第二章整式的加减复习课.PPT课件
合集下载
第二章整式的加减复习课件
![第二章整式的加减复习课件](https://img.taocdn.com/s3/m/26798c22bd64783e09122be3.png)
1.单项式次数是指所有字母的次数的和,与数字的次数没有关系。 2.单独的数字不含字母, 规定它的次数是零次.
单项式的系数问题时,要注意以下几 点: 1.当单项式的系数是1或-1时,
“1”通常省略不写。
2.当单项式的系数是带分数时, 通常写成假分数。
3.单项式的系数应包括它前面的 性质符号。 4.圆周率π是常数,不要看成字母。
3、单项式与多项式统 称整式。
定义:几个__________. 多项式
项: 组成多项式中的_____________. 有几项,就叫做_________. 常数项:多项式中_______________.
多项式的次数:_________________________.
注意的问题: 1.在确定多项式的项时,要连同它前面的符号, 2.一个多项式的次数最高项的次数是几,就说这个多项式是几次 多项式。 3.在多项式中,每个单项式都是这个多项式的项,每一项都有系 数,但对整个多项式来说,没有系数的概念,只有次数的概念。
⑵所添括号前面是“-”
改变 号,括到括号里的各项都 符号。
1.去括号: (1)3 x [5 x (2 x 1)]
-1
(2) 2ab 3a ) (2a b) 6ab ( 3
7a+b
典型例题
(1)4a 2 3b 2 2ab 4a 2 4b 2 1、计算:
2 2
B.x 2 x 1 D. x y 2 x 1
2 2 3
注意(1)多项式的次数不是所有项的次数的和, 而是它的最高次项次数; (2)多项式的每一项都包含它前面的符号; (3)再强调一次, 把“π”当作数字, 而不是字母。
m=±4
解:由题意得:
单项式的系数问题时,要注意以下几 点: 1.当单项式的系数是1或-1时,
“1”通常省略不写。
2.当单项式的系数是带分数时, 通常写成假分数。
3.单项式的系数应包括它前面的 性质符号。 4.圆周率π是常数,不要看成字母。
3、单项式与多项式统 称整式。
定义:几个__________. 多项式
项: 组成多项式中的_____________. 有几项,就叫做_________. 常数项:多项式中_______________.
多项式的次数:_________________________.
注意的问题: 1.在确定多项式的项时,要连同它前面的符号, 2.一个多项式的次数最高项的次数是几,就说这个多项式是几次 多项式。 3.在多项式中,每个单项式都是这个多项式的项,每一项都有系 数,但对整个多项式来说,没有系数的概念,只有次数的概念。
⑵所添括号前面是“-”
改变 号,括到括号里的各项都 符号。
1.去括号: (1)3 x [5 x (2 x 1)]
-1
(2) 2ab 3a ) (2a b) 6ab ( 3
7a+b
典型例题
(1)4a 2 3b 2 2ab 4a 2 4b 2 1、计算:
2 2
B.x 2 x 1 D. x y 2 x 1
2 2 3
注意(1)多项式的次数不是所有项的次数的和, 而是它的最高次项次数; (2)多项式的每一项都包含它前面的符号; (3)再强调一次, 把“π”当作数字, 而不是字母。
m=±4
解:由题意得:
人教版数学七级上册课件第二章整式的加减(复习)(PPT)
![人教版数学七级上册课件第二章整式的加减(复习)(PPT)](https://img.taocdn.com/s3/m/ff7ff3a6227916888586d763.png)
整式的加减(复习)
知识回顾
用字母表示数
整
整 单项式: 系数、次数 练习(一)
式
式 多项式: 项、次数、常数项
的
同类项: 定义、“两相同、两无关”
练习(二)
加
合并同类项: 定义、法则、步骤
去括号: 法 则 减
整式的加减: 步 骤
练习(三)
1单项式
1、数或字母的积, 叫做单项式.
(单独的一个数或一个字母也是单项式.)
3 2.如果括号外的因数是负数,去括号后原括号内各项的符号与原来 的符号相反. 2)-(x-3)=__-_1_×__(_x__-_3_)_=_-_1_×__x_-_(_-_1_)_×__3_=_-_x_+_3____
去括号法则顺口溜: 1)括号外是“+”号,括号内符号不变。 2)括号外是“-” 号,括号内符号全变。
(5)0.9a,它的系数是0.9,次数是1.
返回
2多项式
多例项2式::3x几2-个2x单+5项中式,的含和有三。项,它们是: 多项式的项:在3x多2 项次式数中是的2 每个单项式。 常数项:在多项-2式x 中次,数不是含1 字母的项。
5 次数是0 多项三式项的中次次数数:最多高项项式是里第,一次项数,最是高2次项,的所次数, 就是以这这个是多个项二式次的三次项数式。。 例如,多项式3x2-2x+5中,它含有三项,它 们是, 3x2 ,-2x,5,其中5是常数项.
(4)一台电视机原价a元,现按原价的9折出售, 这台电视机现在的售价为( ); (5)一个长方形的长是0.9,宽是a,这个长方 形的面积是( ).
返回
解: (1)12n,它的系数是12,次数是1; (2)1/2ah,它的系数是1/2,次数是2;
知识回顾
用字母表示数
整
整 单项式: 系数、次数 练习(一)
式
式 多项式: 项、次数、常数项
的
同类项: 定义、“两相同、两无关”
练习(二)
加
合并同类项: 定义、法则、步骤
去括号: 法 则 减
整式的加减: 步 骤
练习(三)
1单项式
1、数或字母的积, 叫做单项式.
(单独的一个数或一个字母也是单项式.)
3 2.如果括号外的因数是负数,去括号后原括号内各项的符号与原来 的符号相反. 2)-(x-3)=__-_1_×__(_x__-_3_)_=_-_1_×__x_-_(_-_1_)_×__3_=_-_x_+_3____
去括号法则顺口溜: 1)括号外是“+”号,括号内符号不变。 2)括号外是“-” 号,括号内符号全变。
(5)0.9a,它的系数是0.9,次数是1.
返回
2多项式
多例项2式::3x几2-个2x单+5项中式,的含和有三。项,它们是: 多项式的项:在3x多2 项次式数中是的2 每个单项式。 常数项:在多项-2式x 中次,数不是含1 字母的项。
5 次数是0 多项三式项的中次次数数:最多高项项式是里第,一次项数,最是高2次项,的所次数, 就是以这这个是多个项二式次的三次项数式。。 例如,多项式3x2-2x+5中,它含有三项,它 们是, 3x2 ,-2x,5,其中5是常数项.
(4)一台电视机原价a元,现按原价的9折出售, 这台电视机现在的售价为( ); (5)一个长方形的长是0.9,宽是a,这个长方 形的面积是( ).
返回
解: (1)12n,它的系数是12,次数是1; (2)1/2ah,它的系数是1/2,次数是2;
人教版七年级数学上册第二章 整式的加减全章总复习课件(共36张PPT)
![人教版七年级数学上册第二章 整式的加减全章总复习课件(共36张PPT)](https://img.taocdn.com/s3/m/c5d08f6bd4d8d15abf234eb8.png)
课堂练习
5.求多项式-x3+2x2-3x-1与多项式-2x2+3x-2的差.
分析:先把文字语言转化成数学符号语言,多项式看 成一个整体,要添上括号,再求差. 解:(-x3+2x2-3x-1)-(-2x2+3x-2) =-x3+2x2-3x-1+2x2-3x+2 =-x3+4x2-6x-1
典型例题
课堂练习
1. 先化简,再求值:5x2y-[2x2y-(xy2-2x2y)-4]-2xy2, 其中x=-2,y=1. 解: 5x2y-[2x2y-(xy2-2x2y)-4]-2xy2
= 5x2y-(2x2y-xy2+2x2y-4)-2xy2 = 5x2y-4x2y+xy2+4-2xy2 = x2y-xy2+4 当x=-2,y=-1时,原式= (-2)2╳1-(-2)╳12+4=10
解:(1)第7个等式为 1+2+3+4+5+6+7+6+5+4+3+2+1=82 (2)根据规律,得第n个等式为 1+2+3+ ┅ +n+(n+1)+n+ ┅ +3+2+1=(n+1)2 (n为 正整数)
典型例题 ②.图形的规律. 例7 下图是用棋子摆成的“小屋”,按照这样的方式 摆下去,第6个这样的“小屋”需要 35 枚棋子. 分析:观察图形,发现:摆第1个 “小屋”要5枚棋子,后面的小 屋依次多6枚棋子,可得到第n 个图形中需要的棋子数为6n-1, 所以第6个这样的“小屋”需 要35枚棋子。
知识清单
第2章 整式的加减 章末复习课件(19张PPT)
![第2章 整式的加减 章末复习课件(19张PPT)](https://img.taocdn.com/s3/m/9922d51e492fb4daa58da0116c175f0e7cd119e4.png)
知识梳理
人教版数学七年级上册
知识点二 同类项、合并同类项
1.所含字母_相__同___,并且相同字母的指数也_相__同___的项 叫做同类项.几个常数项也是同类项.
2.把多项式中的 同类项 合并成一项,叫做合并同类项, 即把它们的系数相加 作为新的系数,而字母及字母的指 数不变 .
课堂检测
人教版数学七年级上册
谢谢聆听
人教版数学七年级上册
人教版数学七年级上册
课堂检测
人教版数学七年级上册
4.已知关于x,y的多项式x2ym+1+xy2–2x3–5是六次四项式,单
项式3x2ny5–m的次数与这个多项式的次数相同,求m-n的值. 解:因为多项式x2ym+1+xy2-2x3-5是六次四项式,
所以2+m+1=6, 所以m=3, 因为单项式6x2ny5–m的次数也是六次, 所以2n+5-m=6, 所以n=2, 所以m-n=3-2=1.
课堂检测
人教版数学七年级上册
1.已知A=3x2-x+2,B=x+1,C= 1 x2 4 ,求3A+2B-36C的值, 49
其中x=-3.
解: 3A 2B 36C 3(3x2 x 2) 2(x 1) 36 ( 1 x2 4) 49 9x2 3x 6 2x 2 9x2 16 x 24 当x=-3时,原式=-(-3)+24=3+24=27.
课堂检测
1.下列各项中,去括号正确的是( C ) A.m2-(2m-y+2)=m2-2m+y+2 B.-(a+n)-an=-a+n-an C.b-(5b-3y)+(2b-y)=-2b+2y D.ab-(-ab+3)=3
人教版数学七年级上册
初中数学人教七年级上册第二章整式的加减整式的加减复习PPT
![初中数学人教七年级上册第二章整式的加减整式的加减复习PPT](https://img.taocdn.com/s3/m/202c4c1d5627a5e9856a561252d380eb629423d3.png)
字母 a b c d e f g h i j k l m 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 字母 n o p q r s t u v w x y z 序号 14 15 16 17 18 19 20 21 22 23 24 25 26
阶段综合测试二(期中一)
当明码字母对应的序号 x 为奇数时,密码字母对应的序号是x+2 7; 当明码字母对应的序号 x 为偶数时,密码字母对应的序号是x2+11.按 上述规定,将明码“ math”译成密码是( )
A.三次多项式 B.四次多项式或单项式 C.七次多项式 D.四次七项式 [答案] B
第2章 |复习
6.若A是一个四次多项式,B是一个二次多项式,则“A- B”( )
A.可能是六次多项式 B.可能是二次多项式 C.一定是四次多项式或单项式 D.可能是0 [答案] C
第2章 |复习
7.已知式子x2+3x+5的值为7,那么式子3x2+9x-2的值是 ()
[解析] 从化简入手进而揭开它神秘的面纱. 解:设所想的数为n,则(2n+8)÷2-n=n+4-n=4. 因为结果是常数4,所以与所想的数无关,因此甲能知道结 果.
第2讲评章 |复习
三、习题训练
1.在式子 x-2,0,-a,-3x2y,x+3 1,1x中,单项式共有(
)
A.5 个 B.4 个
C.3 个 D.2 个
A.0 B.2 C.4 D.6
[答案] C
第2章 |复习
8.若多项式2x2-ax+3y-b+bx2+2x-6y+5的值与字母x 无关,试求多项式6(a2-2ab-b2)-(2a2-3ab+4b2)的值.
第2章 |复习
解:2x2-ax+3y-b+bx2+2x-6y+5=(2+b)x2+(2-a)x +(3-6)y-b+5,
阶段综合测试二(期中一)
当明码字母对应的序号 x 为奇数时,密码字母对应的序号是x+2 7; 当明码字母对应的序号 x 为偶数时,密码字母对应的序号是x2+11.按 上述规定,将明码“ math”译成密码是( )
A.三次多项式 B.四次多项式或单项式 C.七次多项式 D.四次七项式 [答案] B
第2章 |复习
6.若A是一个四次多项式,B是一个二次多项式,则“A- B”( )
A.可能是六次多项式 B.可能是二次多项式 C.一定是四次多项式或单项式 D.可能是0 [答案] C
第2章 |复习
7.已知式子x2+3x+5的值为7,那么式子3x2+9x-2的值是 ()
[解析] 从化简入手进而揭开它神秘的面纱. 解:设所想的数为n,则(2n+8)÷2-n=n+4-n=4. 因为结果是常数4,所以与所想的数无关,因此甲能知道结 果.
第2讲评章 |复习
三、习题训练
1.在式子 x-2,0,-a,-3x2y,x+3 1,1x中,单项式共有(
)
A.5 个 B.4 个
C.3 个 D.2 个
A.0 B.2 C.4 D.6
[答案] C
第2章 |复习
8.若多项式2x2-ax+3y-b+bx2+2x-6y+5的值与字母x 无关,试求多项式6(a2-2ab-b2)-(2a2-3ab+4b2)的值.
第2章 |复习
解:2x2-ax+3y-b+bx2+2x-6y+5=(2+b)x2+(2-a)x +(3-6)y-b+5,
人教部编版七年级数学上册《第二章 整式的加减【全章】》精品PPT优质课件
![人教部编版七年级数学上册《第二章 整式的加减【全章】》精品PPT优质课件](https://img.taocdn.com/s3/m/261928e5fe4733687e21aab4.png)
用字母表示数,字母和数一样可以 参与运算,可以用式子把数量关系简明 地表示出来.
练习1(教材第56页练习)
(1)某种商品每袋4.8元,在一个月内的销 售量是m 袋,用式子表示在这个月内销售这种商
品的收入. 4.8m元
(2)圆柱体的底面半径、高分别是 r,h,
用式子表示圆柱体的体积. πr2h
(3)有两片棉田,一片有m hm2 (公顷, 1 hm2 =104 m2 ),平均每公顷产棉花a kg;另 一片有n hm2 ,平均每公顷产棉花b kg,用式子
a2h,-n,这些式子有什么特点呢?
(1)能叙述并理解单项式及单项式的系数、次数的 意义.
(2)会正确确定一个单项式的系数和次数.
推进新课 字母表示数有什么意义?
用字母表示数,字母和数一样可以参与 运算,可以用式子把数量关系简明地表示出 来,更适合于一般规律的表达.
思考
我们来看引言与例1中的式子
例如在上面的例题中,0.9b既可以表示 电视机的售价,又可以表示长方形的面积.
你能赋予0.9b一个含义吗?
练习2 填表:
单项式
系数
2 -1.2
1
-1
2 3
次数 2 1 3 2 2
3 2π
33
填空:
1.一辆长途汽车从杨柳村出发,3h后到达距出 发地s km的溪河镇,这辆长途汽车的平均速度
s
是___3____km/h.
多项式 x2 + 2x + 18的项是x2,2x与18,其中18 是常数项.
多项式里,次数最高项的次数,叫做这个多 项式的次数.
如多项式 v 2.5 中次数最高项是一次项 v ,
这个多项式的次数是1.
多项式 x2 2x 18 中次数最高项是二次项
人教版七年级上册数学整式的加减复习ppt课堂课件
![人教版七年级上册数学整式的加减复习ppt课堂课件](https://img.taocdn.com/s3/m/75381337f705cc17542709b4.png)
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
整式的加减(复习)
授课人:
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
知识回顾
用字母表示数
整
整 单项式: 系数、次数
式
式 多项式: 项、次数、常数项
的
同类项: 定义、“两相同、两无关”
3、若5x2 y与是 x m yn同类项,则m=( 2 ) n=( 1 ) 若5x2 y与 x m yn的和是单项式, m=( 2 ) n=( 1 ) 通常我们把一个多项式的和项按照某个字母的指数从 大到小(降幂)或者从小 到大(升幂)的顺序排列, 如 -4x2+5x+5 也可以写成 5+5x-4x2 。
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
返回
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
练 习(二):
1、下列各组是不是同类项:
(1) 4abc 与 4ab 不是
(2) -5 m2 n3 与 2n3 m2 是 (3) -0.3 x2 y 与 y x2 是
2、合并下列同类项:
式
式 多项式: 项、次数、常数项
的
同类项: 定义、“两相同、两无关”
练习(二)
加
合并同类项: 定义、法则、步骤
去括号: 法 则 减
整式的加减: 步 骤
练习(三)
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
练 习(一):
1、在式子:
6本课的突出特点是拟人手法的运用, 把植物 和种子 分别当 作“妈 妈”和 “孩子 ”来写 。“妈 妈孩子 ”这样 的关联 ,易触 动儿童 的情感 世界, 易激发 想象、 引发思 考,读 起来亲 切、有 趣,易 于调动 小读者 的阅读 兴趣。
整式的加减(复习)
授课人:
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
知识回顾
用字母表示数
整
整 单项式: 系数、次数
式
式 多项式: 项、次数、常数项
的
同类项: 定义、“两相同、两无关”
3、若5x2 y与是 x m yn同类项,则m=( 2 ) n=( 1 ) 若5x2 y与 x m yn的和是单项式, m=( 2 ) n=( 1 ) 通常我们把一个多项式的和项按照某个字母的指数从 大到小(降幂)或者从小 到大(升幂)的顺序排列, 如 -4x2+5x+5 也可以写成 5+5x-4x2 。
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
返回
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
练 习(二):
1、下列各组是不是同类项:
(1) 4abc 与 4ab 不是
(2) -5 m2 n3 与 2n3 m2 是 (3) -0.3 x2 y 与 y x2 是
2、合并下列同类项:
式
式 多项式: 项、次数、常数项
的
同类项: 定义、“两相同、两无关”
练习(二)
加
合并同类项: 定义、法则、步骤
去括号: 法 则 减
整式的加减: 步 骤
练习(三)
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
人教版七年级上册数学课件:第二章 整式的 加减(复 习)
练 习(一):
1、在式子:
6本课的突出特点是拟人手法的运用, 把植物 和种子 分别当 作“妈 妈”和 “孩子 ”来写 。“妈 妈孩子 ”这样 的关联 ,易触 动儿童 的情感 世界, 易激发 想象、 引发思 考,读 起来亲 切、有 趣,易 于调动 小读者 的阅读 兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级人教版第二章:
《整式的加减》复习课
知识结构:
整式的概念 整式的加减
整式的计算
单项式 多项式
系数
次数 项,项数,常数项, 最高次项 次数
同类项与合并同类项 去括号 化简求值
用字母来表示生活中的量
定义:由__数__字__或_字__母__的__乘__积__组成的式子。 单独的_一__个__数_或_一__个__字__母_也是单项式。
1.下列各式中,是同类项的是:__③__⑤_⑥______
① 2x2 y3 与 x3 y2 ② x2 yz 与 x2 y
③10mn与 2 mn
3
④ (a)5与 (3)5 ⑤ 3x2 y 与 0.5yx2 ⑥-125与
2.若 2x3 yn与 xm y2 是同类项,则m+n=__5_.
3.若 xa6 ya4 与 3x4 yb 的和是一个单项式,则 ab=__4_.
单项式: 系数: 单项式中的__数_字__因__数__。 次数: 单项式中的___所_有__字__母__的__指_数__和___.
注意的问题:
1.当单项式的系数是1或-1时,“1”通常省略不写。 2.当式子分母中出现字母时不是单项式。 3.圆周率π是常数,不要看成字母。 4.当单项式的系数是带分数时,通常写成假分数。 5.单项式的系数应包括它前面的性质符号。
注意的问题:
1.在确定多项式的项时,要连同它前面的符号, 2.一个多项式的次数最高项的次数是几,就说这个多项式是几次 多项式。
3.在多项式中,每个单项式都是这个多项式的项,每一项都有系 数,但对整个多项式来说,没有系数的概念,只有次数的概念。
同类项
同类项的定义:
1.字__母__相同,
(两相同)
2._相__同__的__字_母__的__指__数__也_相同。
4.若 2a b 3m 5 pa4bn1 7b5a4,则m+n-p=__-_4___
整式的加减混合运算步骤(有括号先去括号)
一:去括号 (按照先小括号,再中括号,最后大括号的顺序) 1.如果括号外的因数是正数,去括号后原括号内各 项的符号与原来的符号相同。 2.如果括号外的因数是负数,去括号后原括号内各 项的符号与原来的符号相反。
(2)
x
3
x2
y2
1
是
_四____
次
__三___
项式,最高次项是
____x__23_y_2_,常数项是
1
_____3____;
3
4,书写格式中的易错点
例5 下列各个式子中,书写格式正确的是( F)
A.a b B. 1 1 ab C.a 3 2
D.a3
E. 1ab
பைடு நூலகம்
F. a2b
3
1、代数式中用到乘法时,若是数字与数字乘,要用“×”
C .a 2b ab b2
D.x2 y2 2x3 1
注意(1)多项式的次数不是所有项的次数的和,而是它的最高 次项次数;
(2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母
例4 请说出下列各多项式是几次几项式,并写出多项式的最高
次项和常数项;
(1)25 x 2 y xy3是 __四___ 次 __三___ 项式,最高次项是 _____x__y_3_,常数项是 _____2__5__;
果分母没有字母的仍有可能是单项式
(注:“π”当作数字,而不是字母)
2,单项式的系数与次数
例2 指出下列单项式的系数和次数;
单项式 a 系数 1
ab2 3
1 3
a 2bc 3 1
a 2b3
7
7
次数 1
3
6
5
22 x2 y 4 3
注意:1,字母的系数“1” 可以省略的,但不代表没有系 数(次数也是同样道理);
“去括号,看符号。是‘+’号,不变号,是‘-’号,全变号” 二:计算
1.找同类项,做好标记。 找 2.利用加法的交换律和结合律把同类项放在一起。般 3.利用乘法分配律计算结果。 并 4.按要求按“升”或“降”幂排列。排
易错点总结:
一、概念中的易错题 二、运算中的易错题
1,单项式的定义 例1,下列各式子中,是单项式的有 __①__、__②__、_④__、__⑦_(填序号)
若是数字与字母乘,乘号通常写成”.”或省略不写,如
3×y应写成3·y或3y,且数字与字母相乘时,字母与
字母相乘,乘号通常写成“·”或省略不写。
2、带分数与字母相乘,要写成假分数
3、代数式中出现除法运算时,一般用分数写,即用分数
线代替除号。
4、系数一般写在字母的前面,且系数“1”往往会省略;
例6 王强班上有男生m人,女生比男生的一半多5 人,王强班上的总人数(用m表示)为______人。
①a;② 1 ;③x y;④xy;⑤ 2 ;⑥ x 1 ;⑦ x ;
2
x
2
注意:1,单个的字母或数字也是单项式; 2,用加减号把数字或字母连接在一起 的式子不是单项式;
3,只用乘号把数字或字母连接在一起 的式子仍是单项式;
4,当式子中出现分母时,要留意分母里有 没有字母,有字母的就不是单项式,如
1.与_系__数_无关
(两无关)
2.与字__母__的__位__置__无关。
注意:几个常数项也是_同__类__项_。
合并同类项概念: _把__多__项_式__中__的__同__类_项__合__并__成__一_项_.
合并同类项法则: 1.__系_数___相加减;
2._字__母__和__字_母__的__指__数___不变。
易错点:结果不进行化简,直接写(m 1 m 5).
6.单项式次数是指所有字母的次数的和,与数字的次数没 有关系。
7.单独的数字不含字母, 规定它的次数是零次.
多项式
定义:几个_单__项__式__的_和__.
项: 组成多项式中的__每__一_个__单__项__式__. 有几项,就叫做__几__项__式___.
常数项:多项式中__不__含_字__母__的__项____. 多项式的次数:多__项_式__中__次__数__最_高__的__项__的__次_数__。__.
2,有分母的单项式,分母中的数字也是单项式系 数的一部分;
3,注意“π”不是字母,而是数字,属于系数的一
部分; 4,计算次数的时候并不是简单的见到指数就相
加,注意单项式的次数指的是字母的指数和;
3,多项式的项数与次数
例3 下列多项式次数为3的是( C)
A. 5x 2 6x 1
B.x 2 x 1
《整式的加减》复习课
知识结构:
整式的概念 整式的加减
整式的计算
单项式 多项式
系数
次数 项,项数,常数项, 最高次项 次数
同类项与合并同类项 去括号 化简求值
用字母来表示生活中的量
定义:由__数__字__或_字__母__的__乘__积__组成的式子。 单独的_一__个__数_或_一__个__字__母_也是单项式。
1.下列各式中,是同类项的是:__③__⑤_⑥______
① 2x2 y3 与 x3 y2 ② x2 yz 与 x2 y
③10mn与 2 mn
3
④ (a)5与 (3)5 ⑤ 3x2 y 与 0.5yx2 ⑥-125与
2.若 2x3 yn与 xm y2 是同类项,则m+n=__5_.
3.若 xa6 ya4 与 3x4 yb 的和是一个单项式,则 ab=__4_.
单项式: 系数: 单项式中的__数_字__因__数__。 次数: 单项式中的___所_有__字__母__的__指_数__和___.
注意的问题:
1.当单项式的系数是1或-1时,“1”通常省略不写。 2.当式子分母中出现字母时不是单项式。 3.圆周率π是常数,不要看成字母。 4.当单项式的系数是带分数时,通常写成假分数。 5.单项式的系数应包括它前面的性质符号。
注意的问题:
1.在确定多项式的项时,要连同它前面的符号, 2.一个多项式的次数最高项的次数是几,就说这个多项式是几次 多项式。
3.在多项式中,每个单项式都是这个多项式的项,每一项都有系 数,但对整个多项式来说,没有系数的概念,只有次数的概念。
同类项
同类项的定义:
1.字__母__相同,
(两相同)
2._相__同__的__字_母__的__指__数__也_相同。
4.若 2a b 3m 5 pa4bn1 7b5a4,则m+n-p=__-_4___
整式的加减混合运算步骤(有括号先去括号)
一:去括号 (按照先小括号,再中括号,最后大括号的顺序) 1.如果括号外的因数是正数,去括号后原括号内各 项的符号与原来的符号相同。 2.如果括号外的因数是负数,去括号后原括号内各 项的符号与原来的符号相反。
(2)
x
3
x2
y2
1
是
_四____
次
__三___
项式,最高次项是
____x__23_y_2_,常数项是
1
_____3____;
3
4,书写格式中的易错点
例5 下列各个式子中,书写格式正确的是( F)
A.a b B. 1 1 ab C.a 3 2
D.a3
E. 1ab
பைடு நூலகம்
F. a2b
3
1、代数式中用到乘法时,若是数字与数字乘,要用“×”
C .a 2b ab b2
D.x2 y2 2x3 1
注意(1)多项式的次数不是所有项的次数的和,而是它的最高 次项次数;
(2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母
例4 请说出下列各多项式是几次几项式,并写出多项式的最高
次项和常数项;
(1)25 x 2 y xy3是 __四___ 次 __三___ 项式,最高次项是 _____x__y_3_,常数项是 _____2__5__;
果分母没有字母的仍有可能是单项式
(注:“π”当作数字,而不是字母)
2,单项式的系数与次数
例2 指出下列单项式的系数和次数;
单项式 a 系数 1
ab2 3
1 3
a 2bc 3 1
a 2b3
7
7
次数 1
3
6
5
22 x2 y 4 3
注意:1,字母的系数“1” 可以省略的,但不代表没有系 数(次数也是同样道理);
“去括号,看符号。是‘+’号,不变号,是‘-’号,全变号” 二:计算
1.找同类项,做好标记。 找 2.利用加法的交换律和结合律把同类项放在一起。般 3.利用乘法分配律计算结果。 并 4.按要求按“升”或“降”幂排列。排
易错点总结:
一、概念中的易错题 二、运算中的易错题
1,单项式的定义 例1,下列各式子中,是单项式的有 __①__、__②__、_④__、__⑦_(填序号)
若是数字与字母乘,乘号通常写成”.”或省略不写,如
3×y应写成3·y或3y,且数字与字母相乘时,字母与
字母相乘,乘号通常写成“·”或省略不写。
2、带分数与字母相乘,要写成假分数
3、代数式中出现除法运算时,一般用分数写,即用分数
线代替除号。
4、系数一般写在字母的前面,且系数“1”往往会省略;
例6 王强班上有男生m人,女生比男生的一半多5 人,王强班上的总人数(用m表示)为______人。
①a;② 1 ;③x y;④xy;⑤ 2 ;⑥ x 1 ;⑦ x ;
2
x
2
注意:1,单个的字母或数字也是单项式; 2,用加减号把数字或字母连接在一起 的式子不是单项式;
3,只用乘号把数字或字母连接在一起 的式子仍是单项式;
4,当式子中出现分母时,要留意分母里有 没有字母,有字母的就不是单项式,如
1.与_系__数_无关
(两无关)
2.与字__母__的__位__置__无关。
注意:几个常数项也是_同__类__项_。
合并同类项概念: _把__多__项_式__中__的__同__类_项__合__并__成__一_项_.
合并同类项法则: 1.__系_数___相加减;
2._字__母__和__字_母__的__指__数___不变。
易错点:结果不进行化简,直接写(m 1 m 5).
6.单项式次数是指所有字母的次数的和,与数字的次数没 有关系。
7.单独的数字不含字母, 规定它的次数是零次.
多项式
定义:几个_单__项__式__的_和__.
项: 组成多项式中的__每__一_个__单__项__式__. 有几项,就叫做__几__项__式___.
常数项:多项式中__不__含_字__母__的__项____. 多项式的次数:多__项_式__中__次__数__最_高__的__项__的__次_数__。__.
2,有分母的单项式,分母中的数字也是单项式系 数的一部分;
3,注意“π”不是字母,而是数字,属于系数的一
部分; 4,计算次数的时候并不是简单的见到指数就相
加,注意单项式的次数指的是字母的指数和;
3,多项式的项数与次数
例3 下列多项式次数为3的是( C)
A. 5x 2 6x 1
B.x 2 x 1