=∠D,可判断哪两条直线平行?由∠1=∠2,可判断哪两直线平行?由∠D+∠BAD=180°,可判断哪两条直线平行?
练习2:已知∠1=45°,∠2=135°,吗?为什么?
其中练习二找三名方法不同的同学回答。
四、本节课小结
1.概括“判定两条直线平行”的各种方法。
2.师生共同回忆表达推理论证的要求,并结合判定定理的证明过程熟悉表达推理证明的要求,特别强调必须是“前因后果”的步骤。
五、布置作业
1.课本习题节选
2.同步练习。