五年级奥数.行程. 时钟相遇与追及问题( AB级). 教师版

合集下载

五年级奥数相遇与追及问题教师版

五年级奥数相遇与追及问题教师版

1、 五年级奥数相遇与追及问题教师版2、 研究行程中复杂的相遇与追及问题3、 通过画图使较复杂的问题具体化、形象化,融合多种方法达到正确理解题目的目的4、 培养学生的解决问题的能力一、相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t 后甲乙同时到达终点,甲乙的速度分别为v 甲和v 乙,那么我们可以看到经过时间t 后,甲比乙多跑了5米,或者可以说,在时间t 内甲的路程比乙的路程多5米,甲用了时间t 追了乙5米知识精讲教学目标相遇与追及问题三、在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及模块一、直线上的相遇问题【例 1】 一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

五年级奥数行程环形跑道教师版

五年级奥数行程环形跑道教师版

五年级奥数行程环形跑道教师版The document was prepared on January 2, 2021本讲中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和 路程差=追及时间×速度差 二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

环线型同一出发点直径两端同向:路程差 nS nS +相对(反向):路程和nS【例 1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇【考点】行程问题之环形跑道 【难度】☆☆【题型】解答例题精讲知识框架环形跑道【解析】黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。

已知林荫道周长是480米,他们从同一地点同时背向而行。

在他们第10次相遇后,王老师再走米就回到出发点。

【考点】行程问题之环形跑道【难度】☆☆【题型】填空【解析】几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。

五年级奥数.行程 .多次相遇和追及问题

五年级奥数.行程 .多次相遇和追及问题

多次相遇与追及问题一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

五年级钟表问题之相遇与追及奥数拓展

五年级钟表问题之相遇与追及奥数拓展

钟表问题之相遇与追及奥数拓展知识点1.钟表问题时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

2.我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

3.时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

①对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

②分针速度:每分钟走1小格,每分钟走6度③时针速度:每分钟走 1/12 小格,每分钟走0.5度4.注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

简单的分类:①环形时钟的时针和分针的追及和相遇的问题,具体体现的就是路程转换为角度问题。

②时间标准问题和闹钟问题,这类问题是因为问题闹钟的原因导致时钟比标准钟快或者慢,引发的时间问题。

解决这类问题需要的就是十字交叉法。

典型例题例1、三点钟到四点钟之间,分针与时针在什么时候重合?【练习1】有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过几分钟分针与时针第二次重合?(答案写成假分数的格式)【练习2】钟表的时针与分针在4点几分第一次重合?(答案写成假分数的形式)【练习3】现在是3点,几分钟之后时针与分针第一次重合?(答案写成假分数的形式)例2、七点钟到八点钟之间,分针与时针在什么时候成直线?【练习4】4点钟到5点钟之间,分针与时针在什么时候成直线?A、4点600/11分B、4点600/13分C、4点45分D、4点47分【练习5】1点钟到2点钟之间,分针与时针在什么时候成直线?A、1点420/11分B、1点420/13分C、1点35分D、1点37分【练习6】8点钟到9点钟之间,分针与时针在什么时候成直线?A、8点120/13分B、8点120/11分C、8点13分D、8点10分例3、一点钟到两点钟之间,分针与时针在什么时候成直角?【练习7】2点钟到3点钟之间,分针与时针在2点____分时第一次成直角?(答案写成假分数的形式)【练习8】5点钟到6点钟之间,分针与时针在什么时候成直角?A、5点120/11分B、5点480/11分C、两个都对D、两个都不对【练习9】8点钟到9点钟之间(不包含9点钟),分针与时针在8点______分成直角?(答案写成假分数的形式)例4、一只闹钟每小时慢4分钟,标准钟三点半时,此钟与标准钟对准,现在标准时间是十点半。

五年级奥数.行程.-时钟相遇与追及问题(-AB级).-教师版

五年级奥数.行程.-时钟相遇与追及问题(-AB级).-教师版

时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟, 具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度 时针速度:每分钟走112小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

【例 1】当时钟表示1点45分时,时针和分针所成的钝角是多少度? 【考点】行程问题之时钟问题 【难度】☆☆【题型】解答【解析】 142.5度 【答案】142.5度例题精讲知识框架时钟追及与相遇问题【巩固】 在16点16分这个时刻,钟表盘面上时针和分针的夹角是____度. 【考点】行程问题之时钟问题【难度】☆☆【题型】填空【解析】 16点的时候夹角为120度,每分钟,分针转6度,时针转0.5度,16:16的时候夹角为120-6×16+0.5×16=32度.【答案】32度【例 2】在一段时间里,时针、分钟、秒针转动的圈数之和恰好是1466圈,那么这段时间有 秒。

【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】 解:它们的速度比为1:12:720,所以秒针转了1466÷(720+12+1)×720=1440圈.即1440×60=86400秒【答案】86400秒.【巩固】 在一段时间里,时针、分钟、秒针正好走了3665小格,那么这段时间有 秒。

五年级数学时钟相遇与追及问题(含答案)

五年级数学时钟相遇与追及问题(含答案)

五年级数学时钟相遇与追及问题(含答案)时钟问题是关于时针和分针的追及或相遇问题,可以看作是一个特殊的圆形轨道问题。

时钟问题包括时钟的快慢、周期和时针与分针所成的角度等。

不同于其他行程问题,时钟问题的速度和总路程的度量方式是指针“每分钟走多少角度”或“每分钟走多少小格”,其中分针速度为每分钟走1小格或6度,时针速度为每分钟走1/12小格或0.5度。

但是对于一些“怪钟”或“坏了的钟”,它们的速度可能与常规时钟不同,需要进行独立分析。

时钟问题可以视为行程问题,其中分针快,时针慢,因此分针与时针的问题就是追及问题。

解决时钟的快慢问题时,可以使用十字交叉法。

例如,在标准时钟中,时针与分针从一次重合到下一次重合所需时间为65.5分。

例1中,当时钟表示1点45分时,时针和分针所成的钝角为142.5度。

例2中,时针、分钟和秒针转动的圈数之和为1466圈,求这段时间有多少秒。

解答中,它们的速度比为1:12:720,因此秒针转了1440圈,即秒。

在一段时间里,时针、分钟、秒针正好走了3665小格,那么这段时间有多少秒?解析:它们的速度比为1:12:720,所以秒针转了3665÷(720+12+1)×720=3600小格,即3600秒。

答案:3600秒。

有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?解析:在10点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“l/12”,再过54/11分钟,时针与分针将第一次重合。

第二次重合时显然为12点整,所以再经过65分钟,时针与分针第二次重合。

标准的时钟,每隔65分钟,时针与分针重合一次。

答案:54分钟。

钟表的时针与分针在4点多少分第一次重合?解析:此题属于追及问题,追及路程是20格,速度差是1/11.如果设分针的速度为单位“l”,那么时针的速度为“l/12”。

五年级奥数.行程 .多次相遇和追及问题

五年级奥数.行程 .多次相遇和追及问题

多次相遇与追及问题一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

第12讲 行程问题之相遇追及.含答案.5年级数学.尖子班.秋季.教师版

第12讲 行程问题之相遇追及.含答案.5年级数学.尖子班.秋季.教师版

1. 掌握相遇追及基本公式,并且会利用公式解决直线上的相遇追及问题;2. 掌握相遇追及基本公式,并且会利用公式解决环形行程的相遇追及问题;3. 掌握解决复杂行程问题的方法:包括多次相遇追及、多人相遇追及问题。

多次相遇追及一次相遇追及多人的相遇追及两人的相遇追及行程问题相遇追及问题火车过桥问题流水行船问题直线上的相遇追及环形跑道上的相遇追及行程问题在历年各类小学奥数竞赛试题中,都占有很大的比重,同时也是小学奥数专题中的难点。

行程问题经常作为一份试卷中的压轴难题出现。

提高解决行程问题的能力不仅能帮助学生各类数学竞赛中取得优异成绩,还能为学生在今后初中阶段的数学、物理等学科打下良好的基础。

在行程问题中涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题。

相遇问题:路程和=速度和⨯时间追及问题:路程差=速度差⨯时间多次相遇追及问题:“线段示意图”和“折线示意图”是解决这类问题的常用方法。

在相遇问题和追及问题中有以下几种特殊情况,本讲不作专门的介绍,但是学生可以了解一下: 发车间隔问题: 汽车间距=汽车速度⨯汽车发车时间间隔汽车间距=(汽车速度+行人速度)⨯相遇事件时间间隔汽车间距=(汽车速度-行人速度)⨯追及事件时间间隔流水问题和自动扶梯问题:本类题目解题的关键在于将其转化为相遇问题和追及问题来做。

另外,行程问题通常和分数应用题,列方程解应用题结合起来,巧妙的运用一些代数的方法解决,通常可以取得事半功倍的效果。

还有一些行程问题,运用比例知识解决也是非常便捷的:速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和时间成反比。

碰到综合性问题,可以先把综合性问题分解成几个单一问题,然后逐个解决。

第十二讲行程问题之相遇追及【例1】 【超常班、超常3班、超常2班、超常1班】甲乙两地相距60km ,小王骑车以10/km h 的速度在上午8点从甲地出发去乙地。

过了一会儿,小李骑车以15/km h 的速度也从甲地去乙地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】 27
3 (分) 11
3 分 11
【例 5】时钟的时针和分针在 6 点钟反向成一直线,问:它们下—次反向成—直线是在什么时间?(准确到 秒) 【考点】行程问题之时钟问题 【难度】☆☆ 【题型】解答
【解析】 时针、分针下一次反向成一直线是在 7 点以后,这时分针应比时针多走钟面上 5 格,分针每分钟 走 1 格,时针每分钟走
1 小格,每分钟走 0.5 度 12
注意 : 但是在许多时钟问题中,往往我们会遇到各种“怪钟” ,或者是“坏了的钟” ,它们的时针和分 针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。 要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及 问题。另外,在解时钟的快慢问题中,要学会十字交叉法。 例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为 65
【解析】 分针追了 360(度) , 360 (6 0.5) 【答案】 65
720 5 65 (分) 11 11
2
小时),时针的速度为分针速度的 【答案】 54
1 1 .如果设分针的速度为单位“l” ,那么时针的速度为“ ” . 12 12
6 分钟 11
【巩固】 钟表的时针与分针在 4 点多少分第一次重合? 【考点】行程问题之时钟问题 【难度】☆☆ 【题型】解答
【解析】 此题属于追及问题, 追及路程是 20 格, 速度差是 1 (分) 。 【答案】 21
1 格. 12
3
5÷(1-
1 60 5 5 )= = 5 , ×60≈27。 12 11 11 11
即在 7 点 5 分 27 秒,时针、分针再次反向成一直线。 【答案】7 点 5 分 27 秒
【巩固】 时钟的时针和分针在 9 点多反向成一直线,问:下—次反向成—直线经过了多长时间? 【考点】行程问题之时钟问题 【难度】☆☆ 【题型】解答
时钟追及与相遇问题
知识框架
时钟问题可以看做是一个特殊的圆形轨道上 2 人追及或相遇问题,不过这里的两个“人”分别 是时钟的分针和时针。 我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟 上时针与分针所成的角度等等。 时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千 米每小时,而是 2 个指针“每分钟走多少角度”或者“每分钟走多少小格” 。对于正常的时钟, 具体为:整个钟面为 360 度,上面有 12 个大格,每个大格为 30 度;60 个小格,每个小格为 6 度。 分针速度:每分钟走 1 小格,每分钟走 6 度 时针速度:每分钟走
秒。
【解析】 解:它们的速度比为 1:12:720,所以秒针转了 1466÷ ( 720+12+1) ×720=1440 圈 .即 1440× 60=86400 秒 【答案】86400 秒.
【巩固】 在一段时间里,时针、分钟、秒针正好走了 3665 小格,那么这段时间有 【考点】行程问题之时钟问题 【难度】☆☆
5 分。 11
例题精讲
【例 1】当时钟表示 1 点 45 分时,时针和分针所成的钝角是多少度? 【考点】行程问题之时钟问题 【解析】 142.5 度 【答案】142.5 度 【难度】☆☆ 【题型】解答
1
【巩固】 在 16 点 16 分这个时刻,钟表盘面上时针和分针的夹角是____度. 【考点】行程问题之时钟问题 【难度】☆☆ 【题型】填空
差是 1 【答案】 27
3 分 11
【巩固】 2 点钟以后,什么时刻分针与时针第一次成直角? 【考点】行程问题之时钟问题 【难度】☆☆ 【题型】解答
【解析】 根据题意可知, 2 点时, 时针与分针成 60 度, 第一次垂直需要 90 度, 即分针追了 90+60=150(度) ,
150 (6 0.5) 27
秒。 【题型】解答
【解析】 解:它们的速度比为 1:12:720,所以秒针转了 3665÷(720+12+1)×720=3600 小格.即 3600 秒 【答案】3600 秒.
【例 3】有一座时钟现在显示 10 时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟, 分针与时针第二次重合?
6 分钟,时针与分针将第一次重合.第二次重合时显然为 12 点整,所以再经过 11 6 5 5 65 分钟,时针与分针第二次重合.标准的时钟,每隔 65 分钟,时 11 11 11
(12 10) 60 54
针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有 12 个, 即为小时数 ; 小刻度有 60 个,即为分钟数.所以时针一圈需要 12 小时,分针一圈需要 60 分钟(1
【考点】行程问题之时钟问题源自【难度】☆☆【题型】解答
【解析】 在 10 点时,时针所在位置为刻度 10,分针所在位置为刻度 12; 当两针重合时,分针必须追上 50 个小刻度,设分针速度为“l” ,有时针速度为“ 以,再过 54
1 1 6 ” ,于是需要时间 : 50 (1 ) 54 .所 12 12 11
1 11 11 9 所以追及时间是 : 20 , 21 12 12 12 11
9 分 11
【例 4】钟表的时针与分针在 8 点多少分第一次垂直? 【考点】行程问题之时钟问题 【解析】 27 【难度】☆☆ 【题型】解答
3 此题属于追及问题,但是追及路程是 4 40 15 25 格(由原来的 40 格变为 15 格) ,速度 11 1 11 11 3 。 ,所以追及时间是: 25 27 (分) 12 12 12 11
【解析】 16 点的时候夹角为 120 度, 每分钟, 分针转 6 度, 时针转 0.5 度, 16: 16 的时候夹角为 120-6×16+0.5 ×16=32 度. 【答案】32 度
【例 2】在一段时间里,时针、分钟、秒针转动的圈数之和恰好是 1466 圈,那么这段时间有 【考点】行程问题之时钟问题 【难度】☆☆ 【题型】解答
相关文档
最新文档