高中物理选修电磁感应中的力学问题
电磁感应中的力学问题
典例1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为B的绝缘斜面上,两导轨间距为L, M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图。
(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及加速度的大小。
(3)求在下滑过程中,ab杆可以达到的最大速度。
典例2、如图所示,固定在同一水平面内的两根长直金属导轨的间距为L,其右端接有阻值为R的电阻,整个装置处在竖直向上、磁感应强度大小为B的匀强磁场中,一质量为m的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为w杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨向左运动,当杆运动的距离为d 时,速度恰好达到最大(杆始终与导轨保持垂直) 不计,重力加速度为g。
求此过程中:(1)杆的速度的最大值;(2)通过电阻R上的电量。
b典例3、如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。
一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放。
导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I。
整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。
求:(1)磁感应强度的大小B;(2)电流稳定后,导体棒运动速度的大小v;(3)流经电流表电流的最大值。
1如图,两平行金属导轨位于同一水平面上,相距I,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下•一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好。
电磁感应中的力学问题
电磁感应中的力学问题电磁感应中中学物理的一个重要“节点”,不少问题涉及到力和运动、动量和能量、电路和安培力等多方面的知识,综合性强,也是高考的重点和难点,往往是以“压轴题”形式出现.因此,在二轮复习中,要综合运用前面各章知识处理问题,提高分析问题、解决问题的能力. 本学案以高考题入手,通过对例题分析探究,让学生感知高考命题的意图,剖析学生分析问题的思路,培养能力.例1.【2003年高考江苏卷】如右图所示,两根平行金属导端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m .有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B=kt ,比例系数k =0.020 T /s .一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m 的电阻为r 0=0.10Ω/m ,导轨的金属杆紧靠在P 、Q 端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力. [解题思路] 以a 示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离L =21at 2 此时杆的速度v =at这时,杆与导轨构成的回路的面积S=L l回路中的感应电动势E =StB∆∆+B lv 而ktBtt t B t B ktB =∆-∆+=∆∆=)( 回路的总电阻 R =2Lr 0 回路中的感应电流,REI=作用于杆的安培力F =BlI解得t r l k F 02223= 代入数据为F =1.44×10-3N例2. (2000年高考试题)如右上图所示,一对平行光滑R 轨道放置在水平地面上,两轨道间距L =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动.测得力F 与时间t 的关系如下图所示.求杆的质量m 和加速度a .解析:导体杆在轨道上做匀加速直线运动,用v 表示其速度,t 表示时间,则有v =at ① 杆切割磁感线,将产生感应电动势E =BLv ②在杆、轨道和电阻的闭合回路中产生电流I=E/R ③ 杆受到的安培力为F 安=IBL ④ 根据牛顿第二定律,有F -F 安=ma ⑤联立以上各式,得at Rl B ma F 22= ⑥由图线上各点代入⑥式,可解得 a =10m/s 2,m =0.1kg例3. (2003年高考新课程理综)两根平行的金属导轨,固定在同一水平面上,磁感强度B =0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l =0.20 m .两根质量均为m =0.10 kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω.在t =0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过t =5.0s ,金属杆甲的加速度为a =1.37 m /s ,问此时两金属杆的速度各为多少?本题综合了法拉第电磁感应定律、安培力、左手定则、牛顿第二定律、动量定理、全电路欧姆定律等知识,考查考生多角度、全方位综合分析问题的能力.设任一时刻t ,两金属杆甲、乙之间的距离为x ,速度分别为v l 和v 2,经过很短的时间△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变△S =[(x 一ν2△t )+ν1△t]l —l χ=(ν1-ν2) △t 由法拉第电磁感应定律,回路中的感应电动势 E =B △S/△t =B ι(νl 一ν2) 回路中的电流 i =E /2 R杆甲的运动方程 F —B l i =ma由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t =0时为0)等于外力F 的冲量.Ft =m νl +m ν2 联立以上各式解得ν1=[Ft/m +2R(F 一ma)/B 2l 2]/2 ν2=[Ft /m 一2R(F 一ma)/B 2l 2]/2代入数据得移νl =8.15 m /s ,v 2=1.85 m /s 练习1、.如图l ,ab 和cd 是位于水平面内的平行金属轨道,其电阻可忽略不计.af 之间连接一阻值为R 的电阻.ef 为一垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并可沿轨道方向无摩擦地滑动.ef 长为l ,电阻可忽略.整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动时,杆ef 所受的安培力为( ).R lvB A 2.R vBlB R lvB C 2 RvBl D 2图1图22、如图2所示·两条水平虚线之间有垂直于纸面向里、宽度为d 、磁感应强度为B 的匀强磁场.质量为m 、电阻为R 的正方形线圈边长为L(L<d),线圈下边缘到磁场上边界的距离为h .将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度都是v 0在整个线圈穿过磁场的全过程中(从下边缘进入磁场到上边缘穿出磁场),下列说法中正确的是( ). A·线圈可能一直做匀速运动 B .线圈可能先加速后减速C .线圈的最小速度一定是mgR /B 2 L 2D .线圈的最小速度一定是)(2l d h g +-3、如图3所示,竖直放置的螺线管与导线abed 构成回路,导线所围区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平面桌面上有一导体圆环.导线abcd 所围区域内磁场的磁感强度按图1 5—11中哪一图线所表示的方式随时问变化时,导体圆环将受到向上的磁场力作用?( ).图3A B CD4、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零均匀增大时,金属杆ab 始终处于静止状态,则金属杆受到的静摩擦力将( ).A .逐渐增大B .逐渐减小C .先逐渐增大,后逐渐减小D .先逐渐减小,后逐渐增大图45、如图所示,一闭合线圈从高处自由落下,穿过一个有界的水平方向的匀强磁场区(磁场方向与线圈平面垂直),线圈的一个边始终与磁场区的边界平行,且保持竖直的状态不变.在下落过程中,当线圈先后经过位置I 、Ⅱ、Ⅲ时,其加速度的大小分别为a 1、a 2、a 3( ).A . a 1<g ,a 2=g ,a 3<gB .a l <g ,a 2<g ,a 3<gC . a 1<g,a 2=0,a 3=gD .a 1<g ,a 2>g ,a 3<g图5 图66、如图6所示,有两根和水平方向成a 角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度Vm ,则( ).A .如果B 增大,Vm 将变大 B .如果a 变大, Vm 将变大C .如果R 变大,Vm 将变大D .如果M 变小,Vm 将变大7、超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图6所示的模型:在水平面上相距L 的两根平行直导轨问,有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽都是ι,相间排列,所有这些磁场都以速度V 向右匀速运动.这时跨在两导轨间的长为L 、宽为ι的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,则金属框的最大速度可表示为( ).图7A 、2222/)(L B fR v L B v m -= B 、22222/)2(L B fR v L B v m -= C 、22224/)4(L B fR v L B v m -= D 、22222/)2(L B fR v L B v m+= 答案: 1 .A 2. D 3. A 4. D 5.B 6.BC 7. C8、水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见图),金属杆与导轨的电阻不计;均匀磁场竖直向下.用与导轨平行的恒定力F 作用在金属杆上,杆最终将做匀速运动.当改拉力的大小时,相对应的匀速运动速度v 也会改变,v 和F 的关系如图 (取重力加速度g=10m /s 2) (1)金属杆在匀速运动之前做作什么运动?(2)若m =0.5 kg ,L =0.5 m ,R =0.5 Ω,磁感应强度B 为多大? (3)由ν-F 图线的截距可求得什么物理量?其值为多少?解: (1)变速运动(或变加速运动、加速度减小的加速运动,加速运动). (2)感应电动势E —vBL ,感应电流I=E/R安培力RLvB BIL F m22== 由图可知金属杆受拉力、安培力和阻力作用,匀速时合力为零f RLvB BIL F +==22)(22f F l B Rv -=由图线可以得到直线的斜率k=2)(12T kLR B ==(3)由直线的截距可以求得金属杆受到的阻力f , f=2(N).若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数 μ=0.49、如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b 向a 方向看到的装置如图1 5—2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当杆ab 的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值.解:(1)重力mg ,竖直向下;支撑力N ,,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E=BLv ,此时电路电流RBlvR E I ==杆受到安培力Rv L B Blv F 22==根据牛顿运动定律,有:R v L B mg ma 22sin -=θ R vL B g a 22sin -=θ(3)当RvL B mg 22sin =θ时,ab 杆达到最大速度mAX V22sin LB mgR V m θ=10.如图所示,电阻不计的平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,导轨相距为d ,其间有竖直向下的匀强磁场,磁感强度为B .质量为m 、电阻为r 的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 的恒力F 向右拉动CD ,CD 受恒定的摩擦阻力.f ,已知F>f .问: (1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少? (3)当CD 的速度是最大速度的1/3时,CD 的加速度是多少?解析:(1)以金属棒为研究对象,当CD 受力:F=F A +f 时,CD 速度最大,即:2222))((dB r R f F v f r R v d B f BId F m +-=⇒++=+= (2)CD 棒产生的感应电动势为:Bdr R f F Bdv E m))((--==回路中产生的感应电流为:BdfF r R E I -=+=则R 中消耗的电功率为:2222)(dB Rf F R I R P -== (3)当CD 速度为最大速度的1/3即m v v 31=时,CD 中的电流为最大值的1/3即I I 31'=则CD 棒所受的安培力为:)(31''f F d BI F A-== CD 棒的加速度为:mf F m F f F a A 3)(2'-=--=。
电磁感应中的动力学和能量问题
专题9・4电磁感应中的动力学和能量问题一、电磁感应与力和运动1.安培力的大小EB2l2v由感应电动势E=Blv、感应电流/=万和安培力公式F=BIl得F=~R~.2.安培力的方向判断(1)对导体切割磁感线运动,先用右手定则确定感应电流的方向,再用左手定则确定安培力的方向.(2)根据安培力阻碍导体和磁场的相对运动判断.3.电磁感应中的力和运动电磁感应与力学问题的综合,涉及两大研究对象:电学对象与力学对象.联系两大研究对象的桥梁是磁场对感应电流的安培力,其大小与方向的变化,直接导致两大研究对象的状态改变.二、电磁感应与能量守恒1.能量转化导体切割磁感线或磁通量发生变化,在回路中产生感应电流,这个过程中机械能或其他形式的能转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或内能.因此,电磁感应过程中总是伴随着能量的转化.2.电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功的形式实现的,安培力做功的过程,是电能转化为其他形式能的过程,外力克服安培力做功,则是其他形式的能转化为电能的过程.高频考点一电磁感应与力和运动1.受力分析与运动分析对电磁感应现象中的力学问题,除了要作好受力情况和运动情况的动态分析外,还需要注意导体受到的安培力随运动速度变化的特点,速度变化,弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化.2.应用牛顿运动定律和运动学规律解答电磁感应问题的基本思路(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流.(3)分析研究导体的受力情况(包含安培力,用左手定则确定其方向).(4)根据牛顿第二定律和运动学规律或平衡条件列方程求解.例1、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3么导轨平面与水平面的夹角为6,在导轨的中部刷有一段长为d的薄绝缘涂层.匀强磁场的磁感应强度大小为B,方向与导轨平面垂直•质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为人,其他部分的电阻均不计,重力加速度为g.求:(1)导体棒与涂层间的动摩擦因数“;(2)导体棒匀速运动的速度大小V;(3)整个运动过程中,电阻产生的焦耳热0.【变式探究】如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO'平行,线框平面与磁场方向垂直.设OO'下方磁场区域足够大,不计空B.B= 12mR L叮Ft C.v=^0-°D.v=2F-0m【举一反三】(多选)如图甲所示,MN左侧有一垂直纸面向里的匀强磁场,现将一边长为L、质量为加、电阻为R的正方形金属线框置于该磁场中,使线框平面与磁场方向垂直,且bc 边与磁场边界MN重合.当t=0时,对线框施加一水平拉力F,使线框由静止开始向右做匀加速直线运动;当t=t0时,线框的ad边与磁场边界MN重合.图乙为拉力F随时间t变高频考点二电磁感应与能量守恒1.电磁感应中的几个功能关系(1)导体克服安培力做的功等于产生的电能W安=£电安电(2)若电路为纯电阻电路,则电磁感应中产生的电能又完全转化为电路的焦耳热Q=E电电(3)导体克服安培力做的功等于消耗的机械能W安=左机械能;(4)综合起来可以看出“电路的焦耳热”等于“电磁感应中产生的电能”等于“机械能的减小”,即Q=E*=E机械能这里还要特别明确“能量转化的层次性”,即E机械能f E电-Q,其中电机械能.机械能电第一次转化是通过克服安培力做功W、来实现,第二次转化是通过感应电流流经电阻转化为安焦耳热来实现.2.用能量方法解决电磁感应问题的一般步骤(1)用法拉第电磁感应定律和楞次定律确定电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率的表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的关系式.例2、半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m 且化的图线.由以上条件可知,磁场的磁感应强度B的大小及t0时刻线框的速率v为()质量分布均匀的直导体棒AB置于圆导轨上面.BA的延长线通过圆导轨中心O,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下.在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出).直导体棒在水XXXxxxX XX XXX平外力作用下以角速度①绕o 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为〃,导体棒和导轨的电阻均可忽略.重力加速度大小为g ,求:(1) 通过电阻R 的感应电流的方向和大小;(2) 外力的功率.1【变式探究】(多选)如图所示,固定在同一水平面上的两平行金属导轨AB 、CD ,两端接有阻值相同的两个定值电阻.质量为m 的导体棒垂直放在导轨上,轻弹簧左端固定,右端连接导体棒,整个装置处于竖直向下的匀强磁场中.当导体棒静止在00位置时,弹簧处于原 长状态.此时给导体棒一个水平向右的初速度v 0,它能向右运动的最远距离为d ,且能再次经过00位置.已知导体棒所受的摩擦力大小恒为/,导体棒向右运动过程中左侧电阻产生B .弹簧的弹性势能最大为2mv &—20—fdC •导体棒再次回到00'位置时的动能等于1mv 0—40—2fdD .导体棒再次回到00'位置时的动能大于2mv g —40—2fd 的热量为0,不计导轨和导体棒的电阻.贝%)【举一反三】如图甲所示,在虚线mn的上方存在垂直纸面向里的匀强磁场,mn的下方存在竖直向下的匀强磁场,mn上下两侧磁场的磁感应强度大小相等.将两根足够长的直导轨平行放置在磁场中,且贯穿虚线的上下两侧.取两根等长的金属棒a、b,两端分别套上金属环,然后将两金属棒套在长直导轨上,其中a棒置于虚线上侧,b棒置于虚线下侧.从t=0时刻开始在a棒上加一竖直向上的外力F,使a棒由静止开始向上做匀加速直线运动,外力随时间的变化规律如图乙所示,同时b棒在t=0时刻由静止释放.已知两导轨的间距为L=1.5m,a、b棒的质量分别为m y=1kg、m2=0.27kg,两金属棒的总电阻为R=1.8Q,忽略导轨的电阻,b棒与导轨的动摩擦因数为“=0.75,不计a棒与导轨之间的摩擦,取g甲乙(1)求虚线上下两侧的磁感应强度大小以及a棒匀加速运动的加速度大小;(2)如果在0〜2s的时间内外力F对a棒做功为40J,则该过程中整个电路产生的焦耳热为多少?(3)经过多长时间b棒的速度最大?高频考点三、微元法在电磁学中的应用微元法是将研究对象无限细分,从中抽取出微小单元进行研究,找出被研究对象变化规律,由于这些微元遵循的规律相同,再将这些微元进行必要的数学运算(累计求和),从而顺利解决问题.用该方法可以将一些复杂的物理过程,用我们熟悉的规律加以解决,是物理学中常用的思想方法之一.例3、如图所示,两条平行导轨所在平面与水平地面的夹角为0,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面向下.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为“,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系(2)金属棒的速度大小随时间变化的关系.护鮎—真题练习泮一1.【2016・全国卷I】如图1-,两固定的绝缘斜面倾角均为0,上沿相连.两细金属棒刃(仅标出a端)和c〃(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上,已知两根导线刚好不在磁场中,回路电阻为人,两金属棒与斜面间的动摩擦因数均为“,重力加速度大小为g,已知金属棒ab匀速下滑.求:()(1)作用在金属棒ab上的安培力的大小(2)金属棒运动速度的大小.图1-2.【2016・全国卷II】如图1-所示,水平面(纸面)内间距为/的平行金属导轨间接一电阻,质量为m、长度为l的金属杆置于导轨上.t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由静止开始运动.t0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为〃•重力加速度大小为g.求:(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值.图1-3.【2016•浙江卷】小明设计的电磁健身器的简化装置如图1-10所示,两根平行金属导轨相距l=0.50m,倾角0=53°,导轨上端串接一个R=0.05Q的电阻.在导轨间长d=0.56m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0T.质量m=4.0kg的金属棒CD 水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连.CD棒的初始位置与磁场区域的下边界相距5=0.24m.—位健身者用恒力F=80N拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直.当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g取10m/s2,sin53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量)•求:(1)CD棒进入磁场时速度v的大小;(2)CD棒进入磁场时所受的安培力F A的大小;(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q.4.【2016•全国卷III】如图1-所示,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B1随时间t的变化关系为B=kt,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界(虚线)与导轨垂直,磁场的磁感应强度大小为B0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t0时刻恰好以速度v0越过劇,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:(1)在t=0到t=t0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t(t>t0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小.图1-5.(2013・天津理综・3)如图2所示,纸面内有一矩形导体闭合线框abed,ab边长大于be边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab边平行MN进入磁场,线框上产生的热量为Q],通过线框导体横截面的电荷量为q1;第二次be边平行MN进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,贝%)A.0>Q2,q pC.Q1=Q2,qfB.Q1>Q2,q1>q2D.Q1=Q2,q>qi图2。
高考物理小一轮复习(假期之友)电磁感中的力学问题
拾躲市安息阳光实验学校2011江苏高考物理小一轮复习(假期之友)--电磁感应中的力学问题【知识梳理】1.电磁感应与力学的联系在电磁感应中切割磁感线的导体要运动,感应电流又要受到安培力的作用。
因此,电磁感应问题又往往和力学问题联系在一起,解决电磁感应中的力学问题,一方面要考虑电磁学中的有关规律;另一方面还要考虑力学的有关规律,要将电磁学和力学知识综合起来应用。
电磁感应与动力学、运动学结合的动态分析,思考方法是:电磁感应现象中感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.【典型例题】例1:下图中a1b1c1d1 和a2b2c2d2 为同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。
导轨的a1b1段与a2b2段是竖直的,距离为l1,c1d1与c2d2段也是竖直的,距离为l2.x1y1与x2y2为两根用不可伸长的绝缘轻线相连接的金属杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。
两杆与导轨构成的回路的总电阻为R。
F为作用于金属杆x1y1上的竖直向上的恒力。
已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。
【分析与解】本题是电磁感应现象与物体的平衡相结合的问题,分析中应着重于两个方面,一是分析发生电磁感应回路的结构并计算其电流;二是分析相关物体的受力情况,并根据平衡条件建立方程。
设杆向上运动的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少.由法拉第电磁感应定律,回路中的感应电动势的大小E = B(l2-l1)v①回路中的电流REI=②电流沿顺时针方向.两金属杆都要受到安培力作用,作用于杆x1y1的安培力为f1 = B l1I③方向向上,作用于杆x2y2的安培力f2 = B l2I④方向向下.当杆做匀速运动时,根据牛顿第二定律有F-m1g-m2g + f1-f2=0 ⑤解以上各式,得)()(1221llBgmmFI-+-=⑥RllBgmmFv212221)()(-+-=⑦作用于两杆的重力的功率的大小P = (m1+m2)gv⑧电阻上的热功率Q =I2R⑨由⑥、⑦、⑧、⑨式,可得gmmRllBgmmFP)()()(21212221+-+-=,RllBgmmFQ21221])()([-+-=。
12专题:电磁感应中的动力学、能量、动量的问题(含答案)
12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。
一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。
金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。
求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。
二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。
导轨顶端连接一个阻值为1 Ω的电阻。
在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。
质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。
金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。
(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。
三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。
高考物理中电磁感应的考点和解题技巧有哪些
高考物理中电磁感应的考点和解题技巧有哪些在高考物理中,电磁感应是一个重要且具有一定难度的考点。
理解和掌握电磁感应的相关知识,以及熟练运用解题技巧,对于在高考中取得优异成绩至关重要。
一、电磁感应的考点1、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的核心内容之一。
其表达式为:$E = n\frac{\Delta \Phi}{\Delta t}$,其中$E$ 表示感应电动势,$n$ 为线圈匝数,$\Delta \Phi$ 表示磁通量的变化量,$\Delta t$ 表示变化所用的时间。
这个考点通常会要求我们计算感应电动势的大小,或者根据给定的条件判断感应电动势的变化情况。
2、楞次定律楞次定律用于判断感应电流的方向。
其核心思想是:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
这一定律在解决电磁感应中的电流方向问题时经常用到,需要我们能够准确理解并运用“阻碍”这一概念。
3、电磁感应中的电路问题当导体在磁场中做切割磁感线运动或者磁通量发生变化时,会产生感应电动势,从而形成闭合回路中的电流。
在这类问题中,我们需要根据电路的基本规律,如欧姆定律、串并联电路的特点等,来计算电路中的电流、电压、电阻等物理量。
4、电磁感应中的能量转化问题电磁感应现象中,机械能与电能相互转化。
例如,导体棒在磁场中运动时,克服安培力做功,将机械能转化为电能;而电流通过电阻时,电能又转化为内能。
在解题时,需要运用能量守恒定律来分析能量的转化和守恒关系。
5、电磁感应与力学的综合问题这类问题通常将电磁感应现象与力学中的牛顿运动定律、功和能等知识结合起来。
例如,导体棒在磁场中受到安培力的作用,其运动情况会受到影响,我们需要综合运用电磁学和力学的知识来求解。
6、电磁感应中的图像问题包括磁感应强度$B$、磁通量$\Phi$、感应电动势$E$、感应电流$I$ 等随时间或位移变化的图像。
要求我们能够根据给定的物理过程,准确地画出相应的图像,或者从给定的图像中获取有用的信息,分析物理过程。
电磁感应中的力学问题2015最新
电磁感应中的力学问题 姓名:1、闭合电路中产生的感应电动势的大小,跟穿过这一闭合电路的下列哪个物理量成正比 ( )A 、磁通量B 、磁感应强度C 、磁通量的变化率D 、磁通量的变化量2、穿过一个电阻为R=1Ω的单匝闭合线圈的磁通量始终每秒钟均匀的减少2Wb ,则:( )A 、线圈中的感应电动势每秒钟减少2VB 、线圈中的感应电动势是2VC 、线圈中的感应电流每秒钟减少2AD 、线圈中的电流是2A3.下列几种说法中正确的是: ( )A 、线圈中的磁通量变化越大,线圈中产生的感应电动势一定越大B 、穿过线圈的磁通量越大,线圈中的感应电动势越大C 、线圈放在磁场越强的位置,线圈中的感应电动势越大D 、线圈中的磁通量变化越快,线圈中产生的感应电动势越大4、如图所示,在竖直向下的匀强磁场中,将一个水平放置的金属棒ab 以水平初速度v 0抛出,设运动的整个过程中棒的取向不变且不计空气阻力,则金属棒在运动过程中产生的感应电动势大小将 ( )A.越来越大B.越来越小C.保持不变D.无法确定5、在图6中,闭合矩形线框abcd 位于磁感应强度为B 的匀强磁场中,ad 边位于磁场边缘,线框平面与磁场垂直,ab 、ad 边长分别用L 1、L 2表示,若把线圈沿v 方向匀速拉出磁场所用时间为△t ,则通过线框导线截面的电量是: ( )A 、12BL L R t ∆B 、12BL L R C 、12BL L t ∆ D 、12BL L6、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零均匀增大时,金属杆ab 始终处于静止状态,则金属杆受到的静摩擦力将( ).A .逐渐增大B .逐渐减小C .先逐渐增大,后逐渐减小D .先逐渐减小,后逐渐增大7、如图所示,金属导轨MN 、PQ 之间的距离L=0.2m,导轨左端所接的电阻R=1Ω,金属棒ab 可 沿导轨滑动,匀强磁场的磁感应强度为B=0.5T, ab 在外力作用下以V=5m/s 的速度向右匀速滑 动,求金属棒所受外力的大小。
电磁感应中的动力学和能量问题
电磁感应中的动力学和能量问题一、电磁感应中的动力学问题1.所用知识及规律(3)牛顿第二定律及功能关系2.导体的两种运动状态(1)导体的平衡状态——静止状态或匀速直线运动状态.(2)导体的非平衡状态——加速度不为零.3.两大研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为感应电流产生安培力),而感应电流I和导体棒的速度v则是联系这两大对象的纽带例1:如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab 边的边长l1=1 m,bc边的边长l2=0.6 m,线框的质量m=1 kg,电阻R=0.1 Ω,线框通过细线与重物相连,重物质量M=2 kg,斜面上ef(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B=0.5 T,如果线框从静止开始运动,进入磁场的最初一段时间做匀速运动,ef和gh的距离s=11.4 m,(取g=10 m/s2),求:(1)线框进入磁场前重物的加速度;(2)线框进入磁场时匀速运动的速度v;(3)ab边由静止开始到运动到gh处所用的时间t;(4)ab边运动到gh处的速度大小及在线框由静止开始运动到gh处的整个过程中产生的焦耳热.反思总结分析电磁感应中动力学问题的基本思路(顺序):即学即练1:如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab可沿导轨自由滑动,导轨一端连接一个定值电阻R,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F恒定,经时间t1后速度为v,加速度为a1,最终以速度2v做匀速运动;若保持拉力的功率P恒定,棒由静止经时间t2后速度为v,加速度为a2,最终也以速度2v做匀速运动,则( ).A.t2=t1 B.t1>t2C.a2=2a1 D.a2=5a1即学即练2:如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存有匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为vm.改变电阻箱的阻值R,得到vm与R的关系如图乙所示.已知轨道间距为L =2 m,重力加速度g取10 m/s2,轨道充足长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.二、电磁感应中的能量问题1.电磁感应中的能量转化2.求解焦耳热Q 的三种方法例2、如图所示,充足长的光滑平行金属导轨MN 、PQ 竖直放置,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,其下滑距离与时间的关系如下表所示,导轨电阻不计,重力加速度g 取10 m/s2.试求:(1)当t =0.7 s 时,重力对金属棒ab 做功的功率;(2)金属棒ab 在开始运动的0.7 s 内,电阻R 上产生的焦耳热;(3)从开始运动到t =0.4 s 的时间内,通过金属棒ab 的电荷量.即时训练3:如图,充足长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中 ( ).A .运动的平均速度大小为12v B .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v Rsin θ即时训练4:某兴趣小组设计了一种发电装置,如图所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为49π,磁场均沿半径方向.匝数为N 的矩形线圈abcd 的边长ab =cd =l 、bc =ad =2l .线圈以角速度ω绕中心轴匀速转动,bc 边和ad 边同时进入磁场.在磁场中,两条边所经过处的磁感应强时间t (s) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 下滑距离s (m) 0 0.1 0.3 0.7 1.4 2.1 2.8 3.5度大小均为B,方向始终与两边的运动方向垂直.线圈的总电阻为r,外接电阻为R.求:(1)线圈切割磁感线时,感应电动势的大小Em;(2)线圈切割磁感线时,bc边所受安培力的大小F;(3)外接电阻上电流的有效值I.。
高考物理:带你攻克电磁感应中的典型例题(附解析)
高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。
当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。
所以D选项正确。
一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。
解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。
例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。
高考物理复习:电磁感应中的动力学与能量问题
为h。初始时刻,磁场的下边缘和线框上边缘的高度差为2h,将重物从静止
开始释放,线框上边缘刚进磁场时,恰好做匀速直线运动,滑轮质量、摩擦
阻力均不计。下列说法正确的是(ABD)
A.线框进入磁场时的速度为 2ℎ
2
2
B.线框的电阻为2
2ℎ
C.线框通过磁场的过程中产生的热量 Q=2mgh
D.线框通过磁场的过程中产生的热量 Q=4mgh
热量等于系统重力势能的减少量,即 Q=3mg×2h-mg×2h=4mgh,C 错误, D 正
确。
能力形成点3
整合构建
电磁感应中的动量综合问题——规范训练
电磁感应中的有些题目可以从动量角度着手,运用动量定理或动量守恒
定律解决。
(1)应用动量定理可以由动量变化来求解变力的冲量。如在导体棒做非
匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问
解析:(1)由ab、cd棒被平行于斜面的导线相连,故ab、cd速度大小总是相
等,cd也做匀速直线运动。设导线的拉力的大小为FT,右斜面对ab棒的支持
力的大小为FN1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力
大小为FN2,对于ab棒,受力分析如图甲所示。
由力的平衡条件得2mgsin θ=μFN1+FT+F ①
电动势,该导体或回路就相当于电源。
(2)分析清楚有哪些力做功,就可以知道有哪些形式的能量发生了相互转化。
(3)根据能量守恒列方程求解。
训练突破
2.(多选)如图所示,质量为3m的重物与一质量为m的线框用一根绝缘细线
连接起来,挂在两个高度相同的定滑轮上。已知线框的横边边长为l,水平
方向匀强磁场的磁感应强度为B,磁场上下边界的距离、线框竖直边长均
高考物理《电磁感应中的动力学问题》真题练习含答案专题
高考物理《电磁感应中的动力学问题》真题练习含答案专题1.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一根质量为m 的金属杆(电阻不计)从轨道上由静止滑下.经过足够长的时间,金属杆的速度趋近于一个最大速度v m ,则( )A .如果B 增大,v m 将变大B .如果α变大,v m 将变大C .如果R 变大,v m 将变大D .如果m 变大,v m 将变大答案:BCD解析:当加速度为零时,速度最大,则有mg sin α=BIL ,又I =BL v m R ,解得v m =mgR sin αB 2L 2,如果B 增大,v m 将变小;如果α变大,v m 将变大;如果R 变大,v m 将变大;如果m 变大,v m 将变大,B 、C 、D 正确.2.(多选)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小答案:AD解析:OP 转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 匀速转动产生的感应电动势,产生的感应电流由M 到N 通过MN 棒,由左手定则可知,MN 棒会向左运动,MN 棒运动会切割磁感线,产生的电动势与原来电流方向相反,让回路电流减小,MN 棒所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.3.(多选)如图,横截面积为S 的n 匝线圈,线圈总电阻为R ,其轴线与大小均匀变化的匀强磁场B 1平行.间距为L 的两平行光滑倾斜轨道PQ 、MN 足够长,轨道平面与水平面的夹角为α,底部连有一阻值2R 的电阻,磁感应强度B 2的匀强磁场与轨道平面垂直.K 闭合后,质量为m 、电阻也为2R 的金属棒ab 恰能保持静止,金属棒始终与轨道接触良好,其余部分电阻不计,下列说法正确的是( )A .B 1均匀减小B .B 1的变化率为ΔB 1Δt =4mgR sin αnB 2SLC .断开K 之后,金属棒ab 将做匀加速直线运动D .断开K 之后,金属棒的最大速度为v =4Rmg sin αB 22 L 2 答案:ABD解析:由平衡条件知金属棒所受安培力的方向应平行轨道向上,电流大小恒定,磁场B 1均匀变化;根据左手定则判断金属棒中电流方向由b 指向a ,线圈中感应电流磁场方向与原磁场方向相同,则可判断B 1减小,A 正确;设B 1的变化率为ΔB 1Δt,螺线管中感应电动势E =n ΔB 1Δt S ,回路中总电阻R 总=R +R =2R ,电路中总电流I =E R 总 =E 2R,安培力F =B 2IL 2 ,由平衡条件得F =mg sin α,解得ΔB 1Δt =4mgR sin αnB 2SL,B 正确;断开K 之后,金属棒ab 将做变加速直线运动,C 错误;断开K 之后,金属棒速度最大时,受力平衡,有B 2I ′L =mg sin α,且电流I ′=E 4R =B 2L v 4R ,联立解得v =4Rmg sin αB 22 L 2 ,D 正确. 4.如图所示,这是感受电磁阻尼的铜框实验的简化分析图,已知图中矩形铜框(下边水平)的质量m=2 g,长度L=0.5 m,宽度d=0.02 m,电阻R=0.01 Ω,该铜框由静止释放时铜框下边与方向水平向里的匀强磁场上边界的高度差h=0.2 m,磁场上、下水平边界间的距离D=0.27 m,铜框进入磁场的过程恰好做匀速直线运动.取重力加速度大小g=10 m/s2,不计空气阻力.下列说法正确的是()A.铜框进入磁场的过程中电流方向为顺时针B.匀强磁场的磁感应强度的大小为0.5 TC.铜框下边刚离开磁场时的速度大小为3 m/sD.铜框下边刚离开磁场时的感应电流为0.3 A答案:C解析:铜框下边进入磁场过程,由右手定则判断感应电流为逆时针方向,A错误;铜框下边刚进入磁场时的速度大小v1=2gh ,此时感应电动势E=BL v1,电流I=ER,铜框受的安培力大小F=BIL,由平衡条件得F=mg,解得磁感应强度B=0.2 T,B错误;铜框全部进入磁场后开始做加速度为g的匀加速直线运动,设铜框下边刚离开磁场时速度大小为v2,根据运动学公式得v22-v21=2g(D-d),解得v2=3 m/s,C正确;铜框下边刚离开磁场时,感应电流大小I′=BL v2R=3 A, A、D错误.5.(多选)如图所示,两条足够长的平行光滑长直导轨MN、PQ固定于同一水平面内,它们之间的距离为l;ab和cd是两根质量皆为m的金属细杆,杆与导轨垂直,且与导轨接触良好.两杆的电阻皆为R.cd的中点系一轻绳,绳的另一端绕过定滑轮悬挂一质量为M的重物,滑轮与杆cd之间的轻绳处于水平伸直状态并与导轨平行.不计滑轮与转轴、细绳之间的摩擦,不计导轨的电阻.导轨和金属细杆都处于匀强磁场中,磁感应强度大小为B,方向竖直向上.现将两杆及重物同时由静止释放,下列说法正确的是()A.释放重物瞬间,其加速度大小为Mg m+MB.最终回路中的电流为MmgBl(m+M)C.最终ab杆所受安培力的大小为mMg2m+MD .最终ab 和cd 两杆的速度差恒为2MmgR B 2l 2(2m +M )答案:ACD解析:释放重物瞬间,ab 杆和cd 杆均不受安培力,设重物的加速度大小为a 1,则对重物,有Mg -T 1=Ma 1;对cd 杆,有T 1=ma 1,解得a 1=Mg m +M,A 项正确;最终ab 杆、cd 杆和重物三者的加速度大小相等,设其为a ,对重物,有Mg -T 2=Ma ;对cd 杆,有T 2-BIl =ma ;对ab 杆,有BIl =ma ,解得I =Mmg (2m +M )Bl ,F 安=BIl =Mmg 2m +M,B 项错误,C 项正确;设最终两杆速度差为Δv ,回路中感应电动势为E =Bl Δv ,I =E 2R,解得Δv =2MmgR B 2l 2(2m +M ),D 项正确. 6.(多选)如图所示,倾角θ=30°的斜面上放置一间距为L 的光滑U 形导轨(电阻不计),导轨上端连接电容为C 的电容器,电容器初始时不带电,整个装置放在磁感应强度大小为B 、方向垂直斜面向下的匀强磁场中.一质量为2m 、电阻为R 的导体棒垂直放在导轨上,与导轨接触良好,另一质量为m 的重物用一根不可伸长的绝缘轻绳通过光滑的定滑轮与导体棒拴接,定滑轮与导体棒间的轻绳与斜面平行.将重物由静止释放,在导体棒到达导轨底端前的运动过程中(电动势未到达电容器的击穿电压),已知重力加速度为g ,下列说法正确的是( )A .电容器M 板带正电,且两极板所带电荷量随时间均匀增加B .经时间t 导体棒的速度为v =2mgt 3m +CB 2L 2C.回路中电流与时间的关系为I =2BLmg (3m +CB 2L 2)Rt D .重物和导体棒在运动过程中减少的重力势能转化为动能和回路的焦耳热答案:AB解析:设运动过程中经时间Δt ,导体棒的速度增加Δv ,对电容器,两极板的充电电流I =ΔQ Δt =C ΔU Δt =CBL Δv Δt,对导体棒受力分析,由牛顿第二定律有2mg sin 30°+F T -BIL =2ma ;对重物分析,有mg -F T =ma ,又Δv Δt =a ,解得a =2mg 3m +CB 2L 2,加速度恒定,所以导体棒在到达导轨底端前做匀加速直线运动,电容器两极板所带电荷量随时间均匀增加,由右手定则可知,M 板带正电,A 项正确;经时间t ,导体棒的速度v =2mgt 3m +CB 2L 2,B 项正确;由A 项分析可知回路中电流恒定,C 项错误;重物和导体棒在运动过程中减少的重力势能一部分转化为动能和回路的焦耳热,一部分转化为电容器储存的电能,D 项错误.7.[2024·河北省邢台市五岳联盟联考]游乐园中的过山车因能够给游客带来刺激的体验而大受欢迎.为了保证过山车的进站安全,过山车安装了磁力刹车装置,将磁性很强的铷磁铁安装在轨道上,正方形导体框安装在过山车底部.磁力刹车装置的工作原理可简化为如图所示的模型:质量m =5 kg 、边长L =2 m 、电阻R =1.8 Ω的单匝导体框abcd 沿着倾角为θ的光滑斜面由静止开始下滑x 0=4.5 m 后,下边框bc 进入匀强磁场区域时导体框开始减速,当上边框ad 进入磁场时,导体框刚好开始做匀速直线运动.已知磁场的上、下边界与导体框的上、下边框平行,磁场的宽度也为L =2 m ,磁场方向垂直斜面向下、磁感应强度大小B =3 T ,sin θ=0.4,取重力加速度大小g =10 m/s 2,求:(1)上边框ad 进入磁场时,导体框的速度大小v ;(2)下边框bc 进入磁场时,导体框的加速度大小a 0.答案:(1)1 m/s (2)20 m/s 2解析:(1)当导体框的上边框ad 进入磁场时,上边框ad 切割磁感线产生的感应电动势为E =BL v导体框中的感应电流为I =E R导体框的上边框在磁场中受到的安培力大小F A =BIL导体框刚好做匀速直线运动,根据受力平衡有mg sin θ=F A联立解得v =1 m/s(2)导体框沿斜面由静止开始到下边框bc 进入匀强磁场的过程中,根据机械能守恒定律有mgx 0sin θ=12m v 20 当导体框的下边框进入磁场时,导体框的下边框在磁场中受到的安培力大小F A0=B2L2v0 R对导体框受力分析,根据牛顿第二定律有F A0-mg sin θ=ma0联立解得a0=20 m/s2.。
2022届高三物理一轮总复习:电磁感应题型归纳
高考物理总复习电磁感应题型归纳一、电磁感应中的电路及图像问题类型一、根据B t -图像的规律,选择E t -图像、I t -图像电磁感应中线圈面积不变、磁感应强度均匀变化,产生的感应电动势为S B E n n nSk t t φ∆∆===∆∆,磁感应强度的变化率B k t∆=∆是定值,感应电动势是定值, 感应电流E I R r=+就是一个定值,在I t -图像上就是水平直线。
例1、矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B 随时间变化的规律如图所示。
若规定顺时针方向为感应电流I 的正方向,下列各图中正确的是( )【思路点拨】磁感应强度的变化率为定值,感应电动势电流即为定值。
应用楞次定律“增反减同”逐段判断电流的方向,同一个斜率电流方向、大小均相同。
【答案】D 【解析】根据法拉第电磁感应定律,S B E nn t t φ∆∆==∆∆,导线框面积不变,B t∆∆为一定值,感应电动势也为定值,感应电流也为定值,所以A 错误。
0-1s 磁感应强度随时间增大,根据楞次定律,感应电流的方向为逆时针,为负,C 错误。
1-3s 斜率相同即B t ∆∆相同为负,与第一段的B t∆∆大小相等,感应电动势、感应电流大小相等,方向相反,为顺时针方向,为正,所以B 错误,D 正确。
【总结升华】斜率是一个定值,要灵活应用法拉第电磁感应定律(这里定性分析)。
1-3s 可以分段分析判断感应电流的方向,速度太慢,这里充分应用1-2s 和2-3s 是同一个斜率, 感应电动势、感应电流大小相等方向相同,概念清晰,解题速度快。
类型二 选择E t -图像、U t -图像、I t -图像或E -x 图像、U -x 图像和I -x 图像例2、如图所示,一个菱形的导体线框沿着自己的对角线匀速运动,穿过具有一定宽度的匀强磁场区域,已知对角线AC 的长度为磁场宽度的两倍且与磁场边界垂直.下面对于线框中感应电流随时间变化的图象(电流以ABCD 顺序流向为正方向,从C 点进入磁场开始计时)正确的是 ( )【思路点拨】先根据楞次定律判断感应电流的方向,再结合切割产生的感应电动势公式判断感应电动势的变化,从而结合闭合电路欧姆定律判断感应电流的变化.解决本题的关键掌握楞次定律判断感应电流的方向,以及知道在切割产生的感应电动势公式E=BLv中,L为有效长度.【答案】B【解析】线圈在进磁场的过程中,根据楞次定律可知,感应电流的方向为ABCD方向,即为正值,在出磁场的过程中,根据楞次定律知,感应电流的方向为ADCBA,即为负值.在线圈进入磁场的前一半的过程中,切割的有效长度均匀增大,感应电动势均匀增大,则感应电流均匀增大,在线圈进入磁场的后一半过程中,切割的有效长度均匀减小,感应电动势均匀减小,则感应电流均匀减小;在线圈出磁场的前一半的过程中,切割的有效长度均匀增大,感应电流均匀增大,在线圈出磁场的后一半的过程中,切割的有效长度均匀减小,感应电流均匀减小.故B正确,A、C、D错误.故选:B.【变式】一正方形闭合导线框abcd ,边长L=0.1m ,各边电阻为1Ω,bc 边位于x 轴上,在x 轴原点O 右方有宽L=0.1m 、磁感应强度为1T 、方向垂直纸面向里的匀强磁场区域,如图所示,当线框以恒定速度4m/s 沿x 轴正方向穿越磁场区域过程中,下面4个图可正确表示线框进入到穿出磁场过程中,ab 边两端电势差ab U 随位置变化情况的是( )【答案】B 【解析】由题知ab 边进入磁场做切割磁感线运动时,据闭合电路知识,3330.344ab BLv U I R R BLv V R =⋅=⋅==,且a 点电势高于b 点电势,同理ab 边出磁场后cd 边进入磁场做切割磁感线运动,10.14ab U BLv V ==,a 点电势高于b 点电势,故B正确,A 、C 、D 错误。
高考物理二轮复习课件:电磁感应与力学综合问题
【例1】边长为h的正方形金属导线框,从图所示的
位置由静止开始下落,通过一匀强磁场区域,磁场
方向水平,且垂直于线框平面,磁场区域宽度为H, 上、下边界如图中虚线所示,H>h,试分析讨论从 线框开始下落到完全穿过磁场区域的全过程中线框 运动速度的变化情况.
【切入点】分析线圈受力,并将安培力大小与重力 大小比较,得出F 合的大小和方向,再进行讨论.
2.电磁感应中的能量转化综合问题 【例2】如图所示,一边长为 L的正方形闭合金属线框, 其质量为m,回路电阻为R , M 、 N 、 P为磁场区域的边 界,且均为水平,上、下两部分磁场的磁感应强度均为 B,方向如图所示.图示所示位置线框的底边与M重 合.现让线框由图示位置从静止开始下落,线框在穿过 N和P两界面的过程中均为匀速运动.若已知M、N之间 的高度差为h1,h1>L.线框下落过程中线框平面始终保持 竖直,底边始终保持水平,重 力加速度为g,求: (1)线框穿过N与P界面的速度; (2)在整个运动过程中,线框 产生的焦耳热.
(2)设撤去外力时棒的速度为 v,对棒的匀加速运动过 程,由运动学公式得 v2=2ax⑥ 设棒在撤去外力后的运动过程中安培力做功为 W,由 动能定理得 1 2 W=0-2mv ⑦ 撤去外力后回路中产生的焦耳热 Q2=-W⑧ 联产⑥⑦⑧式,代入数据得 Q2=1.8J⑨
(3)由题意知,撤去外力前后回路中产生的焦耳热之比 Q1∶Q2=2∶1,可得 Q1=3.6J⑩ 在棒运动的整个过程中,由功能关系可知 WF=Q1+Q2⑪ 由⑨⑩⑪式得 WF=5.4J
【解析】(1)当 Rx=R 棒沿导轨匀速下滑时,由平衡条件 Mgsinθ=F 安培力 F=BIl Mgsinθ 解得 I= Bl 感应电动势 E=Blv0 E 电流 I=2R 2MgRsinθ 解得 v0= B2l2
高中物理-专题 电磁感应中的动力学问题(能力篇)(解析版)
2021年高考物理100考点最新模拟题千题精练(选修3-2)第四部分 电磁感应专题4.12 电磁感应中的动力学问题(能力篇)一.选择题1. (多选)如图所示,竖直放置的“”形光滑导轨宽为L ,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d ,磁感应强度为B .质量为m 的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R ,与导轨接触良好,其余电阻不计,重力加速度为g .金属杆( )A.刚进入磁场Ⅰ时加速度方向竖直向下B.穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C.穿过两磁场产生的总热量为4mgdD.释放时距磁场Ⅰ上边界的高度h 可能小于m 2gR 22B 4L 4【参考答案】 BC【名师解析】 穿过磁场Ⅰ后,金属杆在磁场之间做加速运动,在磁场Ⅱ上边缘速度大于从磁场Ⅰ出来时的速度,即进入磁场Ⅰ时的速度等于进入磁场Ⅱ时的速度,大于从磁场Ⅰ出来时的速度,金属棒在磁场Ⅰ中做减速运动,加速度方向向上,A 错误;金属棒在磁场Ⅰ中做减速运动,由牛顿第二定律知BIL -mg =B 2L 2vR -mg =ma ,a 随着减速过程逐渐变小,即在前一段做加速度减小的减速运动,在磁场之间做加速度为g 的匀加速直线运动,两个过程位移大小相等,由v -t 图象(可能图象如图所示)可以看出前一段用时多于后一段用时,B 正确;由于进入两磁场时速度相等,由动能定理知, W 安1-mg ·2d =0, W 安1=2mgd .即通过磁场Ⅰ产生的热量为2mgd ,故穿过两磁场产生的总热量为4mgd ,C 正确;设刚进入磁场Ⅰ时速度为v ,则由机械能守恒定律知mgh =12mv 2,①进入磁场时BIL -mg =B 2L 2vR -mg =ma ,解得v =m (a +g )RB 2L 2,②由①②式得h =m 2(a +g )2R 22B 4L 4g >m 2gR 22B 4L4,D 错误.2. (2018南宁高三摸底考试)如图所示,固定的竖直光滑U 型金属导轨,间距为L ,上端接有阻值为R 的电阻,处在方向水平且垂直于导轨平面,磁感应强度为B 的匀强磁场中,质量为m 、电阻为r 的导体棒与劲度系数为k 的固定轻弹簧相连放在导轨上,导轨的电阻忽略不计。
电磁感应中的动力学问题
电磁感应中的动力学问题【动力学问题的规律】1. 动态分析:求解电磁感应中的力学问题时,要抓好受力分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,当循环结束时,加速度等于零,导体达到稳定运动状态。
2. 两种状态的处理:当导体处于平衡态——静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。
当导体处于非平衡态——变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分析.3. 常见的力学模型分析: 类型“电—动—电”型“动—电—动”型示 意 图棒ab 长为L ,质量m ,电阻R ,导轨光滑,电阻不计棒ab 长L ,质量m ,电阻R ;导轨光滑,电阻不计分 析S 闭合,棒ab 受安培力R BLE F =,此时mR BLEa =,棒ab 速度v↑→感应电动势BLv↑→电流I↓→安培力F=BIL↓→加速度a↓,当安培力F=0时,a=0,v 最大。
棒ab 释放后下滑,此时α=sin g a ,棒ab 速度v↑→感应电动势E=BLv↑→电流R E I =↑→安培力F=BIL↑→加速度a↓,当安培力α=sin mg F 时,a=0,v 最大。
运动形式 变加速运动 变加速运动最终状态匀速运动BL Ev m =匀速运动22m L B sin mgR v α=4. 解决电磁感应中的动力学问题的一般思路是“先电后力”,即:先做“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; 再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力; 然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力; 最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.【例1】 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.50 m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R =5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =1.0 T .将一根质量为m =0.050 kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离s =2.0 m .已知g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求: (1)金属棒沿导轨开始下滑时的加速度大小;(2)金属棒到达cd 处的速度大小;(3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量.突破训练1 如图所示,相距为L 的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙、下方轨道光滑,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度为B .将两根导体棒同时释放后,观察到导体棒MN 下滑而EF 保持静止,当MN 下滑速度最大时,EF 与轨道间的摩擦力刚好达到最大静摩擦力,下列叙述正确的是()A .导体棒MN 的最大速度为2mgR sin θB 2L 2B .导体棒EF 与轨道之间的最大静摩擦力为mg sin θC .导体棒MN 受到的最大安培力为mg sin θD .导体棒MN 所受重力的最大功率为m 2g 2R sin 2θB 2L 2【例2】 如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ ,磁感应强度B 的大小为5 T ,磁场宽度d =0.55 m ,有一边长L =0.4 m 、质量m 1=0.6 kg 、电阻R =2 Ω的正方形均匀导体线框abcd 通过一轻质细线跨过光滑的定滑轮与一质量为m 2=0.4 kg 的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)线框abcd 还未进入磁场的运动过程中,细线中的拉力为多少?(2)当ab 边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab 边距磁场MN 边界的距离x 多大? (3)在(2)问中的条件下,若cd 边恰离开磁场边界PQ 时,速度大小为2 m/s ,求整个运动过程中ab 边产生的热量为多少?审题指导 1.线框abcd 未进入磁场时,线框沿斜面向下加速,m 2沿水平面向左加速,属连接体问题. 2.ab 边刚进入磁场时做匀速直线运动,可利用平衡条件求速度.3.线框从开始运动到离开磁场的过程中,线框和物体组成的系统减少的机械能转化为线框的焦耳热. 解析突破训练2如图所示,光滑斜面的倾角为θ,斜面上放置一矩形导体线框abcd ,ab 边的边长为l 1,bc 边的边长为l 2,线框的质量为m ,电阻为R ,线框通过绝缘细线绕过光滑的定滑轮与一重物相连,重物质量为M .斜面上ef 线(ef 平行底边)的右方有垂直斜面向上的匀强磁场,磁感应强度为B ,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的ab 边始终平行于底边,则下列说法正确的是()A .线框进入磁场前运动的加速度为Mg -mg sin θmB .线框进入磁场时匀速运动的速度为Mg -mg sin θRBl 1C .线框做匀速运动的总时间为B 2l 21Mg -mgR sin θD .该匀速运动过程产生的焦耳热为(Mg -mg sin θ)l 2突破训练3 如图所示,平行金属导轨与水平面间的倾角为θ,导轨电阻不计,与阻值为R 的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B .有一质量为m 、长为l 的导体棒从ab 位置获得平行于斜面、大小为v 的初速度向上运动,最远到达a ′b ′位置,滑行的距离为s ,导体棒的电阻也为R ,与导轨之间的动摩擦因数为μ.则 ()A .上滑过程中导体棒受到的最大安培力为B 2l 2vRB .上滑过程中电流做功发出的热量为12mv 2-mgs (sin θ+μcos θ)C .上滑过程中导体棒克服安培力做的功为12mv 2D .上滑过程中导体棒损失的机械能为12mv 2-mgs sin θ【例3】 如图所示,足够长的金属导轨MN 、PQ 平行放置,间距为L ,与水平面成θ角,导轨与定值电阻R 1和R 2相连,且R 1=R 2=R ,R 1支路串联开关S ,原来S 闭合.匀强磁场垂直导轨平面向上,有一质量为m 、有效电阻也为R 的导体棒ab 与导轨垂直放置,它与导轨粗糙接触且始终接触良好.现将导体棒ab 从静止释放,沿导轨下滑,当导体棒运动达到稳定状态时速率为v ,此时整个电路消耗的电功率为重力功率的34.已知重力加速度为g ,导轨电阻不计,求:(1)匀强磁场的磁感应强度B 的大小和达到稳定状态后导体棒ab 中的电流强度I ;(2)如果导体棒ab 从静止释放沿导轨下滑x 距离后达到稳定状态,这一过程回路中产生的电热是多少?(3)导体棒ab 达到稳定状态后,断开开关S ,从这时开始导体棒ab 下滑一段距离后,通过导体棒ab 横截面的电荷量为q ,求这段距离是多少?注意:双棒类运动模型问题分析:如图所示,质量都为m的导线a和b静止放在光滑的无限长水平导轨上,两导轨间宽度为L,整个装置处于竖直向上的匀强磁场中,磁场的磁感强度为B,现对导线b施以水平向右的恒力F,求回路中的最大电流.【剖析】突破训练4(多选题)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2 1.用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后()A.金属棒ab、cd都做匀速运动B.金属棒ab上的电流方向是由b向aC.金属棒cd所受安培力的大小等于2F/3D.两金属棒间距离保持不变课后练习1.如图所示,足够长的平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6) ()A.2.5 m/s1 W B.5 m/s1 WC.7.5 m/s9 W D.15 m/s9 W2.如图甲所示,电阻不计且间距L=1 m的光滑平行金属导轨竖直放置,上端接一阻值R=2 Ω的电阻,虚线OO′下方有垂直于导轨平面向里的匀强磁场,现将质量m=0.1 kg、电阻不计的金属杆ab从OO′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平.已知杆ab进入磁场时的速度v0=1 m/s,下落0.3 m的过程中加速度a与下落距离h的关系图象如图乙所示,g取10 m/s2,则()A.匀强磁场的磁感应强度为1 TB.杆ab下落0.3 m时金属杆的速度为1 m/sC.杆ab下落0.3 m的过程中R上产生的热量为0.2 JD.杆ab下落0.3 m的过程中通过R的电荷量为0.25 C3.在如图所示倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B的匀强磁场,区域Ⅰ的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L .一质量为m 、电阻为R 、边长为L2的正方形导体线圈,在沿平行斜面向下的拉力F 作用下由静止开始沿斜面下滑,当ab 边刚越过GH 进入磁场Ⅰ时,恰好做匀速直线运动,下列说法中正确的有(重力加速度为g )()A .从线圈的ab 边刚进入磁场Ⅰ到线圈dc 边刚要离开磁场Ⅱ的过程中,线圈ab 边中产生的感应电流先沿b →a 方向再沿a →b 方向B .线圈进入磁场Ⅰ过程和离开磁场Ⅱ过程所受安培力方向都平行斜面向上C .线圈ab 边刚进入磁场 Ⅰ 时的速度大小为4R mg sin θ+FB 2L 2D .线圈进入磁场Ⅰ做匀速运动的过程中,拉力F 所做的功等于线圈克服安培力所做的功4.图中EF 、GH 为平行的金属导轨,其电阻可不计,R 为电阻,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆.有匀强磁场垂直于导轨平面.若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB ()A .匀速滑动时,I 1=0,I 2=0B .匀速滑动时,I 1≠0,I 2≠0C .加速滑动时,I 1=0,I 2=0D .加速滑动时,I 1≠0,I 2≠05.如图所示,一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻均忽略不计,整个装置处于磁感应强度B =0.50 T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动,测得外力F 与时间t 的关系如图所示.求(1)杆的质量m 和加速度a 的大小;(2)杆开始运动后的时间t 内,通过电阻R 电量的表达式(用B 、l 、R 、a 、t 表示).6.两根足够长的光滑金属导轨平行固定在倾角为θ的斜面上,它们的间距为d。
电磁感应中的动力学问题和能量问题
电磁感应中的动力学问题和能量问题一、感应电流在磁场中所受的安培力1.安培力的大小:F=BIL= ⑴.由F=知,v 转变时,F 转变,物体所受合外力转变,物体的加速度转变,因此可用牛顿运动定律进行动态分析.⑵.在求某时刻速度时,可先依照受力情形确信该时刻的安培力,然后用上述公式进行求解.2.安培力的方向判定(1)右手定那么和左手定那么相结合,先用右手定那么确信感应电流方向,再用 左手定那么判定感应电流所受安培力的方向.(2)用楞次定律判定,感应电流所受安培力的方向必然和导体切割磁感线运动的方向垂直。
热点一 对导体的受力分析及运动分析从运动和力的关系着手,运用牛顿第二定律.大体方式是:受力分析→运动分析(确信运动进程和最终的稳固状态)→由牛顿第二定律列方程求解.运动的动态结构:如此周而复始的循环,循环终止时加速度等于零,导体达到平稳状态.在分析进程中要抓住a=0时速度v 达到最大这一关键.专门提示1.对电学对象要画好必要的等效电路图.2.对力学对象要画好必要的受力分析图和进程示用意二、电磁感应的能量转化1.电磁感应现象的实质是其他形式的能和电能之间的转化.2.感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为内能.3.电流做功产生的热量用焦耳定律计算,公式为Q=I 2Rt热点二 电路中的能量转化分析从能量的观点着手,运用动能定理或能量守恒定律.大体方式是:受力分析→弄清哪些力做功,做正功仍是负功→明确有哪些形式的能参与转化,哪些增哪些减→由动能定理或能量守恒定律列方程求解.专门提示在利用能的转化和守恒定律解决电磁感应的问题时,要注意分析安培力做功的情形,因为安培力做的功是电能和其他形式的能之间彼此转化的“桥梁”.简单表示如下: 安培力做正功 电能 其他形式能.R L B R E BL v 22=⋅R LB 22安培力做副功其它形式能电能如何求解电磁感应中的力学问题,一直是高中物理教学的一个难点,也是近几年来高考的热点。
电磁感应问题归类解析
电磁感应问题归类解析摘要:电磁感应的综合问题实际上就是电学、磁学、力学与运动学的综合应用,解答此类问题的关键是要抓住知识点间的衔接。
比如:电路与欧姆定律是电与磁的衔接点;安培力是磁学与力学和运动学的衔接点。
除电磁感应和力学、电学的综合外,电磁学中的图象问题也是高考中的一个重点,本文据此部分出现的重点题型试举例说明。
关键词:物理教学;电磁感应;归类解析在多年的教学经验中,笔者总结了以下三种题型,对电磁感应问题进行归类解析。
通过自己的分析和总结,以期给同仁带来帮助。
题型一:电磁感应现象中的图象问题电流为顺时针方向……选项D正确。
方法总结:解决图象问题,首先要设法看懂图象,从中找出必要的信息,把图象反映的规律对应到实际过程中去;其次要根据实际过程进行抽象,用相应的图象去表达。
用到的方法:利用右手定则或楞次定律判定感应电流的方向,利用法拉第电磁感应定律判定电流的大小变化。
题型二:电磁感应现象中的力学问题电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此电磁感应问题往往跟力学问题联系在一起.解决此类问题的一般思路是:先由法拉笫电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,再求出安培力,再后依照力学问题的处理方法进行,如进行受力情况分析、运动情况分析及功能关系分析等。
1.电磁感应中的平衡问题方法总结:解决电磁感应中平衡问题的基本方法还是力学的研究方法:确定研究对象;进行受力分析;根据平衡条件建立方程.只是受力中多了安培力,而安培力是由于感应电流产生的,故此类问题是将有关电磁感应规律、安培力公式和平衡条件相结合解题。
2.电磁感应中的运动问题在电磁感应中,由于磁场变化或导体杆的运动的速度的变化会引起感应电流的变化,感应电流的变化会引起安培力的变化,安培力的变化又可能引起合外力的变化,从而导致导体的加速度、速度等发生变化,而速度的变化反过来又影响感应电流、磁场力、合外力的变化,最终可能使导体达到稳定状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)电磁感应力学问题中,要抓好受力分析.运动情况的动 态分析.导体受力运动产生感应电动势→感应电流→通电 导体受安培力→合外力变化→加速度变化→速度变化→ 周而复始地循环,循环结束时,加速度等于零,导体达稳定 运动状态,抓住a=0时,速度v达最大值特点.
解题要点:
电磁感应中产生的感应电流在磁场中 将受到安培力的作用,从而影响导体棒 (或线圈)的受力情况和运动情况。解决 这类力电综合问题,要将电学、力学中的 有关知识综合起来应用。常用的规律有: 楞次定律、法拉第电磁感应定律、左右手 定则、安培力公式及牛顿运动定律、动量 定理、动量守恒定律。一般可按以下步骤 进行。
磁感应强度大小为B。开始时,导体棒静止于磁场区域的右端,
当磁场以速度v1匀速向右移动时,导体棒随之开始运动,同时受 到水平向左、大小为 f 的恒定阻力,并很快达到恒定速度,此时
导体棒仍处于磁场区域内。
(1)求导体棒所达到的恒定速度v2; (2)为使导体棒能随磁场运动,阻力最大
不能超过多少?
(3)导体棒以恒定速度运动时,单位时间
FN1 F
a B 2 L2v1
mg AD
2R
cd杆水平方向弹力与安培力平衡:FN2
B 2 L2v1 2R
。
竖直方向匀速运动,合力也为零: FN2
f2 F安
mg B 2 L2v1
2R
于是得:
=
2Rmg B2 L2v1
mg
2.如图所示,两平行金属导轨固定在水平面上,匀 强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨 构成闭合回路且都可沿导轨无摩擦滑动。ab、cd 两棒 的质量之比为2∶1。用一沿导轨方向的恒力F水平向右 拉cd 棒,经过足够长时间以后( )
3. 运用规律:根据电学规律、力学规律列方程求解。
1. 两根相距为L的足够长的金属直角导轨如图所示放置,
它们各有一边在同一水平面内,另一边垂直于水平面。质量均 为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导 轨之间的动摩擦因数为 μ,导轨电阻不计,回路总电阻为2R。 整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场 中。当ab杆在平行于水平导轨的拉力F作用下以速度v1沿导轨 匀速运动时,cd杆正好以速率向下v2匀速运动。重力加速度为
mg h B
落地速度为:v
2ah
2mgh m CB 2l 2
6.(07上海)如图(a)所示,光滑的平行长直金属导轨置于水
平面内,间距为L、导轨左端接有阻值为R的电阻,质量为m的导
体棒垂直跨接在导轨上。导轨和导体棒的电阻均不计,且接触良
好。在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,
后作匀速运动。
匀速时速度达到最大,最大速度满足:B2L2vm mg
R
得:
vm
mgR B 2 L2
⑵ 经过时间t,ab的速度为:v = a t
t
时刻的安培力:F安
BIL=B
BLv R
L
B 2 L2a R
t
由牛顿第二定律:F+mg-F安= ma
解之得:F m(a g) B2 L2a t
m1、m2和R1 、 R2,两杆与导轨接触良好,与导轨间的动 摩擦因数为μ,已知:杆1被外力拖动,以恒定的速度v0 沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导
轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做
功的功率。
M2
1N
v0
P
Q
解答 设杆2的运动速度为v,两杆运动时回路中产
生的感应电动势 :E=Bl(v0-v)
x0
做匀速直线运动。
解答
(1)电动势为:E=BLv
E 电流为: I= R r
匀速运动时,外力与安培力平衡:F=B0IL=
B02 L2v Rr
(2)
由法拉第电磁感应定律得:E
t
B t
Lx0
kLx0
静止时水平外力与安培力平衡:
F
BIL
BLv Rr
kx0 L2 Rr
(B0
电磁感应现象 中的力学问题
(1)通过导体的感应电流在磁场中将受到安培力作用, 电磁感应问题往往和力学问题联系在一起,基本解题 方法是:
①用法拉第电磁感应定律和楞次定律求感应电动势的 大小和方向. ②求回路中电流强度. ③分析研究导体受力情况(包括安培力.用左手定则确 定其方向. ④列动力学方程或平衡方程求解.
g。以下说法正确的是( )
A、ab杆所受拉力F的大小为 μmg+ B 2 L2v1 2R
B、cd杆所受摩擦力为零
C、回路中的电流为 BL(v1 v2 ) 2R
D、μ与v1大小的关系为
= 2Rmg
B 2 L2v1
解答 由于cd不切割磁感线,故电路中的电动势为
BLv1,电流为:
BLv1 2R
ab杆、cd杆的受力分析如图。 F安 f1
内克服阻力所做的功和电路中消耗的电功率
各为多大?
(4)若t=0时磁场由静止开始水平向右做
(b)
匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运
动,其v-t关系如图(b)所示,已知在时刻t导体棒瞬时速度大小
为vt,求导体棒做匀加速直线运动时的加速度大小。
解答
(1)导体棒的感应电动势为:E=BL(v1-v2),
导体棒作匀速运动时水平外力与安培力平衡:
F BIL BLE (B0 kt)[( B0 kt)v k(x0 vt)]L2
Rr
Rr
5.如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端 接有一个电容器 , 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度 为B, 质量为m的金属棒ab可紧贴导轨自由滑动. 现让ab由静止下 滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属 棒做什么运动?棒落地时的速度为多大?
kt)
(3)任意时刻 t 导体棒的速度为:v=a t
由牛顿第二定律得: F-BIL=ma·
于是水平力为: F BIL ma B02 L2 at ma Rr
(4) 由法拉第电磁感应定律得:
E
t
BLv kL(x0
vt)
(B0
kt)Lv kL(x0
kt)
(1)磁感应强度为B=B0 保持恒定,导体棒以速度v向右做匀速直 线运动;
(2)磁感应强度为B=B0+kt 随时间 t均匀增强,导体棒保持静止;
(3)磁感应强度为B=B0保持恒定,
B
导体棒由静止始以加速度 a 向右做
匀加速直线运动;
L
F
(4)磁感应强度为B=B0+kt 随时
间 t 均匀增强,导体棒以速度v向右
1. 确定对象:明确产生感应电动势的是哪一根(两 根)导体棒或是哪一个线圈。
2. 分析情况:分析研究对象的受力情况:一共受几 个力,哪些是恒力,哪些是变力,画出受力图。分析研 究对象的运动情况:初始状态怎样,作什么运动,终了 状态如何。此类问题中力的变化与运动的变化往往交错 在一起。可以从感应电动势开始分析:感应电动势→感 应电流→安培力→合外力变化→加速度变化→速度变化 →感应电动势变化→……周而复始地循环,循环结束时, 达到稳定状态(静止、匀速、匀变速)。
统达稳定状态。
对整体有:F= (2m+m) a
C
对ab棒有:F安=2ma
得ab棒所受安培力为:F安=
2 3
F
cd棒所受安培力与ab棒所受安培力大小相等。
由于开始时cd棒的加速度大于ab棒的加速度, cd棒的速度必始终大于ab棒的速度,因此两棒间 距离不断增大。
3. 如图所示,两根竖直的平行光滑导轨MN、PQ, 相距为L。在M与P之间接有定值电阻R。金属棒ab的质 量为m,水平搭在导轨上,且与导轨接触良好。整个装 置放在水平匀强磁场中,磁感应强度为B。金属棒和导 轨电阻不计,导轨足够长。
导体棒所受安培力为: F BIL B2 L2 (v1 v2 )
R
速度恒定时安培力与阻力平衡:B2 L2 (v1 v2 )=f
R
可得导体棒所达到的恒定速度:v2
v1
fR B 2 L2
(2)导体棒的最大速度为v1 ,此时安培力达最大:
Fm
BIL
B 2 L2v1 R
所以阻力最大不能超过:f m
(1)现把金属棒ab锁定在导轨的左端,如图甲,对cd施加与 导轨平行的水平向右的恒力F,使金属棒cd向右沿导轨运动,当 金属棒cd的运动状态稳定时,金属棒cd的运动速度是多大?
作用于杆的安培力: F =B l i
v
解得: F= 3k2 l 2 t / 2r0 ,
代入数据解得: F =1.44×10 -3 N
LP l
Q
﹡9.两根水平平行固定的光滑金属导轨宽为L,足够长,
在其上放置两根长也为L且与导轨垂直的金属棒ab和cd,它们的 质量分别为2m、m,电阻阻值均为R,金属导轨及导线的电阻均 可忽略不计,整个装置处在磁感应强度大小为B、方向竖直向下 的匀强磁场中.
B 2 L2v1 R
(3)导体棒以恒定速度运动时,单位时间内克服阻力所做
的功为:
P棒=f v2
f(v1
fR ) B 2 L2
电路中消耗的电功率:
P电=
E2 R
B 2 L2 (v1 v2 )2 = f 2 R
R
B 2 L2
(4)导体棒要做匀加速运动,必有v1-v2为常数,由牛顿 第二定律 可得: B 2 L2 (v1 v2 ) -f=ma