整式的加减PPT课件
合集下载
整式的加减的ppt课件
多项式
由多个单项式组成的整式,如:x + 2y、3x^2 - 4x + 5等。
整式的加减运算规则
01
02
03
合并同类项
将相同变数的项合并,如 :3x + 5x = 8x。
系数相加减
将同类项的系数进行相加 或相减,如:3x + (-2x) = x。
变数和常数相加减
在整式的加减中,变数和 常数可以相加减,如:x + 5 = x + 5。
电磁学问题
在电磁学中,电流、电压、电阻等物 理量的计算也需要使用到整式的加减 。通过整式的加减,我们可以得到更 加准确的物理量值。
整式的加减在化学问题中的应用
化学反应方程式
在化学反应方程式中,整式的加减可 以帮助我们理解反应物和生成物之间 的关系。例如,通过比较反应前后的 质量变化,我们可以计算出反应的能 量变化。
整式的加减在实际问题中的应用
整式的加减在数学问题中的应用
代数方程的求解
整式的加减在代数方程求解中有 着广泛的应用,例如线性方程、 二次方程等。通过合并同类项、 移项等整式加减运算,可以简化
方程,找到解。
函数图像的处理
在函数的学习中,整式的加减可 以帮助我们处理函数图像,例如 通过平移、伸缩等变换,使图像
利用分配律简化计算
分配律是整式加减运算的基础,灵活运用分 配律可以简化计算。
灵活运用交换律和结合律
交换律和结合律可以用来调整项的顺序,便 于计算。
合并同类项时注意符号
在合并同类项时,要注意各项的符号,正负 号要正确处理。
化简时注意化到最简形式
在化简整式时,应尽可能化到最简形式,避 免复杂计算。
整式的加减运算实例
由多个单项式组成的整式,如:x + 2y、3x^2 - 4x + 5等。
整式的加减运算规则
01
02
03
合并同类项
将相同变数的项合并,如 :3x + 5x = 8x。
系数相加减
将同类项的系数进行相加 或相减,如:3x + (-2x) = x。
变数和常数相加减
在整式的加减中,变数和 常数可以相加减,如:x + 5 = x + 5。
电磁学问题
在电磁学中,电流、电压、电阻等物 理量的计算也需要使用到整式的加减 。通过整式的加减,我们可以得到更 加准确的物理量值。
整式的加减在化学问题中的应用
化学反应方程式
在化学反应方程式中,整式的加减可 以帮助我们理解反应物和生成物之间 的关系。例如,通过比较反应前后的 质量变化,我们可以计算出反应的能 量变化。
整式的加减在实际问题中的应用
整式的加减在数学问题中的应用
代数方程的求解
整式的加减在代数方程求解中有 着广泛的应用,例如线性方程、 二次方程等。通过合并同类项、 移项等整式加减运算,可以简化
方程,找到解。
函数图像的处理
在函数的学习中,整式的加减可 以帮助我们处理函数图像,例如 通过平移、伸缩等变换,使图像
利用分配律简化计算
分配律是整式加减运算的基础,灵活运用分 配律可以简化计算。
灵活运用交换律和结合律
交换律和结合律可以用来调整项的顺序,便 于计算。
合并同类项时注意符号
在合并同类项时,要注意各项的符号,正负 号要正确处理。
化简时注意化到最简形式
在化简整式时,应尽可能化到最简形式,避 免复杂计算。
整式的加减运算实例
整式的加减ppt课件
× -
×
- =-
.
感悟新知
知3-练
5-1.先化简,再求值:
(- x2+ 3xy - y2 ) - (- 3x2+5xy - 2y2 ) ,其中
x= , y= - .
感悟新知
知3-练
解:
原式=-x2+3xy-y2+3x2-5xy+2y2=2x2-2xy+y2.
12
(3) 利用合并同类项法则合并同类项;
(4) 写出合并后的结果 (可能是单项式,也可能是多项
式).
感悟新知
例2
知2-练
合并同类项:
(1) x2-3x-2+4x-1;
(2)3a2b-2ab+2+2ab-a2b-5.
解题秘方:合并同类项:将同类项的系数相加,
字母和字母的指数不变 .
感悟新知
知2-练
解:(1) x2-3x-2+4x-1
(2) - 3(2a - 3b) - 5a+b = - 6a+9b - 5a+b= - 11a+10b;
(3) (x+
��
)- 2 (3x - ) =x+ - 6x+ = - 5x+
.
感悟新知
知3-练
警示误区:去括号时要看清括号前面的符号,当
括号前面是“-”号时,去括号后,
原括号里各项的符号都要改变,不能
知4-练
(2) 若 3y - x=2, 求A - 2B 的值 .
《整式》整式的加减PPT课件 (共12张PPT)
在多项式中,每个单项式叫做多项式的项.
不含字母的项叫做常数项.
新知
多项式 项
学习
3x-7y
3x、-7y
边学边练:
x2-2x+4 ab-a2-1 x3+x2+xy-y2
x2、-2x、 ab、-a2 、-1 x3、x2、xy、 4 -y2 2、1、0
每一项的 1、1 次数
2、2 、0
3、2、2、2
a
2r
课堂
检测
(3)某种商品原价每件b元,第一次降价打 八折,第二次降价每件又减10元,第一次 降价后售价________元,第二次降价后的 售价是_________元。 3、(选作)三个植树队,第一队植树x棵, 第二队植的树比第一队的2倍少25棵,第三 队植的树比第一队植树的一半多42棵,则 第二队、第三队各植树多少棵?当 x=100 时,求三队共植树多少棵?
2米 x米 x米 3米 3米 2米
新知
学习
15a 2x-10
-a
1 2 ab r 2
单项式:
s 10
1 a
3x+5y+2z
s v
x2+2x+18
新知
学习
1 2 ab r 、x2+2x+18 2x -10 、 3x+5y+2z、 2
单项式 单项式 单项式 单项式
定义:几个单项式的和叫做多项式.
课堂
检测
1 2 x x y 2的项有 1、多项式 3 __________________ ,常数项是_______,一
次项系数是____________,属于_____次_____ 项式。 2、用整式填空,指出单项式的系数、次数以及多 项式的项和次数。 (1)某种苹果的售价是每千克x元,用面值是50元 的人民币购买6千克,花费_____元,应找回 _______元。 (2)图中的阴影部分的面积为____________.
不含字母的项叫做常数项.
新知
多项式 项
学习
3x-7y
3x、-7y
边学边练:
x2-2x+4 ab-a2-1 x3+x2+xy-y2
x2、-2x、 ab、-a2 、-1 x3、x2、xy、 4 -y2 2、1、0
每一项的 1、1 次数
2、2 、0
3、2、2、2
a
2r
课堂
检测
(3)某种商品原价每件b元,第一次降价打 八折,第二次降价每件又减10元,第一次 降价后售价________元,第二次降价后的 售价是_________元。 3、(选作)三个植树队,第一队植树x棵, 第二队植的树比第一队的2倍少25棵,第三 队植的树比第一队植树的一半多42棵,则 第二队、第三队各植树多少棵?当 x=100 时,求三队共植树多少棵?
2米 x米 x米 3米 3米 2米
新知
学习
15a 2x-10
-a
1 2 ab r 2
单项式:
s 10
1 a
3x+5y+2z
s v
x2+2x+18
新知
学习
1 2 ab r 、x2+2x+18 2x -10 、 3x+5y+2z、 2
单项式 单项式 单项式 单项式
定义:几个单项式的和叫做多项式.
课堂
检测
1 2 x x y 2的项有 1、多项式 3 __________________ ,常数项是_______,一
次项系数是____________,属于_____次_____ 项式。 2、用整式填空,指出单项式的系数、次数以及多 项式的项和次数。 (1)某种苹果的售价是每千克x元,用面值是50元 的人民币购买6千克,花费_____元,应找回 _______元。 (2)图中的阴影部分的面积为____________.
人教版七年级数学上册《整式》整式的加减PPT课件
B.系数是1,次数是6; D.系数是-1,次数是6;
2.单项式 -4πr2 的系数及次数分别为( C )
A. -4,2
B.-4,3
C. 4π ,2
D. 4π ,3
当堂训练
3.如果 1 a2b2n1 是五次单项式,则n的值为( B )
2
A.1
B.2
C.3
D.4
课堂小结
单项式
概念:数或字母的积组成的式子 (包括单独的数或字母) 系数:单项式中的数字因数 次数:所有字母的指数的和
第四章 整式的加减
4.1 整式
第2课时 多项式和整式
学习目标
1. 掌握多项式、多项式的项、次数以及常数项 的概念. 2. 会准确迅速的确定一个多项式的项数和次数. 3. 归纳出整式的概念会区别单项式和多项式.
学习重难点
学习重点:理解多项式、多项式的项与次 数概念以及整式的概念.
学习难点:正确的找出多项式的项和次数.
单项式与多项式统称为整式。
巩固练习
用多项式填空,并指出它们的项和次数。
(1)一个长方形相邻两边长分别为a,b,则这个长方形的
周长为 2a+2b . (2)m为一个有理数,m的立方与2的差为 m3-2 .
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环 保和安全起见,从第三年年初起不再投放,且每个月回b辆,第
课堂小结
巩固练习
练一练:判断下列代数式是否是单项式?
4b2
,
π,2+3m
,3xy
,
a 3
,
1 t
答:4b2
,
π,3xy
,
a 3
是单项式.
探究新知
学生活动二 【一起探究】
初中数学《整式的加减》课件PPT
3 化简5(2x-3)+4(3-2x)的结果为( A ) A.2x-3 B.2x+9 C.8x-3 D.18x-3
知1-练
4 若一个多项式减去-4a等于3a2-2a-1,则这个多 项式是( A ) A.3a2-6a-1 B.5a2-1 C.3a2+2a-1 D.3a2+6a-1
5 一个单项式减去x2-y2等于x2+y2,则这个单项式 是( C ) A.2y2 B.-2y2 C.2x2 D.-2x2
知1-讲
解法1: 小红买笔记本和圆珠笔共花费(3x+2y)元,小明买 笔记本和圆珠笔共花费(4x+3y)元. 小红和小明一共花费(单位:元) (3x+2y) + (4x+3y) = 3x+2y+4x+3y = 7x+5y.
知1-讲
解法2: 小红和小明买笔记本共花费(3x+4x)元,买圆珠笔 共花费(2y+3y)元. 小红和小明一共花费(单位:元) (3x+4x) + (2y+3y) = 7x+5y.
知1-讲
解:小纸盒的表面积是(2ab+2bc+2ca)cm2, 大纸盒的表面积是(6ab+8bc+6ca) cm2.
(1)做这两个纸盒共用料(单位:cm2)
(2ab+2bc+2ca)+ (6ab+8bc+6ca)
=2ab+2bc+2ca+ 6ab+8bc+6ca
=8ab +10bc+8ca. (2)做大纸盒比做小纸盒多用料(单位: cm2)
(来自教材)
总结
知1-讲
审清题意,在具体情境中用代数式表示数量关 系,根据整式的加减的运算法则进行化简.
《整式的加减》课件
整式的分类
01
02
03
单项式
只包含一个项的整式,例 如:$x^2$、$5a$。
多项式
包含多个项的整式,例如 :$x^2 - 3x + 2$。
整式的次数
一个整式中,所有字母的 指数之和称为该整式的次 数,例如:$x^2$的次数 为2。
整式的加减运算规则
同类项合并
同类项是指具有相同字母和相同 指数的项,同类项可以合并,例 如:$2x^2 + 3x^2 = 5x^2$。
去括号法则
总结词
去括号法则是整式加减运算中的一项重要法则,用于消除括号并简化整式的形式。
详细描述
去括号法则包括两个步骤,一是消除括号前的正号或负号,二是将括号内的各项分别与括号前的符号相乘或相除 。例如,在整式2(x + 3y) - (2x - y)中,根据去括号法则,首先消除括号前的正号,得到2x + 6y - 2x + y,然后 分别将括号内的各项与括号前的符号相乘或相除,得到最终结果-5y。
移项法则
总结词
移项法则是整式加减运算中的另一项重要法则,用于将整式中的项从一边移动到另一边 。
详细描述
移项法则包括两个步骤,一是将整式中的项从一边移动到另一边,二是根据移动的方向 改变该项的符号。例如,在整式6x - 5 = 2x + 1中,要将-5移到等号的另一边,根据 移项法则,首先将-5从等号的左边移动到右边,并改变其符号得到+5,得到新的等式
05
练习与巩固
基础练习题
总结词
帮助学生掌握整式加减的基本概 念和运算规则。
详细描述
设计一些简单的整式加减题目, 如合并同类项、去括号等,让学 生通过练习加深对整式加减基本 概念和运算规则的理解。
整式的加减课件ppt课件
等价变换等方面。
整式加减在实际生活中的应用
03
物理计算
经济学模型
化学计量
在物理计算中,整式加减常用于解决与速 度、加速度、力等物理量相关的实际问题 。
在经济学模型中,整式加减用于描述成本 、收益、供需关系等经济现象,帮助理解 经济规律。
在化学计量中,整式加减用于表示化学反 应中的物质关系,有助于理解和计算化学 反应过程。
只包含一个项的整式,例如: 5x^2y、6abc等。
02
多项式
01
单项式
包含多个项的整式,例如:x^2 3x + 2、2xy + y^2等。
整式的加减运算规则
同类项的合并
同类项是指具有相同未知数的项, 同类项可以进行加减运算。
合并同类项的规则
将同类项的系数相加减,未知数保 持不变。
去括号法则
在整式的加减运算中,如果括号前 是负号,则去掉括号后,括号内的 各项都要变号。
进行计算。
整式的加减运算实例
01
02
03
04
例1
计算$2x - 7x + 3x$
解
$2x - 7x + 3x = (2 - 7 + 3)x = -2x$
例2
计算$3x^2 - 4x + 5 - 2x^2 + 6x - 7$
解
$3x^2 - 4x + 5 - 2x^2 + 6x - 7 = (3x^2 - 2x^2) + (-4x + 6x) + (5 - 7) = x^2 + 2x -
2$
03
整式加减的应用
整式加减在数学中的应用
01
代数方程求解
整式加减在实际生活中的应用
03
物理计算
经济学模型
化学计量
在物理计算中,整式加减常用于解决与速 度、加速度、力等物理量相关的实际问题 。
在经济学模型中,整式加减用于描述成本 、收益、供需关系等经济现象,帮助理解 经济规律。
在化学计量中,整式加减用于表示化学反 应中的物质关系,有助于理解和计算化学 反应过程。
只包含一个项的整式,例如: 5x^2y、6abc等。
02
多项式
01
单项式
包含多个项的整式,例如:x^2 3x + 2、2xy + y^2等。
整式的加减运算规则
同类项的合并
同类项是指具有相同未知数的项, 同类项可以进行加减运算。
合并同类项的规则
将同类项的系数相加减,未知数保 持不变。
去括号法则
在整式的加减运算中,如果括号前 是负号,则去掉括号后,括号内的 各项都要变号。
进行计算。
整式的加减运算实例
01
02
03
04
例1
计算$2x - 7x + 3x$
解
$2x - 7x + 3x = (2 - 7 + 3)x = -2x$
例2
计算$3x^2 - 4x + 5 - 2x^2 + 6x - 7$
解
$3x^2 - 4x + 5 - 2x^2 + 6x - 7 = (3x^2 - 2x^2) + (-4x + 6x) + (5 - 7) = x^2 + 2x -
2$
03
整式加减的应用
整式加减在数学中的应用
01
代数方程求解
4.2 整式的加减第3课时 整式的加减 课件(共35张PPT)
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
整式加减的一般步骤是:先去括号,再合并同类项. 注意: (1)整式加减运算的过程中,一般把多项式用括号括
起来; (2)整式加减的最后结果中不能含有同类项,即要合
并到不能再合并为止.
(2)(8a-7b)-(4a-5b) =8a-7b-4a+5b 去括号 =4a-2b 合并同类项
例2 已知A=3x2y+3xy2+y4,B=-8xy2-2x2y-2y4 求:(1)A-B;(2)A+ 1 B.
2
导引:将A,B代表的多项式代入,然后去括号、合并
同类项.
解:(1)A-B=(3x2y+3xy2+y4)-(-8xy2-2x2y-2y4)
人教2024七上数学 同步精品课件
人教版七年级上册
人教2024版七上数学同步高效精简课件 第四章 整式的加减
4.2 整式的加减
目录页
新课导入
讲授新课
当堂练习
课堂小结
新课导入
✓ 教学目标 ✓ 教学重点
学习目标
1.熟练进行整式的加减运算.(重点) 2.能根据题意列出式子,表示问题中的数量关系. (难点)
A.M<N
B.M=N
C.M>N
D.无法确定
当堂练习
5.多项式
与多项式
的和不含二次项,则m为( C )
A.2 B.-2 C.4 D.-4
6.已知a2+2a=1,则整式2a2+4a-1的值是( B ) A.0 B.1 C.-1 D.-2
当堂练习
7.若多项式3x3-2x2+3x+1与多项式x2-2mx3+2x 3
=3x2y+3xy2+y4+8xy2+2x2y+2y4
=5x2y+11xy2+3y4.
《整式的加减》PPT
“+”号,
结果应是( D )
A.a+(b–3c)
B. a+(–b–3c)
C. a+(b+3c)
D. a+(–b+3c)
3. 已知a–b= –3,c+d=2,则(b+c)–(a–d)的值为( )
B
A.1
B.5
C.–5
D.–1
课堂检测
化简下列各式:
能力提升题
(1)8m+2n+(5m–n); (2)(5p–3q)–3(
例2 两船从同一港口出发反向而行,甲船顺水,乙船逆水,两船在静水中速度都是 50千米/时,水流速度是a千米/时.
问: (1)2小时后两船相距多远? (2)2小时后甲船比乙船多航行多少千米?
探究新知
解:(1)顺水速度=船速+水速=(50+a)km/h, 逆水速度=船速–水速=(50–a)km/h. 2小时后两船相距(单位:km) 2(50+a)+2(50–a)=100+2a+100–2a=200.
(2)2小时后甲船比乙船多航行(单位:km) 2(50+a)–2(50–a)=100+2a–100+2a=4a.
巩固练习
飞机的无风航速为x千米/时,风速为20千米/时,飞机顺风飞行4小时的行程是
多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?
解:顺风航速=无风航速___风速=_________________,
探究新知
素养考点 3 去括号化简求值
例3
先化简,再求值,已知x=–4,y=
1 2
,
求5xy2–[3xy2–(4xy2–2x2y)]+2x2y–xy2.
《整式的加减》PPT课件 (共17张PPT)
4 x 8 x 2 x 3x 7 2
2 2
4 8 x 2 3 x 7 2
2
4 x 2 5 x 5
2019/1/21 8
合并同类项
•
•
把多项式中的同类项合并成一项,叫做 合并同类项. 合并同类项后,所得项的系数是合并前 各同类项的系数的和,且字母连同它的 指数不变.
A
) B. m 2 , n 0 D. m 1 , n 1
2019/1/21
7
畅所欲言
观察:同类项之间的 运算有什么特点?
• 运用运算律对多项式中的同类项进行运 算. 这里的结果是 4 x2 2 x 注意啦 7 3x :8 x2 2 x 的降幂排列 按照 2 2 4 x 8 x 2 x 3x 7 2
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
2 2
4 8 x 2 3 x 7 2
2
4 x 2 5 x 5
2019/1/21 8
合并同类项
•
•
把多项式中的同类项合并成一项,叫做 合并同类项. 合并同类项后,所得项的系数是合并前 各同类项的系数的和,且字母连同它的 指数不变.
A
) B. m 2 , n 0 D. m 1 , n 1
2019/1/21
7
畅所欲言
观察:同类项之间的 运算有什么特点?
• 运用运算律对多项式中的同类项进行运 算. 这里的结果是 4 x2 2 x 注意啦 7 3x :8 x2 2 x 的降幂排列 按照 2 2 4 x 8 x 2 x 3x 7 2
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某村小麦种植面积是a公顷,水稻种植面积 是小麦种植面积的3倍,玉米种植面积比小麦 种植面积少5公顷,列式表示水稻种植面积、 玉米种植面积,并计算水稻种植面积比玉米种 植面积大多少?(计算全过程)
某轮船顺水航行3h,逆水航行1.5h,已知 轮船在静水中的速度是akm/h,水流速度是 ykm/h,轮船共航行多少千米?
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
11
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
整式的加减与实际应用
景东四中 王会琴
1、合并同类项。
注意:只有同类项才能进行合并。合并时:先分 大项,一大项与一大项之间用加号连接。
2、去括号。
如果括号前面的因数是正数,去括号后原括号内各 项不变号。
如果括号前面的因数是负数,去括号后,括号里的 加号变减号,减号变加号。
整式加减的运算法则:
一般地,几个整式相加减,如果有括号就先 去括号,然后再合并同类项。(结果按某个 字母的降幂排列,常数项写在最后。)
求 1 x 2(x 1 y2 ) ( 3 x 1 y2 )的值,
2
3
23
其中x 2, y 2 . 3
3、先化简下式,再求值:
5(3a2b ab2 ) (ab2 3a2b), 其中a 1 ,b 1 .
23
x 例7、笔记本的单价是 元,圆珠笔的单价
是 y 元 。小红买3本笔记本,2支圆珠笔;
小明买4本笔记本,3支圆珠笔。买这些笔记
本和圆珠笔,小红和小明一共花费多少钱?
例8、做大小两个长方体纸盒,尺寸如下(单位:cm)
长
宽
高
小纸盒
a
b
c
大纸盒
1.5a
2b
2c
c
ab
2c
1.5a
2bHale Waihona Puke c2cab
1.5a
2b
(1)做这两个纸盒共用料多少平方厘米?
(2)做大纸盒比做小纸盒多用料多少平方 厘米?