中考数学习题精选:新定义型问题

合集下载

2024年九年级中考数学专题复习:新定义型问题与二次函数相关的问题含参考答案

2024年九年级中考数学专题复习:新定义型问题与二次函数相关的问题含参考答案

2024年九年级中考数学专题复习:新定义型问题与二次函数相关的问题一、单选题1在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗x +a <1对任意实数x 成立,则实数a 的取值范围()A.-1<a <1B.0<a <2C.-12<a <32D.-32<a <122我们定义一种新函数:形如y =ax 2+bx +c a ≠0,b 2-4ac >0 的函数叫做“鹊桥”函数.数学兴趣小组画出一个“鹊桥”函数y =x 2+bx +c 的图象如图所示,则下列结论正确的是()A.bc <0B.当x =1时,函数的最大值是4C.当直线y =x +m 与该图象恰有三个公共点时,则m =1D.关于x 的方程x 2+bx +c =3的所有实数根的和为43我们定义:若点A 在某一个函数的图象上,且点A 的横纵坐标相等,我们称点A 为这个函数的“好点”.若关于x 的二次函数y =ax 2+tx -3t 对于任意的常数t ,恒有两个“好点”,则a 的取值范围为()A.0<a <13B.0<a <12C.13<a <12D.12<a <14对于实数a ,b ,定义符号min a ,b ,其意义为:min a ,b =ba ≥baa <b .例如:min =2,-1 =-1,若关于x 的函数y =min 2x -1,-x +3,x 2-ax 则使该函数的最大值小于0时a 的范围是()A.a >2B.-1<a <0C.1<a <2D.a >35定义:两个不相交的函数图象在平行于y 轴方向上的最短距离称为这两个函数的“完美距离”.抛物线y =2x 2-5x +3与直线y =-2x -1的“完美距离”为()A.238B.3C.278D.2186定义运算“※”为:a ※b =ab 2(b >0)-ab2b ≤0,如:1※-2 =-1×(-2)2=-4,则函数y =2※x 的图象大致是()A. B.C. D.7新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y=x2-x+c(c为常数)在-2<x<4的图象上存在两个二倍点,则c的取值范围是()A.-2<c<14B.-2<c<94C.-4<c<14D.-4<c<948对于任意实数a和b,定义新运算,a#b=a2-ab a≥bb2-ab a<b有下列四个结论,其中正确的结论个数为()①2#-1的运算结果为6;②方程3x#x-2=0的解为x1=0,x2=-1;③当x<5时,函数y=2#x-3的图像经过第一、二、四象限;④函数y=2x#x-1的图像不经过第二、四象限.A.1个B.2个C.3个D.4个二、填空题9定义:两个不相交的函数图象在竖直方向上的最短距离,叫做这两个函数的“向心值”.则抛物线y =x2-2x+3与直线y=x-2的“向心值”为.10定义一种新的运算“早”,运算规则如下:(1)当a≥b时,a♀b=a;(2)当a<b时,a♀b=b2.那么当-2≤x≤2时,1♀x♀x-2♀x的最大值是.11对于实数a,b,定义运算:“☆”为a☆b=a2-ab-2a,如:2☆3=22-2×3-2×2=-6,若m,n 是二次函数y=x2-2x-3的图象与x轴的交点的横坐标,则m☆n=.12定义新运算:对于任意实数a,b,都有a⊗b=ab-a+b,例如 2⊗=2×3-2+3=1.若y关于x的函数y=kx+1⊗x-1的图象与x轴仅有一个公共点,则实数k的值为.13新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y=x2-x+c(c(c 为常数)在-2<x<4的图象上存在两个二倍点,则c的取值范围是.14新定义:任意两数m,n,按规定y=mn-m+n得到一个新数y,称所得新数y为数m,n的“愉悦数”.则当m=2x+1,n=x-1,且m,n的“愉悦数”y为正整数时,正整数x的值是.15定义:在平面直角坐标系中,若点A满足横、纵坐标都为整数,则把点A叫做“整点”.如:B3,0、C-1,3都是“整点”.抛物线y=ax2+2ax+a-2a>0与x轴交于点M,N两点,若该抛物线在M、N 之间的部分与线段MN所围的区域(包括边界)恰有5个整点,则a的取值范围是.16定义:对角线互相垂直的四边形为垂美四边形.已知垂美四边形ABCD的对角线AC、BD满足AC+BD=12,则当AC=时,四边形ABCD的面积最大.三、解答题17新定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0,a,b,c为实数)的“图象数”,如:y=-x2+2x+ 3的“图象数”为[-1,2,3].(1)图像数为[1,-1,0]的二次函数表达式为.(2)求证:“图象数”为[1,m+3,m]的二次函数的图象与x轴恒有两个交点.18定义:若x,y满足x2=4y+t,y2=4x+t且x≠y(t为常数),则称点M(x,y)为“和谐点”.(1)请直接判断点(1,-5)是否为“和谐点”;(2)P(2,m)是“和谐点”,求m值;(-3<x<-1)的图象上存在“和谐点”,求k的取值范围.(3)若双曲线y=kx19某网店有(万件)商品,计划在元旦旺季售出商品x(万件),经市场调查测算,花费t(万元)进行促销后,商品的剩余量3-x与促销费t之间的关系为3-x=kt+1(其中k为常数),如果不搞促销活动,只能售出1(万件)商品.(1)要使促销后商品的剩余量不大于0.1(万件),促销费t至少为多少(万元)?(2)已知商品的进价为32(元/件),另有固定成本3(万元),定义每件售出商品的平均成本为32+3x(元),若将商品售价为:“每件售出商品平均成本的1.5倍”与“每件售出商品平均促销费的一半”之和,则当促销费t为多少(万元)时,该网店售出商品的总利润最大?此时商品的剩余量为多少?20我们定义一种新函数:形如y=ax2+bx+ca≠0,b2-4ac>0的函数叫作“华为”函数.如图,小丽同学画出了“华为”函数y=x2-2x-3的图像,根据该图像解答下列问题:(1)求该函数图像与x轴和y轴的交点坐标.(2)当函数值y随x值的增大而减小时,求自变量x的取值范围.2024年九年级中考数学专题复习:新定义型问题与二次函数相关的问题一、单选题1在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗x +a <1对任意实数x 成立,则实数a 的取值范围()A.-1<a <1B.0<a <2C.-12<a <32D.-32<a <12【答案】C【分析】本题的考点是函数恒成立问题,主要考查了函数恒成立问题,关键是理解新定义的运算,掌握将不等式转化为二次不等式,解决恒成立问题转化成图象恒在x 轴上方,从而有△<0,解△<0即可.【详解】根据运算法则得x -a ⊗x +a =x -a 1-x -a <1化简得:x 2-x -a 2+a +1>0在R 上恒成立,即Δ<0,1-4-a ²+a +1 <0,即4a 2-4a -3<0,解得-12<a <32,故选:C .2我们定义一种新函数:形如y =ax 2+bx +c a ≠0,b 2-4ac >0 的函数叫做“鹊桥”函数.数学兴趣小组画出一个“鹊桥”函数y =x 2+bx +c 的图象如图所示,则下列结论正确的是()A.bc <0B.当x =1时,函数的最大值是4C.当直线y =x +m 与该图象恰有三个公共点时,则m =1D.关于x 的方程x 2+bx +c =3的所有实数根的和为4【答案】D【分析】本题考查二次函数的应用、新定义、二次函数的性质,由-1,0 ,3,0 是函数图象和x 轴的交点,利用待定系数法求得b 、c 的值可判断A 错误;根据图象可判断B 错误;由图象可判断C 错误;由题意可得x 2-2x -3=3或x 2-2x -3=-3,利用根与系数的关系可判断D 正确.利用数形结合的思想解答是解题的关键.【详解】解:∵-1,0 ,3,0 是函数图象和x 轴的交点,∴1-b +c =09+3b +c =0,解得:b =-2c =-3 ,∴bc =-2 ×-3 =6>0,故A 错误;由图象可得,函数没有最大值,故B 错误;如图,当直线y =x +m 与该图象恰有三个公共点时,应该有2条直线,故C 错误;关于x 的方程x 2+bx +c =3,即x 2-2x -3=3或x 2-2x -3=-3,当x 2-2x -3=3时,x 1+x 2=--21=2,当x 2-2x -3=-3时,x 3+x 4=--21=2,∴关于x 的方程x 2+bx +c =3的所有实数根的和为2+2=4,故D 正确,故选:D .3我们定义:若点A 在某一个函数的图象上,且点A 的横纵坐标相等,我们称点A 为这个函数的“好点”.若关于x 的二次函数y =ax 2+tx -3t 对于任意的常数t ,恒有两个“好点”,则a 的取值范围为()A.0<a <13B.0<a <12C.13<a <12D.12<a <1【答案】A【分析】“好点”A 的横纵坐标相等,即:x =y =ax 2+tx -3t a ≠0 ,Δ=(t -1)2+12at >0,整理得:t 2-2-12a t +1=0,△1=(2-12a )2-4<0,即可求解.【详解】解:“好点”A 的横纵坐标相等,∴x =y =ax 2+tx -3t a ≠0 ,∴ax 2+t -1 x -3t =0,Δ=b 2-4ac =(t -1)2+12at >0,整理得:t 2-2-12a t +1>0,∵1>0,故当Δ<0时,抛物线开口向上,且与x 轴没有交点,故上式成立,△1=(2-12a )2-4<0,解得:0<a <13,故选:A .【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.4对于实数a ,b ,定义符号min a ,b ,其意义为:min a ,b =ba ≥baa <b .例如:min =2,-1 =-1,若关于x 的函数y =min 2x -1,-x +3,x 2-ax 则使该函数的最大值小于0时a 的范围是()A.a >2B.-1<a <0C.1<a <2D.a >3【答案】D【分析】画出y =2x -1,y =-x +3,y =x 2-ax 的函数图象,根据题意,最大值小于0时,结合函数图象,即可求解.【详解】解:如图所示,y =min 2x -1,-x +3,x 2-ax 即为函数图象的红色部分,由y=x2-ax,令y=0,则x2-ax=0解得:x1=0,x2=a∵y=x2-ax经过原点,y=-x+3与x轴的交点为3,0,∴当y=min2x-1,-x+3,x2-ax最大值小于0时,则y=x2-ax与x轴的交点在3,0的右侧,∴a>3故选:D【点睛】本题考查了新定义、一元一次不等式以及二次函数、一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.5定义:两个不相交的函数图象在平行于y轴方向上的最短距离称为这两个函数的“完美距离”.抛物线y=2x2-5x+3与直线y=-2x-1的“完美距离”为()A.238B.3 C.278D.218【答案】A【分析】先判断抛物线与直线无交点,再根据定义和二次函数的性质求解即可.【详解】解:由2x2-5x+3=-2x-1得2x2-3x+4=0,∵Δ=-32-4×2×4=-23<0,∴方程2x2-3x+4=0没有实数根,∴抛物线y=2x2-5x+3与直线y=-2x-1不相交,设w=2x2-5x+3--2x-1=2x2-3x+4=2x-342+238,∵2>0,∴当x=34时,w有最小值为23 8,即抛物线y=2x2-5x+3与直线y=-2x-1的“完美距离”为23 8,故选:A.【点睛】本题考查二次函数的性质、一元二次方程根的判别式,理解题中定义,熟练掌握二次函数的性质是解答的关键.6定义运算“※”为:a※b=ab2(b>0)-ab2b≤0,如:1※-2 =-1×(-2)2=-4,则函数y=2※x的图象大致是()A. B.C. D.【答案】D【分析】根据定义运算“※”为:a※b=ab2(b>0)-ab2b≤0,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.【详解】解:y=2※x=2x2(x>0) -2x2x≤0,x>0时,图象是y=2x2对称轴右侧的部分;x≤0时,图象是y=-2x2对称轴左侧的部分,故选:D.【点睛】本题考查了二次函数的图象,利用定义运算“※”为:a※b=ab2(b>0)-ab2b≤0得出分段函数是解题关键.7新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y=x2-x+c(c为常数)在-2<x<4的图象上存在两个二倍点,则c的取值范围是()A.-2<c<14B.-2<c<94C.-4<c<14D.-4<c<94【答案】D【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线y=2x上,由-2<x<4可得二倍点所在线段AB的端点坐标,结合图象,通过求抛物线与线段交点求解.【详解】解:由题意可得二倍点所在直线为y=2x,将x=-2代入y=2x得y=-4,将x=4代入y=2x得y=8,设A(-2,-4),B(4,8),如图,联立方程x2-x+c=2x,当△>0时,抛物线与直线y=2x有两个交点,即9-4c>0,解得c<9 4,此时,直线x=-2和直线x=4与抛物线交点在点A,B上方时,抛物线与线段AB有两个交点,把x=-2代入y=x2-x+c得y=6+c,把x=4代入y=x2-x+c得y=12+c,∴6+c>-4 12+c>8 ,解得c>-4,∴-4<c<94满足题意.故选:D.【点睛】本题考查二次函数图象与系数的关系,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.8对于任意实数a和b,定义新运算,a#b=a2-ab a≥bb2-ab a<b有下列四个结论,其中正确的结论个数为()①2#-1的运算结果为6;②方程3x#x-2=0的解为x1=0,x2=-1;③当x<5时,函数y=2#x-3的图像经过第一、二、四象限;④函数y=2x#x-1的图像不经过第二、四象限.A.1个B.2个C.3个D.4个【答案】C【分析】本题主要考查了实数的运算,解一元二次方程,二次函数的性质,熟练掌握解一元二次方程的方法以及二次函数的性质是解题的关键.根据新定义的运算即可判断①;分两种情况讨论得到一元二次方程,解方程即可判断②;根据二次函数的性质即可判断③;利用二次函数的图像即可判断④.【详解】解:①∵2>-1,∴2#-1=22-2×-1=6,故正确;②当3x≥x-2时,即x≥-1时,方程为9x2-3x x-2=0,整理得6x2+6x=0,解得x1=0,x2=-1,当3x <x -2时,即x <-1时,方程为x -2 2-3x x -2 =0,整理得x 2-x -2=0,解得x =2或x =-1(不符合题意,舍去),∴方程3x #x -2 =0的解为x 1=0,x 2=-1,故正确;③∵当x <5时,函数y =2#x -3 =4-2x -3 =-2x +10,∴函数y =2#x -3 的图像经过第一、二象限,故错误;④当2x ≥x -1时,即x ≥-1时,函数为y =4x 2-2x x -1 =2x +12 2-12,当2x <x -1时,即x <-1时,函数为y =x -1 2-2x x -1 =-x 2+1,画出函数图像如下:由图可知函数图像不经过第二、四象限,故正确;故选:C .二、填空题9定义:两个不相交的函数图象在竖直方向上的最短距离,叫做这两个函数的“向心值”.则抛物线y =x 2-2x +3与直线y =x -2的“向心值”为.【答案】114【分析】此题考查了一次函数,二次函数的性质以及新定义问题,解题的关键是熟练掌握正确分析“向心值”的概念.根据“向心值”的概念让两个表达式相减,然后求解得到的二次函数最小值即可.【详解】解:∵两个不相交的函数图象在竖直方向上的最短距离为这两个函数的“向心值”,∴设“向心值”为w ,∴w =x 2-2x +3-x -2 =x 2-3x +5=x -322+114,∴w 的最小值为114.故答案为:114.10定义一种新的运算“早”,运算规则如下:(1)当a ≥b 时,a ♀b =a ;(2)当a <b 时,a ♀b =b 2.那么当-2≤x ≤2时,1♀x ♀x -2♀x 的最大值是.【答案】2【分析】本题主要考查了新运算法则、二次函数的性质等知识点,掌握分类讨论思想是解题的关键.分-2≤x ≤1和1≤x ≤2两种情况,分别根据新运算法则求出最值,然后进行比较即可解答.【详解】解:当-2≤x ≤1时,1♀x ♀x -2♀x =1♀x -2=1-2=-1;当1≤x≤2时,1♀x=x2♀x-2=x2-2;♀x-2♀x∵a=1>0,对称轴为x=0,1≤x≤2,∴当x=2时,x2-2有最大值,22-2=2,∴1♀x的最大值是2.♀x-2♀x故答案为:2.11对于实数a,b,定义运算:“☆”为a☆b=a2-ab-2a,如:2☆3=22-2×3-2×2=-6,若m,n 是二次函数y=x2-2x-3的图象与x轴的交点的横坐标,则m☆n=.【答案】6【分析】本题考查了二次函数与一元二次方程的关系,新定义下的实数运算.熟练掌握二次函数与一元二次方程的关系是解题的关键.由题意知,m,n是x2-2x-3=0的两个根,解得x=-1或x=3,分当m=-1,n=3时;当m=3,n=-1时两种情况计算求解即可.【详解】解:由题意知,m,n是x2-2x-3=0的两个根,x+1=0,x-3∴x+1=0或x-3=0,解得x=-1或x=3,当m=-1,n=3时,m☆n=m2-mn-2m=m m-n-2=-1×-1-3-2=6;当m=3,n=-1时,m☆n=m2-mn-2m=m m-n-2=6;=3×3+1-2故答案为:6.12定义新运算:对于任意实数a,b,都有a⊗b=ab-a+b=1.若y关,例如 2⊗=2×3-2+3于x的函数y=kx+1的图象与x轴仅有一个公共点,则实数k的值为.⊗x-1【答案】-1或0/0或-1【分析】由定义的新运算求得y关于x的函数为:y=-x2+kx+k,再由y关于x函数的图象与x轴仅有一个公共点得到,求解即可.【详解】解:∵a⊗b=ab-a+b,∴y=kx+1⊗x-1=kx+1+x-1-kx+1x-1=kx2-2kx-1即y=kx2-2kx-1,∵y=kx2-2kx-1的图象与x轴仅有一个公共点,令y=0,得kx2-2kx-1=0,∴Δ=b2-4ac=4k2+4k=0,∴k2+k=0,解得:k=0或k=-1.故答案为:-1或0.【点睛】本题主要考查了一元二次方程的根与二次函数图像和x轴交点坐标的关系,解题关键是熟记:一元二次方程有两个根,说明二次函数图像和x轴的横坐标有两个交点;一元二次方程有一个根,说明二次函数图像和x轴的横坐标有一个交点;一元二次方程(在实数范围)无解,说明二次函数图像和x轴的横坐标没有交点.13新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y=x2-x+c(c(c 为常数)在-2<x<4的图象上存在两个二倍点,则c的取值范围是.【答案】-4<c <94【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线y =2x 上,由-2<x <4可得二倍点所在线段AB 的端点坐标,结合图象,通过求抛物线与线段交点求解.【详解】解:由题意可得二倍点所在直线为y =2x ,将x =-2代入y =2x 得y =-4,将x =4代入y =2x 得y =8,设A (-2,-4),B (4,8),如图,联立方程x 2-x +c =2x ,当∆>0时,抛物线与直线y =2x 有两个交点,即9-4c >0,解得c <94,此时,直线x =-2和直线x =4与抛物线交点在点A ,B 上方时,抛物线与线段AB 有两个交点,把x =-2代入y =x 2-x +c 得y =6+c ,把x =4代入y =x 2-x +c 得y =12+c ,∴6+c >-412+c >8 ,解得c >-4,∴-4<c <94满足题意.故答案为:-4<c <94.【点睛】本题考查二次函数图象与系数的关系,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.14新定义:任意两数m ,n ,按规定y =m n-m +n 得到一个新数y ,称所得新数y 为数m ,n 的“愉悦数”.则当m =2x +1,n =x -1,且m ,n 的“愉悦数”y 为正整数时,正整数x 的值是.【答案】2【分析】根据“愉悦数”的定义,将m 、n 代入y =m n -m +n 得到一个关于x 的方程,然后再求解即可.【详解】解:当m =2x +1,n =x -1,且m ,n 的“愉悦数”y =2x +1x -1-2x +1 +x -1 >0化简得:-x 2+x +3x -1>0∵x 是正整数∴x -1>0即:x -1>0-x 2+x +3>0解得:1<x <1+132∵x 是正整数∴x =2.故答案是2.【点睛】本题主要考查运用二次函数解不等式、分式的混合运算等知识点,正确运用二次函数解不等式成为解答本题的关键.15定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:B 3,0 、C -1,3 都是“整点”.抛物线y =ax 2+2ax +a -2a >0 与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是.【答案】1<a ≤2【分析】画出图象,找到该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界,利用与y 交点位置可得a 的取值范围.【详解】解:抛物线y =ax 2+2ax +a -2(a >0)化为顶点式为y =a (x +1)2-2,∴函数的对称轴:x =-1,顶点坐标为(-1,-2),∴M 和N 两点关于x =-1对称,根据题意,抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,这些整点是(0,0),(-1,0),(-1,-1),(-1,-2),(-2,0),如图所示:∵当x =0时,y =a -2,∴-1<a -2≤0,当x =1时,y =4a -2>0,即:-1<a -2≤04a -2>0,解得1<a ≤2,故答案为:1<a ≤2.【点睛】本题考查抛物线与x 轴的交点、配方法确定顶点坐标、待定系数法等知识,利用函数图象确定与y 轴交点位置是本题的关键.16定义:对角线互相垂直的四边形为垂美四边形.已知垂美四边形ABCD 的对角线AC 、BD 满足AC +BD =12,则当AC =时,四边形ABCD 的面积最大.【答案】6【分析】根据垂美四边形的性质列出函数解析式,进行求解即可.【详解】解:∵四边形ABCD 的对角线互相垂直,∴S ABCD =12AC ∙BD ,∵AC +BD =12,∴BD =12-AC ,∴S 四边形ABCD =12AC ∙BD =12AC 12-AC =-12AC 2+6AC ,∵-12<0且0<AC <12,当AC =-62×-12=6时,函数有最大值,∴AC =6时,面积有最大值;故答案是6.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.三、解答题17新定义:[a ,b ,c ]为二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 为实数)的“图象数”,如:y =-x 2+2x +3的“图象数”为[-1,2,3].(1)图像数为[1,-1,0]的二次函数表达式为.(2)求证:“图象数”为[1,m +3,m ]的二次函数的图象与x 轴恒有两个交点.【答案】(1)y =x 2-x(2)见详解【分析】本题考查了抛物线与轴的交点:(1)根据新定义得到二次函数的解析式即可;(2)根据新定义得到二次函数的解析式为y =x 2+m +3 x +m ,然后根据判别式的意义得到Δ=m +3 2-4m =m +1 2+8>0,从而求证.【详解】(1)解:图像数为[1,-1,0]的二次函数表达式为:y =x 2-x .(2)解:“图象数”为[1,m +3,m ]的二次函数表达式为:y =x 2+m +3 x +m .当y =0时,x 2+m +3 x +m =0Δ=m +3 2-4m =m +1 2+8>0∴该一元二次方程有两个不相等的实数根,即“图象数”为[1,m +3,m ]的二次函数的图象与x 轴恒有两个交点.18定义:若x ,y 满足x 2=4y +t ,y 2=4x +t 且x ≠y (t 为常数),则称点M (x ,y )为“和谐点”.(1)请直接判断点(1,-5)是否为“和谐点”;(2)P (2,m )是“和谐点”,求m 值;(3)若双曲线y =k x(-3<x <-1)的图象上存在“和谐点”,求k 的取值范围.【答案】(1)点1,-5 是“和谐点”(2)m =-6(3)k 的取值范围为3<k ≤4【分析】(1)由题意得,x 2-4y =y 2-4x ,由12-4×-5 =-5 2-4×1,可得点1,-5 是“和谐点”;(2)由题意知,22-4m =m 2-8,即m 2+4m -12=0,计算求出满足要求的解即可;(3)设点a,b为双曲线y=kx(-3<x<-1)上的“和谐点”,则a2=4b+t,b2=4a+t,b=ka(-3<a<-1),即a-ba+b+4=0,可得b=-a-4,由b=ka,可得k=ab=a-a-4=-a2-4a=-a+22+4,且-3<a<-1,然后利用二次函数的图象与性质求取值范围即可.【详解】(1)解:∵x2=4y+t,y2=4x+t,∴x2-4y=t,y2-4x=t,∴x2-4y=y2-4x,∵12-4×-5=-52-4×1,∴点1,-5是“和谐点”;(2)解:∵P2,m是“和谐点”,∴22=4m+t,m2=4×2+t,∴22-4m=t,m2-8=t,∴22-4m=m2-8,即m2+4m-12=0,解得m1=-6,m2=2(不合题意,舍去)∴m=-6;(3)解:设点a,b为双曲线y=kx(-3<x<-1)上的“和谐点”,∴a2=4b+t,b2=4a+t,b=ka(-3<a<-1),∴a2-4b=b2-4a,即a2-b2+4a-4b=0,∴a-ba+b+4=0,∵a≠b,∴a+b+4=0,即b=-a-4,∵b=ka(-3<a<-1),∴k=ab=a-a-4=-a2-4a=-a+22+4,且-3<a<-1,∵-1<0,∴图象开口向下,当a=-2时,k max=4,当a=-1时,k=--1+22+4=3;当a=-3时,k=--3+22+4=3;∴k的取值范围为3<k≤4.【点睛】本题考查了新定义下的实数运算,因式分解法解一元二次方程,二次函数的图象与性质,平方差公式,二次函数的最值,反比例函数解析式等知识.理解题意,熟练掌握因式分解法解一元二次方程,平方差公式,二次函数的图象与性质是解题的关键.19某网店有(万件)商品,计划在元旦旺季售出商品x(万件),经市场调查测算,花费t(万元)进行促销后,商品的剩余量3-x与促销费t之间的关系为3-x=kt+1(其中k为常数),如果不搞促销活动,只能售出1(万件)商品.(1)要使促销后商品的剩余量不大于0.1(万件),促销费t至少为多少(万元)?(2)已知商品的进价为32(元/件),另有固定成本3(万元),定义每件售出商品的平均成本为32+3x(元),若将商品售价为:“每件售出商品平均成本的1.5倍”与“每件售出商品平均促销费的一半”之和,则当促销费t为多少(万元)时,该网店售出商品的总利润最大?此时商品的剩余量为多少?【答案】(1)至少为19万元(2)当促销费为7万元时,网店利润最大为42万元,此时商品的剩余量为0.25万件【分析】题目主要考查不等式的应用及函数的应用,(1)根据题意得出k=2,代入原不等式求解即可;(2)设网店的利润y(万元),根据题意得出相应的函数关系式,然后再由其性质求解即可;理解题意列出相应的函数关系式是解题关键.【详解】(1)解:∵3-x=kt+1,当t=0时,x=1,∴k=2,∴3-x=2t+1,∵2t+1≤0.1,解得:t≥19;(2)设网店的利润y(万元),根据题意得:y=x3+32xx×1.5+t2x-3+32x+t=992-32t+1-t2=50-32t+1+t+12≤50-232t+1×t+12=42,当且仅当32t+1=t+12即t=7时,等号成立,此时3-x=0.25,当促销费为7万元时,网店利润最大为42万元,此时商品的剩余量为0.25万件.20我们定义一种新函数:形如y=ax2+bx+ca≠0,b2-4ac>0的函数叫作“华为”函数.如图,小丽同学画出了“华为”函数y=x2-2x-3的图像,根据该图像解答下列问题:(1)求该函数图像与x轴和y轴的交点坐标.(2)当函数值y随x值的增大而减小时,求自变量x的取值范围.【答案】(1)与x轴交点坐标-1,0,3,0,与y轴交点坐标0,3(2)x≤-1或1≤x≤3【分析】(1)分别令y=0和x=0,然后求解,即可获得答案;(2)首先确定该函数图像的对称轴,然后结合图像,即可获得答案.【详解】(1)解:令y=0,即x2-2x-3=0,可得x2-2x-3=0,∴x+1x-3=0,解得x1=-1,x2=3,∴函数图像与x轴的交点坐标为-1,0和3,0,令x=0,则y=x2-2x-3=-3=3,∴函数图像与y轴的交点坐标为0,3;(2)该图像具有对称性,对称轴是直线x=-b=1,2a函数图像与x轴的交点坐标为-1,0,和3,0观察图像可知,当x≤-1或1≤x≤3时,函数值y随x值的增大而减小.【点睛】本题主要考查了二次函数图像与x轴交点、二次函数图像与y轴交点、解一元二方程、二次函数图像与性质等知识,解题关键是运用数形结合的思想分析问题.。

专题31中考热点新定义问题专项训练(原卷版)

专题31中考热点新定义问题专项训练(原卷版)

专题31 中考热点新定义问题专项训练(原卷版)专题诠释:新定义题型是近几年来中考的热点问题。

它常集合数形结合思想,类比思想,转化思想,分类讨论思想,方程思想,函数思想于一体。

常以压轴题身份出现。

本专题精选新定义问题共20条,欢迎使用。

一.选择题1.(2021•河北模拟)对于实数x,y,我们定义符号max{x,y}的意义:当x≥y时,max{x,y}=x,当x<y时,max{x,y}=y.例如max{﹣1,﹣2}=﹣1,max{3,π}=π,则关于x的函数y=max{3x,x+2}的图象为()A.B.C.D.二.填空题2.(2021•深圳模拟)用“●”“□”定义新运算:对于数a,b,都有a●b=a和a□b=b.例如3●2=3,3□2=2,则(2020□2021)●(2021□2020)=.3.(2021•碑林区校级模拟)(正多边形的每个内角都相等)如图,在正八边形ABCDEFGH中,对角线BF 的延长线与边DE的延长线交于点M,则∠M的大小为.4.(2019•福田区三模)对于m,n(n≥m)我们定义运算A n m=n(n﹣1)(n﹣2)(n﹣3)…(n﹣(m﹣1)),A73=7×6×5=210,请你计算A42=.6.(2022秋•魏县期中)若x是不等于1的实数,我们把11−x 称为x的差倒数,如2的差倒数是11−2=−1,﹣1的差倒数为11−(−1)=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2022的值为.三.解答题7.(2021秋•汉阳区期中)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出两个“极数”,;(2)猜想任意一个“极数”是否是99的倍数,请说明理由;(3)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=m33,则满足D(m)是完全平方数的所有m的值是.8.(2022秋•胶州市期末)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2022是否是“纯数”?请说明理由;(2)请直接写出2023到2050之间的“纯数”;(3)不大于100的“纯数”的个数为.9.(2021•任城区二模)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做“半高三角形”.这条高称为“半高”.如图1,对于△ABC,BC边上的高AD等于BC的一半,△ABC就是“半高三角形”.此时,称△ABC是“BC边半高三角形”,AD是“BC边半高”;如图2,对于△EFG,EF边上的高GH等于EF的一半,△EFG就是半高三角形,此时,称△EFG是EF边半高三角形,GH 是“EF边半高”.(1)在Rt△ABC中,∠ACB=90°,AB=10cm,若ABC是“BC边半高三角形”,则AC=cm;(2)若一个三角形既是等腰三角形又是半高三角形,且“半高”长为2cm,则该等腰三角形底边长的所有可能值为.(3)如图3,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点P是抛物线y=x2上的一个动点,点Q是坐标系内一点,且使得△RSQ为“RS边半高三角形”.当点P介于点R与点S之间,且PQ取得最小值时,求点P的坐标.10.(2022春•梁平区期末)在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=a+c3,y=b+d3那么称点T是点A,B的融合点.例如:A=(﹣1,8),B=(4,﹣2),当点T(x,y)满足x=−1+43=1,y=8+(−2)3=2时,则点T(1,2)是点A,B的融合点.(1)已知点A(﹣1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D(3,0),点E(t,2t+3)是直线l:y=2x+3上任意一点,点T(x,y)是点D,E的融合点.①试确定y与x的关系式.②若直线ET交x轴于点H,当∠TDH为直角时,求直线ET的解析式.11.(2019•浙江)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x ﹣m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.12.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.13.(2021•南丰县模拟)如果一个四边形的对角线把四边形分成两个三角形,一个是等边三角形,另一个是该对角线所对的角为60°的三角形,我们把这条对角线叫做这个四边形的理想对角线,这个四边形称为理想四边形.(1)如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,E为BC中点,连接DE.求证:四边形ADEC为理想四边形;(2)如图2,△ABD是等边三角形,若BD为理想对角线,为使四边形ABCD为理想四边形,小明同学给出了他的设计图(见设计后的图),其中圆心角∠BOD=120°;请你解释他这样设计的合理性.(3)在(2)的条件下,①若△BCD为直角三角形,BC=3,求AC的长度;②如图3,若CD=x,BC=y,AC=z,请直接写出x,y,z之间的数量关系.14.(2020•朝阳区一模)在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得△ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是;②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;(2)若n=√33,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是.15.(2022•房山区模拟)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(√3,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为,最大值为;线段DP的取值范围是;②在点O,点D中,点与线段DE满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H 和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.16.(2022•西城区校级模拟)点P (x 1,y 1),Q (x 2,y 2)是平面直角坐标系中不同的两个点,且x 1≠x 2.若存在一个正数k ,使点P ,Q 的坐标满足|y 1﹣y 2|=k |x 1﹣x 2|,则称P ,Q 为一对“限斜点”,k 叫做点P ,Q 的“限斜系数”,记作k (P ,Q ).由定义可知,k (P ,Q )=k (Q ,P ).例:若P (1,0),Q (3,12),有|0−12|=14|1﹣3|,所以点P ,Q 为一对“限斜点”,且“限斜系数”为14. 已知点A (1,0),B (2,0),C (2,﹣2),D (2,12). (1)在点A ,B ,C ,D 中,找出一对“限斜点”: ,它们的“限斜系数”为 ;(2)若存在点E ,使得点E ,A 是一对“限斜点”,点E ,B 也是一对“限斜点”,且它们的“限斜系数”均为1.求点E 的坐标;(3)⊙O 半径为3,点M 为⊙O 上一点,满足MT =1的所有点T ,都与点C 是一对“限斜点”,且都满足k (T ,C )≥1,直接写出点M 的横坐标x M 的取值范围.17.(2020•密云区一模)对于平面直角坐标系xOy 中的任意一点P ,给出如下定义:经过点P 且平行于两坐标轴夹角平分线的直线,叫做点P 的“特征线”.例如:点M (1,3)的特征线是y =x +2和y =﹣x +4;(1)若点D 的其中一条特征线是y =x +1,则在D 1(2,2)、D 2(﹣1,0)、D 3(﹣3,4)三个点中,可能是点D 的点有 ;(2)已知点P (﹣1,2)的平行于第二、四象限夹角平分线的特征线与x 轴相交于点A ,直线y =kx +b (k ≠0)经过点P ,且与x 轴交于点B .若使△BP A 的面积不小于6,求k 的取值范围;(3)已知点C (2,0),T (t ,0),且⊙T 的半径为1.当⊙T 与点C 的特征线存在交点时,直接写出t 的取值范围.18.(2022秋•西城区校级期中)已知函数y=x2+bx+c(x≥2)的图象过点A(2,1),B(5,4).(1)直接写出y=x2+bx+c(x≥2)的解析式;(2)如图,请补全分段函数y={−x2+2x+1(x<2)x2+bx+c(x≥2)的图象(不要求列表).并回答以下问题:①写出此分段函数的一条性质:;②若此分段函数的图象与直线y=m有三个公共点,请结合函数图象直接写出实数m的取值范围;(3)横、纵坐标都是整数的点叫做整点,记(2)中函数的图象与直线y=12x−1围成的封闭区域(不含边界)为“W区域”,请直接写出区域内所有整点的坐标.20.(2021春•丰台区校级月考)在平面直角坐标系xOy中,过⊙T(半径为r)外一点P引它的一条切线,切点为Q,若0<PQ≤2r,则称点P为⊙T的伴随点.(1)当⊙O的半径为1时,①在点A(﹣3,0),B(﹣1,√3),C(2,﹣1)中,⊙O的伴随点是;②点D在直线y=﹣x+3上,且点D是⊙O的伴随点,求点D的横坐标d的取值范围;(2)⊙M的圆心为M(m,0),半径为3,直线y=2x+3与x轴,y轴分别交于点E,F.若线段EF上的所有点都是⊙M的伴随点,直接写出m的取值范围.19.(2020•丰台区校级开学)已知:点P为图形M上任意一点,点Q为图形N上任意一点,若点P与点Q 之间的距离PQ始终满足PQ>0,则称图形M与图形N相离.(1)已知点A(1,2)、B(0,﹣5)、C(2,﹣1)、D(3,4).①与直线y=3x﹣5相离的点是;②若直线y=3x+b与△ABC相离,求b的取值范围;(2)设直线y=x+3、直线y=﹣x+3及直线y=﹣3围成的图形为W,正方形T的对角线长为2,两条对角线分别平行于坐标轴,该正方形对角线的交点坐标为(t,0),直接写出正方形T与图形W相离的t 的取值范围.。

中考数学习题精选:新定义型问题(含参考答案)

中考数学习题精选:新定义型问题(含参考答案)

中考数学习题精选: 一、选择题1、(2018北京昌平区初一第一学期期末) 用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b = ab 2 + a .如:1☆3=1×32+1=10. 则(-2)☆3的值为A .10B .-15 C. -16 D .-20 答案:D 二、填空题3、(2018北京西城区七年级第一学期期末附加题)1.用“△”定义新运算:对于任意有理数a ,b ,当a ≤b 时,都有2a b a b ∆=;当a >b 时,都有2a b ab ∆=.那么, 2△6 = , 2()3-△(3)-= . 答案:24,-64.(2018北京海淀区第二学期练习)定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点,MFAB ⊥于F ,则AF FB BC =+.如图2,△ABC 中,60ABC ∠=︒,8AB =,6BC =,D 是AB 上一点,1BD =,作D E A B ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°. 答案605、(2018北京交大附中初一第一学期期末)如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.图2图1E A三、解答题6、(2018北京平谷区初一第一学期期末)阅读材料:规定一种新的运算:ac=b ad bc d -.例如:1214-23=-2.34××= (1)按照这个规定,请你计算5624的值.(2)按照这个规定,当5212242=-+-x x 时求x 的值. 答案(1)5624=20-12=8 ………………………………………………………………………2 (2)由5212242=-+-x x 得5224221=++-)()(x x ...............................................................4 解得,x = 1 (5)7、(2018北京海淀区七年级第一学期期末)对于任意四个有理数a ,b ,c ,d ,可以组成两个有理数对(a ,b )与(c ,d ).我们规定:(a ,b )★(c ,d )=bc -ad .例如:(1,2)★(3,4)=2×3-1×4=2. 根据上述规定解决下列问题:(1)有理数对(2,-3)★(3,-2)= ;(2)若有理数对(-3,2x -1)★(1,x +1)=7,则x = ;(3)当满足等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数时,求整数k 的值. 答案.解:(1)﹣5……………………..2分(2)1 ……………………..4分(3)∵等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数 ∴(2x ﹣1)k ﹣(﹣3)(x ﹢k )=5﹢2k ∴(2k ﹢3)x =5 ∴523x k =+ ∵k 是整数 ∴2k +3=±1或±5∴k =1,﹣1,﹣2,﹣4……………………..7分8、(2018北京朝阳区七年级第一学期期末)对于任意有理数a ,b ,定义运算:a ⊙b =()1a a b +-,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)-1=13;(3)-⊙(5)-=3(35)123-⨯---=.(1)求(2)-⊙132的值;(2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n = (用含m ,n 的式子表示).答案 解:(1)(2)-⊙1132(23)122=-⨯-+- 4=-.(2)答案不唯一,例如:m n ⊕=(1)m n +.9.(2018北京石景山区初三毕业考试)对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B在直线y = 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围. 解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =, ∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -(.综上所述,点B 的坐标为22-(或22-. ………………… 6分(3)5m -≤或11m ≥.10.(2018北京延庆区初三统一练习)平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点. 已知:点C (3,4)(1)下列各点中, 与点C 互为反等点;D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围; (3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点, 求r 的取值范围.解:(1)F ……1分 (2) -3≤p x ≤3 且p x ≠0 ……4分(3)4 < r≤5 ……7分11. (2018北京市朝阳区综合练习(一))对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为 线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ; ②在直线y =2x +b 上存在线段AB 的伴随点M 、N , 且MN =,求b 的取值范围; (2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围. 解:(1)①线段AB 的伴随点是: 23,P P . ………………………………………………2分②如图1,当直线y =2x +b 经过点(-3,-1)时,b =5,此时b 取得最大值.…………………………………………………………4分 如图2,当直线y =2x +b 经过点(-1,1)时,b =3,此时b 取得最小值. ………………………………………………………5分 ∴ b 的取值范围是3≤b ≤5. ………………………………………6分(2)t 的取值范围是-1 2.2t ≤≤……………………………………8分12.(2018北京丰台区一模)对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x . 已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.解:(1)点A 和线段BC (2)点A 和⊙G 半径为1的圆上运动因为点K 在直线y =设点K 的坐标为(x 则x 2+(- x +1)2=12所以点K 图1图2(3)(说明:点N 与⊙C 的“中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动.圆P 与y 轴相切时,符合题意.) 所以点N 的横坐标的取值范围为-6≤x N ≤-2. ………8分13.(2018北京海淀区第二学期练习)在平面直角坐标系xOy 中,对于点P 和C ,给出如下定义:若C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C 上,则称P为C 的反射点.下图为C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A 的反射点是____________;②点P 在直线y x =-上,若P 为A 的反射点,求点P 的横坐标的取值范围;(2)C 的圆心在x 轴上,半径为2,y 轴上存在点P 是C 的反射点,直接写出圆心C 的横坐标x 的取值范围. 解(1)①A 的反射点是M ,N . ………………1分②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D 作⊥DH x 轴于点H ,如图.可求得点D的横坐标为 同理可求得点E ,F ,G的横坐标分别为22.点P 是A 的反射点,则A 上存在一点T ,使点P 关于直线OT 的对称点'P 在A 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP . 反之,若13≤≤OP ,A 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A 相交.因此点P 是A 的反射点.∴点P 的横坐标x的取值范围是≤xx . ………………4分(2)圆心C 的横坐标x 的取值范围是44≤≤x -. (7)分14、.(2018北京西城区九年级统一测试)对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ).已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图1,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A +是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C 的点”,直接写出b 的取值范围.x解:(1.………………………………………………………………………… 1分②是.……………………………………………………………………………2分 (2)①如图9,当r =1时,不妨设直线QM 与⊙C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM ⊥CM . ∵ (1,0)Q -,(1,0)C ,r =1, ∴ 2CQ =,1CM =. ∴MQ =此时2MQk CQ== 3分②如图10,若直线QM 与⊙C 不相切,设直线QM 与⊙C 的另一个交点为N (不妨设QN <QM ,点N ,M 在x 轴下方时同理). 作CD ⊥QM 于点D ,则MD=ND .∴ ()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=. ∵ 2CQ =, ∴ 2MQ NQ DQk DQ CQ CQ+===.∴ 当k 时,DQ =此时1CD =. 假设⊙C 经过点Q ,此时r = 2. ∵ 点Q 在⊙C 外,∴ r 的取值范围是1≤r <2. …………………………………………… 5分(3)b < 7分 15. (2018北京怀柔区一模)P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PA ⋅PB ≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.①在点P 1(2,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ;②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.解:(1)①P 1(2,0)、P 2(0,2)…………………………………………………………………2分 ②如图, 在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m ≤2. 直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt △DOE 中,可知OE=22.可得b 1=22.同理可得b 2=-22.∴b 的取值范围是:22-≤b ≤22. …………………………………………………6分(2)x>3或 3-<x . …………………………………………………………………………8分16. (2018北京平谷区中考统一练习)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”. (1)已知点A (2,0),B (,则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O点P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.解:(1)60; ······························································································ 1 (2)∵以CD 为边的“坐标菱形”为正方形, ∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E .∴D (4,5)或()2,5-. (3)∴直线CD 的表达式为1y x =+或3y x =-+. (5)(3)15m ≤≤或51m -≤≤-. (7)17.(2018北京顺义区初三练习)如图1,对于平面内的点P 和两条曲线1L 、2L 给出如下定义:若从点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'. (1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.解:(1)是.过点A ,B 作x 轴的垂线,垂足分别为D ,C .图2图12L 1(3)m 的取值范围是m >1,k 与m 之间的关系式为k 2=m 2-1 . ……… 8分18、(2018年北京昌平区第一学期期末质量抽测)对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为1d ,到y 轴的距离为2d ,若12d d ≥,则称1d 为点P 的最大距离;若12d d <,则称2d 为点P 的最大距离.例如:点P (3-,4)到到x 轴的距离为4,到y 轴的距离为3,因为3 < 4,所以点P 的最大距离为4.(1)①点A (2,5-)的最大距离为 ;②若点B (a ,2)的最大距离为5,则a 的值为 ;(2)若点C 在直线2y x =--上,且点C 的最大距离为5,求点C 的坐标;(3)若⊙O 上存.在.点M ,使点M 的最大距离为5,直接写出⊙O 的半径r 的取值范围.解:(1)①5 (1)分②5±………………………3分(2)∵点C 的最大距离为5,∴当5x <时,5y =±,或者当5y <时,5x =±. ………………4分分别把5x =±,5y =±代入得:当5x =时,7y =-,当5x =-时,3y =,当5y =时,7x =-,当5y =-时,3x =,∴点C (5-,3)或(3,5-).……………………… 5分(3)5r ≤≤…………………………………7分xy –1–2–3–4–512345–112345O19、(2018北京朝阳区第一学期期末检测)在平面直角坐标系xOy 中,点A (0, 6),点B 在x轴的正半轴上. 若点P ,Q 在线段AB 上,且PQ 为某个一边与x 轴平行的矩形的对角线,则称这个矩形为点P ,Q 的“X 矩形”. 下图为点P ,Q 的“X 矩形”的示意图. (1)若点B (4,0),点C 的横坐标为2,则点B ,C 的“X 矩形”的面积为 . (2)点M ,N 的“X 矩形”是正方形,① 当此正方形面积为4,且点M 到y 轴的距离为3时,写出点B 的坐标,点N 的坐标及经过点N 的反比例函数的表达式;② 当此正方形的对角线长度为3,且半径为r 的⊙O 与它没有交点,直接写出r 的取值范围 .答案:(1分 (2)① B 2分 N 4分 y 5分 ② 23230-<<r 或229>r . …………………………………………………8分20、(2018北京东城第一学期期末)对于平面直角坐标系xOy 中的点M 和图形G ,若在图形G 上存在一点N ,使M ,N 两点间的距离等于1,则称M 为图形G 的和睦点. (1)当⊙O 的半径为3时, 在点P 1(1,0),P 21),P 3(72,0),P 4(5,0)中,⊙O 的和睦点是________;(2)若点P (4,3)为⊙O 的和睦点,求⊙O 的半径r 的取值范围;(3)点A 在直线y =﹣1上,将点A 向上平移4个单位长度得到点B ,以AB 为边构造正方形ABCD ,且C ,D 两点都在AB 右侧.已知点E ,若线段OE 上的所有点都是正方形ABCD 的和睦点,直接写出点A 的横坐标A x 的取值范围.答案: 解: (1)P 2,P 3; ………………2分 (2)由勾股定理可知,OP =5,以点O 为圆心,分别作半径为4和6的圆,分别交射线OP 于点Q ,R ,可知PQ =PR =1,此时P 是⊙O 的和睦点;若⊙O 半径r 满足0<r <4时,点OP -r >1,此时,P 不是⊙O 的和睦点; 若⊙O 半径r 满r >6时,r -OP >1,此时,P 也不是⊙O 的和睦点;若⊙O 半径r 满足4<r <6时,设⊙O 与射线OP 交于点T 即PT <1时,可在⊙O 上找一点S ,使PS =1,此时P 是⊙O 的和睦点; 综上所述,46r ≤≤. ………………4分(3)53A x --≤, 11A x ≤≤. ………………8分21、(2018北京丰台区第一学期期末)28.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:如果⊙C 的半径为r ,⊙C 外一点P 到⊙C 的切线长小于或等于2r ,那么点P 叫做⊙C 的“离心点”.(1)当⊙O 的半径为1时,①在点P 1(12),P 2(0,-2),P 30)中,⊙O 的“离心点”是 ;②点P (m ,n )在直线3y x =-+上,且点P 是⊙O 的“离心点”,求点P 横坐标m 的取值范围;(2)⊙C 的圆心C 在y 轴上,半径为2,直线121+-=x y 与x 轴、y 轴分别交于点A ,B . 如果线段AB 上的所有点都是⊙C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.解:(1)①2P ,3P ; ……2分②设P (m ,-m +3),则()5322=+-+m m . …3分解得11=m ,22=m . ……4分 故1≤m ≤2. ……6分(2)圆心C 纵坐标C y 的取值范围为:521-≤C y <51-或3<C y ≤4. ……8分 22、(2018年北京海淀区第一学期期末)对于⊙C 与⊙C 上的一点A ,若平面内的点P 满足:射线..AP 与⊙C 交于点Q (点Q 可以与点P 重合),且12PAQA≤≤,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P的坐标________;(2)若点B 是点A 关于⊙O 的“生长点”,且满足1tan 2BAO ∠=,求点B 的纵坐标t 的取值范围;(3)直线y b =+与x 轴交于点M ,与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是_____________________________.解:(1)(2,0)(答案不唯一). ………………1分(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,且使得1tan 2OAM ∠=,并在AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N '',则由题意,线段MN 和M N ''上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴ ∠MHA =90°,即∠OAM +∠AMH =90°. ∵ AC 是⊙O 的直径,∴ ∠AMC =90°,即∠AMH +∠HMC =90°. ∴ ∠OAM =∠HMC .∴ 1tan tan 2HMC OAM ∠=∠=. ∴12MH HC HA MH ==. 设MH y =,则2AH y =,12CH y =, ∴ 522AC AH CH y =+==,解得45y =,即点M 的纵坐标为45. 又由2AN AM =,A 为(-1,0),可得点N 的纵坐标为85, 故在线段MN 上,点B 的纵坐标t 满足:4855t ≤≤. ……………3分由对称性,在线段M N ''上,点B 的纵坐标t 满足:8455t -≤≤-.……………4分∴ 点B 的纵坐标t 的取值范围是8455t -≤≤-或4855t ≤≤.(3)41b -≤≤-或14b ≤≤- ………………7分23、(2018北京怀柔区第一学期期末)在平面直角坐标系xOy 中,点P 的横坐标为x ,纵坐标为2x ,满足这样条件的点称为“关系点”.(1)在点A (1,2)、B (2,1)、M (21,1)、N (1,21)中,是“关系点”的 ; (2)⊙O 的半径为1,若在⊙O 上存在“关系点”P ,求点P 坐标;(3)点C 的坐标为(3,0),若在⊙C 上有且只有一个......“关系点”P ,且“关系点”P 的横坐标满足-2≤x≤2.请直接写出⊙C 的半径r 的取值范围. 解:(1)A、M . ……………………………………………………………………………………2分(2)过点P 作PG ⊥x 轴于点G …………………………………………………………………3分 设P (x ,2x )∵OG 2+PG 2=OP 2 ………………………………………………………………………………4分 ∴x 2+4x 2=1 ∴5x 2=1∴x 2=51∴x =55±∴P (55,552)或P (55-,552-)……………………………………………………5分(3)r =556或 4117≤<r …………………………………………………………7分24、(2018以点P 为端点,2PN ,我们规定:12N PN ∠为点P “摇摆角”,射线PN 摇摆扫过的区域叫作点P 的“摇摆区域”(含.在平面直角(2,3)P .(1)当点P (1,2)A 、(2,1)B 、(20)C +属于点P 的摇摆区域内的点是______________________(填写字母即可);(2)如果过点(1,0)D ,点(5,0)E 的线段完全在点P 的摇摆区域内,那么点P 的摇摆角至少为_________°;(3)⊙W 的圆心坐标为(,0)a ,半径为1,如果⊙W 上的所有点都在点P 的摇摆角为60︒ 时的摇摆区域内,求a 的取值范围.解:(1)点B ,点C ; (2)90 (3)当⊙W 运动到摇摆角的内部,与PF ∵点(2,3)P 的摇摆角为60° ∴30KPF ∠=︒,3PF =在Rt △PFK 中, tan tan 30KFKPF PF∠=∠︒=在 可求得KF =∵30KPF ∠=︒,∴60PKF ∠=︒在Rt △PFK 中, sin sin 60QW QKF KW∠=∠︒=,可求得KW =∴22OW OF KF KW =-+=当⊙W 运动到摇摆角的内部,与PF 右边的射线相切时如图28-2同理可求得OW∴2a ≤25、(2018G,给出如下的定义:若在图形G 上存在一点Q ,使得Q P 、之间的距离等于1,则称P 为图形G 的关联点. (1)当O 的半径为1时,①点11(,0)2P ,2P ,3(0,3)P中,O 的关联点有_____________________.②直线经过(0,1)点,且与y 轴垂直,点P 在直线上.若P 是O 的关联点,求点P 的横坐标x 的取值范围.(2)已知正方形ABCD 的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r 的取值范围.x备用图 备用图答案:(1)12P P 、 ………2分(2)如图,以O 为圆心,2为半径的圆与直线y=1交于12,P P 两点.线段12P P 上的动点P (含端点)都是以O 为圆心,1为半径的圆的关联点.故此x ≤≤…………………………………………………………6分(3)由已知,若P 为图形G 的关联点,图形G 必与以P 为圆心1为半径的圆有交点.正方形ABCD 边界上的点都是某圆的关联点∴ 该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O 为圆心,3为半径的圆;符合题意的半径最小的圆是以O 为圆心,1 为半径的圆.综上所述,13r ≤≤ .………………………..8分26、(2018北京平谷区第一学期期末)在平面直角坐标系中,将某点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这个点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”.(1)以O为圆心,半径为5的圆上有无数对“互换点”,请写出一对符合条件的“互换点”;(2)点M,N是一对“互换点”,点M的坐标为(m,n),且(m>n),⊙P经过点M,N.①点M的坐标为(4,0),求圆心P所在直线的表达式;②⊙P的半径为5,求m-n的取值范围.解:(1)答案不唯一,如:(4,3),(3,4); (2)(2)①连结MN,∵OM=ON=4,∴Rt△OMN是等腰直角三角形.过O作OA⊥MN于点A,∴点M ,N 关于直线OA 对称. .......................................................... 3 由圆的对称性可知,圆心P 在直线OA 上. ................................. 4 ∴圆心P 所在直线的表达式为y=x . ................................................. 5 ②当MN 为⊙P 直径时,由等腰直角三角形性质,可知m -n=; ..... 6 当点M ,N 重合时,即点M ,N 横纵坐标相等,所以m -n =0;.................. 7 ∴m -n 的取值范围是0<m -n≤ (8)27、(2018北京石景山区第一学期期末)在平面直角坐标系xOy 中,点P 的坐标为),(11y x ,点Q 的坐标为),(22y x ,且21x x ≠,21y y ≠,若PQ 为某个等腰三角形的腰,且该等腰三角形的底边与x 轴平行,则称该等腰三角形为点P ,Q 的“相关等腰三角形”.下图为点P ,Q 的“相关等腰三角形”的示意图....(1)已知点A 的坐标为)1,0(,点B 的坐标为)0,3(-,则点A ,B 的“相关等腰三角形”的顶角为_________°;(2)若点C 的坐标为)3,0(,点D 在直线34=y 上,且C ,D 的“相关等腰三角形”为等边三角形,求直线CD 的表达式;(3)⊙O 的半径为2,点N 在双曲线xy 3-=上.若在⊙O 上存在一点M ,使得点M 、N 的“相关等腰三角形”为直角三角形,直接写出点N 的横坐标N x 的取值范围.解:(1)120º; ……………………………………………………………2分(2)∵C ,D 的“相关等腰三角形”为等边三角形,底角为60°,底边与x 轴平行,∴直线CD 与x 轴成60°角,与y 轴成30°角,通过解直角三角形可得D 的坐标为)343(,或)343(,-,进一步得直线CD 的表达式为33+=x y 或33+-=x y . …………………………………………5分(3)31N x -≤≤-或13N x ≤≤. ……………………8分 28、(2018北京通州区第一学期期末)点P 的“d 值”定义如下:若点Q 为圆上任意一点,线段PQ 长度的最大值与最小值之差即为点P 的“d 值”,记为P d .特别的,当点P ,Q 重合时,线段PQ 的长度为0. 当⊙O 的半径为2时:(1)若点⎪⎭⎫⎝⎛-0,21C ,()4,3D ,则=C d _________,=D d _________; (2)若在直线22+=x y 上存在点P ,使得2=P d ,求出点P 的横坐标;(3)直线()033>+-=b b x y 与x 轴,y 轴分别交于点A ,B .若线段AB 上存在点P ,使得32<≤P d ,请你直接写出b 的取值范围.答案:29、(2018北京西城区第一学期期末)在平面直角坐标系xOy 中,A ,B 两点的坐标分别为(2,2)A ,(2,2)B -.对于给定的线段AB 及点P ,Q ,给出如下定义:若点Q 关于AB 所在直线的对称点Q '落在△ABP 的内部(不含边界),则称点Q 是点P 关于线段AB 的内称点. (1)已知点(4,1)P -.①在1(1,1)Q -,2(1,1)Q 两点中,是点P 关于线段AB 的内称点的是____________; ②若点M 在直线1y x =-上,且点M 是点P 关于线段AB 的内称点,求点M 的横坐标M x 的取值范围;(2)已知点(3,3)C ,⊙C 的半径为r ,点(4,0)D ,若点E 是点D 关于线段AB 的内称点,且满足直线DE 与⊙C 相切,求半径r 的取值范围.答案:30、(2018北京昌平区二模)在平面直角坐标系xOy 中,对于任意三点A 、B 、C 我们给出如下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点A (2-,0) ,点 B (1,1) ,点 C (1-, 2-),则A 、xyB 、C 三点的 “横长”a =|1(2)--|=3,A 、B 、C 三点的“纵长”b =|1(2)--|=3. 因为a =b ,所以A 、B 、C 三点为正方点.(1)在点R (3,5) ,S (3,2-) ,T (4-,3-)中,与点A 、B 为正方点的是 ;(2)点P (0,t )为y 轴上一动点,若A ,B ,P 三点为正方点,t 的值为 ;(3)已知点D (1,0).①平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,在图中画出所有符合条件的点E 组成的图形;②若直线l :12y x m =+上存在点N ,使得A ,D ,N 三点为正方点,直接写出m 的取值范围.备用图) 解:(1)点R……………………… 1分(2)−2或3……………………… 3分(3)①画出如图所示的图像……………………… 5分②52m ≥或2m ≤-……………………… 7分 31、(2018北京朝阳区二模)对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时,y xy①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是 ; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.答案:(1)①P 2,P 3 (2)分② 解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线.设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1. 由直线m 的表达式为y =x ,可知∠OAB=∠OBA =45°. 所以OB=2.直线AB 与⊙O 的交点即为满足条件的点Q . 连接OQ 1,作Q 1N ⊥y 轴于点N ,可知OQ 1=10. 在Rt △OHQ 1中,可求HQ 1=3. 所以BQ 1=2.在Rt △BHQ 1中,可求NQ 1=NB=2.所以ON=22.所以点Q 1的坐标为(2,22).同理可求点Q 2的坐标为(22-,2-).……………………………4分如图2,当点B 在原点下方时,可求点Q 3的坐标为(22,2)点Q 4的坐标为 (2-,22-). ………………………………………………………6分 综上所述,点Q 的坐标为(2,22),(22-,2-),(22,2),(2-,22-).(2)334-≤n ≤334. ……………………………………………………………8分 32、(2018北京东城区二模)研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =.基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)A t +,C ( t . ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围;②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________. (1) 12M M ,; -----------------------------------------------------------------2分(2)①当4t =时,()41A ,,()51B ,,()53C ,,()43D ,, 此时矩形ABCD 上的所有点都在抛物线214y x =的下方, ∴.d MF =∴.AF d CF ≤≤∵=4AF CF ,∴d 4≤ ---------------------------------------------------------------------------------- 5分② 1.t -≤ ------------------------------------------------------------------------8分 33、(2018北京房山区二模)已知点P ,Q 为平面直角坐标系xOy 中不重合的两点,以点P 为圆心且经过点Q 作⊙P ,则称点Q 为⊙P 的“关联点”,⊙P 为点Q 的“关联圆”. (1)已知⊙O 的半径为1,在点E (1,1),F (-12,32 ),M (0,-1)中,⊙O 的“关联点”为 ;(2)若点P (2,0),点Q (3,n ),⊙Q 为点P 的“关联圆”,且⊙Q 的半径为 5 ,求n的值;(3)已知点D (0,2),点H (m ,2),⊙D 是点H 的“关联圆”,直线443y x =-+与 x 轴,y 轴分别交于点A ,B . 若线段AB 上存在⊙D 的“关联点”,求m 的取值范围. 解:(1)① F ,M.………………………………………………………………………2′(注:每正确1个得1分)(2)如图1,过点Q 作QH ⊥x 轴于H . ∵PH =1,QH =n ,PQ = 5 ∴由勾股定理得,PH 2+QH 2=PQ 2即2221n +=解得,2n =或-2. ………………………………………………………4′(3)由443y x =-+,知A (3,0),B (0,4) ∴可得AB =5I. 如图2(1),当⊙D 与线段AB 相切于点T 时,连接则DT ⊥AB ,∠DTB =90° ∵OA DTsin OBA AB BD∠==∴可得DT =DH 1=65∴165m =…………………………………………………5′ II. 如图2(2), 当⊙D 过点A 时,连接AD .由勾股定理得DA =OD 2+OA 2=DH 2=13 ……………………6′ 综合I ,II 可得:65m ≤-或65m ≤………………………………8′ 34、(2018北京丰台区二模)在平面直角坐标系xOy 中,将任意两点()11,y x P 与()22y x Q,之间的“直距”定义为:2121y y x x D PQ-+-=.例如:点M (1,2-),点N (3,5-),则132(5)5MN D =-+---=.已知点A (1,0)、点B (-1,4). (1)则_______=AOD ,_______=BO D ;(2)如果直线AB 上存在点C ,使得CO D 为2,请你求出点C 的坐标;图21()(3)如果⊙B 的半径为3,点E 为⊙B 上一点,请你直接写出EO D 的取值范围.答案. (1)1AO D =,5BO D =;(2)如图:解法1:由点A 和点B 设点C 的坐标为(x ,-2x +22)3-. 解法2:由点A 和点B 点C 与点O 之间的“直距D 上、对角线长度为4点C 的坐标为(0,2)或42(,)33-. ………………5分(3)EO D 的取值范围为45EO D -≤≤+7分35、(2018北京海淀区二模)对某一个函数给出如下定义:若存在实数k ,对于函数图象上横坐标之差为1的任意两点1(,)a b ,2(1,)a b +,21b b k -≥都成立,则称这个函数是限减函数,在所有满足条件的k 中,其最大值称为这个函数的限减系数.例如,函数2y x =-+,当x 取值a 和1a +时,函数值分别为12b a =-+,21b a =-+,故211b b k -=-≥,因此函数2y x =-+是限减函数,它的限减系数为1-. (1)写出函数21y x =-的限减系数;(2)0m >,已知1y x=(1,0x m x -≤≤≠)是限减函数,且限减系数4k =,求m 的取值范围.(3)已知函数2y x =-的图象上一点P ,过点P 作直线l 垂直于y 轴,将函数2y x =-的图象在点P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数1k ≥-,直接写出P 点横坐标n 的取值范围.答案28.解:(1)函数21y x =-的限减系数是2;(2)若1m >,则10m ->,(1m -,11m -)和(m ,1m )是函数图象上两点,11101(1)m m m m -=-<--,与函数的限减系数4k =不符,∴1m ≤. 若102m <<,(1t -,11t -)和(t ,1t)是函数图象上横坐标之差为1的任意两点,则0t m <≤,1111(1)t t t t -=---,∵(1)0t t -->,且2211111(1)()()24244t t t m --=--+≤--+<,∴1141t t ->-,与函数的限减系数4k =不符. ∴12m ≥. 若112m ≤≤,(1t -,11t -)和(t ,1t)是函数图象上横坐标之差为1的任意两点,则0t m <≤,1111(1)t t t t -=---,∵(1)0t t -->,且2111(1)()244t t t --=--+≤,∴11141(1)t t t t -=≥---,当12t =时,等号成立,故函数的限减系数4k =. ∴m 的取值范围是112m ≤≤. (3)11-n ≤≤.36.(2018北京市东城区初二期末)定义:任意两个数,a b ,按规则c ab a b =++扩充得到一个新数c ,称所得的新数c 为“如意数”.(1)若1,a b =直接写出,a b 的“如意数”c ;(2) 如果4,a m b m =-=-,求,a b 的“如意数”c ,并证明“如意数” 0c ≤(3)已知2=1(0)a x x -≠,且,a b 的“如意数”3231,c x x =+-,则b =(用含x 的式子表示) .解:(1) 1.2c =分2224,(4)()(4)()44444(m 2)05a m b mc m m m m m m c m m c (2)分分=-=-∴=-⨯-+-+-=-+-=-+-=--∴≤⋅⋅⋅⋅⋅⋅26b x =+(3)分37.(2018北京市平谷区初二期末)对于实数a ,我们规定:用符号[]a 表示不大于a 的最大整数,称[]a 为a 的根整数,例如:[]39=,[]310=.(1)仿照以上方法计算:[]=4_______;[]=26________.(2)若[]1=x ,写出满足题意的x 的整数值______________.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[][]13310=→=,这时候结果为1.(3)对100连续求根整数,______次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是________. 解:(1)2, 5 (2)1,2,3 (3) 3 (4)25538.(2018北京市顺义区八年级期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式: ①211x x -+;②222a b a b --;③22x y x y +-;④222()a b a b -+. 其中是“和谐分式”是 (填写序号即可);(2)若a 为正整数,且214x x ax -++为“和谐分式”,请写出a 的值; (3) 在化简22344a a bab b b -÷-时, 小东和小强分别进行了如下三步变形:小东:22344=a a ab b b b -⨯-原式223244a a ab b b =--()()222323244a b a ab b ab b b--=- 小强:22344=a a ab b b b -⨯-原式 ()22244a a b a b b =--()()2244a a a b a b b--=- 显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单, 原因是: ,请你接着小强的方法完成化简. 解:(1)②………………1分 (2) 4,5………………3分(3)小强通分时,利用和谐分式找到了最简公分母. ………………4分原式()222444a a aba b b -+=- ()24aba b b =-()4a a b b =-24a a b b =- ………………5分 39.(2018北京市西城区八年级期末附加题)我们把正n 边形(3n ≥)的各边三等分,分别以居中的那条线段为一边向外作正n 边形,并去掉居中的那条线段,得到一个新的图形叫做正n 边形的“扩展图形”,并将它的边数记为n a .如图1,将正三角形进行上述操作后得到其“扩展图形”,且3a =12.图3、图4分别是正五边形、正六边形的“扩展图形”.。

中考数学复习专项强化练习:新定义型问题(人教版)

中考数学复习专项强化练习:新定义型问题(人教版)

中考数学复习专项强化练习:新定义型问题(人教版)一、选择题(本大题共10道小题)1. (2022·天津·一模)定义运算:a@b=a(1-b)。

若a 、b是方程()200x x m -=<的两根,则b@b-a@a 的值为( )。

A. 0B. 1C. 2D. 与m 有关 2. (2021湖南怀化)定义a ⨂b =2a+b 1,则方程3⨂x =4⨂2的解为( )。

A.x =51B.x =52C.x =52D.x =543. (2022·河南·三模)定义一种新运算“a △b”,对于任意实数a,b,a △b=a 2+2ab-b 2-1,如3△4=32+2×3×4-42-1,若x △k=0(k 为实数)是关于x 的方程,则它的根的情况为( )。

A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根4. (2022·咸阳)定义运算“*”,规定x*y=ax 2+by(其中a,b 为常数),若已知1*2=5,2*1=6,则2*3的值为( )。

A.10B.9C.8D.75. (2021广东深圳模拟)定义新运算:a ※b=a 1(a )a (a b b )b0b -≤⎧⎪⎨->≠⎪⎩且,则函数y=3※x 的图象大致是( )。

A. B. C. D.6. (2022七下·通州)在实数范围内规定新运算“△”,其规则是:a △b= -2a+b 。

已知不等式x △k ≤1的解集在数轴上如图表示,则k 的值是( )。

A. -1B. 0C. 1D. 27. (2022八下·南沙)定义新运算“※”的运算法则为:当a >0,b >0时,a ※b=2b a +.例如:6※4=14426=⨯+那么2×(4※6)的值是( )。

A. 8B. 48C. 10D. 1428. (2021·怀化中考)定义a ⊕b =2a +1b,则方程3⊕x =4⊕2的解为( )。

中考数学新定义问题

中考数学新定义问题

新定义问题1.对于平面直角坐标系xOy中的定点P和图形F,给出如下定义:若在图形F上存在一点N,使得点Q,点P关于直线ON对称,则称点Q是点P关于图形F的定向对称点.(1)如图,,,,①点P关于点B的定向对称点的坐标是;②在点,,中,是点P关于线段AB的定向对称点.(2)直线分别与x轴,y轴交于点G,H,⊙M是以点为圆心,为半径的圆.①当时,若⊙M上存在点K,使得它关于线段GH的定向对称点在线段GH上,求的取值范围;②对于,当时,若线段GH上存在点J,使得它关于⊙M的定向对称点在⊙M上,直接写出b的取值范围.2.在平面内,对于给定的△ABC,如果存在一个半圆或优弧与△ABC的两边相切,且该弧上的所有点都在△ABC的内部或边上,则称这样的弧为△ABC的内切弧.当内切弧的半径为最大时,称该内切弧为△ABC的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy中,A(8,0),B(0,6).(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是;(2)如图2,若弧G为△OAB的内切弧,且弧G与边AB,OB相切,求弧G的半径的最大值;(3)如图3,动点M(m,3),连接OM,AM.①直接写出△OAM的完美内切弧半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线AB于点D,E,点F为线段PE的中点,直接写出线段DF长度的取值范围.3.对于平面直角坐标系xOy内任意一点P,过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(-2,2)的垂点距离分别为_______,________,________;(2)点P在以Q(3,1)为圆心,半径为3的⊙M上运动,直接写出点P的垂点距离h的取值范围;(3)点T为直线l:y=3x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.4.过直线外一点且与这条直线相切的圆称为这个点和这条直线的点线圆,特别地,半径最小..的点线圆称为这个点和这条直线的最小点线圆.在平面直角坐标系xOy中,点P(0,2).(1)已知点A(0,1),B(1,1),C(2,2),分别以A,B为圆心,1为半径作⊙A,⊙B,以C为圆心,2为半径作⊙C,其中是点P与x轴的点线圆的是;(2)记点P和x轴的点线圆为⊙D,如果⊙D与直线y=无公共点,求⊙D的半径的r取值范围;(3)直接写出点P和直线y=kx(k≠0)的最小点线圆的圆心的横坐标t的取值范围.5.对于平面直角坐标系xOy中的点P和图形M,给出如下定义:Q为图形M上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为点P与图形M间的开距离,记作d(P,M).已知直线(b≠0)与x轴交于点A,与y轴交于点B,⊙O的半径为1.(1)若b=2,①求d(B,⊙O)的值;②若点C在直线AB上,求d(C,⊙O)的最小值;(2)以点A为中心,将线段AB顺时针旋转120°得到AD,点E在线段AB,AD组成的图形上,若对于任意点E,总有2≤d(E,⊙O)<6,直接写出b的取值范围.6.在平面直角坐标系xOy中,点A的坐标为(x1,y1),点B的坐标为(x2,y2),且x1x2,y1=y2.给出如下定义:若平面上存在一点P,使△APB是以线段AB为斜边的直角三角形,则称点P为点A、点B的“直角点”.(1)已知点A的坐标为(1,0).①若点B的坐标为(5,0),在点P1(4,3)、P2(3,-2)和P3(2,)中,是点A、点B的“直角点”的是;②点B在x轴的正半轴上,且AB=22,当直线y=-x+b上存在点A、点B的“直角点”时,求b的取值范围;(2)⊙O的半径为r,点D(1,4)为点E(0,2)、点F(m,n)的“直角点”,若使得△DEF与⊙O有交点,直接写出半径r的取值范围.7.如图1,点P 是平面内任意一点,点A ,B 是⊙C 上不重合的两个点,连结PA ,PB .当∠APB =60°时,我们称点P 为⊙C 的“关于AB的关联点”.图2(1)如图2,当点P 在⊙C 上时,点P 是⊙C 的“关于AB 的关联点”时,画出一个满足条件的∠APB ,并直接写出∠ACB 的度数;(2)在平面直角坐标系中,点,点M 关于y 轴的对称点为点N.①以点O 为圆心,OM 为半径画⊙O ,在y 轴上存在一点P ,使点P 为⊙O “关于MN 的关联点”,直接写出点P 的坐标;②点D (m,0)是x 轴上一动点,当⊙D 的半径为1时,线段MN 上至少存在一个点是⊙D 的“关于某两个点的关联点”,求m 的取值范围.图18.对于平面直角坐标系中的点P和图形,给出如下定义:若图形上存在两个点A,B,使得△PAB是边长为2的等边三角形,则称点P是图形的一个“和谐点”.已知直线l:与x轴交于点M,与y轴交于点N,⊙O的半径为r.(1)若n=0,在点(2,0),(0,2),(4,1)中,直线l的和谐点是;(2)若r= ,⊙O上恰好存在2个直线l的和谐点,求n的取值范围;(3)若n=3,线段MN上存在⊙O的和谐点,直接写出r的取值范围.9.已知:如图,⊙O的半径为r,在射线OM上任取一点P(不与点O重合),如果射线OM上的点P',满足OP·OP'=r2,则称点P'为点P关于⊙O的反演点.在平面直角坐标系xOy中,已知⊙O的半径为2.(1)已知点A(4,0),求点A关于⊙O的反演点A'的坐标;(2)若点B关于⊙O的反演点B'恰好为直线与直线x=4的交点,求点B的坐标;(3)若点C为直线上一动点,且点C关于⊙O的反演点C'在⊙O的内部,求点C的横坐标m的范围;(4)若点D为直线x=4上一动点,直接写出点D关于⊙O的反演点D'的横坐标t的范围.28.10.过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰中,,.1在下图中画出一条的形内弧;2在中,其形内弧的长度最长为____________.(2)在平面直角坐标系中,点,,,点为形内弧所在圆的圆心.求点纵坐标的取值范围;(3)在平面直角坐标系中,点,点为轴上一点.点为最长形内弧所在圆的圆心,求点纵坐标的取值范围.。

初三新定义练习题

初三新定义练习题

初三新定义练习题在初三学习阶段中,学生们通常面临着各种难题和挑战。

为了更好地帮助学生们掌握知识并提高解题能力,提供一些新定义的练习题是非常有效的方法之一。

本文将从数学、英语和物理三个方面为大家提供一些初三新定义的练习题,帮助学生们更好地复习和巩固知识。

一、数学练习题1. 假设有一等差数列,已知首项为3,公差为4,请计算该等差数列的前10项之和。

2. 已知正方形ABCD的边长为x,求出正方形对角线的长度。

3. 改写方程:4x - 3y + z = 12。

4. 某地一天的气温分别为15℃、18℃、20℃、23℃,求这四天的平均气温。

二、英语练习题1. 将下列句子变为被动语态:They built a new school last year.2. 根据所给提示词,完成下列句子:My father is good at cooking. (改为一般疑问句,并作否定回答)3. 根据上下文,选择合适的词汇填空:I have a pet cat.______name is Kitty.4. 根据所给单词,完成下列句子:The baby is _______ (cute) in the family.三、物理练习题1. 在公式F=ma中,F代表的是什么物理量?2. 如果一个物体的质量为5千克,受到的重力是多少?3. 在电路中,电流指的是什么?4. 请列举出三种能量的形式。

通过这些数学、英语和物理的练习题,学生们可以巩固他们在初三学习阶段所学到的知识,并通过解题的方式提高他们的思维能力和解决问题的能力。

同时,这些题目可以帮助他们在考试中更好地应对各种题型,并且增加他们对知识的理解和运用能力。

希望本文提供的初三新定义练习题可以对学生们有所帮助,使他们在学习中取得更好的成绩和进步。

如果学生们能够坚持不懈地解答这些练习题,并寻找其他类型的练习题进行巩固,相信他们一定能够在初三阶段取得优异的成绩。

祝愿所有初三学生们学业有成,取得令人骄傲的成绩!。

中考数学复习《新定义及阅读理解型问题》测试题(含答案)

中考数学复习《新定义及阅读理解型问题》测试题(含答案)

中考数学复习《新定义及阅读理解型问题》测试题(含答案)题型解读1.考查题型:①新定义计算型;②阅读理解型;③新定义与阅读理解结合题. 2.考查内容:①新定义下的实数运算;②涉及“新定义”的阅读理解及材料分析;③与函数、多边形、圆结合,通过材料或定义进行相关证明或计算.3.在做此类题型时,首先要理解新定义的运算方式,提升从材料阅读中提取信息的能力,结合已知条件中的推理方法,学以致用,便可得以解决.1.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=-18,则方程x ⊗(-2)=2x -4-1的解是( ) A . x =4 B . x =5 C . x =6 D . x =72.对于实数a 、b ,我们定义符号max {a ,b}的意义为:当a≥b 时,max {a ,b}=a ;当a <b 时,max {a ,b}=b ;如max {4,-2}=4,max {3,3}=3.若关于x 的函数为y =max {x +3,-x +1},则该函数的最小值是( )A . 0B . 2C . 3D . 43.我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=-1.其中正确的是( )A . ①②B . ①③C . ②③D . ①②③4.设a ,b 是实数,定义关于@的一种运算如下:a@b =(a +b)2-(a -b)2,则下列结论:( ) ①若a@b =0,则a =0或b =0; ②a@(b +c)=a@b +a@c ;③不存在实数a ,b ,满足a@b =a 2+5b 2;④设a ,b 是矩形的长和宽,若该矩形的周长固定,则当a =b 时,a@b 的值最大. 其中正确的是( )A . ②③④B . ①③④C . ①②④D . ①②③5.对于实数a ,b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b)a -b (a<b ),例如:因为 4>2,所以4*2=42-4×2=8,则(-3)*(-2)=________.6.规定:log a b(a>0,a ≠1,b>0)表示a ,b 之间的一种运算. 现有如下的运算法则:log a a n=n ,log N M =log a Mlog a N(a>0,a ≠1,N>0,N ≠1,M>0), 例如:log 223=3,log 25=log 105log 102,则log 1001000=________.第7题图7.实数a ,n ,m ,b 满足a<n<m<b ,这四个数在数轴上对应的点分别是A ,N ,M ,B(如图).若AM 2=BM·AB,BN 2=AN·AB,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________. 8.请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理. 阿基米德折弦定理:如图①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC>AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD.下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图②,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG. ∵M 是ABC ︵的中点, ∴MA =MC. …图① 图②任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边△ABC 内接于⊙O,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是________.图③9.如果三角形三边的长a 、b 、c 满足a +b +c3=b ,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图①,已知两条线段的长分别为a 、c(a<c),用直尺和圆规作一个最短边、最长边的长分别为a 、c 的“匀称三角形”(不写作法,保留作图痕迹);(2)如图②,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 延长线于点E ,交AC 于点F.若BE CF =53,判断△AEF 是否为“匀称三角形”?请说明理由.10.我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解,并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”.求所有“吉祥数”中F(t)的最大值.11.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k 2计算. 例如:求点P(-1,2)到直线y =3x +7的距离. 解:因为直线y =3x +7,其中k =3,b =7,所以点P(-1,2)到直线y =3x +7的距离为d =|kx 0-y 0+b|1+k 2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P(1,-1)到直线y =x -1的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线y =3x +9的位置关系并说明理由; (3)已知直线y =-2x +4与y =-2x -6平行,求这两条直线之间的距离.12.【图形定义】如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O ,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P ,连接PO ,我们称∠OAB 为“叠弦角”,△AOP 为“叠弦三角形”. 【探究证明】(1)请在图①和图②中选择其中一个证明:“叠弦三角形”(即△AOP)是等边三角形; (2)如图②,求证:∠OAB=∠OAE′. 【归纳猜想】(3)图①、图②中“叠弦角”的度数分别为__________,__________; (4)图中,“叠弦三角形”__________等边三角形(填“是”或“不是”); (5)图中,“叠弦角”的度数为__________(用含n 的式子表示).13.若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x 的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式;(3)当常数k 满足12≤k≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.1. B 【解析】根据题意a ⊗b =1a -b 2,则 x ⊗(-2)=1x -(-2)2=1x -4,又∵x ⊗(-2)=2x -4-1,∴1x -4=2x -4-1,解得x =5,经检验x =5是原方程的根,∴原方程x ⊗(-2)=2x -4-1的解是x =5. 2. B 【解析】当x +3≥-x +1时,max{x +3,-x +1}=x +3,此时x ≥-1,∴y ≥2;当x +3<-x +1时,max{x +3,-x +1}=-x +1,此时x <-1,∴y >2.综上y 的最小值为2.3. B 【解析】①∵24=16,∴log 216=4,故①正确;②∵52=25,∴log 525=2,故②不正确;③∵2-1=12,∴log 212=-1,故③正确. 4. C 【解析】∵a @b =(a +b )2-(a -b )2,若a @b =0,则(a +b )2-(a -b )2=0,∴(a +b )2=(a -b )2, ∴a +b =±(a -b ),∴a =0或b =0,∴①正确;∵a @b =(a +b )2-(a -b )2,∴a @(b +c )=[a +(b +c )]2-[a -(b +c )]2=[a +(b +c )+a -(b +c )][a +(b +c )-(a -b -c )]=4ab +4ac ,∵a @b +a @c =(a +b )2-(a -b )2+(a +c )2-(a -c )2=a 2+2ab +b 2-a 2+2ab -b 2+a 2+2ac +c 2- a 2+2ac -c 2=4ab +4ac ,∴a @(b +c )=a @b +a @c ,∴②正确;∵a @b =(a +b )2-(a -b )2= a 2+2ab +b 2-a 2+2ab -b 2=4ab ,当a =b =0时,满足a @b =a 2+5b 2,∴③错误;若矩形的周长固定,设为2c ,则2c =2a +2b ,b =c -a ,a @b =(a +b )2-(a -b )2=4ab =4a (c -a )=-4(a -12c )2+c 2,∴当a =12c 时,4ab 有最大值是c 2,即a =b 时,a @b 的值最大,∴④正确.综上,正确结论有①②④.5. -1 【解析】根据新定义,当a<b 时,a*b =a -b 列出常规运算,进行计算便可.∵-3<-2,∴由定义可知,原式=-3-(-2)=-1.6. 32 【解析】根据新运算法则,得log 1001000=log 101000log 10100=log 10103log 10102=32. 7. 25-4 【解析】设AN =y ,MN =x ,由题意可知:AM 2=BM ·AB ,∴(x +y)2=2(2-x -y),解得x +y =5-1(取正),又BN 2=AN·AB ,∴(2-y)2=2y ,解得y =3-5(y <2),∴m -n =MN =x =5-1-(3-5)=25-4,故填25-4.8. 解:(1)又∵∠A =∠C ,CG =AB. ∴△MBA ≌△MGC(SAS ),∴MB =MG . 又∵MD ⊥BC , ∴BD =GD ,∴CD =CG +GD =AB +BD. (2)2+2 2.【解法提示】折线BDC 为⊙O 的一条折弦,由题意知A 为BDC ︵中点,由材料中折弦定理易得BE =DE +CD ,在Rt △ABE 中可得BE =2,所以△BCD 周长为BC +CD +DE +BE =2+2 2.9. 解:(1)作图如解图①.第9题解图①(2)△AEF是“匀称三角形”.理由如下:如解图②,第9题解图②连接AD、OD,∵AB是⊙O直径,∴AD⊥BC,∵AB=AC,∴D是BC中点,∵O是AB中点,∴OD是△ABC的中位线,∴OD∥AC.∵DF切⊙O于D点,∴OD⊥DF,∴EF⊥AF,过点B作BG⊥EF于点G,易证Rt△BDG≌Rt△CDF(AAS),∴BG=CF,∵BECF=53,∴BEBG=53,∵BG∥AF(或Rt△BEG∽Rt△AEF),∴BEBG=AEAF=53.在Rt△AEF中,设AE=5k,则AF=3k,由勾股定理得,EF=4k,∴AF+EF+AE3=3k+4k+5k3=4k=EF,∴△AEF是“匀称三角形”.10. (1)证明:∵m是一个完全平方数,∴m=p×q,当p=q时,p×q就是m的最佳分解,∴F(m)=pq=pp=1.(2)解:由题意得,(10y+x)-(10x+y)=18,得y=x+2(y≤9),∴t=10x+y=10x+x+2=11x+2(1≤x≤7),则所有的“吉祥数”为:13,24,35,46,57,68,79共7个,∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57,68=1×68=2×34=4×17,79=1×79,∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=157,F(68)=417,F(79)=179,∴“吉祥数”中F(t)的最大值为:F(35)=57.11. 解:(1)∵直线y =x -1,其中k =1,b =-1, ∴点P(1,-1)到直线y =x -1的距离为: d =|kx 0-y 0+b|1+k 2=|1-(-1)-1|1+12=12=22.(2)相切.理由如下:∵直线y =3x +9,其中k =3,b =9,∴圆心Q(0,5)到直线y =3x +9的距离为d =|kx 0-y 0+b|1+k 2=|3×0-5+9|1+(3)2=42=2,又∵⊙Q 的半径r 为2,∴⊙Q 与直线y =3x +9的位置关系为相切.(3)在直线y =-2x +4上任意取一点P , 当x =0时,y =4, ∴P(0,4),∵直线y =-2x -6,其中k =-2,b =-6,∴点P(0,4)到直线y =-2x -6的距离为d =|kx 0-y 0+b|1+k 2=|-2×0-4-6|1+(-2)2=105=25,∴这两条直线之间的距离为2 5.12. (1)选择图①.证明:依题意得∠DAD′=60°,∠PAO =60°. ∵∠DAP =∠DAD′-∠PAD′=60°-∠PAD′,∠D ′AO =∠PAO -∠PAD ′=60°-∠PAD′, ∴∠DAP =∠D′AO.∵∠D =∠D′,AD =AD′, ∴△DAP ≌△D ′AO(ASA ), ∴AP =AO , 又∵∠PAO =60°,∴△AOP 是等边三角形. 选择图②.证明:依题意得∠EAE′=60°,∠PAO =60°. ∵∠EAP =∠EAE′-∠PAE′=60°-∠PAE′, ∠E ′AO =∠PAO -∠PAE′=60°-∠PAE′, ∴∠EAP =∠E′AO(ASA ). ∵∠E =∠E′,AE =AE′, ∴△EAP ≌△E ′AO , ∴AP =AO , 又∵∠PAO =60°, ∴△AOP 是等边三角形.第12题解图(2)证明:如解图,连接AC ,AD ′,CD ′. ∵AE ′=AB ,∠E′=∠B =180°×(5-2)5=108°,E ′D ′=BC ,∴△AE ′D ′≌△ABC(SAS ),∴AD ′=AC ,∠AD ′E ′=∠ACB , ∴∠AD ′C =∠ACD′, ∴∠OD ′C =∠OCD′, ∴OC =OD′,∴BC -OC =E′D′-OD′,即BO =E′O. ∵AB =AE′,∠B =∠E′, ∴△ABO ≌△AE ′O(SAS ), ∴∠OAB =∠OAE′. (3)15°,24°.【解法提示】∵由(1)得,在图①中,△AOP 是等边三角形, ∴∠DAP +∠OAB =90°-60°=30°, 在△OAB 和△OAD′中,⎩⎪⎨⎪⎧OA =OABA =D′A, ∴△ABO ≌△AD ′O(HL ), ∴∠OAB =∠D′AO , 由(1)知∠D′AO =∠DAP , ∴∠OAB =∠DAP , ∴∠OAB =12×30°=15°;∵由(1)得,在图②中,△PAO 为等边三角形, ∴∠PAE +∠BAO =∠EAB -∠PAO ,∵∠EAB=15×180°×(5-2)=108°,∴∠PAE+∠BAO=48°,同理可证得∠OAB=∠PAE,∴∠OAB=12×48°=24°.(4)是.【解法提示】由(1)(2)可知,“叠弦”AO所在的直线绕点A逆时针旋转60°后,AO=AP,且∠PAO =60°,故△AOP是等边三角形.(5)60°-180°n(n≥3).【解法提示】由(1)(2)(3)可知,“叠弦角”的度数为正n边形的内角度数减去60°之后再除以2,即∠OAB=180°(n-2)n-60°2,化简得∠OAB=60°-180°n(n≥3).13. 解:(1)由题意得n=1,∴抛物线y=x2-2x+1=(x-1)2,顶点为Q(1,0),将(1,0)代入y=mx+1,得m=-1,∴m=-1,n=1.(2)由题意设“路线”L的解析式为y=a(x-h)2+k,∵顶点Q的坐标在y=6x和y=2x-4上,∴⎩⎪⎨⎪⎧k=6hk=2h-4,解得h=-1或3,∴顶点Q的坐标为(-1,-6)或(3,2),∴y=a(x+1)2-6或y=a(x-3)2+2,又∵“路线”L过P(0,-4),代入解得a=2(顶点为(-1,-6)),a=-23(顶点为(3,2)),∴y=2(x+1)2-6或y=-23(x-3)2+2,即y=2x2+4x-4或y=-23x2+4x-4.(3)由题可知抛物线顶点坐标为(-3k2-2k+12a,4ak-(3k2-2k+1)24a),设带线l:y=px+k,代入顶点坐标得p=3k2-2k+12,11 ∴y =3k 2-2k +12x +k , 令y =0,则带线l 交x 轴于点(-2k 3k 2-2k +1,0),令x =0,则带线l 交y 轴于点(0,k), ∵k ≥12>0, ∴3k 2-2k +1=3(k -13)2+23>0, ∴带线l 与坐标轴围成三角形面积为S =12·2k 3k 2-2k +1·k =k 23k 2-2k +1=11k 2-2·1k +3, 令t =1k ,∵12≤k ≤2,∴12≤t ≤2,∴S =1t 2-2t +3,∴1S =t 2-2t +3=(t -1)2+2,故当t =2时,(1S )max =3;当t =1时,(1S )min =2.∴13≤S ≤12.。

专题05新定义问题中考题型训练(原卷版)

专题05新定义问题中考题型训练(原卷版)

专题5 新定义问题中考题型训练1.(2022•娄底)若10x=N,则称x是以10为底N的对数.记作:x=lgN.例如:102=100,则2=lg100;100=1,则0=lg1.对数运算满足:当M>0,N>0时,lgM+lgN=lg(MN).例如:lg3+lg5=lg15,则(lg5)2+lg5×lg2+lg2的值为()A.5B.2C.1D.02.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n =x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.33.(2022•常德)我们发现:=3,=3,=3,…,=3,一般地,对于正整数a,b,如果满足=a时,称(a,b)为一组完美方根数对.如上面(3,6)是一组完美方根数对,则下面4个结论:①(4,12)是完美方根数对;②(9,91)是完美方根数对;③若(a,380)是完美方根数对,则a=20;④若(x,y)是完美方根数对,则点P(x,y)在抛物线y=x2﹣x上,其中正确的结论有()A.1个B.2个C.3个D.4个4.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(,)是函数y=x图象的“阶方点”;点(2,1)是函数y=图象的“2阶方点”.(1)在①(﹣2,﹣);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y=图象的“1阶方点”的有(填序号);(2)若y关于x的一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,求a的值;(3)若y关于x的二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,请直接写出n的取值范围.5.(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m的取值范围.6.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.7.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m 整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.8.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.9.(2022•湘西州)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).(1)求抛物线C2的解析式和点G的坐标.(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN 与线段DM的长度的比值.(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG 是以EG为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.10.(2022•德州)教材呈现以下是人教版八年级上册数学教材第53页的部分内容.如图,四边形ABCD中,AD=CD,AB=CB.我们把这种两组邻边分别相等的四边形叫做“筝形”.概念理解(1)根据上面教材的内容,请写出“筝形”的一条性质:;(2)如图1,在△ABC中,AD⊥BC,垂足为D,△EAB与△DAB关于AB所在的直线对称,△F AC与△DAC关于AC所在的直线对称,延长EB,FC相交于点G.请写出图中的“筝形”:;(写出一个即可)应用拓展(3)如图2,在(2)的条件下,连接EF,分别交AB,AC于点M,H,连接BH.①求证:∠BAC=∠FEG;②求证:∠AHB=90°.1.(2023•叙州区校级模拟)新定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0,a,b,c为实数)的“图象数”,如:y=x2﹣2x+3的“图象数”为[1,﹣2,3],若“图象数”是[m,2m+4,2m+4]的二次函数的图象与x轴只有一个交点,则m的值为()A.﹣2B.C.﹣2或2D.22.(2023•苏州模拟)定义:如果三角形的一个内角是另一个内角的2倍,那么称这个三角形为“倍角三角形”.若△ABC是“倍角三角形”,∠A=90°,BC=4,则△ABC的面积为.3.(2022•西湖区一模)已知y1,y2均为关于x的函数,当x=a时,函数值分别为A1,A2,若对于实数a,当0<a<1时,都有﹣1<A1﹣A2<1,则称y1,y2为亲函数,则以下函数y1和y2是亲函数的是()A.y1=x2+1,y2=B.y1=x2+1,y2=2x﹣1C.y1=x2﹣1,y2=D.y1=x2﹣1,y2=2x﹣14.(2022•平桂区一模)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.则百位数字比十位数字大5的所有“好数”的个数是()A.8B.7C.6D.55.(2022•威县校级模拟)如图,在平面直角坐标系中,矩形OABC的顶点坐标分别为A(8,0),C(0,6).把横,纵坐标均为偶数的点称为偶点.(1)矩形OABC(不包含边界)内的偶点的个数为.(2)若双曲线L:y=上(x>0)将矩形OABC(不包含边界)内的偶点平均分布在其两侧,则k的整数值有个.6.(2022•宁波模拟)在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为.7.(2022•天府新区模拟)给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的2倍,则我们称这个矩形是给定矩形的“加倍矩形”,当已知矩形的长和宽分别为3和1时,其“加倍矩形”的对角线长为.8.(2022•武侯区校级模拟)对于给定△ABC内(包含边界)的点P,若点P到△ABC其中两边的距离相等,我们称点P为△ABC的“等距点”,这段距离的最大值称为△ABC的“特征距离”.如图,在平面直角坐标系xOy中,已知点A(6,0),动点M(m,3),连接OM,AM.则△OAM的“特征距离”的最大值为.9.(2022•金牛区模拟)射线AB绕点A逆时针旋转a°,射线BA绕点B顺时针旋转b°,0°<a<90°,0°<b<90°,旋转后的两条射线交点为C,如果将逆时针方向旋转记为“+”,顺时针方向旋转记为“﹣”,则称(a,﹣b)为点C关于线段AB的“双角坐标”,如图1,已知△ABC,点C关于线段AB的“双角坐标”为(50,﹣60),点C关于线段BA的“双角坐标”为(﹣60,50).如图2,直线AB:y=x+交x轴、y轴于点A、B,若点D关于线段AB的“双角坐标”为(﹣m,n),y轴上一点E关于线段AB 的“双角坐标”为(﹣n,m),AE与BD交点为F,若△ADE与△ADF相似,则点F在该平面直角坐标系内的坐标是.10.(2022•长沙县校级三模)约定:若三角形一边上的中线将三角形分得的两个小三角形中有一个三角形与原三角形相似,我们则称原三角形为关于该边的“优美三角形”.例如:如图1,在△ABC中,AD为边BC上的中线,△ABD与△ABC相似,那么称△ABC为关于边BC的“优美三角形”.(1)如图2,在△ABC中,BC=AB,求证:△ABC为关于边BC的“优美三角形”;(2)如图3,已知△ABC为关于边BC的“优美三角形”,点D是△ABC边BC的中点,以BD为直径的⊙O恰好经过点A.①求证:直线CA与⊙O相切;②若⊙O的直径为2,求线段AB的长;(3)已知三角形ABC为关于边BC的“优美三角形”,BC=4,∠B=30°,求△ABC的面积.11.(2023•定远县校级一模)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,△ABC的三个顶点均在正方形网格中的格点上,若四边形ABCD是以AC为“相似对角线”的四边形,请只用无刻度的直尺,就可以在网格中画出点D,请你在图1中找出满足条件的点D,保留画图痕迹(找出2个即可)(2)①如图2,在四边形ABCD中,∠DAB=90°,∠DCB=135°,对角线AC平分∠DAB.请问AC 是四边形ABCD的“相似对角线”吗?请说明理由;②若AC=,求AD•AB的值.(3)如图3,在(2)的条件下,若∠D=∠ACB=90°时,将△ADC以A为位似中心,位似比为:缩小得到△AEF,连接CE、BF,在△AEF绕点A旋转的过程中,当CE所在的直线垂直于AF时,请你直接写出BF的长.12.(2022•开福区校级一模)我们不妨定义:有两边之比为1:的三角形叫敬“勤业三角形”.(1)下列各三角形中,一定是“勤业三角形”的是;(填序号)①等边三角形;②等腰直角三角形;③含30°角的直角三角形;④含120°角的等腰三角形.(2)如图1,△ABC是⊙O的内接三角形,AC为直径,D为AB上一点,且BD=2AD,作DE⊥OA,交线段OA于点F,交⊙O于点E,连接BE交AC于点G.试判断△AED和△ABE是否是“勤业三角形”?如果是,请给出证明,并求出的值;如果不是,请说明理由;(3)如图2,在(2)的条件下,当AF:FG=2:3时,求∠BED的余弦值.。

中考真题分类整理:新定义型(附答案)

中考真题分类整理:新定义型(附答案)

一、选择题1.(2020·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .14c <D .c <1 【答案】B【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c+=-⎧⎨⋅=⎩∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c <14.∴c 的取值范围为c <-2 .2.(2020·济宁)−1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A【解析】二、填空题18.(2020·娄底) 已知点P()00,x y 到直线y kx b =+的距离可表示为d =0,1)到直线y =2x+6的距离d ==y x =与4y x =-之间的距离为___________. 【答案】.【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直线4y x =-的距离就是两平行直线y x =与4y x =-之间的距离.d ===. 16.(2020·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM=+1,PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.17.(2020·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = .【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=;当∠A 是底角时,则底角是20°,k=201804=,故答案为:85或14.三、解答题1.(2020·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位,∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;14214m 214m 214m②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”. 综上,不大于100的“纯数”的个数为3+9+1=13.2.(2020·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”.例如:是“纯数”,因为在列竖式计算时各位都不产生进位现象; 不是“纯数”,因为在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”;⑵求出不大于100的“纯数”的个数,并说明理由.解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个.两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个.3.(2020·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x =3a c +,y =3b d +,那么称点T 是点A ,B 的融合点。

新定义与阅读理解问题 九年级数学专项训练(含解析)

新定义与阅读理解问题 九年级数学专项训练(含解析)

新定义与阅读理解问题一、单选题A.1B.4C.6D()(A.113︒B.92二、填空题16.定义一种新的运算:a☆三、解答题17.若定义一种运算:a b∆()(32-=--+⨯-2Δ32(3)23参考答案:1.A【分析】本题考查了有理数的混合运算,理解题中的新定义是解此类题的关键.根据题中的新定义计算即可求出4-※2的值.【详解】解:根据新定义得:4-※22422=-⨯+84=-+4=-,故选:A 2.B【分析】本题考查了新运算,解一元一次方程,掌握新运算正确计算是解题的关键,根据()310312x ⎡⎤+⨯=⎣⎦★,()336x +⨯=-解方程即可.【详解】解:根据新定义得()31012x =★★()310312x ⎡⎤+⨯=⎣⎦★()3104x +=★()36x =-★()336x +⨯=-5x =-故选:B 3.D【分析】据提供的“F ”运算,对正整数n 分情况(奇数、偶数)循环计算,由于449n =为奇数应先进行F ①运算,发现从第4次运算结果开始循环,且奇数次运算的结果为8,偶数次为1,而第201次是奇数,这样循环计算一直到第201次“F ”运算,得到的结果为8.本题主要考查了新定义运算,有理数的混合运算.熟练掌握“F ”运算法则,找到结果存在的规律,根据有理数的混合运算求出答案,是解题的关键.【详解】解:第一次:344951352⨯+=,故选:A.8.C【分析】本题主要考查了等腰三角形的性质、相似三角形的性质等知识带你,由10.12x =,22x =-【分析】本题考查有理数的混合运算,新定义问题,根据已知公式得出24420x +=,解之可得答案.【详解】解:420x ⊗= ,24420x ∴+=,即2416x =,解得:12x =,22x =-.故答案为:122,2x x ==-.11.5【分析】此题考查了解一元一次方程和平方根解方程.根据题中的新定义分两种情况化简已知等式,求出x 的值即可.【详解】解:当4x ≥时,则1629x +=,解得13x =,不符合题意;当4x <时,则2429x +=,解得15=x ,25x =-(舍去),综上,x 的值为5.故答案为:5.12.3-【分析】本题考查了一次函数图象上点的坐标特征,根据“衍生函数”的定义,找出一次函数21y x =-+的“衍生函数”是解题的关键.【详解】解:由定义知,一次函数21y x =-+的“衍生函数”为()()210210x x y x x ⎧-+≥⎪=⎨+<⎪⎩,∵点()2,P m -在一次函数的“衍生函数”图象上,20x =-<,∴()2213m =⨯-+=-.故答案为:3-.13.1【分析】本题考查了解一元一次方程.理解题意,正确的列一元一次方程是解题的关键.由题意知,()3434341a =⨯+++※,3420=※,即()3434120a ⨯+++=,计算求解即可.【详解】解:由题意知,()3434341a =⨯+++※,3420=※,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,过C时,且在等腰直角三角形∴当O、、过点O分别作弦CG CF DE。

中考数学复习《新定义问题》

中考数学复习《新定义问题》

【解析】根据题意可知,S1中2有2的倍数个,3有3的倍数个,据此即可作出
选择.A.∵2有3个,∴不可以作为S1,故选项错误;B.∵2有3个,∴不可以
作为S1,故选项错误;C.3只有1个,∴不可以作为S1,故选项错误;D.符合 定义的一种变换,故选项正确.故选D.
13.对于钝角α,定义它的三角函数值如下: sinα=sin(180°-α),cosα=-cos(180°-α).
11.任意一个正整数 n 都可以分解:n=p×q(p,q 是正整数,且 p≤q), 在 n 的所有这种分解中,如果|p-q|最小,则称 p×q 是 n 的最佳分解. p 并规定:F(n)=q.
(1)求F(12);
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换 其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为
15.定义:点 P 是△ABC 内部或边上的点(顶点除外),在△PAB,△PBC, △PCA 中,若至少有一个三角形与△ABC 相似,则称点 P 是△ABC 的自相似 3 3 点.在平面直角坐标系中,点 M 是曲线 y= x (x>0)上的任意一点,点 N 在 x 轴正半轴上. (1)如图 1,MN⊥x 轴,点 N( 3,0), 若 OM 上点 P 是△MON 的自相似点,求点 P 的坐标; (2)如图 2,当点 M(3, 3),点 N(2,0)时,求△MON 的自相似点的坐标.
3.定义[a,b,c]为函数 y=ax2+bx+c 的特征数, 下面给出特征数为[2m,1-m ,-1-m]的函数的一些结论: 1 8 ①当 m=-3 时,函数图象的顶点坐标是(3,3); 3 ②当 m>0 时,函数图象截 x 轴所得的线段长度大于2; 1 ③当 m<0 时,函数在 x>4时,y 随 x 的增大而减小; ④当 m≠0 时,函数图象经过同一个点.其中正确的结论有( B ) A.①②③④ B.①②④ C.①③④ D.②④

中考数学复习专项练习卷_新定义型问题(含答案解析)

中考数学复习专项练习卷_新定义型问题(含答案解析)

中考数学二轮复习精品资料附参考答案新定义型问题一、中考专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考典例剖析考点一:规律题型中的新定义例2 (2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5。

(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.思路分析:(1)按照定义新运算a⊕b=a(a-b)+1,求解即可;(2)先按照定义新运算a⊕b=a(a-b)+1,得出3⊕x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范围,即可在数轴上表示.解:(1)∵a⊕b=a(a-b)+1,∴(-2)⊕3=-2(-2-3)+1=10+1=11;(2)∵3⊕x<13,∴3(3-x)+1<13,9-3x+1<13,-3x<3,x>-1.在数轴上表示如下:例3 (2013•钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5思路分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.解:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选C.点评:本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键.-CE PC PC a s2考点四:开放题型中的新定义例4 (2013•宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.思路分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;»BC上任意一点构成的四边形(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,(3)由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD 的度数.解:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;(2)由题意作图为:图2,图3(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点思路分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=-x+k上.解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=-x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.对应训练5.(2013•天门)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.(1)判断与操作:如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.(2)探究与计算:已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形四、中考真题演练一、选择题1.(2013•成都)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=-x+3 B.y= 5xC.y=2x D.y=-2x2+x-71.C2.(2013•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°2.DA.40 B.45 C.51 D.563.C4.(2013•乌鲁木齐)对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)4.D5.(2013•常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是()A.B.C.D.5.C二、填空题6.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.6.30°7.(2013•宜宾)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.三、解答题10.(2013•莆田)定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.(3)作EF ⊥AB 于F ,EG ⊥AD 于G ,EH ⊥CD 于H ,∴∠BFE =∠CHE =90°.∵AE 平分∠BAD ,DE 平分∠ADC ,∴EF =EG =EH ,在Rt △EFB 和Rt △EHC 中BE CE EF EH=⎧⎨=⎩, ∴Rt △EFB ≌Rt △EHC (HL ),∴∠3=∠4.∵BE =CE ,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC =∠DCB ,∵ABCD 为AD 截某三角形所得,且AD 不平行BC ,∴ABCD 是“准等腰梯形”.当点E 不在四边形ABCD 的内部时,有两种情况:如图4,当点E 在BC 边上时,同理可以证明△EFB ≌△EHC ,∴∠B =∠C ,∴ABCD 是“准等腰梯形”.如图5,当点E 在四边形ABCD 的外部时,同理可以证明△EFB ≌△EHC ,∴∠EBF =∠ECH .∵BE =CE ,∴∠3=∠4,∴∠EBF -∠3=∠ECH -∠4,即∠1=∠2,。

中考数学专项训练: 新定义型(含解析)

中考数学专项训练:  新定义型(含解析)

一、选择题1.(2019·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .14c <D .c <1 【答案】B【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c+=-⎧⎨⋅=⎩∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c <14.∴c 的取值范围为c <-2 .2.(2019·济宁)−1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A【解析】二、填空题18.(2019·娄底) 已知点P()00,x y 到直线y kx b =+的距离可表示为d =0,1)到直线y =2x+6的距离d ==y x =与4y x =-之间的距离为___________. 【答案】.【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直线4y x =-的距离就是两平行直线y x =与4y x =-之间的距离.d ===. 16.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM=+1,PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.17.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = .【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=o o ;当∠A 是底角时,则底角是20°,k=201804=o o ,故答案为:85或14.三、解答题1.(2019·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位,∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;14214m 214m 214m②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”. 综上,不大于100的“纯数”的个数为3+9+1=13.2.(2019·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”.例如:是“纯数”,因为在列竖式计算时各位都不产生进位现象; 不是“纯数”,因为在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”;⑵求出不大于100的“纯数”的个数,并说明理由.解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个.两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个.3.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x =3a c +,y =3b d +,那么称点T 是点A ,B 的融合点。

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型【01】.在平面直角坐标系xOy 中,C 的半径为r ,P 是与圆心C 不重合的点,点P 关于O 的反称点的定义如下:若在射线CP 上存在一点P ¢,满足2CP CP r ¢+=,则称P ¢为点P 关于C 的反称点,下图为点P 及其关于C 的反称点P ¢的示意图。

的示意图。

(1)(1)当当O 的半径为1时。

时。

①分别判断点(2,1)M ,3(,0)2N ,(1(1,,3)T 关于O 的反称点是否存在,若存在?在?求其坐标;求其坐标;②点P 在直线2y x =-+上,若点P 关于O 的反称点P ¢存在,且点P ¢不在x 轴上,求点P 的横坐标的取值范围;的横坐标的取值范围; (2)(2)当当C 的圆心在x 轴上,轴上,半径为半径为1,直线3233y x =-+与x 轴,轴,y y 轴分别交于点A ,B ,若线段AB 上存在点P ,使得点P 关于C 的反称点P ¢在C 的内部,求圆心C 的横坐标的取值范围。

的横坐标的取值范围。

yPOCx1 1【02】.在平面直角坐标系xOy 中,点P 的坐标为()11,x y ,点Q 的坐标为()22,x y ,且12x x ¹,12y y ¹,若,P Q 为某个矩形的两个顶点,为某个矩形的两个顶点,且该矩形的边均与某条坐标轴且该矩形的边均与某条坐标轴垂直,则称该矩形为点P Q ,的“相关矩形”的“相关矩形”..下图为点,P Q 的“相关矩形”的示意图意图. .(1)已知点A 的坐标为()10,,①若点B 的坐标为()31,,求点,A B 的“相关矩形”的面积;的“相关矩形”的面积;②点C 在直线3x =上,若点,A C 的“相关矩形”为正方形,求直线AC 的表达式;式;(2)O ⊙的半径为2,点M 的坐标为(),3m .若在O ⊙上存在一点N ,使得点,M N的“相关矩形”为正方形,求m 的取值范围的取值范围. .【03】对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若存在过点P 的直线l 交⊙C 于异于点P 的A ,B 两点,在P ,A ,B 三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P 为⊙C 的相邻点,直线l 为⊙C 关于点P 的相邻线的相邻线. . (1)当⊙O 的半径为1时,时, ○1分别判断在点D (,14),E (0,-3),F (4,0)中,是⊙O 的相邻点有____________________;;○2请从○1中的答案中,任选一个相邻点,在图1中做出⊙O 关于它的一条相邻线,并说明你的作图过程相邻线,并说明你的作图过程. .○3点P 在直线3y x =-+上,若点P 为⊙O 的相邻点,求点P 横坐标的取值范围;范围;(2)⊙C 的圆心在x 轴上,半径为1,直线3233y x =-+与x 轴,y 轴分别交于点M ,N ,若线段..MN 上存在⊙C 的相邻点P ,直接写出圆心C 的横坐标的取值范围.范围.21备用图1备用图2 图1【04】定义:y 是一个关于x 的函数,若对于每个实数x ,函数y 的值为三数2+x ,12+x ,205+-x 中的最小值,则函数y 叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A (1, 3)是否为这个)是否为这个最小值函数图象上的点;图象上的点;(2)设这个最小值函数图象的最高点为B ,点A (1, 3),动点M (m ,m ).①直接写出△ABM 的面积,其面积是的面积,其面积是 ; ②若以M 为圆心的圆经过B A ,两点,写出点M 的坐标;的坐标;③以②中的点M 为圆心,以2为半径作圆为半径作圆. . 在此圆上找一点P ,使22PA PB +的值最小,直接写出此最小值的值最小,直接写出此最小值. .【05】在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是;是;②线段11A B AB P ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为的坐标为_________________________________________________________;; (2)如图2,已知点()13C ,,C e 与y 轴相切于点D .若E e 的半径为32,圆心E 在直线343l y x =-+:上,且E e 上的所有点都是关于C e 的“阴影点”,求圆心E 的横坐标的取值范围;的横坐标的取值范围;(3)如图3,M e 的半径是3,点M 到原点的距离为5.点N 是M e 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且M e 上的所有点都是关于NQT D 的“阴影点”,直接写出NQT D 的周长的最小值.的周长的最小值.图1 图2 图3yxB A OyxCOD yx11O【06】给出如下规定:在平面直角坐标系xOy 中,对于点P (x ,y ),以及两个无公共点的图形1W 和2W ,若在图形1W 和2W 上分别存在点M (1x ,1y )和N (2x ,2y ),使得P 是线段MN 的中点,则称点M 和N 被点P “关联”,并称点P 为图形1W 和2W 的一个“中位点”,此时P ,M ,N 三个点的坐标满足122x x x +=,122y yy +=.(1)已知点(0,1),(4,1),(3,1),(3,2)A B C D --,连接AB ,CD .①对于线段AB 和线段CD ,若点A 和C 被点P “关联”,则点P 的坐标为____________________;; ②线段AB 和线段CD 的一个“中位点”是1(2,)2Q -,求这两条线段上被点Q “关联”的两个点的坐标;“关联”的两个点的坐标;(2)如图1,已知点R (-(-2,02,02,0)和抛物线)和抛物线1W :22y x x =-,对于抛物线1W 上的每一个点M ,在抛物线2W 上都存在点N ,使得点N 和M 被点R “关联”,请在图1中画出符合条件的抛物线2W ;(3)正方形EFGH 的顶点分别是(4,1),(4,1),(2,1),(2,1)E F G H ------,⊙T 的圆心为(3,0)T ,半径为1.请在图2中画出由正方形EFGH 和⊙T 的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.并直接写出该图形的面积.图1 图2R【06】在平面直角坐标系中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的限距点的定义如下:若为直线PC 与⊙C 的一个交点,满足,则称为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限距点的示意图.的示意图. (1)当⊙O 的半径为1时.时.①分别判断点M ,N ,T 关于⊙O 的限距点是否存在?若存在,求其坐标;在?若存在,求其坐标;②点D 的坐标为(的坐标为(2,02,02,0)),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的边上的边上..若点P 关于⊙O 的限距点存在,求点的横坐标的取值范围;取值范围;(2)保持()保持(11)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E的方向的方向运动,⊙C 的圆心C 的坐标为(1,01,0)),半径为r .请从下面两个问题中任选一个作答一个作答. .温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P 关于⊙C 的限距点存在,且随点P 的运动所形成的路径长为,则r 的最小值为的最小值为______________________________.. 若点P 关于⊙C 的限距点不存在,则r 的取值范围为的取值范围为________. ________.xOy P ¢2r PP r ¢££P ¢P¢(3,4)5(,0)2(1,2)P ¢P ¢P ¢P ¢r p P¢【07】对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为零为零..例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度;其不变长度;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;的值;②若13b ££,求其不变长度q 的取值范围;的取值范围;(3)记函数22()y x x x m =-³的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两部分组成,若其不变长度q 满足03q ££,则m 的取值范围为的取值范围为 . .【08】P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把P A PB ×的值称为点P 关于⊙O 的“幂值”.(1)⊙O 的半径为5,OP = 3.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为________________;; ②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙O 的“幂值”的取值范围.的取值范围.(2)若⊙O 的半径为r ,OP = d ,请参考(,请参考(11)的思路,用含r 、d 的式子表示点P 关于⊙O 的“幂值”或“幂值”的取值范围的“幂值”或“幂值”的取值范围________________________;; (3)在平面直角坐标系xOy 中,⊙O 的半径为4,若在直线33y x b =+上存在点P ,使得点P 关于⊙O 的“幂值”为1313,,请写出b 的取值范围的取值范围________________________..图1POBAO备用图备用图【09】在平面直角坐标系xOy 中,中,图形图形W 在坐标轴上的投影长度定义如下:设点),(11y x P ,),(22y x Q 是图形W 上的任意两点.若21x x -的最大值为m ,则图形W 在x 轴上的投影长度m l x =;若21y y -的最大值为n ,则图形W 在y 轴上的投影长度n l y =.如图,图形W 在x 轴上的投影长度213=-=xl ;在y 轴上的投影长度404=-=y l .(1)已知点)3,3(A ,)1,4(B .如图1所示,若图形W 为△OAB ,则=xl ,=y l .(2)已知点)0,4(C ,点D 在直线26y x =-+上,若图形W 为△OCD .当y x l l =时,求点D 的坐标.的坐标.(3)若图形W 为函数2x y =)(b x a ££的图象,其中0a b £<.当该图形.当该图形满足1£=y x l l 时,请直接写出a 的取值范围.的取值范围.x yO BA 1234123x y O 1231234图1【10】.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是9090°.°.°.(1)已知点)3,0(-A ,)1,1(--B ,在点)0,2(C ,)0,1(-D ,)2,2(-E 中,选一点,使得以该点及点A ,B 为顶点的三角形的坐标角度为9090°,则满足条件°,则满足条件的点为的点为 ; (2)将函数2ax y =)31(££a 的图象在直线1=y 下方的部分沿直线1=y 向上翻折,求所得图形坐标角度m 的取值范围;的取值范围;(3)记某个圆的半径为r ,圆心到原点的距离为l ,且)1(3-=r l ,若该圆的,若该圆的坐标角度°££°9060m .直接写出满足条件的r 的取值范围.的取值范围. O xy D C B A –1–2–312312345。

中考数学新定义问题

中考数学新定义问题

例3、图1,已知四边形ABCD ,点P 为平面内一动点. 如果∠PAD =∠PBC ,则我们称点P 为四边形ABCD 关于A 、B 的等角点. 如图2,以点B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,点C 的横坐标为6.(1)若A 、D 两点的坐标分别为A (0,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,则点P 的坐标为______;(2)若A 、D 两点的坐标分别为A (2,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,求点P 的坐标;(3)若A 、D 两点的坐标分别为A (2,4)、D (10,4),点P (x ,y )为四边形ABCD 关于A 、B 的等角点,其中x >2,y >0,求y 与x 之间的关系式.练习3:定义:平面内的直线1l 与2l 相较于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a 、b ,则称有序非负实数对(a,b )是点M 的“距离坐标”。

根据上述定义,距离坐标为(2,3)的点的个数是_______。

例4.如果三角形有一边上的中线长恰好等于这边的长,则称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图在Rt△ABC中,∠C=90°,tanA=32,求证:△ABC是“好玩三角形”;(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC 和AD-DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求as的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.练习4:若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数例5、如图,A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A,B 重合),我们称∠APB 是⊙O 上关于A 、B 的滑动角.(1)已知∠APB 是⊙O 上关于A 、B 的滑动角.①若AB 是⊙O 的直径,则∠APB =____; ②若⊙O 的半径是1,AB=2,求∠APB 的度数.(2)已知O 2是⊙O 1外一点,以O 2为圆心做一个圆与⊙O 1相交于A 、B 两点,∠APB 是⊙O 1上关于A 、B 的滑动角,直线PA 、PB 分别交⊙O 2于点M 、N (点M 与点A 、点N 与点B 均不重合),连接AN ,试探索∠APB 与∠MAN 、∠ANB 之间的数量关系.BA0P几何新定义练习5:阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c.(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使得AE=AD,CB=CE.①求证:△ACE是奇异三角形.②当△ACE是直角三角形时,求∠AOC的度数.课堂练习1.若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°2.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[410x+]=5,则x的取值可以是()A.40 B.45 C.51 D.563.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)4.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,则这个“特征三角形”的最小内角的度数为.5.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,则曲线CDEF的长是.6.我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:AB BEDC EC=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)。

数学中考必考十二类大题解法再深化专题12 数学中考新定义型问题(原卷版)

数学中考必考十二类大题解法再深化专题12 数学中考新定义型问题(原卷版)

数学中考十八个亮点微专题与必考的十二类大题解法再深化 专题12 数学中考新定义型问题1. 定义一种新的运算:如果0a ≠.则有2||a b aab b -=++-▲,那么1()22-▲的值是( ) A. 3- B. 5 C. 34- D. 32 2.定义新运算“※”:对于实数m ,n ,p ,q .有[m ,p]※[q ,n]=mn+pq ,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22.若关于x 的方程[x 2+1,x]※[5﹣2k ,k]=0有两个实数根,则k 的取值范围是( )A .k <且k ≠0B .kC .k 且k ≠0D .k ≥ 3.定义:min{a ,b}=,若函数y =min (x+1,﹣x 2+2x+3),则该函数的最大值为( ) A .0 B .2 C .3 D .44. 函数[]y x =叫做高斯函数,其中x 为任意实数,[]x 表示不超过x 的最大整数.定义{}[]x x x =-,则下列说法正确的个数为( )①[ 4.1]4-=-;②{3.5}0.5=; ③高斯函数[]y x =中,当3y =-时,x 的取值范围是32x -≤<-;④函数{}y x =中,当2.5 3.5x <≤时,01y ≤<.A. 0B. 1C. 2D. 35.定义新运算a b *,对于任意实数a ,b 满足()()1a b a b a b *=+--,其中等式右边是通常的加法、减法、乘法运算,例如43(43)(43)1716*=+--=-=,若x k x *=(k 为实数) 是关于x 的方程,则它的根的情况是( )A. 有一个实根B. 有两个不相等的实数根C. 有两个相等的实数根D. 没有实数根6.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( )A. y x =-B. 2y x =+C. 2y x =D. 22y x x =- 7.设P (x ,y 1),Q (x ,y 2)分别是函数C 1,C 2图象上的点,当a ≤x ≤b 时,总有﹣1≤y 1﹣y 2≤1恒成立,则称函数C 1,C 2在a ≤x ≤b 上是“逼近函数”,a ≤x ≤b 为“逼近区间”.则下列结论: ①函数y =x ﹣5,y =3x+2在1≤x ≤2上是“逼近函数”;②函数y =x ﹣5,y =x 2﹣4x 在3≤x ≤4上是“逼近函数”;③0≤x ≤1是函数y =x 2﹣1,y =2x 2﹣x 的“逼近区间”;④2≤x ≤3是函数y =x ﹣5,y =x 2﹣4x 的“逼近区间”.其中,正确的有( ) A .②③ B .①④C .①③D .②④ 8.我们约定:(),,a b c 为函数2y ax bx c =++的关联数,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”,若关联数为(),2,2m m --的函数图象与x 轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为____________.9.对于实数,m n ,定义运算2*(2)2m n m n =+-.若2*4*(3)a =-,则a =_____. 10.如图,将正整数按此规律排列成数表,则2021是表中第 行第 列.11. 对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”.例如:m =3507,因为3+7=2×(5+0),所以3507是“共生数”;m =4135,因为4+5≠2×(1+3),所以4135不是“共生数”.(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记F (n )=.求满足F (n )各数位上的数字之和是偶数的所有n .12.已知平面图形S ,点P 、Q 是S 上任意两点,我们把线段PQ 的长度的最大值称为平面图形S 的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆: ;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“: ;(2)如图2,在平面直角坐标系中,已知点A (﹣1,0)、B (1,0),C 是坐标平面内的点,连接AB 、BC 、CA 所形成的图形为S ,记S 的宽距为d .①若d =2,用直尺和圆规画出点C 所在的区域并求它的面积(所在区域用阴影表示);②若点C 在⊙M 上运动,⊙M 的半径为1,圆心M 在过点(0,2)且与y 轴垂直的直线上.对于⊙M 上任意点C ,都有5≤d ≤8,直接写出圆心M 的横坐标x 的取值范围.13.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点A (1,r )与点B (s ,4)是关于x 的“T 函数”y =的图象上的一对“T 点”,则r = ,s = ,t = (将正确答案填在相应的横线上);(2)关于x 的函数y =kx+p (k ,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”如果不是,请说明理由;(3)若关于x 的“T 函数”y =ax 2+bx+c (a >0,且a ,b ,c 是常数)经过坐标原点O ,且与直线l :y =mx+n (m ≠0,n >0,且m ,n 是常数)交于M (x 1,y 1),N (x 2,y 2)两点,当x 1,x 2满足(1﹣x 1)﹣1+x 2=1时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.14.定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD 是对余四边形,则A ∠与C ∠的度数之和为______;证明:(2)如图1,MN 是O 的直径,点,,A B C 在O 上,AM ,CN 相交于点D .求证:四边形ABCD 是对余四边形;探究:(3)如图2,在对余四边形ABCD 中,AB BC =,60ABC ︒∠=,探究线段AD ,CD 和BD 之间有怎样的数量关系?写出猜想,并说明理由.。

精选中考数学新定义题型25道练习汇总

精选中考数学新定义题型25道练习汇总

精选中考数学新定义题型25道练习汇总1、某数学兴趣研究小组碰到一些新的数学符号。

规定),min(b a 表示b a ,两个数中较小的数,比如2)3,2min(=,3)3,3min(=;规定),max(b a 表示b a ,两个数中较大的数,比如3)3,2max(=,3)3,3max(=。

试根据上述规定,请回答下列问题:(1) max(-π,-4)=_________,min(max(1,2),4)=__________(2) )2,32min(2+-x x =__________.(3) 若2)2,2max(+=+a a a , 则a 的取值范围是__________.(4) 若0>x ,则),1min(x x取得最大值时,x 的值为_______.2、规定)(x f 是一个记号,和初中数学中函数的y 含义类似,比如x y 2=可以写成:x x f 2)(=。

我们定义x x x f +=1)(,例如54414)4(=+=f 试计算下列算式的值:)2020()2019()2()1()0()20191(20201(f f f f f f f ++++++++ =_________。

3、对于任意非0的实数b a ,,规定运算“★”如下,a ★abba b -=。

则2★1+3★2+4★3+……+2020★2019=_________.4、我们规定一种运算符号:bc ad dc b a -=。

例如:.232414231-=⨯-⨯=按照这个规定:(1)计算:。

______4235-=(2)当5212242=+--x x 时,。

_____=x 5、定义一种求和运算∑bai ,其含义为:a 叫做下界,b 叫做上界,i 表示从下界a 开始一直取遍每个数直到上界b ,∑表示将i 取到的结果全部相加。

比如:1003211001+++=∑=i i 。

根据该规定试计算:∑=+20201)1(1i i i 的结果为__________。

中考数学重难点专练:新定义型问题

中考数学重难点专练:新定义型问题

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学重难点专练:新定义型问题一、选择题1.从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10B.6C.5D.4【答案】C【解析】∵﹣1+1=0,﹣1+2=1,﹣1+4=3,1+2=3,1+4=5,2+4=6,∵a i+b i共有5个不同的值.又∵对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,∵S的最大值为5.故选:C.2. a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5B.﹣C.D.【答案】D【解析】分析根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2019除以3,根据余数的情况确定出与a2019相同的数即可得解.∵a1=5,a2===﹣,a 3===,a 4===5,…∵数列以5,﹣,三个数依次不断循环,∵2019÷3=673, ∵a 2019=a 3=,故选:D .3.定义新运算:(0)(0)pq q p q p q q⎧>⎪⎪=⎨⎪-<⎪⎩⊕,例如:3355=⊕,33(5)5-=⊕,则2(0)y x x =≠⊕的图象是( )A .B .C .D .【答案】D【解析】分析根据题目中的新定义,可以写出2y x =⊕函数解析式,从而可以得到相应的函数图象,本题得以解决.(0)(0)pq q p q p q q ⎧>⎪⎪=⎨⎪-<⎪⎩⊕, 2(0)22(0)x xy x x x⎧>⎪⎪∴==⎨⎪-<⎪⎩⊕, 故选:D . 二、填空题4.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x 的式子表示m = ; (2)当y =﹣2时,n 的值为 .【答案】3x;1【解析】(1)根据约定的方法可得: m =x +2x =3x ; 故答案为:3x ;(2)根据约定的方法即可求出n x +2x +2x +3=m +n =y .当y=﹣2时,5x+3=﹣2.解得x=﹣1.∵n=2x+3=﹣2+3=1.故答案为:1.5.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.【答案】13≤x<15【解析】依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.6.对于实数a,b,定义运算“∵”如下:a∵b=(a+b)2﹣(a﹣b)2.若(m+2)∵(m﹣3)=24,则m=.【答案】﹣3或4【解析】根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,(2m﹣1)2﹣49=0,(2m﹣1+7)(2m﹣1﹣7)=0,2m﹣1+7=0或2m﹣1﹣7=0,所以m1=﹣3,m2=4.故答案为﹣3或4.7.定义:a*b=,则方程2*(x+3)=1*(2x)的解为.【答案】x=1【解析】2*(x+3)=1*(2x),=,4x=x+3,x=1,经检验:x=1是原方程的解,故答案为:x=1.8.规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:∵正方形和菱形都是广义菱形;∵平行四边形是广义菱形;∵对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;∵若M、N的坐标分别为(0,1),(0,﹣1),P是二次函数y=x2的图象上在第一象限内的任意一点,PQ垂直直线y=﹣1于点Q,则四边形PMNQ是广义菱形.其中正确的是.(填序号)【答案】∵∵∵【解析】∵根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,∵正确;∵平行四边形有一组对边平行,没有一组邻边相等,∵错误;∵由给出条件无法得到一组对边平行,∵错误;∵设点P(m,m2),则Q(m,﹣1),∵MP==,PQ=+1,∵点P在第一象限,∵m>0,∵MP=+1,∵MP=PQ,又∵MN∵PQ,∵四边形PMNQ 是广义菱形. ∵正确; 故答案为∵∵∵;9.探索与发现:下面是用分数(数字表示面积)砌成的“分数墙”,则整面“分数墙”的总面积是 .【答案】n ﹣1【解析】由题意“分数墙”的总面积=2×+3×+4×+…+n ×=n ﹣1,故答案为n ﹣1.10.已知点0(P x ,0)y 到直线y kx b =+的距离可表示为d =,例如:点(0,1)到直线26y x =+的距离d =y x =和4y x =-之间的距离为 .【答案】【解析】当0x =时,0y x ==,即点(0,0)在直线y x =上,因为点(0,0)到直线4y x =-的距离为:d ===因为直线y x =和4y x =-平行,所以这两条平行线之间的距离为故答案为11.阅读材料:设=(x1,y1),=(x2,y2),如果∵,则x1•y2=x2•y1,根据该材料填空,已知=(4,3),=(8,m),且∵,则m=.【答案】6【解析】∵=(4,3),=(8,m),且∵,∵4m=3×8,∵m=6;故答案为6;12.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为.【答案】(2,4,2)【解析】根据题意得,点C的坐标可表示为(2,4,2),故答案为:(2,4,2).13.已知:[]x 表示不超过x 的最大整数.例:[4.8]4=,[0.8]1-=-.现定义:{}[]x x x =-,例:{1.5} 1.5[1.5]0.5=-=,则{3.9}{1.8}{1}+--= .【答案】0.7【解析】根据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=0.7, 故答案为:0.714.一般地,如果x 4=a (a ≥0),则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为±,若=10,则m = .【答案】±10 【解析】∵=10,∵m 4=104, ∵m =±10. 故答案为:±1015.已知2()1f x x =-,那么(1)f -= . 【答案】0【解析】当1x =-时,2(1)(1)10f -=--=. 故答案为:0.16.阅读材料:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i )+(6﹣2i )=(4+6)+(1﹣2)i =10﹣i ; (2﹣i )(3+i )=6﹣3i +2i ﹣i 2=6﹣i ﹣(﹣1)=7﹣i ;(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17;(2+i)2=4+4i+i2=4+4i﹣1=3+4i根据以上信息,完成下面计算:(1+2i)(2﹣i)+(2﹣i)2=.【答案】7﹣i【解析】(1+2i)(2﹣i)+(2﹣i)2=2﹣i+4i﹣2i2+4+i2﹣4i=6﹣i﹣i2=6﹣i+1=7﹣i.故答案为:7﹣i.17.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【解析】当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∵2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∵2020是“纯数”;(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共三个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,当这个数是三位自然数是,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”的有13个.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页 共1页
第一学期八年级期中学业检测试题 八 年 级 数 学 (满分150分 测试时间120分钟)
一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格 )
1.下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是( ) A B C D 2. 在下列四组线段中,能组成直角三角形的是: ( ) A .a=1,b=2,c=3 B .a=2,b=3,c=4 C .a=3,b=4,c=5 D .a=7,b=8,c=9 3.在实数2207-2π中,无理数的有 ( ) A .1个 B .2个 C. 3个 D. 4个 4.据统计,2011年十·一期间,某市某风景区接待中外游客的人数为86740人次,将这个数字保留三个有效数字........,用科学记数法可表示为 ( ) A .8.7×103 B .8.67×103 C .8.67×104 D .8.674×104 5. 下列各式中,正确的是 ( )
八年级上学期期末测试数学试卷
(人教版)
一、选择题:(每题3分,共30分)
1.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,
则他们的行进的速度关系是( )
A .甲比乙快
B .乙比甲快
C .甲、乙同速
D .不一定
2.若直线l 与直线y =2x +1关于y 轴对称,则直线l 的解析式为( )
A .y =-2x -1
B .y =-2x +1
C .y =2x -1
D .121+-
=x y 3.代数式a +bc ,3x ,ax ²,ax ²+bx +c ,8,abc ,x
a ,yz
b a 23-中有( ) A .7个整式 B .4个单项式,2个多项式
C .8个整式
D .5个单项式,3个多项式
4.如图,AB ∥CD ,AC ∥DB ,AD 与BC 交于O ,AE ⊥BC 于E ,DF ∥BC 于F ,那么图中全
等的三角形有( )对
A .5
B .6
C .7
D .8
5.下列图形不是轴对称图形的是( )
A .等边三角形
B .线段
C .任意三角形
D .等腰三角形
6.若A =3m ²-5m +2,B =3m ²-4m +2,则A 与B 的关系是( )
A .A <
B B .A >B
C .A =B
D .以上都有可能
7.如图,用整个圆表示某班的总人数,那么表示该班人数35%的扇形为( )
A .M
B .N
C .P
D .Q
8.在△ABC 中,AC =5,中线AD =4,那么边AB 的取值范围为( )
第三章位置与坐标单元检测题
(满分:120分时间:120分钟)
一、选择题(每小题3分,共30分)
1.在平面直角坐标系中,已知点P(2,-3),则点P在()
A.第一象限B.第二象限C.第三象限D.第四象限
2.在平面直角坐标系中,将点M(1,2)向左平移2个单位长度后得到点N,则点N的坐标是() A.(-1,2) B.(3,2) C.(1,4) D.(1,0)
3.如果M(m+3,2m+4)在y轴上,那么点M的坐标是()
A.(-2,0) B.(0,-2) C.(1,0) D.(0,1)
4.如果P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,已知P2的坐标为(-2,3),则点P的坐标为()
A.(-2,
5.如图,,再分别以点M,N1),则a
与b
A.a=b B
,第5题图),第
,第10题图)
6.一个矩形,、宽为4,若以该矩形的两条对称轴为坐标轴建立平面直角坐标系
矩形上()
A.(3,-(-3,3) C.(-3,2) D.(0,-2)
7.如图,点A的坐标为(-1,0),点B在第一、三象限的角平分线上运动,当线段点B的坐标为()
A.(0,0) 2
,-
2
2) C.(
2
,-
2
2)
8.在平面直角坐标系中,A,B,C三点的坐标分别为,(0,-5),(-2,
形的三个顶点,则第四个顶点不可能在
A..第二象限C.第三象限.第四象限
9.)已知点M轴的距离为1,到y点的坐标为()
A.(1,2) B.(-1,-2)
C.(1,-2) D.(2,1),(2,-1),(-2,1),(-2,-1)
10.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是() A.(4,0) B.(1,0) C.(-22,0) D.(2,0)
二、填空题(每小题3分,共24分)
11.点P(1,2)关于x轴的对称点P1的坐标是____,点P(1,2)关于y轴的对称点P2的坐标是___.12.线段AB=3,且AB∥x轴,若A点的坐标为(-1,2),则点B的坐标是__.
13.(2016 ·玉林模拟)在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,在向上跳2个单位长度到点A′处,则点A′的坐标为__.。

相关文档
最新文档