柴油微乳液拟三元相图的绘制及燃烧性能测定共31页

合集下载

物理化学实验报告柴油微乳液拟三元相图的绘制及燃烧性能测定

物理化学实验报告柴油微乳液拟三元相图的绘制及燃烧性能测定

华南师范大学实验报告专业:材料化学 年级班级:12级材料化学课程名称:物理化学实验 指导老师:何广平实验项目:柴油微乳液拟三元相图的绘制及燃烧性能测定柴油微乳液拟三元相图的绘制及燃烧性能测定一、实验目的实验第一阶段:本实验学习柴油微乳体系拟三元相图的绘制与研究方法,并根据相图,选择合适的柴油微乳液,通过氧弹卡计进行燃烧性能测定,比较柴油、微乳柴油燃烧时其燃烧效率的不同,对微乳柴油的经济与环保价值进行评价。

实验第二阶段:通过对乳化柴油的燃烧热的测定,掌握燃烧热的定义,学会测定物质燃烧热的方法,了解恒压燃烧热与恒容燃烧热的差别;了解氧弹卡计的主要部件的作用,掌握氧弹卡计的量热技术;熟悉雷诺图解法校正温度改变值的方法。

二、实验原理实验第一阶段:拟三元相图的研究方法实验第二阶段:雷诺图解法处理数据;通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。

一定量被测物质样品在氧弹中完全燃烧时,所释放的热量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ∆,就能计算出该样品的燃烧热。

本实验所燃烧物质为柴油和乳化柴油,属于混合物,固测定的是燃烧物质的燃烧值。

铁丝铁丝水热计样品Q m T W Q m V -∆=+)(样品铁丝铁丝水)(热计m Q m T W Q V -∆=+标准物:苯甲酸 g J Q 4.6694=铁丝 k35.14541ml 3000J W =水)( 三、实验试剂和仪器实验试剂:柴油0#、油酸(化学纯)、十六烷基三甲基溴化铵(CTAB )(化学纯)、氨水、正丁醇实验仪器:燃烧热测定装置一套、充氧装置一套、万用电表 、5安保险丝、1000ml 烧杯、磁力搅拌器、搅拌子(中)、电导率仪 、氧气、电子分析天平(每组一台); 烧杯(50ml )、250ml 、镊子、滤纸、PH 试纸、玻棒、洗耳球、胶头滴管等四、实验内容和步骤第一阶段:水-柴油体系配制及拟三元相图绘制1.复合乳化剂配比:油酸66.15%、十六烷基三甲基溴化铵(CTAB)0.91%、氨水9.1%, 正丁醇 23.8%2.复合乳化剂配制:室温下,将油酸36.5克放入50ml 的烧杯中, 加入5克氨水,充分搅拌,反应20分钟后 加入0.5克CTAB,13.2克正丁醇,在磁力搅拌器上不断搅拌至溶解(时间约需30分钟),此时所得复合乳化剂清晰、透亮,放置备用。

柴油微乳液拟三元相图的研究

柴油微乳液拟三元相图的研究

柴油微乳液拟三元相图的研究
谢新玲;王红霞;张高勇;冯尚华
【期刊名称】《精细化工》
【年(卷),期】2004(21)1
【摘要】绘制了复合表面活性剂(D0821/Tx-4/AEO-3)/正戊醇/柴油/水体系在不
同温度及不同正戊醇质量分数时的一系列拟三元相图。

结果表明,正戊醇质量分数
及温度对拟三元相图及水最大增溶量有很大影响,醇量太大或太小形成的微乳区面
积均较小;温度升高,微乳区面积及水最大增溶量也大大减少;随着正戊醇质量分数的增大,每一个温度下的微乳区及其最大增溶水量都逐渐向AEO-3/正戊醇/油角漂移。

【总页数】5页(P26-29)
【关键词】相图;微乳液;表面活性剂;醇
【作者】谢新玲;王红霞;张高勇;冯尚华
【作者单位】中国日用化学工业研究院
【正文语种】中文
【中图分类】TQ423.9
【相关文献】
1.微乳液体系拟三元相图及其微观结构的研究 [J], 严冰;李华锋;李静;曹博;燕永利;
2.微乳液拟三元相图体系制备研究 [J], 罗建洪;李军;窦智慧;朱新华;代爽
3.微乳液体系拟三元相图及其微观结构的研究 [J], 严冰;李华锋;李静;曹博;燕永利
4.壬基酚聚氧乙烯醚硫酸钠微乳液拟三元相图及微观结构研究 [J], 武雯;曾永楷;陈
忠秀
5.毒氟磷微乳液拟三元相图及其微观结构的研究 [J], 胡长刚;刘杰;安娅;李干佐;张笑一;宋宝安;胡德禹
因版权原因,仅展示原文概要,查看原文内容请购买。

柴油微乳液拟三元相图的绘制及燃烧性能测定

柴油微乳液拟三元相图的绘制及燃烧性能测定

背景
研究现状
理论依据
实验内容概述
实验要求
参考方案:
(1)复合乳化试剂配方与配制方法 (参考配方) 油酸36.5克 CTAB 0.5克 氨水5克 正丁醇13.2克室温下,将 油酸36.5克放入50ml的烧杯中,加入0.5克CTAB,5克氨水,13.2克正 丁醇,在磁力搅拌器上不断搅拌至溶解,此时所得复合乳化剂清晰、 透亮,放臵备用。
(3)微乳体系的类型
中级物 理化学 实验
背景
研究现状
理论依据
实验内容概述
实验要求
2.乳化及徽乳化柴油的性质 (1)乳化柴油的组成与稳定性 (2)微乳化柴油的组成与稳定质 (3)微乳柴油体系中各组分作用.
中级物 理化学 实验
背景
研究现状
理论依据
实验内容概述
实验要求
3.乳化柴油及微乳化柴油的节能降污原理
中级物 理化学 实验
“拟三元相图”研究方 法
背景
研究现状
理论依据
实验内容概述
实验要求
中级物 理化学 实验
背景
研究现状
理论依据
实验内容概述
实验要求
“拟三元相图”研究方 法
中级物 理化学 实验
背景
研究现状
理论依据
实验内容概述
实验要求
微乳结构鉴别的简单方法
电导法 — 利用乳状液的导电性进行微乳结构(W/O或O/W) 的鉴别. 染色法 — 利用往乳状液中加入数滴水溶性染料后,乳液 的染色情况进行微乳结构(W/O或O/W)鉴别。
摘自:《节能技术》Vol . 21 ,Sum.No. 122 Nov .2003 ,No. 6(1.大连轻工业学 中级物 院化学工程系应用化学教研室,辽宁大连116034 ;21.清华大学核能技术设计研 理化学 究院计算机与控制研究室,北京100084) 实验

三元相图分析乳化柴油稳定性

三元相图分析乳化柴油稳定性

三元相图分析乳化柴油稳定性
朱珠;赵德智;宋官龙;贺颜梅;赵春晓;李思洋;田野
【期刊名称】《辽宁石油化工大学学报》
【年(卷),期】2014(034)003
【摘要】绘制了柴油、水、助乳化剂与乳化剂的三元相图,利用三元相图中相区面积的变化研究了HLB值(亲水亲油平衡值)、助乳化剂与乳化剂的质量比等参数对乳化柴油稳定性的影响.结果表明,复配乳化剂的HLB值、弱碱添加剂、助乳化剂与乳化剂的质量比对乳化柴油有很大的影响.在碱性环境下,Span80与Tween60复配乳化剂的HLB值为5.8、助乳化剂与乳化剂的质量比为0.3时,其三元相图的乳液面积最大,复配乳化剂的用量最少,此时乳化柴油效果最好.
【总页数】4页(P29-32)
【作者】朱珠;赵德智;宋官龙;贺颜梅;赵春晓;李思洋;田野
【作者单位】辽宁石油化工大学,辽宁抚顺113001;辽宁石油化工大学,辽宁抚顺113001;辽宁石油化工大学,辽宁抚顺113001;辽宁石油化工大学,辽宁抚顺113001;辽宁石油化工大学,辽宁抚顺113001;辽宁石油化工大学,辽宁抚顺113001;辽宁石油化工大学,辽宁抚顺113001
【正文语种】中文
【中图分类】TE626
【相关文献】
1.添加剂对乳化柴油捕收剂稳定性的影响 [J], 刘腾飞;冯莉
2.影响超声乳化柴油捕收剂稳定性的试验研究 [J], 阮继政;冯莉;苟远诚;张洪滨;宋玲玲
3.制备工艺对微乳化柴油稳定性能的影响 [J], 尹兴林;贾文;于唯;董元虎
4.乳化剂对甲醇乳化柴油稳定性的影响 [J], 上官民;刘有智;焦纬洲;邱尚煌;冯国琳
5.乳化剂对乙醇乳化柴油稳定性的影响 [J], 冯国琳;刘有智;焦纬洲;高璟;于娜娜;王笃政
因版权原因,仅展示原文概要,查看原文内容请购买。

微乳柴油拟三元相图的绘制及燃烧热的测定

微乳柴油拟三元相图的绘制及燃烧热的测定

微乳柴油的拟三元相图绘制及燃烧热的测定化学与环境学院 2010级一、实验资料微乳液:微乳液是一种由两种互不相溶的液体在表面活性剂界面膜的作用下生成的热力学稳定、各向同性的透明的分散体系。

由于其能形成超低界面张力,且具有高稳定性、大增溶量、以及粒径小等特殊性质,已引起人们广泛关注。

柴油微乳液:油与水在表面活性剂的作用下以合适的比例混匀将自发产生稳定的微乳燃料,它可以使燃烧更为完全且效率更高,从而节约了能源也同时更加环保。

微乳燃料的节能环保及经济效益吸引着世界各国的科学家,并成为各国竞相开发的热点。

随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。

二、实验原理微乳柴油与燃烧减排机理:乳化燃油与通常的乳状液一样,也分为油包水型(W/o)和水包油型(O/W),在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内相,燃料油则包在水珠的外层,被称为连续相或外相。

我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。

乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。

物理作用—“微爆现象”油包水型分子基团,油是连续相,水是分散相,由于水沸点(100℃)低于燃油沸点(130℃以上)。

在气缸温度急剧升高时,水微粒先沸腾气化,体积在万分之一秒内瞬间增大了1500倍左右,其气化膨胀相当于一次极小的爆炸。

当油滴中的压力超过油的表面张力及环境压力之和时。

水蒸气产生的巨大压力将冲破油膜的束缚,无数小液珠产生的阻力使油滴发生爆炸,油雾化成更细小的油滴。

小油滴与空气接触的比表面积成倍提高,形成二次燃烧的雾化条件,爆炸后的细小油滴更易燃烧,其燃烧表面比纯燃油增加了104倍左右。

因此,减少了物理上的不完全燃烧和排烟损失,提高了燃烧效率,使内燃机达到节能的效果。

_水_柴油微乳体系拟三元相图绘制与燃烧性能测定_实验教学设计

_水_柴油微乳体系拟三元相图绘制与燃烧性能测定_实验教学设计

“水-柴油微乳体系拟三元相图绘制与燃烧性能测定”实验教学设计何广平,孙 峰,林利添,曾荣华(华南师范大学化学与环境学院,广东广州 510006)摘 要:实验中将三元相图的绘制方法与量热技术相结合,选择备受关注的能源与环境问题,结合水-柴油体系的微乳化原理与拟三元相图的绘制,配制不同性质的乳化柴油,并通过氧弹量热装置测定柴油、乳化柴油以及添加助燃催化剂二茂铁后燃油的燃烧效率与速率,以了解乳化柴油性质、形成原理与柴油乳化的助燃消烟作用,使学生通过实验,加深了解物理化学原理在不同领域的综合应用,关注社会、关注环境。

教学实践结果表明,本实验设计科学合理,可作为物理化学实验课程中综合创新实验开设。

关键词:三元相图;表面活性剂;乳化;氧弹卡计中图分类号:O645;G642.4 文献标志码:A 文章编号:1002-4956(2011)04-0122-04Experimental teaching design of drawing pseudo-ternary phase diagramand determining combustion property of diesel oil microemulsionHe Guangping,Sun Feng,Lin Litian,Zeng Ronghua(School of Chemistry and Environment,South China Normal University,Guangzhou 510006,China)Abstract:In this experiment,four series of diesel oil--diesel oil,emulsified diesel oil,diesel oil added combus-tion catalyst ferrocene and emulsified diesel oil added combustion catalyst ferrocene were prepared under amethod of drawing pseudo-ternary phase diagram,then the combustion efficiency and combustion rate of themwere determined by oxygen bomb calorimeter,and the forming principle of diesel oil and the role of combustionsmoke of emulsified diesel oil were studied.It is shown that through the experiment the students can deeplyunderstand the integrated application of physical chemistry in different fields,and pay close attention to the so-ciety and environment.Key words:pseudo-ternary phase diagram;surfactant;emulsification;oxygen bomb calorimeter收稿日期:2010-06-23基金项目:华南师范大学2008年教学改革综合创新实验项目资助(教[2008])作者简介:何广平(1960—),女,广东广州,理学硕士,副教授,主要从事物理化学领域科研及教学工作.hegp@scnu.edu.cn 实验教学是化学、环境、材料和应用化学等专业教学中非常重要的组成部分,而“物理化学实验”是这些专业化学实验课程的重要分支。

三元相图的绘制详解

三元相图的绘制详解

三元相图的绘制本实验是综合性实验。

其综合性体现在以下几个方面:1.实验内容以及相关知识的综合本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其是在一般的实验中(比如分析化学实验、无机化学实验等)作图都是用的直角坐标体系,几乎没有用过三角坐标体系,因此该实验中的等边三角形作图法就具有独特的作用。

这类相图的绘制不仅在相平衡的理论课中有重要意义,而且对化学实验室和化工厂中经常用到的萃取分离中具有重要的指导作用。

2.运用实验方法和操作的综合本实验中涉及到多种基本实验操作和实验仪器(如电子天平、滴定管等)的使用。

本实验中滴定终点的判断,不同于分析化学中的大多数滴定。

本实验的滴定终点,是在本来可以互溶的澄清透明的单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。

准确地掌握滴定的终点,有助于学生掌握多种操作,例如取样的准确、滴定的准确、终点的判断准确等。

一.实验目的1.掌握相律,掌握用三角形坐标表示三组分体系相图。

2.掌握用溶解度法绘制三组分相图的基本原理和实验方法。

二.实验原理三组分体系K=3,根据相律:f=K–φ+2=5–ф式中ф为相数。

恒定温度和压力时:f=3–φ当φ=1,则f=2因此,恒温恒压下可以用平面图形来表示体系的状态与组成之间的关系,称为三元相图。

一般用等边三角形的方法表示三元相图。

在萃取时,具有一对共轭溶液的三组分相图对确定合理的萃取条件极为重要。

在定温定压下,三组分体系的状态和组分之间的关系通常可用等边三角形坐标表示,如图1所示:图1图2等边三角形三顶点分别表示三个纯物质A,B,C。

AB,BC,CA,三边表示A和B,B和C,C和A所组成的二组分体系的组成。

三角形内任一点则表示三组分体系的组成。

如点P的组成为:A%=CbB%=AcC%=Ba具有一对共轭溶液的三组分体系的相图如图2所示。

该三液系中,A和B,及A和C完全互溶,而B和C部分互溶。

三元相图的绘制详解

三元相图的绘制详解
D.在平行于三角形一边的直线上所有的点代表的体系中,某个组分的浓度是固定不变的
2.本实验中用水滴定醋酸-氯仿体系时终点的现象是:
A.体系由无色变为浅红色B.体系由清变浑
C.体系由浅红色变为无色D.体系由浑变清
3.在本实验所绘制的相图5-2中,区域Ⅰ和Ⅱ的相数分别为:
A.1、2 B.2、1C.1、1D.2、2
4.同步骤3,移取溶液2上层液2ml和下层液2ml,称重并滴定。
五.本实验的成败关键
1.酸式滴定管和碱式滴定管的操作正确和规范。
2.测定溶解度曲线时滴定终点“由清变浑”的准确判断。
六.思考题及解答
(一)判断题
1.本实验每一次往体系中加入氯仿或者醋酸时,其体积都必须精确到0.01ml。
2.本实验所用的具塞磨口锥形瓶在临用前,一定要清洁且干燥。
三.实验准备
1.仪器:具塞磨口锥形瓶,酸式滴定管,碱式滴定管,移液管,分析天平。
2.药品:冰醋酸,氯仿,NaOH溶液(0.2mol·mol–3),酚酞指示剂。
四.操作要点(各实验步骤中的操作关键点)
1.因所测的体系中含有水的成分,所以玻璃器皿均需干燥。
2.在实验过程中要注意防止或尽可能减少氯仿和乙酸的挥发,测定连接线时取样要迅速。
具有一对共轭溶液的三组分体系的相图如图2所示。该三液系中,A和B,及A和C完全互溶,而B和C部分互溶。曲线DEFHIJKL为溶解度曲线。EI和DJ是连接线。溶解度曲线内(ABDEFHIJKLCA)为单相区,曲线外为两相区。物系点落在两相区内,即分为两相。
图3(A醋,B水,C氯仿)
绘制溶解度曲线的方法有许多种,本实验采用的方法是:将将完全互溶的两组分(如氯仿和醋酸)按照一定的比例配制成均相溶液(图中N点),再向清亮溶液中滴加另一组分(如水),则系统点沿BN线移动,到K点时系统由清变浑。再往体系里加入醋酸,系统点则沿AK上升至N’点而变清亮。再加入水,系统点又沿BN’由N’点移至J点而再次变浑,再滴加醋酸使之变清……如此往复,最后连接K、J、I……即可得到互溶度曲线,如图3所示。

最新微乳柴油拟三元相图的绘制及燃烧热的测定

最新微乳柴油拟三元相图的绘制及燃烧热的测定

微乳柴油拟三元相图的绘制及燃烧热的测定微乳柴油的拟三元相图绘制及燃烧热的测定化学与环境学院 2010级一、实验资料微乳液:微乳液是一种由两种互不相溶的液体在表面活性剂界面膜的作用下生成的热力学稳定、各向同性的透明的分散体系。

由于其能形成超低界面张力,且具有高稳定性、大增溶量、以及粒径小等特殊性质,已引起人们广泛关注。

柴油微乳液:油与水在表面活性剂的作用下以合适的比例混匀将自发产生稳定的微乳燃料,它可以使燃烧更为完全且效率更高,从而节约了能源也同时更加环保。

微乳燃料的节能环保及经济效益吸引着世界各国的科学家,并成为各国竞相开发的热点。

随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。

二、实验原理微乳柴油与燃烧减排机理:乳化燃油与通常的乳状液一样,也分为油包水型(W/o)和水包油型(O/W),在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内相,燃料油则包在水珠的外层,被称为连续相或外相。

我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。

乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。

物理作用—“微爆现象”油包水型分子基团,油是连续相,水是分散相,由于水沸点(100℃)低于燃油沸点(130℃以上)。

在气缸温度急剧升高时,水微粒先沸腾气化,体积在万分之一秒内瞬间增大了1500倍左右,其气化膨胀相当于一次极小的爆炸。

当油滴中的压力超过油的表面张力及环境压力之和时。

水蒸气产生的巨大压力将冲破油膜的束缚,无数小液珠产生的阻力使油滴发生爆炸,油雾化成更细小的油滴。

小油滴与空气接触的比表面积成倍提高,形成二次燃烧的雾化条件,爆炸后的细小油滴更易燃烧,其燃烧表面比纯燃油增加了104倍左右。

因此,减少了物理上的不完全燃烧和排烟损失,提高了燃烧效率,使内燃机达到节能的效果。

柴油微乳液拟三元相图的绘制及燃烧性能测定 华师分析

柴油微乳液拟三元相图的绘制及燃烧性能测定 华师分析

柴油微乳液拟三元相图的绘制及燃烧性能测定学生姓名:xxxxx 学号:xxxxx专业:化学师范年级班级:xxxxx课程名称:应用物理化学实验合作者:xxxxx实验指导老师:何广平实验时间:xxxxxx【实验目的】①本实验学习柴油微乳体系拟三元相图的绘制与研究方法,并根据相图,选择合适的柴油微乳液。

②通过氧弹卡计进行燃烧性能测定,比较柴油、微乳柴油燃烧时其燃烧效率的不同,对微乳柴油的经济与环保价值进行评价。

【实验原理】一、实验背景Schulman在1959年首次报道微乳液以来,微乳液的理论和应用研究获得了迅速发展。

1985年,Shah定义微乳液为两种互不相溶的液体在表面活性剂界面膜的作用下生成的热力学稳定、各向同性的透明的分散体系。

由于微乳液能形成超低界面张力,具有高稳定性、大增溶量、以及粒径小等特殊性质,已引起人们广泛关注。

燃油掺水是一个既古老又新兴的课题。

早在一百多年前就有人使用掺水燃油。

由于油、水在表面活性剂作用下形成的W/O或O/W乳液在加热燃烧时水蒸气受热膨胀后能够产生微爆,使得燃油二次雾化燃烧更加充分,提高了燃烧效率,大大降低了废气中的有害气体的含量。

但是由于一般的乳状液稳定时间短,易分层,使得这一技术的应用受到了很大的限制。

微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按合适的比例混合在一起就可以自发形成稳定的微乳燃料。

微乳燃油可长期稳定,不分层,且制备简单, 并能使燃烧更完全,燃烧效率更高,其节油率可达5 %~15 % ,排气温度下降20 %~60 % ,烟度下降40 %~77 % ,NO x 和 CO 的排放量降低25 %,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。

随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。

近年来,随着我国农业和交通运输也的飞速发展,对石油的需求量增大,而石油资源有限,于是出现了石油供应不足、价格上涨的趋势。

柴油微乳液拟三元相图的绘制及燃烧性能测定(华南师范大学)

柴油微乳液拟三元相图的绘制及燃烧性能测定(华南师范大学)

柴油微乳液拟三元相图的绘制及燃烧性能测定xxx xxx xxx华南师范大学化学学院,广东广州,510000摘要:微乳柴油因其燃油燃烧效率高,NOx和CO排放量低等优点而备受人们青睐。

复合乳化剂的配制是制备微乳柴油的关键,合适的复合乳化剂能够有效改进柴油燃烧性能、提高经济效益。

笔者通过配方复配制备了柴油微乳液,并绘制了柴油-水-复合乳化剂微乳液柴油的拟三元相图,在相图的基础上,选择了合适的柴油微乳液,通过氧弹卡计进行燃烧性能测定,比较柴油、微乳柴油燃烧时其燃烧效率的不同,考察不同含水量以及复合乳化剂量对柴油性能的影响,对微乳柴油的经济与环保价值进行评价。

关键词:微乳化柴油;燃料柴油;乳化剂;拟三元相图;表面活性剂Abstract: Microemulsion diesel is popular because of its high combustion efficiency and low NOx and CO emissions. The preparation of composite emulsifier is the key to the preparation of microemulsion diesel. The appropriate composite emulsifier can effectively improve the combustion performance and economic benefit of diesel. The diesel oil microemulsion was prepared by the formulation and the pseudo three phase diagram of the diesel oil water composite emulsifier microemulsion diesel was plotted. Based on the phase diagram, the suitable diesel microemulsion was selected, and the combustion performance was measured by oxygen bomb calorimeter. The combustion efficiency of diesel and microemulsion diesel oil was compared, and the different water content and composite emulsification dosage were investigated for diesel oil. The economic and environmental value of microemulsion diesel was evaluated.Key words:microemulsified diesel oil; fuel diesel oil; emulsifier; quasi ternary phase diagram; surfactant1.前言我国经济正向绿色经济和低碳经济转型,低排放燃料一直是人们关注的重点。

微乳液拟三元相图体系制备研究

微乳液拟三元相图体系制备研究

微乳液拟三元相图体系制备研究罗建洪;李军;窦智慧;朱新华;代爽【摘要】Microemulsion extraction is a new method for separating solutes from aqueous solution.The effective two (2-ethylhexyl phosphate)(D2EHPA) is empolyed as extractant.The abilities to extract Fe3+ from sodium dihydrogen phosphate (NaH2PO4)solution with the separation methods of micro emulsion extraction has been considering in our research,through a series of experiments on microemulsion the appropriate composition of the fluid system.First of all,the saturated water solubility were studied to preliminary determine the scope of microemulsion system by taking OP-10 as surfactant,isoamyl alcohol as cosurfactant,2mol·L-1 HCl as the internal phase system.Then pseudoternary phase diagram of the system was studied by employingD2EHPA as extractant,sulfonated kerosene as additives,OP-10 as surfactant,isoamyl alcohol as cosurfactant,2mol· L-1 HCl microemulsion solution as the internal phase.The research results have important theoretical significance for application of microemulsion extraction.%微乳液萃取技术是一种新型的分离手段,而日益受到学者关注,本课题组拟以高效的二(2-乙基己基磷酸)(D2EHPA)为萃取剂,采用微如液萃取技术来提取NaH2PO4溶液中的FeFe3+杂质,本文通过一系列实验探究合适的微乳液组成体系,首先对以OP-10为表面活性剂,异戊醇为助表面活性剂,2mol·L-1 HCl为内相体系的饱和溶水量进行研究,初步确定微乳液体系的范围,再对在50℃下D2EHPA为萃取剂,磺化煤油为助剂,OP-10为表面活性剂,异戊醇为助表面活性剂,2mol·L-1 HCl为内相溶液的微乳液拟三元体系相图进行研究,研究结果对微乳液萃取的应用具有重要的理论指导意义.【期刊名称】《化学工程师》【年(卷),期】2017(031)002【总页数】3页(P15-17)【关键词】微乳液萃取;饱和溶水量;拟三元体系相图【作者】罗建洪;李军;窦智慧;朱新华;代爽【作者单位】四川大学化工学院,四川成都610065;四川大学化工学院,四川成都610065;四川大学化工学院,四川成都610065;四川大学化工学院,四川成都610065;四川大学化工学院,四川成都610065【正文语种】中文【中图分类】X824微乳液这个概念是1959年由英国化学家J. H.Schulman提出来的,微乳液一般是由表面活性剂、助表面活性剂、油与水等组分在适当比例下组成的无色、透明(或半透明)、低粘度的热力学体系[1]。

柴油微乳液拟三元相图的绘制及燃烧性能测定

柴油微乳液拟三元相图的绘制及燃烧性能测定

柴油微乳液拟三元相图的绘制及燃烧性能测定一、实验目的本实验学习柴油微乳体系拟三元相图的绘制与研究方法,并根据相图,选择合适的柴油微乳液,通过氧弹卡计进行燃烧性能测定,比较柴油、微乳柴油燃烧时其燃烧效率的不同,对微乳柴油的经济与环保价值进行评价。

二、实验原理(一)微乳燃料燃油掺水是一个既古老又新兴的课题。

早在一百多年前就有人使用掺水燃油。

由于油、水在表面活性剂作用下形成的W/O或O/W乳液在加热燃烧时水蒸气受热膨胀后能够产生微爆,使得燃油二次雾化燃烧更加充分,提高了燃烧效率,大大降低了废气中的有害气体的含量。

但是由于一般的乳状液稳定时间短,易分层,使得这一技术的应用受到了很大的限制。

微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按合适的比例混合在一起就可以自发形成稳定的微乳燃料。

微乳燃油可长期稳定,不分层,且制备简单, 并能使燃烧更完全,燃烧效率更高,其节油率可达5 %~15 % ,排气温度下降20 %~60 % ,烟度下降40 %~77 % ,NO x 和 CO 的排放量降低25 %,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。

随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。

(二)微乳柴油与燃烧减排机理乳化燃油与通常的乳状液一样,也分为油包水型(W/o)和水包油型(O/W),在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内相,燃料油则包在水珠的外层,被称为连续相或外相。

我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。

乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。

一些燃烧机理包括:1、物理作用—“微爆现象”油包水型分子基团,油是连续相,水是分散相,由于水沸点(100℃)低于燃油沸点(130℃以上)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档