七桥问题与一笔画的通解

合集下载

七桥问题和一笔画

七桥问题和一笔画

• 七桥问题引起了著名数学家欧拉 (1707—1783)的关注。他把具体七桥 布局化归为图所示的简单图形,于是, 七桥问题就变成一个一笔画问题:怎样 才能从A、B、C、D中的某一点出发,一 笔画出这个简单图形
• 奇偶点。
• 下列图形中,请找出每个图的奇点个数, 偶点个数。试一试哪些可以一笔画出, 从中你能发现什么规律?
七桥问题和一笔画
七桥问题
• • • • • 18世纪时,欧洲有一个风 景秀丽的小城哥尼斯堡, 那里有七座桥。如图所示: 河中的小岛A与河的左岸B、 右岸C各有两座桥相连结,河中两支流间 的陆地D与A、B、C各有一座桥相连结。 当时哥尼斯堡的居民中流传着一道难题: 一个人怎样才能一次走遍七座桥,每座 桥只走过一次,最后回到出发点?
• ■⒈凡是由偶点组成的连通图,一定可 以一笔画成。画时可以把任一偶点为起 点,最后一定能以这个点为终点画完此 图。 ■⒉凡是只有两个奇点的连通图(其余 都为偶点),一定可以一笔画成。画时 必须把一个奇点为起点,另一个奇点终 点。 ■⒊其他情况的图都不能一笔画出。(奇 点数除以二便可算出此图需几笔画成。) •

一笔画哥尼斯堡七桥问题

一笔画哥尼斯堡七桥问题

一笔画哥尼斯堡七桥问题1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支——图论与几何拓扑。

也由此展开了数学史上的新进程。

问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。

七桥问题和欧拉定理。

欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为“欧拉定理”。

故事背景七桥问题18世纪著名古典数学问题之一。

在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。

问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。

有关图论研究的热点问题。

18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。

当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。

这就是柯尼斯堡七桥问题。

欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。

他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2.当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。

Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。

Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。

著名数学家欧拉后来推论出此种走法是不可能的。

七桥问题与一笔画

七桥问题与一笔画

A
1.“七桥问题”如图所示,此图
能一笔画出来吗?为什么?
C
D
答:因为此图单数点的个数
是4,所以不能一笔画出来。
2.下列图形能不能用一笔画出来? B
为什么E ?
A
D
F
DE
F
AB C B
C
因单数点的个数
是0
故能一笔画出
因单数点的个数
是2
故能一笔画出
因单数点的个数
是8
故不能一笔画出
E D
F P
N
C B
为了不影响上课,请家长把手 机调成静音或者震动,谢谢配 合!
七桥问题与一笔画
郭瑞增
能不能既不
重复又不遗
漏地一次相
继走遍这七
七 哥 座桥? 桥尼 问斯 题堡
既不重复又 不遗漏地一 次相继走遍 这七座桥?





③ ④
• 把河的两岸、两个小岛看成四 个点
• 把七座桥看成是七条线
• 转化成数学模型后如图所示 A D
如图是一位
邮递员行走
的路线示意
G 图.如果他要
不重复也不
M
遗漏的把信
H 送到每一个
地点,请问
他应该从什
A
么位置出发?
D
单数 点
C
双数点
E
双数点
F
G
双数点
双数点 P
M
双数点
双数点
B
N双数点
双数点
单数 点
A
H
双数点
D
CD
CD C
A
BA
B AOB



单数点个数: 0

哥尼斯堡七桥问题与一笔画课件

哥尼斯堡七桥问题与一笔画课件
02
在18世纪,人们开始对图论进行 研究,探索图的结构和性质,其 中哥尼斯堡七桥问题成为了图论 研究的重要问题之一。
哥尼斯堡七桥问题的起源
哥尼斯堡七桥问题起源于18世纪初,当时有一位名叫欧拉的 人,他是一位数学家和工程师,对图论进行了深入研究。
欧拉在研究哥尼斯堡的桥梁和河流时,提出了一个问题:是 否存在一条路径,能够遍历哥尼斯堡的所有桥梁,每座桥只 过一次?这就是著名的哥尼斯堡七桥问题。
哥尼斯堡七桥问题对一笔画问题的影响
哥尼斯堡七桥问题的解决推动了数学领域的发展,它证明了不存在一条遍历七座 桥的路径,每座桥只过一次,最后回到开始的地方。
这个问题的解决对于一笔画问题的研究具有重要意义,它揭示了一笔画问题的复 杂性和多样性,也促使数学家们深入研究一笔画问题的性质和规律。
一笔画问题在哥尼斯堡七桥问题中的应用
哥尼斯堡七桥问题是一笔画问题的经典案例,它探讨的是从哥尼斯堡的一个地方开 始,能否遍历城市的七座桥,每座桥只过一次,最后回到开始的地方。
一笔画问题则是一个更广泛的几何问题,研究的是在一个连通图上,是否存在一条 路径能够遍历所有的边,每条边只过一次。
哥尼斯堡七桥问题实际上是几何图形的一笔画问题,它为后续一笔画问题的研究提 供了基础。
哥尼斯堡七桥问题的历史意义
哥尼斯堡七桥问题的解决标志着图论 的诞生,成为图论发展史上的一个里 程碑。
该问题的解决为后续的图论研究提供 了基础和指导,推动了数学和图论的 发展。
02 一笔画问题概述
一笔画问题的定义
一笔画问题,也称为欧拉路径问题,是图论中的一个经典 问题。它主要探讨的是在一个给定的图形中,是否存在一 条路径,使得这条路径能够遍历图形的每一条边且只遍历 一次。
地图导航

哥尼斯堡七桥问题与一笔画

哥尼斯堡七桥问题与一笔画
哥尼斯堡七桥问题与一笔画
著名的哥尼斯堡大学,傍倚于两条支流的河旁, 使这一秀色怡人的区域,又增添了几分庄重的韵味! 有七座桥横跨普累格河及其支流,其中五座把河岸 和河心岛连接起来。这一别致的桥群,古往今来, 吸引了众多的游人来此散步。
哥尼斯堡七桥问题与一笔画
❖ 早在十八世纪以前,当地的居民便热衷于 以下有趣的问题:能不能设计一次散步,使得七 座桥中的每一座都走过一次,而且只走过一次? 这便是著名的哥尼斯堡七桥问题。
奇点个数 偶点个数 能否一笔画
●B
图⑴
A●
图⑵ 图⑶
●A
B●
●C
E●
●D
A
●●
图⑷
哥尼斯堡七桥问题与一笔画
图(5) 图(6) 图(7) 图(8)
奇点个数 偶点个数 能否一笔画
哥尼斯堡七桥问题与一笔画
图(9) 图(10) 图(11)
奇点个数 偶点个数 能否一笔画
哥尼斯堡七桥问题与一笔画
总结规律
①可以一笔画成的图形,与偶点个数无关, 与奇点个数有关。也就是说,凡是图形中没 有奇点的(奇点个数为0),可选任一个点做 起点,且一笔画后可以回到出发点。
❖ 关键词:惊人的记忆力 杰出的智慧 顽强的毅力 孜孜不倦的奋斗精神 高尚的科学道德
哥尼斯堡七桥问题与一笔画
问题分析
数学家欧拉知道了七桥问题他用四个点A、B、 C、D分别表示小岛和岸,用七条线段表示七 座桥(如图)于是问题就成为如何“一笔画” 出图中的图形?
哥尼斯堡七桥问题与一笔画
● 点A、B表示岛 点C。D表示岸 ▎线表示桥
②若奇点个数为2,可选其中一个奇点做起点, 而终点一定是另一个奇点,即一笔画后不可以 回到出发点。
③凡是图形中有2个以上奇点的,不能完成一 笔画。

打印从哥尼斯堡七桥问题谈起Ⅰ(一笔画问题)

打印从哥尼斯堡七桥问题谈起Ⅰ(一笔画问题)

从哥尼斯堡七桥问题谈起Ⅰ(一笔画问题)故事发生在18世纪的哥尼斯堡城.流经那里的一条河中有两个小岛,还有七座桥把这两个小岛与河岸联系起来,那里风景优美,游人众多.在这美丽的地方,人们议论着一个有趣的问题:一个游人怎样才能不重复地一次走遍七座桥,最后又回到出发点呢?/对于这个貌似简单的问题,许多人跃跃欲试,但都没有获得成功.直到1836年,瑞士著名的数学家欧拉才证明了这个问题的不可能性。

欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了.那么,什么叫一笔画?什么样的图可以一笔画出?欧拉又是如何彻底证明七桥问题的不可能性呢?①凡是由偶点组成的连通图,一定可以一笔画成;画时可以任一偶点为起点,最后一定能以这个点为终点画完此图。

②凡是只有两个奇点(其余均为偶点)的连通图,一定可以一笔画完;画时必须以一个奇点为起点,另一个奇点为终点。

③其他情况的图,都不能一笔画出。

下面我们就来研究一笔画问题的具体应用:例1观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.分析与解答例2下图是国际奥委会的会标,你能一笔把它画出来吗?分析与解答例3下图是某地区所有街道的平面图.甲、乙二人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?分析与解答例4 下图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?分析与解答例5一张纸上画有如下图所示的图,你能否用剪刀一次连续剪下图中的三个正方形和两个三角形?分析与解答例6下图是一个公园的平面图.要使游客走遍每条路而不重复,问出入口应设在哪里?分析与解答练习题1.请一笔画出下列各图2.判断下列各图能否一笔画出,并说明理由.3.下图是一公园的平面图,要使游客走遍每一条路且不重复,问出入口应设在哪里?4.下图是一个商场的平面图,顾客可以从六个门进出商场(阴影部分为各商品部,空白处为通道),请你设计一种能够一次走遍各通道而又不必走重复路线的进出方法.。

七桥问题与一笔画

七桥问题与一笔画
E、 F, 0 个 奇 点 。可 以一 笔
( C点 ) , 如图l 1 . 如 果 要 选 择 最


个偶 点 : A、 B、 D、 F, 2 个奇点 : C、 , 可 以 一
笔 画成 . 图7 中有2 个 偶点 : 4、 C, 2 个奇 点 :
B、 D, 可 以 一 笔 画 成 .图 8 中有 1 个偶 点 : D。 4 个奇点 : A、 、 C、 D, 不 能 一 笔 画 成 .再
找 几 个 图形 试 一 试 , 你 能 发 现什 么 规 律 吗 ?
【 规律 】
① 可 以 一 笔 画 成 的 图形 . 与 偶 点 个 数
无关 , 与奇点个 数有关 . 也 就是说 , 凡 是 图
短 的线 路 , 谁 先 回到 邮 局 ?

形 中没 有 奇 点 的 ( 奇 点 个数 为0 ) , 可 选 任 一
个点做起点 . 且 一 笔 画后 可 以 回到 出 发 点 .
7 2
E F
图 1 1
T 1 n t e 慧 l l i g 散 e n 掌 t m a t h e m a t i c s
条线都只能画一次而不能重复. 图5 一图 8 四个 图 形 中 。 你 能 找 出图5 一
图8 的 每 个 图形 中 奇 点 和 偶 点 的 个 数 吗 ? 请 你 试 一 试 其 中 哪些 可 以一 笔 画 出 ?



图 5
图6

图 8
【 分析 】 图5 中有6 个偶 点 : A、 B、 c、 D、
看几 个一 笔 画 的问题 .
先 让 我 们 来 了解 三 个 新 概 念 .

一笔画(七桥问题)

一笔画(七桥问题)

能否一笔画是由图的奇、偶点的数目来决定的。 能否一笔画是由图的奇、偶点的数目来决定的。那么什么 叫奇、偶点呢?与奇数(单数)条边相连的点叫做奇点; 叫奇、偶点呢?与奇数(单数)条边相连的点叫做奇点; 与偶数(双数)条边相连的点叫做偶点。如下图中的① 与偶数(双数)条边相连的点叫做偶点。如下图中的①、 为奇点, 为偶点。 ④为奇点,②、③为偶点。
以下网络中哪一个是可以遍历的(即 一笔而不重复地画成)?
拓扑学起源于公元 年一个著名问题—— 拓扑学起源于公元1736年一个著名问题 起源于公元 年一个著名问题 哥尼斯堡七桥问题——的解决. 哥尼斯堡七桥问题 的解决
哥尼斯堡是位于普累格河上的一座城市, 哥尼斯堡是位于普累格河上的一座城市,它 包含两个岛屿及连接它们的七座桥. 包含两个岛屿及连接它们的七座桥.该河流 经城区的这两个岛. 经城区的这两个岛.岛与河岸之间架有六座 另一座桥则连接着两个岛. 桥,另一座桥则连接着两个岛.星期天散步 已成为当地居民的一种习惯, 已成为当地居民的一种习惯,但试图走过这 样的七座桥, 样的七座桥,而且每桥只走过一次却从来没 有成功过.但直至引起瑞士数学家欧拉 有成功过.但直至引起瑞士数学家欧拉 (Leonhard Euler,1707—1783)注意之前, 注意之前, , 注意之前 没有人能够解决这个问题 .
一笔画------七桥问题 一笔画------七桥问题
一笔画----------七桥问题 一笔画----------七桥问题
请你做下面的游戏: 请你做下面的游戏:一笔画出图中 的 图形来。 规则:笔不离开纸面, 图形来。 规则:笔不离开纸面,每根 线都只能画一次。 线都只能画一次。这就是古老的民间 游戏——一笔画。 你能画出来吗? 一笔画。 游戏 一笔画 你能画出来吗?

Konigsberg七桥问题一笔画问题

Konigsberg七桥问题一笔画问题

Konigsberg 七橋問題(一筆畫問題)當Euler在1736年訪問Konigsberg,Prussia(now Kaliningrad Russia)時,他發現當地的市民正從事一項非常有趣的消遣活動。

Konigsberg城中有一條名叫Pregel這項有趣的消遣活動是在星期六作一次走過所有七座橋的散步,每座橋只能經過一次,而且起點與終點必須是同一地點。

Euler把每一塊陸地考慮成一個點,連接兩塊陸地的橋以線表示,便得如下的圖形Euler後來推論出此種走法是不可能的。

他的論點是這樣的,除了起點以外,每一次當一個人由一座橋進入一塊陸地(或點)時,他(或她)同時也由另一座橋離開此點。

所以每行經一點時,計算兩座橋(或線),從起點離開的線與最後回到始點的線亦計算兩座橋,因此每一個陸地與其他陸地連接的橋數必為偶數。

我們從Konigsberg七橋所成之圖形中,沒有一點含有偶數條數,因此上述的任務是不可能實現的。

Eulerian graphs 歐拉圖形一條途徑v0e1e2v2………..e k v k稱為Euler walk(歐拉走路)如果沒有邊(edge)是重複的,此處v i表頂點,e i表邊。

若一個圖形G中,v0e1v1e2v2……………e k v k行經每一邊恰好一次,且v0=v k(起點=終點),則稱此途徑為Euler tour(歐拉路徑)。

例:從下右圖中找出一歐拉路徑一.筆劃問題問題:有一商人欲推銷某一商品,該商人在下圖中每一地點,A,B,...,J都希望去推銷該商品,但為了達到最低成本故希望不要重複行走已走過的路徑以減低車費成本,問該商人應如何行走?Eulerian graphs 歐拉圖形一條路徑V0e1V1e2V2…..e k V k稱為Euler walk (歐拉走路)如果沒有邊(edge)是重複的,此處V1表頂點,e1表邊。

若一個圖形G中,V0e1V1e2V2…..e k V k行徑每一邊恰好一次且( 起點=終點),則稱此途徑為Euler tour (歐拉路徑)。

七桥问题与一笔画

七桥问题与一笔画
E ● ●G F ● D●
C●
● B
●A
● 点A、B表 示岛点C。D 表示岸 ▎线表示桥
2018/7/20
“一笔画 ”是一种 有趣的数学游戏, 那么什么样的图形 可以一笔画成呢? 今天就让我们一起 试一试,画一画, 发挥你的想象力, 发现一笔画的规律 吧。
:是指笔 不离开纸,而且每条线 都只画一次不准重复而 画成的图形。
你能用一笔画出下列图形吗?
交点分为两种 ( 1 )从这点出发的线的数目是双数的,叫
双数点(偶点)。
● ● ●
(2)从这点出发的线的数量是单数的, 叫单数点(奇点)
● ●
7/20/2018

我们刚才画的图形都有几个交点?几个奇 数点?几个偶数点?
2奇4偶
2 奇3 偶
0 奇5 偶
0奇6偶
7/20/2018
0奇6偶
0奇10偶
一个图形能 否一笔成, 关键在于图 (1)凡是图形中没有奇数点的一定可以一笔画 形中奇数点 成。可选任一个点做起点,且一笔画后可以回到 的个数。 出发点。即起点和终点为同一点。 (2)凡是图形中只有两个奇数点,一定可以一 (图形必须 为连通图形) 笔画成。画时必须从一个奇数点为起点,以另一
奇数点为终点。 (3)凡是图形中奇数点的个数多于两个时,此 图肯定是不能一笔画成。
下列哪些图形能一笔画出来,哪些不能?
用你发现的规律,说一说七桥问题的答案?
由于七桥问题中的四个点都是奇点,因此可 以判断它是无法一笔画出来的 ,也就是说 根本不存在能不重复走遍七座桥的路线!
课堂练习
下图是一个公园的平面图,能不能使游 人走遍每一条路不重复?入口和出多人。问题是这样的:
德国有一个城市叫哥尼斯堡。城中有一条河,河中有一个岛,

七桥问题与一笔画

七桥问题与一笔画

七桥问题与一笔画有这样一道简单的数学题不知道聪明的你会不会?请把1~24这24个顺序填入下列表格中,要求必选顺序排开,也就是数字从试?想不想知道是什么原因? 那就先听我讲一个故事吧:18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。

如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。

当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。

图1七桥问题引起了著名数学家欧拉(1707—1783)的关注。

他把具体七桥布局化归为图2所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?图2欧拉经过研究得出的结论是:图2是不能一笔画出的图形。

这就是说,七桥问题是无解的。

这个结论是如何产生呢?请看下面的分析。

如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。

如果画笔经过一个n 次,那么就有2n 条线与该点相连结。

因此,这个图形中除起点与终点外的各点,都与偶数条线相连。

如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。

综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。

图2中的A 点与5条线相连结,B 、C 、D 各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。

1736年,欧拉在圣彼得堡科学院作了一次学术报告。

在报告中,他证明了上述结论。

一笔画哥尼斯堡七桥问题

一笔画哥尼斯堡七桥问题

一笔画哥尼斯堡七桥问题1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支—-图论与几何拓扑.也由此展开了数学史上的新进程.问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。

七桥问题和欧拉定理。

欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为“欧拉定理”。

故事背景七桥问题18世纪著名古典数学问题之一。

在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。

问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画"问题,证明上述走法是不可能的.有关图论研究的热点问题。

18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来.当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。

这就是柯尼斯堡七桥问题。

欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。

他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。

当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。

Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点.Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。

著名数学家欧拉后来推论出此种走法是不可能的。

哥尼斯堡七桥问题与一笔画通用课件

哥尼斯堡七桥问题与一笔画通用课件

问题的意义
01
哥尼斯堡七桥问题推动了图论的 发展,成为图论和几何图形研究 的重要基础。
02
问题揭示了图论中节点和边的概 念,以及它们之间的关系和限制 条件,为后续的图论研究提供了 重要的启示。
02
一笔画问题概述
一笔画的基本概念
一笔画
一笔画是指从一个给定的点开始 ,沿着某些路径(通常是线段) 前进,最后回到起始点,路径在 任何地方都不交叉或重复。
际应用价值。
THANKS。
05
哥尼斯堡七桥问题的解决方案
欧拉解决哥尼斯堡七桥问题的方法
欧拉通过数学分析,证明了哥尼斯堡七桥问题没有一笔画的 可能性,即不存在一条路径能够遍历七座桥而不重复经过任 何一座桥。
欧拉的方法基于图论的基本原理,通过分析图中的奇点(起 点和终点)和偶点(中间的交点),证明了七桥问题没有一 笔画的可能性。
地图染色
地图染色问题是一笔画问题的一个变种,它要求将地图上 的国家或地区按照一定的规则进行染色,使得相邻的国家 或地区颜色不同。
物流配送
在物流配送中,一笔画问题可以用于解决最优配送路线问 题,即如何规划一条或多条路线,使得所有客户都被访问 且只被访问一次,同时总距离最短。
一笔画问题的未来发展
算法优化
现代技术的应用
随着计算机技术的发展,现代数学软件和算法可以模拟和验证图论中的问题,为 解决复杂问题提供了更高效的方法。
现代技术可以用于分析和处理大规模的图数据,例如社交网络、交通网络等,这 些网络结构与哥尼斯堡七桥问题类似,可以通过计算机模拟和算法找到最优解或 近似解。
对其他类似问题的启示
哥尼斯堡七桥问题的解决为图论和其他相关领域的研究提 供了基础和启示,推动了数学和科学的发展。

一笔画问题——七桥问题的解决

一笔画问题——七桥问题的解决

“一笔画问题——七桥问题的解决”教学设计执教者:高馨教学内容:“一笔画问题——七桥问题的解决”。

教学目标:1.让学生体会用“数学模型方法”解决问题。

2. 通过其中抽象出点、线的过程,使学生对点、线有进一步的认识。

3.通过探究"一笔画"的规律的活动,锻炼学生克服困难的意志及勇于发表见解的好习惯。

教学重点:数学模型方法的渗透,以及在活动中去寻找规律,发现问题,解决问题。

教学难点:让学生自己探究得出"一笔画"的规律。

教学准备:课件,学习活动单3张,红色水彩笔。

教学过程:导语:同学们,平时生活中,我们要用智慧的双眼认真观察周边的事物。

今天,老师要和大家上一节有趣的数学活动探究课。

准备好了吗好,上课!一、故事激趣导入新课:1.小视频(简笔画导入)师:请大家认真观察,(老师边画边说)师:老师画这些图案时都是怎样画成的2.介绍数学史,建立数学模型:18世纪时风景秀丽的小城哥尼斯堡中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥(如图),当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有七座桥,再回到出发点?这就是数学史上着名的七桥问题,你愿意试一试吗好,动笔吧。

结果怎样3.介绍瑞士数学家欧拉。

欧拉把一个实际的生活情景问题转化成合适的“数学模型”。

这种研究方法就是“数学模型方法”。

你们对一笔画问题感兴趣吗想了解吗今天我们就来一起研究“一笔画问题”。

(板书)4.什么叫一笔画什么样的图可以一笔画成(下笔后笔尖不能离开纸B、每条线都只能画一次而不能重复。

)5.认识连通图。

6.要研究一笔画图案有什么规律,我们必须先来了解两个重要概念:奇点和偶点点:有奇数条边相连的点叫奇点。

●● ●②偶点:有偶数条边相连的点叫偶点。

●● ●二、小组合作实验探究1、师:我们来动手画几幅简单美丽的图案,请大家亲自感受一下!2、小组合作探究要求:①小组合作分工完成8个图形的判断。

小学数学一笔画问题(格尼斯堡七桥问题)

小学数学一笔画问题(格尼斯堡七桥问题)

例1.判断下列各图是否 能一笔画出来。
例1.判断下列各图是否 能一笔画出来。
●1 4●
●1
一对奇点 可以一笔画!
例1.判断下列各图是 否能一笔画出来。
没有奇点可以一笔画!
例2. 填空:
图(1)中有( )个奇点,有( )个偶点; 图(2)中有( )个奇点,有( )个偶点; 图(3)中有( )个奇点,有( )个偶点.
(1)
(2)
(3) (4)
下面各图能否一笔画成?
(1)
(2)
(3)
A
D
B
C
一笔画问题:
(1)必须是连通的图形;
(2)只由偶点组成的。画时可以由任一 偶点作为起点.最后仍回到这点;
(3)只有两个奇点的。画时必须以一个 奇点为起点,以另一个奇点为终点;
(4)奇点个数超过两个的图形,一定 不能一笔画.
一笔画问题
小朋友们,你们能把下面的 图形一笔画出来吗?Fra bibliotek一笔画
指的就是:从图的一点出发, 笔不离纸,遍历每条边恰好一 次,即每条边都只画一次,不 准重复。
下面这些图形,哪个能一笔画? 哪个不能一笔画?
(1) (2) (3) (4)
我们把一个图形中连着双数 条线的点叫做偶点;相应的把 连着单数条线的点叫做奇点.
例3.哥尼斯堡七桥问题 18世纪的哥尼斯堡,有一条河流从这个城 市穿过,河中有两个小岛A、B,河上有七 座桥连结两个小岛及河的两岸(如下图
a),那里的居民在星期日有散步的习
惯.那么能不能一次走遍七座桥,每座桥 只走过一次,最后回到出发点呢?

一笔画

一笔画
一笔画
哥尼斯堡七桥问题
18世纪,普鲁士的哥尼斯堡城有这 样一个故事.那里有一条河,河上 有两个离得很近的小岛,岛与河岸 之间共有7座桥相连,这里风光秀 丽,景色宜人,吸能一次 走遍7座桥而不走重复路线?
这个有趣的问题吸引了成千上万的 旅游者,大家都要试一试,但是谁 也没有成功.
据说在法国巴黎也有一条河,河中心也 有两个相距较近的小岛.有15座桥把两 个小岛及河的两岸相连.能否一次走遍 15座桥而不走重复路线?
某地悬赏征解:三笔画出以下图形, 要求画的时候每一笔都笔不离纸, 不走重复路线,还不准画此图中没 有的线.
凡是由偶点组成的图形一定可以一笔画出, 画时可以以任一偶点为起点,最后仍回到 这一点.
凡是由两个奇点组成的图形一定可以一笔 画出,画时必须以一个奇点为起点,以另 一个奇点为终点.
其它情况的图形,一律不能一笔画出.
下列图形能否一笔画出?
如图是某展览馆的平面图,每个房 间都有一扇门通往馆外,每两相邻 房间之间各有一扇门相通。能不能 无重复地一次穿过每一扇门?如果 不能,关闭哪扇门后,就能无重复 地一次穿过每一扇门?
过了很长一段时间,这件事被瑞士 数学家欧拉知道了。他在1736年解 开了七桥问题.
欧拉的分析
(1) 散步者不重复地连续走过七座桥, 就相当于笔不离纸不走重复路线地 一笔画出图(1)的整个图形.
总结
偶点:如果经过一点的线的数目是偶数, 那么我们就把这一点成为偶点.
奇点:如果经过一点的线的数目是奇数, 那么我们就把这一点成为奇点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七桥问题与一笔画的通解
(论文拟稿)
在柯尼斯堡的一个公园里,有七座桥将一条河上的两座岛和两岸相连接。

当时有人提出了这么一个问题:如何一次性不重复不遗漏走完七座桥。

后来,数学家欧拉将它变成了一个一笔画问题(如图)。

从欧拉的简化图来看,似乎我们无论如何,也不能一笔画完图形。

但是,这是为什么呢?
在这个图中,有ABCD 4个点,有五条线汇聚到A点,三条线汇聚到B,C,D 点,我们可以把这种有奇数条线(3条及以上)汇聚的点称为奇点,作为对应,把有偶数条线(4条及以上)汇聚的点称为偶点。

那么,我们不难发现,在任意封闭图形中,奇点的个数一定是偶数。

因为一条线定连接两个点(或重合),若存在奇数个奇点,则此图形定不符合封闭图形定义。

从一个奇点来看,若要一笔画成,则此奇点定是起笔点或停笔点。

起笔点,停笔点只有两个,所以说,奇点为两个或没有奇点的封闭图形可以一笔画。

回来看七桥问题,图中有四个奇点,以任意两个作为起笔点和落笔点,则还有两个奇点无法连接。

故七桥问题无解。

从上面总结出以下结论:
■⒈凡是由偶点组成的连通图,一定可以一笔画成。

画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。

■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。

画时必须把一个奇点为起点,另一个奇点为终点。

■⒊其他情况的图都不能一笔画出。

(奇点数除以二便可算出此图需几笔画成。

)
我们可以把得到的结论推广到所有一笔画解法存在问题,如汉字“田”,我们观察到,它有四个奇点,故不可以一笔画。

而汉字“日”,只有两个奇点,则可以一笔画。

早在1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,就阐述了这种方法,也为后来的数学新分支--拓扑学的建立奠定了基础。

从这里我们可以看出,伟大的创造一开始可能并不像我们想象的那么高深莫测,仔细观察生活,我们也会有了不起的发现。

相关文档
最新文档