电磁感应中的力学问题
专题十_电磁感应中的动力学和能量问题
![专题十_电磁感应中的动力学和能量问题](https://img.taocdn.com/s3/m/63ab92195f0e7cd1842536cc.png)
(2)安培力的方向判断
(3)牛顿第二定律及功能关系
2.导体的两种运动状态 (1)导体的平衡状态——静止状态或匀速直线运动状态.
(3)线框 abcd 进入磁场前,做匀加速直线运动;进磁场的过程中, 做匀速直线运动; 进入磁场后到运动至 gh 处, 仍做匀加速直线运 动. 进磁场前线框的加速度大小与重物的加速度大小相同,为 v a=5 m/s ,该阶段的运动时间为 t1=a =1.2 s
2
l2 进入磁场过程中匀速运动的时间 t2=v=0.1 s
水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在 空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应 强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上, 其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑
过程中的最大速度为vm.改变电阻箱的阻值R,得到vm与R的
关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取 10 m/s2,轨道足够长且电阻不计.
反思总结 分析电磁感应中动力学问题的基本思路
电磁感应中产生的感应电流使导体棒在磁场中受到安培力的
作用,从而影响导体棒的受力情况和运动情况.分析如下:
即学即练1 如图2所示,两光滑平行导轨
水平放置在匀强磁场中,磁场垂直导 轨所在平面,金属棒ab可沿导轨自由 滑动,导轨一端连接一个定值电阻R, 金属棒和导轨电阻不计.现将金属棒 图2 沿导轨由静止向右拉,若保持拉力 F 恒定,经时间 t1 后速度 为 v,加速度为 a1 ,最终以速度 2v做匀速运动;若保持拉力 的功率 P恒定,棒由静止经时间 t2后速度为 v,加速度为 a2, 最终也以速度2v做匀速运动,则 ( ). B.t1>t2 D.a2=5a1 A.t2=t1 C.a2=2a1
电磁感应中的力学问题
![电磁感应中的力学问题](https://img.taocdn.com/s3/m/560fb8c6eefdc8d377ee321b.png)
典例1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为B的绝缘斜面上,两导轨间距为L, M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图。
(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及加速度的大小。
(3)求在下滑过程中,ab杆可以达到的最大速度。
典例2、如图所示,固定在同一水平面内的两根长直金属导轨的间距为L,其右端接有阻值为R的电阻,整个装置处在竖直向上、磁感应强度大小为B的匀强磁场中,一质量为m的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为w杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨向左运动,当杆运动的距离为d 时,速度恰好达到最大(杆始终与导轨保持垂直) 不计,重力加速度为g。
求此过程中:(1)杆的速度的最大值;(2)通过电阻R上的电量。
b典例3、如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。
一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放。
导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I。
整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。
求:(1)磁感应强度的大小B;(2)电流稳定后,导体棒运动速度的大小v;(3)流经电流表电流的最大值。
1如图,两平行金属导轨位于同一水平面上,相距I,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下•一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好。
电磁感应中的力学问题
![电磁感应中的力学问题](https://img.taocdn.com/s3/m/48ab8f0b844769eae009ed85.png)
电磁感应中的力学问题电磁感应中中学物理的一个重要“节点”,不少问题涉及到力和运动、动量和能量、电路和安培力等多方面的知识,综合性强,也是高考的重点和难点,往往是以“压轴题”形式出现.因此,在二轮复习中,要综合运用前面各章知识处理问题,提高分析问题、解决问题的能力. 本学案以高考题入手,通过对例题分析探究,让学生感知高考命题的意图,剖析学生分析问题的思路,培养能力.例1.【2003年高考江苏卷】如右图所示,两根平行金属导端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m .有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B=kt ,比例系数k =0.020 T /s .一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m 的电阻为r 0=0.10Ω/m ,导轨的金属杆紧靠在P 、Q 端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力. [解题思路] 以a 示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离L =21at 2 此时杆的速度v =at这时,杆与导轨构成的回路的面积S=L l回路中的感应电动势E =StB∆∆+B lv 而ktBtt t B t B ktB =∆-∆+=∆∆=)( 回路的总电阻 R =2Lr 0 回路中的感应电流,REI=作用于杆的安培力F =BlI解得t r l k F 02223= 代入数据为F =1.44×10-3N例2. (2000年高考试题)如右上图所示,一对平行光滑R 轨道放置在水平地面上,两轨道间距L =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动.测得力F 与时间t 的关系如下图所示.求杆的质量m 和加速度a .解析:导体杆在轨道上做匀加速直线运动,用v 表示其速度,t 表示时间,则有v =at ① 杆切割磁感线,将产生感应电动势E =BLv ②在杆、轨道和电阻的闭合回路中产生电流I=E/R ③ 杆受到的安培力为F 安=IBL ④ 根据牛顿第二定律,有F -F 安=ma ⑤联立以上各式,得at Rl B ma F 22= ⑥由图线上各点代入⑥式,可解得 a =10m/s 2,m =0.1kg例3. (2003年高考新课程理综)两根平行的金属导轨,固定在同一水平面上,磁感强度B =0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l =0.20 m .两根质量均为m =0.10 kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω.在t =0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过t =5.0s ,金属杆甲的加速度为a =1.37 m /s ,问此时两金属杆的速度各为多少?本题综合了法拉第电磁感应定律、安培力、左手定则、牛顿第二定律、动量定理、全电路欧姆定律等知识,考查考生多角度、全方位综合分析问题的能力.设任一时刻t ,两金属杆甲、乙之间的距离为x ,速度分别为v l 和v 2,经过很短的时间△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变△S =[(x 一ν2△t )+ν1△t]l —l χ=(ν1-ν2) △t 由法拉第电磁感应定律,回路中的感应电动势 E =B △S/△t =B ι(νl 一ν2) 回路中的电流 i =E /2 R杆甲的运动方程 F —B l i =ma由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t =0时为0)等于外力F 的冲量.Ft =m νl +m ν2 联立以上各式解得ν1=[Ft/m +2R(F 一ma)/B 2l 2]/2 ν2=[Ft /m 一2R(F 一ma)/B 2l 2]/2代入数据得移νl =8.15 m /s ,v 2=1.85 m /s 练习1、.如图l ,ab 和cd 是位于水平面内的平行金属轨道,其电阻可忽略不计.af 之间连接一阻值为R 的电阻.ef 为一垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并可沿轨道方向无摩擦地滑动.ef 长为l ,电阻可忽略.整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动时,杆ef 所受的安培力为( ).R lvB A 2.R vBlB R lvB C 2 RvBl D 2图1图22、如图2所示·两条水平虚线之间有垂直于纸面向里、宽度为d 、磁感应强度为B 的匀强磁场.质量为m 、电阻为R 的正方形线圈边长为L(L<d),线圈下边缘到磁场上边界的距离为h .将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度都是v 0在整个线圈穿过磁场的全过程中(从下边缘进入磁场到上边缘穿出磁场),下列说法中正确的是( ). A·线圈可能一直做匀速运动 B .线圈可能先加速后减速C .线圈的最小速度一定是mgR /B 2 L 2D .线圈的最小速度一定是)(2l d h g +-3、如图3所示,竖直放置的螺线管与导线abed 构成回路,导线所围区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平面桌面上有一导体圆环.导线abcd 所围区域内磁场的磁感强度按图1 5—11中哪一图线所表示的方式随时问变化时,导体圆环将受到向上的磁场力作用?( ).图3A B CD4、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零均匀增大时,金属杆ab 始终处于静止状态,则金属杆受到的静摩擦力将( ).A .逐渐增大B .逐渐减小C .先逐渐增大,后逐渐减小D .先逐渐减小,后逐渐增大图45、如图所示,一闭合线圈从高处自由落下,穿过一个有界的水平方向的匀强磁场区(磁场方向与线圈平面垂直),线圈的一个边始终与磁场区的边界平行,且保持竖直的状态不变.在下落过程中,当线圈先后经过位置I 、Ⅱ、Ⅲ时,其加速度的大小分别为a 1、a 2、a 3( ).A . a 1<g ,a 2=g ,a 3<gB .a l <g ,a 2<g ,a 3<gC . a 1<g,a 2=0,a 3=gD .a 1<g ,a 2>g ,a 3<g图5 图66、如图6所示,有两根和水平方向成a 角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度Vm ,则( ).A .如果B 增大,Vm 将变大 B .如果a 变大, Vm 将变大C .如果R 变大,Vm 将变大D .如果M 变小,Vm 将变大7、超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图6所示的模型:在水平面上相距L 的两根平行直导轨问,有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽都是ι,相间排列,所有这些磁场都以速度V 向右匀速运动.这时跨在两导轨间的长为L 、宽为ι的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,则金属框的最大速度可表示为( ).图7A 、2222/)(L B fR v L B v m -= B 、22222/)2(L B fR v L B v m -= C 、22224/)4(L B fR v L B v m -= D 、22222/)2(L B fR v L B v m+= 答案: 1 .A 2. D 3. A 4. D 5.B 6.BC 7. C8、水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见图),金属杆与导轨的电阻不计;均匀磁场竖直向下.用与导轨平行的恒定力F 作用在金属杆上,杆最终将做匀速运动.当改拉力的大小时,相对应的匀速运动速度v 也会改变,v 和F 的关系如图 (取重力加速度g=10m /s 2) (1)金属杆在匀速运动之前做作什么运动?(2)若m =0.5 kg ,L =0.5 m ,R =0.5 Ω,磁感应强度B 为多大? (3)由ν-F 图线的截距可求得什么物理量?其值为多少?解: (1)变速运动(或变加速运动、加速度减小的加速运动,加速运动). (2)感应电动势E —vBL ,感应电流I=E/R安培力RLvB BIL F m22== 由图可知金属杆受拉力、安培力和阻力作用,匀速时合力为零f RLvB BIL F +==22)(22f F l B Rv -=由图线可以得到直线的斜率k=2)(12T kLR B ==(3)由直线的截距可以求得金属杆受到的阻力f , f=2(N).若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数 μ=0.49、如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b 向a 方向看到的装置如图1 5—2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当杆ab 的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值.解:(1)重力mg ,竖直向下;支撑力N ,,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E=BLv ,此时电路电流RBlvR E I ==杆受到安培力Rv L B Blv F 22==根据牛顿运动定律,有:R v L B mg ma 22sin -=θ R vL B g a 22sin -=θ(3)当RvL B mg 22sin =θ时,ab 杆达到最大速度mAX V22sin LB mgR V m θ=10.如图所示,电阻不计的平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,导轨相距为d ,其间有竖直向下的匀强磁场,磁感强度为B .质量为m 、电阻为r 的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 的恒力F 向右拉动CD ,CD 受恒定的摩擦阻力.f ,已知F>f .问: (1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少? (3)当CD 的速度是最大速度的1/3时,CD 的加速度是多少?解析:(1)以金属棒为研究对象,当CD 受力:F=F A +f 时,CD 速度最大,即:2222))((dB r R f F v f r R v d B f BId F m +-=⇒++=+= (2)CD 棒产生的感应电动势为:Bdr R f F Bdv E m))((--==回路中产生的感应电流为:BdfF r R E I -=+=则R 中消耗的电功率为:2222)(dB Rf F R I R P -== (3)当CD 速度为最大速度的1/3即m v v 31=时,CD 中的电流为最大值的1/3即I I 31'=则CD 棒所受的安培力为:)(31''f F d BI F A-== CD 棒的加速度为:mf F m F f F a A 3)(2'-=--=。
原创3:专题十 电磁感应中的动力学和能量问题
![原创3:专题十 电磁感应中的动力学和能量问题](https://img.taocdn.com/s3/m/c9934a6e3069a45177232f60ddccda38366be143.png)
(2)撤去外力时导体棒的速度为 v,在导体棒匀加速过程 中,由运动学公式得 v2=2ax⑤
撤去外力后,克服安培力做的功为 W,由动能定理得 W=12mv2-0⑥ 撤去外力后回路中产生的焦耳热 Q2=W 联立以上各式解得 Q2=1.8 J.
(3)由题意可知,撤去外力前后回路中产生的焦耳热之比Q1∶Q2 =2∶1,可得Q1=3.6 J, 棒在运动的整个过程中,由功能关系得
杆受到的安培力 F 安=BIl=7.5-3.75x 由平衡条件得 F=F 安+mgsinθ F=12.5-3.75x(0≤x≤2). 画出的 F-x 图象如图所示
(3)外力 F 做的功 Wf 等于 F-x 图线下所围的面积,即 Wf =5+212.5×2 J=17.5 J
而杆的重力势能增加量 ΔEp=mg OP sinθ 故全过程产生的焦耳热 Q=Wf-ΔEp=7.5 J.
A.P=2mgvsinθ B.P=3mgvsinθ C.当导体棒速度达到v2时加速度大小为g2sinθ D.在速度达到2v以后匀速运动的过程中,R上产生的 焦耳热等于拉力所做的功
解析:对导体棒受力分析如图.当导体棒以 v 匀速运动 时(如图甲),应有:mgsinθ=F 安=BIL=B2RL2v;当加力 F 后 以 2v 匀速运动时(如图乙),F+mgsinθ=2BR2L2v,两式联立得 F=mgsinθ,则 P=F·2v=2mgvsinθ,A 正确、B 错误;
WF=Q1+Q2=5.4 J. 【答案】 (1)4.5 C (2)1.8 J (3)5.4 J
变式训练2 在如图所示的倾角为θ的光滑斜面上,存在着两个 磁感应强度大小为B的匀强磁场,区域Ⅰ的磁场方向垂直斜面向 上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个 质量为m、电阻为R、边长也为L的正方形导线框,由静止开始 沿斜面下滑,当ab边刚越过GH进入磁场Ⅰ区时,恰好以速度v1 做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又 恰好以速度v2做匀速直线运动,从ab进入GH到MN与JP的中间 位置的过程中,线框的动能变化量为ΔEk,重力对线框做功大小 为W1,安培力对线框做功大小为W2,下列说法中正确的有( )
电磁感应综合力学问题
![电磁感应综合力学问题](https://img.taocdn.com/s3/m/2134f833ee06eff9aef807f3.png)
最初一段时间是匀速的, 线和gh线的距离s gh线的距离 m(取 最初一段时间是匀速的,ef 线和gh线的距离s=11.4 m(取g=10 ).求 m/s2).求: (1)线框进入磁场时匀速运动的速度 线框进入磁场时匀速运动的速度v (1)线框进入磁场时匀速运动的速度v. (2)ab边由静止开始运动到gh线所用的时间t (2)ab边由静止开始运动到gh线所用的时间t. ab边由静止开始运动到gh线所用的时间 线框的运动可分为进入磁场前、 思路点拨 线框的运动可分为进入磁场前、 进入磁场中、完全进入磁场后三个阶段 分 进入磁场中、完全进入磁场后三个阶段,分 析每个阶段的受力,确定运动情况 确定运动情况. 析每个阶段的受力 确定运动情况
(1)导体处于平衡态 导体处于平衡态——静止或匀速直线运动状态. 静止或匀速直线运动状态. 导体处于平衡态 静止或匀速直线运动状态 处理方法:根据平衡条件 合外力等于零列式分析. 处理方法:根据平衡条件——合外力等于零列式分析. 合外力等于零列式分析 (2)导体处于非平衡态 导体处于非平衡态——加速度不等于零. 加速度不等于零. 导体处于非平衡态 加速度不等于零 处理方法:根据牛顿第二定律进行动态分析,或结合功能关系析. 处理方法:根据牛顿第二定律进行动态分析,或结合功能关系析.
M R P a N
m r
b
B
F Q
②感应电流的大小和方向
③使金属棒匀速运动所需的拉力 ④感应电流的功率 ⑤拉力的功率
高考物理小一轮复习(假期之友)电磁感中的力学问题
![高考物理小一轮复习(假期之友)电磁感中的力学问题](https://img.taocdn.com/s3/m/6563e800591b6bd97f192279168884868762b8c3.png)
拾躲市安息阳光实验学校2011江苏高考物理小一轮复习(假期之友)--电磁感应中的力学问题【知识梳理】1.电磁感应与力学的联系在电磁感应中切割磁感线的导体要运动,感应电流又要受到安培力的作用。
因此,电磁感应问题又往往和力学问题联系在一起,解决电磁感应中的力学问题,一方面要考虑电磁学中的有关规律;另一方面还要考虑力学的有关规律,要将电磁学和力学知识综合起来应用。
电磁感应与动力学、运动学结合的动态分析,思考方法是:电磁感应现象中感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.【典型例题】例1:下图中a1b1c1d1 和a2b2c2d2 为同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。
导轨的a1b1段与a2b2段是竖直的,距离为l1,c1d1与c2d2段也是竖直的,距离为l2.x1y1与x2y2为两根用不可伸长的绝缘轻线相连接的金属杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。
两杆与导轨构成的回路的总电阻为R。
F为作用于金属杆x1y1上的竖直向上的恒力。
已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。
【分析与解】本题是电磁感应现象与物体的平衡相结合的问题,分析中应着重于两个方面,一是分析发生电磁感应回路的结构并计算其电流;二是分析相关物体的受力情况,并根据平衡条件建立方程。
设杆向上运动的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少.由法拉第电磁感应定律,回路中的感应电动势的大小E = B(l2-l1)v①回路中的电流REI=②电流沿顺时针方向.两金属杆都要受到安培力作用,作用于杆x1y1的安培力为f1 = B l1I③方向向上,作用于杆x2y2的安培力f2 = B l2I④方向向下.当杆做匀速运动时,根据牛顿第二定律有F-m1g-m2g + f1-f2=0 ⑤解以上各式,得)()(1221llBgmmFI-+-=⑥RllBgmmFv212221)()(-+-=⑦作用于两杆的重力的功率的大小P = (m1+m2)gv⑧电阻上的热功率Q =I2R⑨由⑥、⑦、⑧、⑨式,可得gmmRllBgmmFP)()()(21212221+-+-=,RllBgmmFQ21221])()([-+-=。
12专题:电磁感应中的动力学、能量、动量的问题(含答案)
![12专题:电磁感应中的动力学、能量、动量的问题(含答案)](https://img.taocdn.com/s3/m/a2c0ec2a03020740be1e650e52ea551811a6c95f.png)
12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。
一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。
金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。
求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。
二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。
导轨顶端连接一个阻值为1 Ω的电阻。
在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。
质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。
金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。
(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。
三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。
三大力学观点在电磁感应中的应用专题
![三大力学观点在电磁感应中的应用专题](https://img.taocdn.com/s3/m/cdc4ac09915f804d2b16c12d.png)
第10页
高考调研 ·高三总复习 ·物理
P 2B2L2v 3B2L2v 则 = ,故 a2= =3a1,C 项正确,D 项错误.结合 2v R mR v- t 图像分析可知,在速度变化相同的情况下,恒力 F 作用时棒 的加速度总比拉力的功率 P 恒定时的加速度小,故 t1>t2,B 项正 确, A 项错误.
第 3页
高考调研 ·高三总复习 ·物理
安培力做功与电能的关系: 电磁感应中克服安培力做的 功等于产生的电能. 安培力的冲量与电量的关系 :安培力的冲量 BLI· Δ t= BLq.
第 4页
高考调研 ·高三总复习 ·物理
二、磁感应中的力和电的关系图
第 5页
高考调研 ·高三总复习 ·物理
题 型 透 析
第 9页
)
高考调研 ·高三总复习 ·物理
ቤተ መጻሕፍቲ ባይዱ
【答案】 【解析】
BC 若保持拉力 F 恒定,在 t1 时刻,棒 ab 切割磁感
线产生的感应电动势为 E = BLv ,其所受安培力 F1 = BIL = B2L2v B2L2v ,由牛顿第二定律,有 F- = ma1;棒最终以 2v 做匀 R R 2B2L2v B2L2v 速运动, 则 F= , 故 a1= .若保持拉力的功率 P 恒定, R mR P B2L2v 在 t2 时刻,有 - =ma2;棒最终也以 2v 做匀速运动, v R
高考调研 ·高三总复习 ·物理
全国名校高中物理优质学案、专题汇编(附详解)
10 .4
三大力学观点在电磁感应中 的应用专题
第 1页
高考调研 ·高三总复习 ·物理
专 题 综 述
第 2页
高考调研 ·高三总复习 ·物理
应用力、能量、动量三大力学观点,研究电磁感应中的运动 问题,其解题思路与力学中一样.在此类问题中,安培力是联系 力和电的桥梁,是分析电磁感应中动力学问题的关键物理量. 一、电磁感应中的安培力的特点 安培力与速度关系 安培力公式:F=BIl B2l2v 感应电动势: E=Blv F= R E 感应电流: I= R
电磁感应中的力学问题2015最新
![电磁感应中的力学问题2015最新](https://img.taocdn.com/s3/m/17e8574bb307e87101f696dd.png)
电磁感应中的力学问题 姓名:1、闭合电路中产生的感应电动势的大小,跟穿过这一闭合电路的下列哪个物理量成正比 ( )A 、磁通量B 、磁感应强度C 、磁通量的变化率D 、磁通量的变化量2、穿过一个电阻为R=1Ω的单匝闭合线圈的磁通量始终每秒钟均匀的减少2Wb ,则:( )A 、线圈中的感应电动势每秒钟减少2VB 、线圈中的感应电动势是2VC 、线圈中的感应电流每秒钟减少2AD 、线圈中的电流是2A3.下列几种说法中正确的是: ( )A 、线圈中的磁通量变化越大,线圈中产生的感应电动势一定越大B 、穿过线圈的磁通量越大,线圈中的感应电动势越大C 、线圈放在磁场越强的位置,线圈中的感应电动势越大D 、线圈中的磁通量变化越快,线圈中产生的感应电动势越大4、如图所示,在竖直向下的匀强磁场中,将一个水平放置的金属棒ab 以水平初速度v 0抛出,设运动的整个过程中棒的取向不变且不计空气阻力,则金属棒在运动过程中产生的感应电动势大小将 ( )A.越来越大B.越来越小C.保持不变D.无法确定5、在图6中,闭合矩形线框abcd 位于磁感应强度为B 的匀强磁场中,ad 边位于磁场边缘,线框平面与磁场垂直,ab 、ad 边长分别用L 1、L 2表示,若把线圈沿v 方向匀速拉出磁场所用时间为△t ,则通过线框导线截面的电量是: ( )A 、12BL L R t ∆B 、12BL L R C 、12BL L t ∆ D 、12BL L6、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零均匀增大时,金属杆ab 始终处于静止状态,则金属杆受到的静摩擦力将( ).A .逐渐增大B .逐渐减小C .先逐渐增大,后逐渐减小D .先逐渐减小,后逐渐增大7、如图所示,金属导轨MN 、PQ 之间的距离L=0.2m,导轨左端所接的电阻R=1Ω,金属棒ab 可 沿导轨滑动,匀强磁场的磁感应强度为B=0.5T, ab 在外力作用下以V=5m/s 的速度向右匀速滑 动,求金属棒所受外力的大小。
高考物理:带你攻克电磁感应中的典型例题(附解析)
![高考物理:带你攻克电磁感应中的典型例题(附解析)](https://img.taocdn.com/s3/m/8b62b6e2250c844769eae009581b6bd97f19bc68.png)
高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。
当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。
所以D选项正确。
一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。
解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。
例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。
高考物理复习:电磁感应中的动力学与能量问题
![高考物理复习:电磁感应中的动力学与能量问题](https://img.taocdn.com/s3/m/65bb080c30126edb6f1aff00bed5b9f3f90f72a0.png)
为h。初始时刻,磁场的下边缘和线框上边缘的高度差为2h,将重物从静止
开始释放,线框上边缘刚进磁场时,恰好做匀速直线运动,滑轮质量、摩擦
阻力均不计。下列说法正确的是(ABD)
A.线框进入磁场时的速度为 2ℎ
2
2
B.线框的电阻为2
2ℎ
C.线框通过磁场的过程中产生的热量 Q=2mgh
D.线框通过磁场的过程中产生的热量 Q=4mgh
热量等于系统重力势能的减少量,即 Q=3mg×2h-mg×2h=4mgh,C 错误, D 正
确。
能力形成点3
整合构建
电磁感应中的动量综合问题——规范训练
电磁感应中的有些题目可以从动量角度着手,运用动量定理或动量守恒
定律解决。
(1)应用动量定理可以由动量变化来求解变力的冲量。如在导体棒做非
匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问
解析:(1)由ab、cd棒被平行于斜面的导线相连,故ab、cd速度大小总是相
等,cd也做匀速直线运动。设导线的拉力的大小为FT,右斜面对ab棒的支持
力的大小为FN1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力
大小为FN2,对于ab棒,受力分析如图甲所示。
由力的平衡条件得2mgsin θ=μFN1+FT+F ①
电动势,该导体或回路就相当于电源。
(2)分析清楚有哪些力做功,就可以知道有哪些形式的能量发生了相互转化。
(3)根据能量守恒列方程求解。
训练突破
2.(多选)如图所示,质量为3m的重物与一质量为m的线框用一根绝缘细线
连接起来,挂在两个高度相同的定滑轮上。已知线框的横边边长为l,水平
方向匀强磁场的磁感应强度为B,磁场上下边界的距离、线框竖直边长均
高考物理二轮复习课件:电磁感应与力学综合问题
![高考物理二轮复习课件:电磁感应与力学综合问题](https://img.taocdn.com/s3/m/25f12cf2fab069dc502201a2.png)
【例1】边长为h的正方形金属导线框,从图所示的
位置由静止开始下落,通过一匀强磁场区域,磁场
方向水平,且垂直于线框平面,磁场区域宽度为H, 上、下边界如图中虚线所示,H>h,试分析讨论从 线框开始下落到完全穿过磁场区域的全过程中线框 运动速度的变化情况.
【切入点】分析线圈受力,并将安培力大小与重力 大小比较,得出F 合的大小和方向,再进行讨论.
2.电磁感应中的能量转化综合问题 【例2】如图所示,一边长为 L的正方形闭合金属线框, 其质量为m,回路电阻为R , M 、 N 、 P为磁场区域的边 界,且均为水平,上、下两部分磁场的磁感应强度均为 B,方向如图所示.图示所示位置线框的底边与M重 合.现让线框由图示位置从静止开始下落,线框在穿过 N和P两界面的过程中均为匀速运动.若已知M、N之间 的高度差为h1,h1>L.线框下落过程中线框平面始终保持 竖直,底边始终保持水平,重 力加速度为g,求: (1)线框穿过N与P界面的速度; (2)在整个运动过程中,线框 产生的焦耳热.
(2)设撤去外力时棒的速度为 v,对棒的匀加速运动过 程,由运动学公式得 v2=2ax⑥ 设棒在撤去外力后的运动过程中安培力做功为 W,由 动能定理得 1 2 W=0-2mv ⑦ 撤去外力后回路中产生的焦耳热 Q2=-W⑧ 联产⑥⑦⑧式,代入数据得 Q2=1.8J⑨
(3)由题意知,撤去外力前后回路中产生的焦耳热之比 Q1∶Q2=2∶1,可得 Q1=3.6J⑩ 在棒运动的整个过程中,由功能关系可知 WF=Q1+Q2⑪ 由⑨⑩⑪式得 WF=5.4J
【解析】(1)当 Rx=R 棒沿导轨匀速下滑时,由平衡条件 Mgsinθ=F 安培力 F=BIl Mgsinθ 解得 I= Bl 感应电动势 E=Blv0 E 电流 I=2R 2MgRsinθ 解得 v0= B2l2
专题10电磁感应中的动力学问题和能量问题
![专题10电磁感应中的动力学问题和能量问题](https://img.taocdn.com/s3/m/72681a2ab94ae45c3b3567ec102de2bd9605de94.png)
电磁感应现象的定义
电磁感应现象的发现
电磁感应现象的应用
动力学问题的基本原理
电磁感应定律:法拉第电磁感应定律是电磁感应中的基本原理,它描述了磁场变化时在导体中产生感应电动势的现象。
动力学方程:在电磁感应中,由于磁场的变化,导体中的电荷会受到洛伦兹力的作用,从而产生加速度。因此,需要建立动力学方程来描述电荷的运动。
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
测量仪器误差
减小误差的方法
环境因素误差 减小误差的方法
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
选择高精度测量仪器
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅,单击此处添加正文;
多次测量求平均值
阻尼效应:在电磁感应中,由于导体的电阻和电感的存在,电荷的运动会受到阻尼效应的影响。阻尼效应会导致电荷的运动逐渐减慢,直至停止。
能量转换:在电磁感应中,磁场能会转化为电能,而电能又会通过电阻和电感等元件转化为热能或其他形式的能量。因此,电磁感应中的动力学问题也涉及到能量转换的问题。
电磁感应与动力学问题的关系
解题思路和方法总结:总结典型例题的解题思路和方法,提炼出一般性的规律和技巧,帮助学生更好地理解和掌握电磁感应中的动力学问题。
实际应用举例:介绍电磁感应中的动力学问题在现实生活中的应用,如发电机、变压器等,增强学生对知识的理解和应用能力。
03
电磁感应中的能量问题
电磁感应中的能量转化
电磁感应中的能量损失与效率问题
电磁感应中的能量损失:主要来源于电阻发热、涡流损耗和磁滞损耗。
电磁感应中的效率问题:主要取决于电路的阻抗匹配和能量转换效率。
电磁感应中的能量损失与效率问题在现实生活中的应用:例如变压器、电动机等设备的效率问题,可以通过优化设计、选用合适的材料和改进工艺等方法来提高设备的效率和减少能量损失。
电磁感应中的动力学问题和能量问题
![电磁感应中的动力学问题和能量问题](https://img.taocdn.com/s3/m/ed8dad34a58da0116d174995.png)
析清楚电磁感应过程中能量转化的关系,是解决电磁
感应问题的重要途径之一.
编辑课件
题型探究
题型1 电磁感应中的动力学问题
【例1】 如图2所示,光滑斜面的倾角
=30°,在斜面上放置一矩形线框
abcd,ab边的边长l1=1 m,bc边的边长
l2=0.6 m,线框的质量m=1 kg,电阻
R=0.1 Ω,线框通过细线与重物相
s-l2=v t3+12 at32
解得t3=1.2 s
因此ab边由静止开始运动到gh线所用的时间
t=t1+t2+t3=1.2 s+0.1 s+1.2 s=2.5 s
答案 (1)6 m/s
(2)2.5 s
编辑课件
规律总结 此类问题中力现象和电磁现象相互联系,相互制
约,解决问题首先要建立“动→电→动”的思维顺 序,可概括为 (1)找准主动运动者,用法拉第电磁感应定律和 楞次定律求解电动势大小和方向. (2)根据等效电路图,求解回路中电流的大小及 方向. (3)分析导体棒的受力情况及导体棒运动后对电 路中电学参量的“反作用”,即分析由于导体棒 受到安培力,对导体棒运动速度、加速度的影响, 从而推理得出对电路中的电流有什么影响,最后定 性分析出导体棒的最终运动情况. (4)列出牛顿第二定律或编平辑衡课件方程求解.
到最大这一关键.
编辑课件
特别提示 1.对电学对象要画好必要的等效电路图. 2.对力学对象要画好必要的受力分析图和过程示 意图. 热点二 电路中的能量转化分析 从能量的观点着手,运用动能定理或能量守恒定律. 基本方法是: 受力分析→弄清哪些力做功,做正功还是负功→明确 有哪些形式的能参与转化,哪些增哪些减→由动能定 理或能量守恒定律列方程求解.
电磁感应中的动力学问题
![电磁感应中的动力学问题](https://img.taocdn.com/s3/m/ce9705fbb4daa58da1114a8d.png)
电磁感应中的动力学问题【动力学问题的规律】1. 动态分析:求解电磁感应中的力学问题时,要抓好受力分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,当循环结束时,加速度等于零,导体达到稳定运动状态。
2. 两种状态的处理:当导体处于平衡态——静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。
当导体处于非平衡态——变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分析.3. 常见的力学模型分析: 类型“电—动—电”型“动—电—动”型示 意 图棒ab 长为L ,质量m ,电阻R ,导轨光滑,电阻不计棒ab 长L ,质量m ,电阻R ;导轨光滑,电阻不计分 析S 闭合,棒ab 受安培力R BLE F =,此时mR BLEa =,棒ab 速度v↑→感应电动势BLv↑→电流I↓→安培力F=BIL↓→加速度a↓,当安培力F=0时,a=0,v 最大。
棒ab 释放后下滑,此时α=sin g a ,棒ab 速度v↑→感应电动势E=BLv↑→电流R E I =↑→安培力F=BIL↑→加速度a↓,当安培力α=sin mg F 时,a=0,v 最大。
运动形式 变加速运动 变加速运动最终状态匀速运动BL Ev m =匀速运动22m L B sin mgR v α=4. 解决电磁感应中的动力学问题的一般思路是“先电后力”,即:先做“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; 再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力; 然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力; 最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.【例1】 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.50 m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R =5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =1.0 T .将一根质量为m =0.050 kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离s =2.0 m .已知g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求: (1)金属棒沿导轨开始下滑时的加速度大小;(2)金属棒到达cd 处的速度大小;(3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量.突破训练1 如图所示,相距为L 的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙、下方轨道光滑,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度为B .将两根导体棒同时释放后,观察到导体棒MN 下滑而EF 保持静止,当MN 下滑速度最大时,EF 与轨道间的摩擦力刚好达到最大静摩擦力,下列叙述正确的是()A .导体棒MN 的最大速度为2mgR sin θB 2L 2B .导体棒EF 与轨道之间的最大静摩擦力为mg sin θC .导体棒MN 受到的最大安培力为mg sin θD .导体棒MN 所受重力的最大功率为m 2g 2R sin 2θB 2L 2【例2】 如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ ,磁感应强度B 的大小为5 T ,磁场宽度d =0.55 m ,有一边长L =0.4 m 、质量m 1=0.6 kg 、电阻R =2 Ω的正方形均匀导体线框abcd 通过一轻质细线跨过光滑的定滑轮与一质量为m 2=0.4 kg 的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)线框abcd 还未进入磁场的运动过程中,细线中的拉力为多少?(2)当ab 边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab 边距磁场MN 边界的距离x 多大? (3)在(2)问中的条件下,若cd 边恰离开磁场边界PQ 时,速度大小为2 m/s ,求整个运动过程中ab 边产生的热量为多少?审题指导 1.线框abcd 未进入磁场时,线框沿斜面向下加速,m 2沿水平面向左加速,属连接体问题. 2.ab 边刚进入磁场时做匀速直线运动,可利用平衡条件求速度.3.线框从开始运动到离开磁场的过程中,线框和物体组成的系统减少的机械能转化为线框的焦耳热. 解析突破训练2如图所示,光滑斜面的倾角为θ,斜面上放置一矩形导体线框abcd ,ab 边的边长为l 1,bc 边的边长为l 2,线框的质量为m ,电阻为R ,线框通过绝缘细线绕过光滑的定滑轮与一重物相连,重物质量为M .斜面上ef 线(ef 平行底边)的右方有垂直斜面向上的匀强磁场,磁感应强度为B ,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的ab 边始终平行于底边,则下列说法正确的是()A .线框进入磁场前运动的加速度为Mg -mg sin θmB .线框进入磁场时匀速运动的速度为Mg -mg sin θRBl 1C .线框做匀速运动的总时间为B 2l 21Mg -mgR sin θD .该匀速运动过程产生的焦耳热为(Mg -mg sin θ)l 2突破训练3 如图所示,平行金属导轨与水平面间的倾角为θ,导轨电阻不计,与阻值为R 的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B .有一质量为m 、长为l 的导体棒从ab 位置获得平行于斜面、大小为v 的初速度向上运动,最远到达a ′b ′位置,滑行的距离为s ,导体棒的电阻也为R ,与导轨之间的动摩擦因数为μ.则 ()A .上滑过程中导体棒受到的最大安培力为B 2l 2vRB .上滑过程中电流做功发出的热量为12mv 2-mgs (sin θ+μcos θ)C .上滑过程中导体棒克服安培力做的功为12mv 2D .上滑过程中导体棒损失的机械能为12mv 2-mgs sin θ【例3】 如图所示,足够长的金属导轨MN 、PQ 平行放置,间距为L ,与水平面成θ角,导轨与定值电阻R 1和R 2相连,且R 1=R 2=R ,R 1支路串联开关S ,原来S 闭合.匀强磁场垂直导轨平面向上,有一质量为m 、有效电阻也为R 的导体棒ab 与导轨垂直放置,它与导轨粗糙接触且始终接触良好.现将导体棒ab 从静止释放,沿导轨下滑,当导体棒运动达到稳定状态时速率为v ,此时整个电路消耗的电功率为重力功率的34.已知重力加速度为g ,导轨电阻不计,求:(1)匀强磁场的磁感应强度B 的大小和达到稳定状态后导体棒ab 中的电流强度I ;(2)如果导体棒ab 从静止释放沿导轨下滑x 距离后达到稳定状态,这一过程回路中产生的电热是多少?(3)导体棒ab 达到稳定状态后,断开开关S ,从这时开始导体棒ab 下滑一段距离后,通过导体棒ab 横截面的电荷量为q ,求这段距离是多少?注意:双棒类运动模型问题分析:如图所示,质量都为m的导线a和b静止放在光滑的无限长水平导轨上,两导轨间宽度为L,整个装置处于竖直向上的匀强磁场中,磁场的磁感强度为B,现对导线b施以水平向右的恒力F,求回路中的最大电流.【剖析】突破训练4(多选题)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2 1.用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后()A.金属棒ab、cd都做匀速运动B.金属棒ab上的电流方向是由b向aC.金属棒cd所受安培力的大小等于2F/3D.两金属棒间距离保持不变课后练习1.如图所示,足够长的平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6) ()A.2.5 m/s1 W B.5 m/s1 WC.7.5 m/s9 W D.15 m/s9 W2.如图甲所示,电阻不计且间距L=1 m的光滑平行金属导轨竖直放置,上端接一阻值R=2 Ω的电阻,虚线OO′下方有垂直于导轨平面向里的匀强磁场,现将质量m=0.1 kg、电阻不计的金属杆ab从OO′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平.已知杆ab进入磁场时的速度v0=1 m/s,下落0.3 m的过程中加速度a与下落距离h的关系图象如图乙所示,g取10 m/s2,则()A.匀强磁场的磁感应强度为1 TB.杆ab下落0.3 m时金属杆的速度为1 m/sC.杆ab下落0.3 m的过程中R上产生的热量为0.2 JD.杆ab下落0.3 m的过程中通过R的电荷量为0.25 C3.在如图所示倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B的匀强磁场,区域Ⅰ的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L .一质量为m 、电阻为R 、边长为L2的正方形导体线圈,在沿平行斜面向下的拉力F 作用下由静止开始沿斜面下滑,当ab 边刚越过GH 进入磁场Ⅰ时,恰好做匀速直线运动,下列说法中正确的有(重力加速度为g )()A .从线圈的ab 边刚进入磁场Ⅰ到线圈dc 边刚要离开磁场Ⅱ的过程中,线圈ab 边中产生的感应电流先沿b →a 方向再沿a →b 方向B .线圈进入磁场Ⅰ过程和离开磁场Ⅱ过程所受安培力方向都平行斜面向上C .线圈ab 边刚进入磁场 Ⅰ 时的速度大小为4R mg sin θ+FB 2L 2D .线圈进入磁场Ⅰ做匀速运动的过程中,拉力F 所做的功等于线圈克服安培力所做的功4.图中EF 、GH 为平行的金属导轨,其电阻可不计,R 为电阻,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆.有匀强磁场垂直于导轨平面.若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB ()A .匀速滑动时,I 1=0,I 2=0B .匀速滑动时,I 1≠0,I 2≠0C .加速滑动时,I 1=0,I 2=0D .加速滑动时,I 1≠0,I 2≠05.如图所示,一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻均忽略不计,整个装置处于磁感应强度B =0.50 T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动,测得外力F 与时间t 的关系如图所示.求(1)杆的质量m 和加速度a 的大小;(2)杆开始运动后的时间t 内,通过电阻R 电量的表达式(用B 、l 、R 、a 、t 表示).6.两根足够长的光滑金属导轨平行固定在倾角为θ的斜面上,它们的间距为d。
电磁感应中的动力学问题和能量问题
![电磁感应中的动力学问题和能量问题](https://img.taocdn.com/s3/m/11b992e6bed5b9f3f80f1c8c.png)
电磁感应中的动力学问题和能量问题一、感应电流在磁场中所受的安培力1.安培力的大小:F=BIL= ⑴.由F=知,v 转变时,F 转变,物体所受合外力转变,物体的加速度转变,因此可用牛顿运动定律进行动态分析.⑵.在求某时刻速度时,可先依照受力情形确信该时刻的安培力,然后用上述公式进行求解.2.安培力的方向判定(1)右手定那么和左手定那么相结合,先用右手定那么确信感应电流方向,再用 左手定那么判定感应电流所受安培力的方向.(2)用楞次定律判定,感应电流所受安培力的方向必然和导体切割磁感线运动的方向垂直。
热点一 对导体的受力分析及运动分析从运动和力的关系着手,运用牛顿第二定律.大体方式是:受力分析→运动分析(确信运动进程和最终的稳固状态)→由牛顿第二定律列方程求解.运动的动态结构:如此周而复始的循环,循环终止时加速度等于零,导体达到平稳状态.在分析进程中要抓住a=0时速度v 达到最大这一关键.专门提示1.对电学对象要画好必要的等效电路图.2.对力学对象要画好必要的受力分析图和进程示用意二、电磁感应的能量转化1.电磁感应现象的实质是其他形式的能和电能之间的转化.2.感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为内能.3.电流做功产生的热量用焦耳定律计算,公式为Q=I 2Rt热点二 电路中的能量转化分析从能量的观点着手,运用动能定理或能量守恒定律.大体方式是:受力分析→弄清哪些力做功,做正功仍是负功→明确有哪些形式的能参与转化,哪些增哪些减→由动能定理或能量守恒定律列方程求解.专门提示在利用能的转化和守恒定律解决电磁感应的问题时,要注意分析安培力做功的情形,因为安培力做的功是电能和其他形式的能之间彼此转化的“桥梁”.简单表示如下: 安培力做正功 电能 其他形式能.R L B R E BL v 22=⋅R LB 22安培力做副功其它形式能电能如何求解电磁感应中的力学问题,一直是高中物理教学的一个难点,也是近几年来高考的热点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解决这类问题的关键在于通过运动状态的分
析来寻找过程中的临界状态,如速度、加速度取
最大值或最小值的条件等,基本思路是:
确定电源(E,r
)
I E
Rr
感应电流
FBIL
运动
导体所受的安培力 合外力 Fma a变化情况
v与a方向关系 运动状态的分析 临界状态
I=1A
③
根据楞次定律可知,棒cd中的电流方向由d至c ④
(2)棒ab与棒cd受到的安培力大小相等
Fab=Fcd 对棒ab,由共点力平衡知
F=mgsin30°+IlB ⑤ 代入数据解得
F=0.2N
⑥
(3)设在时间t内棒cd产生Q=0.1J热量,由焦耳定律知
Q=I2Rt
⑦
设棒ab匀速运动的速度大小为v,其产生的感应电动势
图4-3-1
(1)通过棒cd的电流I是多少,方向如何? (2)棒ab受到的力F多大? (3)棒cd每产生Q=0.1J的热量,力F做的功W是多少?
【命题立意】本题考查电磁感应、平衡及能量守 恒问题.
【解析】(1)棒cd受到的安培力
Fcd=IlB
①
棒cd在共点力作用下平衡,则
Fcd=mgsin30° ② 由①②式,代入数据得
mgR并 4B2r2
3mgR 4B2r2
导体棒从MN到CD做加速度为g的匀加速直线运动,有
vt2 v22 2gh
得h
9m2 gR2 32B4r 4
v22 2g
此时导体棒重力的功率为
PG
mgvt
3m2 g 2R 4B2r2
根据能量守恒定律,此时导体棒重力的功率全部
转化为电路中的电功率,即
培力的大小为F BLI.在时间t内安培力的冲量
Ft BLIt BLq BL ,式中q是通过导体 R
截面的电荷量.利用该公式解答问题十分简便.
类型一:电磁感应中的动态分析 【例1】(2011·天津)如图4-3-1所示,两根足够长 的光滑平行金属导轨MN、PQ间距为l=0.5m,其电 阻不计,两导轨及其构成的平面均与水平面成 30°角.完全相同的两金属棒ab、cd分别垂直导轨 放置,每棒两端都与导轨始终有良好接触,已知 两棒质量均为m=0.02kg,电阻均为R=0.1Ω,整个 装置处在垂直于导轨平面向上的匀强磁场中,磁 感应强度B=0.2T,棒ab在平行于导轨向上的力F作 用下,沿导轨向上匀速运动,而棒cd恰好能够保持 静止.取g=10m/s2,问:
即F mg 4B2r2 (v3 at) ma 3R
由以上各式解得
F
4B2r2 3R
(at
v3 )
mHale Waihona Puke ga接触良好,平行轨道够长.已知导体棒ab下落r/2时的 速度大小为v1,下落到MN处的速度大小为v2.
(1)求导体棒ab从A下落r/2时的加 速度大小.
(2)若导体棒ab进入磁场Ⅱ后棒中 电流大小始终不变,求磁场Ⅰ和
Ⅱ之间的距离h和R2上的电功率P2. (3)若将磁场Ⅱ的CD边界略微下移, 导体棒ab刚进入磁场Ⅱ时速度大 小为v3,要使其在外力F作用下做 匀加速直线运动,加速度大小为a, 求所加外力F随时间变化的关系 式.
2.电磁感应中的能量、动量问题 无论是使闭合回路的磁通量发生变化,还是 使闭合回路的部分导体切割磁感线,都要消耗其 他形式的能量,转化为回路中的电能.这个过程 不仅体现了能量的转化,而且体现了能的守恒, 使我们进一步认识包含电和磁在内的能量的转化 和守恒定律的普遍性.
分析问题时,应当牢牢抓住能量守恒这一基 本规律,分析清楚有哪些力做功,就可知道有哪 些形式的能量参与了相互转化,如有摩擦力做功, 必然有内能出现;重力做功,就可能有机械能参 与转化;安培力做负功就将其他形式能转化为电 能,做正功将电能转化为其他形式的能;然后利 用能量守恒列出方程求解.
4R
由以上各式可得到a g 3B2r2v1 4mR
2 当导体棒ab通过磁场Ⅱ时,若安培力恰好等于重
力,棒中电流大小始终不变,即
mg BI 2r B B 2r vt 2r 4B2r 2vt
R并
R并
式中R并
12R 4R 12R 4R
3R
解得vt
E=Blv
⑧
由闭合电路欧姆定律知
I E
⑨
2R
由运动学公式知在时间t内,棒ab沿导轨的位移
x vt
⑩
力F 做的功
W Fx ⑪
综合上述各式,代入数据解得
W 0.4J ⑫
【变式题】如图4-3-2所示,竖直平面内有一半径为r、 内阻为R1、粗细均匀的光滑半圆形金属环,在M、N 处与相距为2r、电阻不计的平行光滑金属轨道ME、 NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R. 在MN上方及CD下方有水平方向的匀强磁场Ⅰ和Ⅱ, 磁感应强度大小均为B.现有质量为m、电阻不计的导 体棒ab,从半圆环的最高点A处由静止下落,在下落 过程中导体棒始终保持水平,与半圆形金属环及轨道
P
P1
P2
PG
3m2 g 2R 4B2r2
所以,P2
3 4
PG
9m2 g 2 R 16 B 2 r 2
3 设导体棒ab进入磁场Ⅱ后经过时间t的速度大小
为vt ,此时安培力大小为F
4B2r 2vt 3R
由于导体棒ab做匀加速直线运动,有vt v3 at
根据牛顿第二定律,有F mg F ma
图4-3-2
【解析】(1)以导体棒为研究对象,棒在磁场Ⅰ中 切割磁感线,棒中产生感应电动势,导体棒ab从A 下落r/2时,导体棒在重力与安培力作用下做加速 运动,由牛顿第二定律,得
mg BIl ma,式中l 3r
I Blv1 R总
式中R总
8R 8R
(4R (4R
44RR))
3.“双杆”类问题 当“双杆”向相反方向做匀速运动时,相当 于两个电池正向串联;当两杆分别沿相同方向运 动时,相当于两个电池反向串联;“双杆”在不 等宽导轨上同向运动时,两杆所受的安培力不等 大反向,所以不能利用动量守恒定律解题.
4.电磁感应中的一个重要推论——安培力 的冲量公式
感应电流通过直导线时,直导线在磁场中要 受到的安培力的作用,当导线与磁场垂直时,安