整式的加减.ppt
合集下载
整式的加减ppt课件
![整式的加减ppt课件](https://img.taocdn.com/s3/m/a8f4fb74182e453610661ed9ad51f01dc381577b.png)
× -
×
- =-
.
感悟新知
知3-练
5-1.先化简,再求值:
(- x2+ 3xy - y2 ) - (- 3x2+5xy - 2y2 ) ,其中
x= , y= - .
感悟新知
知3-练
解:
原式=-x2+3xy-y2+3x2-5xy+2y2=2x2-2xy+y2.
12
(3) 利用合并同类项法则合并同类项;
(4) 写出合并后的结果 (可能是单项式,也可能是多项
式).
感悟新知
例2
知2-练
合并同类项:
(1) x2-3x-2+4x-1;
(2)3a2b-2ab+2+2ab-a2b-5.
解题秘方:合并同类项:将同类项的系数相加,
字母和字母的指数不变 .
感悟新知
知2-练
解:(1) x2-3x-2+4x-1
(2) - 3(2a - 3b) - 5a+b = - 6a+9b - 5a+b= - 11a+10b;
(3) (x+
��
)- 2 (3x - ) =x+ - 6x+ = - 5x+
.
感悟新知
知3-练
警示误区:去括号时要看清括号前面的符号,当
括号前面是“-”号时,去括号后,
原括号里各项的符号都要改变,不能
知4-练
(2) 若 3y - x=2, 求A - 2B 的值 .
《整式》整式的加减PPT课件 (共12张PPT)
![《整式》整式的加减PPT课件 (共12张PPT)](https://img.taocdn.com/s3/m/dcd9ead9910ef12d2af9e786.png)
在多项式中,每个单项式叫做多项式的项.
不含字母的项叫做常数项.
新知
多项式 项
学习
3x-7y
3x、-7y
边学边练:
x2-2x+4 ab-a2-1 x3+x2+xy-y2
x2、-2x、 ab、-a2 、-1 x3、x2、xy、 4 -y2 2、1、0
每一项的 1、1 次数
2、2 、0
3、2、2、2
a
2r
课堂
检测
(3)某种商品原价每件b元,第一次降价打 八折,第二次降价每件又减10元,第一次 降价后售价________元,第二次降价后的 售价是_________元。 3、(选作)三个植树队,第一队植树x棵, 第二队植的树比第一队的2倍少25棵,第三 队植的树比第一队植树的一半多42棵,则 第二队、第三队各植树多少棵?当 x=100 时,求三队共植树多少棵?
2米 x米 x米 3米 3米 2米
新知
学习
15a 2x-10
-a
1 2 ab r 2
单项式:
s 10
1 a
3x+5y+2z
s v
x2+2x+18
新知
学习
1 2 ab r 、x2+2x+18 2x -10 、 3x+5y+2z、 2
单项式 单项式 单项式 单项式
定义:几个单项式的和叫做多项式.
课堂
检测
1 2 x x y 2的项有 1、多项式 3 __________________ ,常数项是_______,一
次项系数是____________,属于_____次_____ 项式。 2、用整式填空,指出单项式的系数、次数以及多 项式的项和次数。 (1)某种苹果的售价是每千克x元,用面值是50元 的人民币购买6千克,花费_____元,应找回 _______元。 (2)图中的阴影部分的面积为____________.
不含字母的项叫做常数项.
新知
多项式 项
学习
3x-7y
3x、-7y
边学边练:
x2-2x+4 ab-a2-1 x3+x2+xy-y2
x2、-2x、 ab、-a2 、-1 x3、x2、xy、 4 -y2 2、1、0
每一项的 1、1 次数
2、2 、0
3、2、2、2
a
2r
课堂
检测
(3)某种商品原价每件b元,第一次降价打 八折,第二次降价每件又减10元,第一次 降价后售价________元,第二次降价后的 售价是_________元。 3、(选作)三个植树队,第一队植树x棵, 第二队植的树比第一队的2倍少25棵,第三 队植的树比第一队植树的一半多42棵,则 第二队、第三队各植树多少棵?当 x=100 时,求三队共植树多少棵?
2米 x米 x米 3米 3米 2米
新知
学习
15a 2x-10
-a
1 2 ab r 2
单项式:
s 10
1 a
3x+5y+2z
s v
x2+2x+18
新知
学习
1 2 ab r 、x2+2x+18 2x -10 、 3x+5y+2z、 2
单项式 单项式 单项式 单项式
定义:几个单项式的和叫做多项式.
课堂
检测
1 2 x x y 2的项有 1、多项式 3 __________________ ,常数项是_______,一
次项系数是____________,属于_____次_____ 项式。 2、用整式填空,指出单项式的系数、次数以及多 项式的项和次数。 (1)某种苹果的售价是每千克x元,用面值是50元 的人民币购买6千克,花费_____元,应找回 _______元。 (2)图中的阴影部分的面积为____________.
整式的加减(公开课) ppt课件
![整式的加减(公开课) ppt课件](https://img.taocdn.com/s3/m/7a0c9f8f4afe04a1b071dea1.png)
ppt课件
6
整式的加减 去括号
ppt课件
7
知识结构:
整式的概念 整式的加减
整式的计算
单项式 多项式
系数
次数 项,项数,常数项, 最高次项 次数
同类项与合并同类项 去括号 化简求值
用字母来表示生活中的量
ppt课件
8
如何进行整式的加减呢? 八字诀
去括号、合并同类项
ppt课件
9
口诀: 去括号,看符号: 是“+”号,不变号; 是“-”号,全变号.
整式的加减整式的加减整式的整式的概念整式的整式的计算单项式单项式多项式多项式系数系数次数次数项项数常数项项项数常数项最高次项最高次项次数次数同类项与合并同类项与合并同类项去括号去括号化简求值化简求值用字母来表示生活中的量用字母来表示生活中的量10例如
一、复习
什么是整式、单项式、多项式
整式
单项式(系数和次数) 多项式(项和次数)
合并同类项概念: _把__多__项_式__中__的__同__类_项__合__并__成__一_项_.
合并同类项法则: 1.__系_数___相加减;
2._字__母__和__字_母__的__指__数___不变。
ppt课件
5
1.下列各式中,是同类项的是:__③__⑤_⑥______
① 2x2 y3 与 x3 y2 ② x2 yz 与 x2 y
思维分析:把多项式看作一个整体,并用括号
括起来。 见多必括
解 (2x2 -3x + 1)+( -3x2 + 5x-7) = 2x2 -3x + 1 -3x2 + 5x-7
= (2x2 -3x2 )+(-3x + 5x)+(1-7)
2.4 整式的加减 课件(共57张PPT)华东师大版(2024)数学七年级上册
![2.4 整式的加减 课件(共57张PPT)华东师大版(2024)数学七年级上册](https://img.taocdn.com/s3/m/f0959f6e30126edb6f1aff00bed5b9f3f90f72ab.png)
2.4 整式的加减
第二章 整式及其加减
知1-讲
感悟新知
知识点
同类项
1
1. 定义 所含字母相同,并且相同字母的指数都相等的项叫做同类项 . 所有的常数项都是同类项 .
感悟新知
知1-讲
知识链接1. 同类项的对象是单项式,而不是多项式,但可以是多项式中的单项式;2. 同类项可以有两项,也可以有三项、四项或更多项,但至少有两项 .
知5-讲
感悟新知
特别提醒整式加减的结果如果是多项式,一般按照某一字母的升幂或降幂排列 .
感悟新知
知5-练
已知 A=3x2y+3xy2+y4, B= - 8xy2 - 2x2y - 2y4.求:(1) A - B;(2) A+ B.
例8
知5-练
感悟新知
解题秘方:将已知的多项式代入要求的式子中,然后去括号、合并同类项 .
知3-练
感悟新知
4-1.化简:(1)3a- (b-3a) =___________;(2)2x+1- (x+1) =__________.
6a-b
x
知3-练
感悟新知
4-2.化简:(1) x+(-3y-2x);(2)2a- (5b-a) +b ;
解:原式=x-3y-2x=-x-3y.
原式=2a-5b+a+b=3a-4b.
(2) A+ B.
知5-练
感悟新知
8-1.已知 A=x- y+2, B= x-y-1.(1)求 A-2B;
知5-练
感悟新知
(2) 若3y-x=2,求 A-2B的值 .
感悟新知
知5-练
有一道题:先化简,再求值: 17x2- (8x2+5x) -(3x2+x-3) +(-5x2+6x-1) -3,其 中 x=-2 024. 小 明 做 题 时 把“x=-2 024”错抄成了“x=2 024”,但他计算的结果却是正确的,请你说明这是什么原因 .
第二章 整式及其加减
知1-讲
感悟新知
知识点
同类项
1
1. 定义 所含字母相同,并且相同字母的指数都相等的项叫做同类项 . 所有的常数项都是同类项 .
感悟新知
知1-讲
知识链接1. 同类项的对象是单项式,而不是多项式,但可以是多项式中的单项式;2. 同类项可以有两项,也可以有三项、四项或更多项,但至少有两项 .
知5-讲
感悟新知
特别提醒整式加减的结果如果是多项式,一般按照某一字母的升幂或降幂排列 .
感悟新知
知5-练
已知 A=3x2y+3xy2+y4, B= - 8xy2 - 2x2y - 2y4.求:(1) A - B;(2) A+ B.
例8
知5-练
感悟新知
解题秘方:将已知的多项式代入要求的式子中,然后去括号、合并同类项 .
知3-练
感悟新知
4-1.化简:(1)3a- (b-3a) =___________;(2)2x+1- (x+1) =__________.
6a-b
x
知3-练
感悟新知
4-2.化简:(1) x+(-3y-2x);(2)2a- (5b-a) +b ;
解:原式=x-3y-2x=-x-3y.
原式=2a-5b+a+b=3a-4b.
(2) A+ B.
知5-练
感悟新知
8-1.已知 A=x- y+2, B= x-y-1.(1)求 A-2B;
知5-练
感悟新知
(2) 若3y-x=2,求 A-2B的值 .
感悟新知
知5-练
有一道题:先化简,再求值: 17x2- (8x2+5x) -(3x2+x-3) +(-5x2+6x-1) -3,其 中 x=-2 024. 小 明 做 题 时 把“x=-2 024”错抄成了“x=2 024”,但他计算的结果却是正确的,请你说明这是什么原因 .
《整式的加减》课件
![《整式的加减》课件](https://img.taocdn.com/s3/m/380114a4112de2bd960590c69ec3d5bbfd0ada2d.png)
整式的分类
01
02
03
单项式
只包含一个项的整式,例 如:$x^2$、$5a$。
多项式
包含多个项的整式,例如 :$x^2 - 3x + 2$。
整式的次数
一个整式中,所有字母的 指数之和称为该整式的次 数,例如:$x^2$的次数 为2。
整式的加减运算规则
同类项合并
同类项是指具有相同字母和相同 指数的项,同类项可以合并,例 如:$2x^2 + 3x^2 = 5x^2$。
去括号法则
总结词
去括号法则是整式加减运算中的一项重要法则,用于消除括号并简化整式的形式。
详细描述
去括号法则包括两个步骤,一是消除括号前的正号或负号,二是将括号内的各项分别与括号前的符号相乘或相除 。例如,在整式2(x + 3y) - (2x - y)中,根据去括号法则,首先消除括号前的正号,得到2x + 6y - 2x + y,然后 分别将括号内的各项与括号前的符号相乘或相除,得到最终结果-5y。
移项法则
总结词
移项法则是整式加减运算中的另一项重要法则,用于将整式中的项从一边移动到另一边 。
详细描述
移项法则包括两个步骤,一是将整式中的项从一边移动到另一边,二是根据移动的方向 改变该项的符号。例如,在整式6x - 5 = 2x + 1中,要将-5移到等号的另一边,根据 移项法则,首先将-5从等号的左边移动到右边,并改变其符号得到+5,得到新的等式
05
练习与巩固
基础练习题
总结词
帮助学生掌握整式加减的基本概 念和运算规则。
详细描述
设计一些简单的整式加减题目, 如合并同类项、去括号等,让学 生通过练习加深对整式加减基本 概念和运算规则的理解。
整式的加减ppt课件_图文
![整式的加减ppt课件_图文](https://img.taocdn.com/s3/m/a8d8552cb7360b4c2e3f6464.png)
( 交换律 )
2.类比探究,学习新知
例题 4x2 2x 7 3x 8x2 2
解:4x2 2x 7 3x 8x2 2
4x2 8x2 2x 3x 7 2
( 交换律 )
(4x2 8x2 ) (2x 3x) (7 2) ( 结合律 )
母及其指数一同提出来,再把系数部分相加); (4)按同一个字母的降幂(或升幂排列).
3.学以致用,应用新知
例1 合并下列各式的同类项:
(1)xy2 1 xy2 5
(2)3 x2 y 2 x2 y 3 xy2 2 xy2
(3)4a2 3b2 2ab 4a2 4b2
4.基础训练,巩固新知
练习1 判断下列说法是否正确,正确的
在括号内打“√”,错误的打“×”
(1) 3x 与 3mx 是同类项( )
(2) 2ab 与 5ab 是同类项( )
(3) 3xy2 与 1 y2 x 是同类项(
)
(4) 5a2b
与
2 2a
2bc
是同类项(
)
(5) 23 与 32 是同类项( )
4.基础训练,巩固新知
(3) 2ab 2ba 0
(4)3 x2 y 5 xy2 2 x2 y
例2 (1)求多项式 2x2-5x+x2+4x-3x2-2 的值,
其中 x= 1 ; 2
(2)求多项式3a+abc- 1 c2-3a+ 1 c2 的值,
3
3
其中 a - 1 , b 2 ,c -3
6
2x2 3xy 6x2 0 0 0
8x2 3xy
86
2
例6 若 a2 ab 20, ab b2 13 ,
《整式的加减》ppt课件全面版
![《整式的加减》ppt课件全面版](https://img.taocdn.com/s3/m/58eceee26f1aff00bfd51e32.png)
A.a2-5a+6 B.a2-5a-4 C.a2-a-4 D.a2-a+6
【解析】选D.先去括号,再合并同类项.
2.(广州·中考)下列运算正确的是(
)
A.-3(x-1)=-3x-1
B.-3(x-1)=-3x+1
C.-3(x-1)=-3x-3
D.-3(x-1)=-3x+3
【解析】选D.考查去括号法则.因为-3(x-1)=-3x+3,
(2)做大纸盒比做小纸盒多用料:
(12ab 16ac 24bc) (2ab 2ac 2bc)
12ab 16ac 24bc 2ab 2ac 2bc 10ab 14ac 22bc(cm2 ).
【例题】
【例】求 1 x-2(x- 1 y2)+( 3 x+ 1y2)的值,
所以A,B,C都不对.
3.(江西·中考)化简-2a+(2a-1)的结果是( )
A.-4a-1 B.-4a+1 C.1
D.-1
【解析】选D.括号前是“+”,去掉括号后各项均 不变号,所以原式=-2a+2a-1=-1.
4.(漳州·中考)若m2-2m=1,则2m2-4m+2 007的
值是
.
【解析】 2m2-4m+2 007
简单地讲,就是:先去括号再合并同类项. 因此只要掌握了合并同类项的方法,就能正确进行 整式的加减.
注意:整式加减运算的结果仍然是整式.
探究: 问题一
一种笔记本的单价是x元,圆珠笔的单价是y元.小 红买这种笔记本3个,买圆珠笔2支;小明买这种笔记 本4个,买圆珠笔3支,买这些笔记本和圆珠笔,小红 和小明一共花费多少钱?
整式的加减课件ppt课件
![整式的加减课件ppt课件](https://img.taocdn.com/s3/m/c295de933086bceb19e8b8f67c1cfad6195fe9c7.png)
移项时符号变化
将某一项移到等号的另一边时,需调 整该项的符号,确保等式平衡。
运算顺序
整式的加减运算应遵循先乘除后加减 的原则,但加减运算仍需遵循先括号 后同类项的顺序。
03
整式的混合运算
整式的混合运算步骤
去括号
合并同类项
根据括号法则,去掉整式中的括号,并正 确处理括号内的符号。
将整式中的同类项进行合并,简化整式的 形式。
整式的加减课件ppt
目录
• 整式的概念 • 整式的加减运算 • 整式的混合运算 • 整式的化简 • 习题与答案
01
整式的概念
什么是整式
整式是由常数、变数 、常数乘积组成的代 数式。
整式中除数不能为0 。
整式中只包含加、减 、乘、乘方四种基本 运算。
整式的分类
01
按变数的个数可以分为单项式和 多项式。
解:去括号得 $2x + 3x 4y + 1$
例2:计算$3a^2 - 2(a^2 - a + 2)$
合并同类项得 $a^2 + 2a - 4$
整式的混合运算注意事项
注意符号
在去括号和合并同类项时,要特别注意符号 的处理,确保运算结果的符号正确。
理解运算顺序
要牢记先乘除后加减的运算顺序,避免在运 算中出现混乱。
02
系数化简
将整式中的系数化为最简形式,如 消除小数点或进行分数化简。
化简根号
如果整式中包含根号,需要对其进 行化简或处理。
04
整式的化简实例
例1
化简整式 $2x - 5x + 3x$
例2
化简整式 $frac{2}{3}x - frac{4}{9}x + frac{1}{3}x$
4.2 整式的加减第3课时 整式的加减 课件(共35张PPT)
![4.2 整式的加减第3课时 整式的加减 课件(共35张PPT)](https://img.taocdn.com/s3/m/e63b5aa8db38376baf1ffc4ffe4733687e21fc91.png)
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
整式加减的一般步骤是:先去括号,再合并同类项. 注意: (1)整式加减运算的过程中,一般把多项式用括号括
起来; (2)整式加减的最后结果中不能含有同类项,即要合
并到不能再合并为止.
(2)(8a-7b)-(4a-5b) =8a-7b-4a+5b 去括号 =4a-2b 合并同类项
例2 已知A=3x2y+3xy2+y4,B=-8xy2-2x2y-2y4 求:(1)A-B;(2)A+ 1 B.
2
导引:将A,B代表的多项式代入,然后去括号、合并
同类项.
解:(1)A-B=(3x2y+3xy2+y4)-(-8xy2-2x2y-2y4)
人教2024七上数学 同步精品课件
人教版七年级上册
人教2024版七上数学同步高效精简课件 第四章 整式的加减
4.2 整式的加减
目录页
新课导入
讲授新课
当堂练习
课堂小结
新课导入
✓ 教学目标 ✓ 教学重点
学习目标
1.熟练进行整式的加减运算.(重点) 2.能根据题意列出式子,表示问题中的数量关系. (难点)
A.M<N
B.M=N
C.M>N
D.无法确定
当堂练习
5.多项式
与多项式
的和不含二次项,则m为( C )
A.2 B.-2 C.4 D.-4
6.已知a2+2a=1,则整式2a2+4a-1的值是( B ) A.0 B.1 C.-1 D.-2
当堂练习
7.若多项式3x3-2x2+3x+1与多项式x2-2mx3+2x 3
=3x2y+3xy2+y4+8xy2+2x2y+2y4
=5x2y+11xy2+3y4.
《整式的加减》PPT
![《整式的加减》PPT](https://img.taocdn.com/s3/m/50115784a0c7aa00b52acfc789eb172ded6399e8.png)
“+”号,
结果应是( D )
A.a+(b–3c)
B. a+(–b–3c)
C. a+(b+3c)
D. a+(–b+3c)
3. 已知a–b= –3,c+d=2,则(b+c)–(a–d)的值为( )
B
A.1
B.5
C.–5
D.–1
课堂检测
化简下列各式:
能力提升题
(1)8m+2n+(5m–n); (2)(5p–3q)–3(
例2 两船从同一港口出发反向而行,甲船顺水,乙船逆水,两船在静水中速度都是 50千米/时,水流速度是a千米/时.
问: (1)2小时后两船相距多远? (2)2小时后甲船比乙船多航行多少千米?
探究新知
解:(1)顺水速度=船速+水速=(50+a)km/h, 逆水速度=船速–水速=(50–a)km/h. 2小时后两船相距(单位:km) 2(50+a)+2(50–a)=100+2a+100–2a=200.
(2)2小时后甲船比乙船多航行(单位:km) 2(50+a)–2(50–a)=100+2a–100+2a=4a.
巩固练习
飞机的无风航速为x千米/时,风速为20千米/时,飞机顺风飞行4小时的行程是
多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?
解:顺风航速=无风航速___风速=_________________,
探究新知
素养考点 3 去括号化简求值
例3
先化简,再求值,已知x=–4,y=
1 2
,
求5xy2–[3xy2–(4xy2–2x2y)]+2x2y–xy2.
《整式的加减》PPT课件 (共17张PPT)
![《整式的加减》PPT课件 (共17张PPT)](https://img.taocdn.com/s3/m/ad52ede16137ee06eff91881.png)
4 x 8 x 2 x 3x 7 2
2 2
4 8 x 2 3 x 7 2
2
4 x 2 5 x 5
2019/1/21 8
合并同类项
•
•
把多项式中的同类项合并成一项,叫做 合并同类项. 合并同类项后,所得项的系数是合并前 各同类项的系数的和,且字母连同它的 指数不变.
A
) B. m 2 , n 0 D. m 1 , n 1
2019/1/21
7
畅所欲言
观察:同类项之间的 运算有什么特点?
• 运用运算律对多项式中的同类项进行运 算. 这里的结果是 4 x2 2 x 注意啦 7 3x :8 x2 2 x 的降幂排列 按照 2 2 4 x 8 x 2 x 3x 7 2
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
2 2
4 8 x 2 3 x 7 2
2
4 x 2 5 x 5
2019/1/21 8
合并同类项
•
•
把多项式中的同类项合并成一项,叫做 合并同类项. 合并同类项后,所得项的系数是合并前 各同类项的系数的和,且字母连同它的 指数不变.
A
) B. m 2 , n 0 D. m 1 , n 1
2019/1/21
7
畅所欲言
观察:同类项之间的 运算有什么特点?
• 运用运算律对多项式中的同类项进行运 算. 这里的结果是 4 x2 2 x 注意啦 7 3x :8 x2 2 x 的降幂排列 按照 2 2 4 x 8 x 2 x 3x 7 2
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、讲授新课
归纳:
整式加减的运算法则:一般地,几 个整式相加减,如果有括号就先去 括号,然后再合并同类项.
三、当堂训练: 课 本 第 69 页 练 习 第 1 、 2 题.
例8:做两个长方体纸盒,尺寸如下(单位:cm)
长 宽高
小纸盒
a
bc
大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米? (2)做大纸盒比做小纸盒多用料多少平方厘米?
分析:求做一个纸盒用料多少,实际 上是在求什么?
大盒用料多少,小盒用料多少?请列 式表示.
1 4 例3 29.) 求) 12 x 6 5-(2 ( x-(33 1 3 y321 24 )x) +x).1(3-3 232(x +x 11 3y 2)). 1
的值,其中 x = 3-23, yx=12 .
2.2 整式的加减(4课时)
第4课时 整式的加减
从实际背景中去体会进行整式的加 减的必要性,并能灵活运用整式的 加减的步骤进行运算.
重点 整式的加减.
难点 总结出整式的加减的一般步骤.
一、复习引入 练习:化简:
(1)(x+y)-(2x-3y); (2)2(a2-2b2)-3(2a2+b2).
提问:以上化简实际上进行了哪些运算? 怎样进行整式的加减运算?
23
点拨:求代数式的值的问题,一般地,先 对多项式进行化简,然后再第3题.
1.整式的加减实际上就是去括号、 合并同类项这两个知识的综合。
2.整式的加减的一般步骤: ①如果有括号,那么先算括号。 ②如果有同类项,则合并同类项。
3.求多项式的值,一般先将多项式 化简再代入求值,这样使计算简便。
四、课外作业
习题2.2第4,7题