食品化学必考点难题解析(第二章水分)

合集下载

食品化学第二章水知识点总结

食品化学第二章水知识点总结

食品化学第二章水知识点总结第二章水分2.1食品中的水分含量和功能2.1.1水分含量?普通生物和食物中的水分含量为3 ~ 97%?生物体中水的含量约为70-80%。

动物体内的水分含量为256±199,随着动物年龄的增长而减少,而成年动物体内的水分含量为58-67%不同部位水分含量不同:皮肤60 ~ 70%;肌肉和器官脏70 ~ 80%;骨骼12-15%植物中水分的含量特征?营养器官组织(根、茎和叶的薄壁组织)的含量高达70-90%?生殖器官和组织(种子、微生物孢子)的含量至少为12-15%表2-1某些食物的含水量食物的含水量(%)卷心菜,菠菜90-95猪肉53-60新鲜鸡蛋74牛奶88冰淇淋65大米12面包35饼干3-8奶油15-20 2.2水的功能2.2.1水在生物体中的功能1。

稳定生物大分子的构象,使它们表现出特定的生物活性2。

体内化学介质使生化反应顺利进行。

营养物质,代谢载体4。

热容量大,体温调节5。

润滑。

此外,水还具有镇静和强有力的作用。

护眼、降血脂、减肥、美容2.2.2水的食物功能1。

食品成分2。

展示颜色、香气、味道、形状和质地特征3。

分散蛋白质、淀粉并形成溶胶4。

影响新鲜度和硬度5。

影响加工。

它起着饱和和膨胀的作用。

它影响2.3水的物理性质2.3.1水的三态1,具有水-蒸汽(100℃/1个大气压)2、水-冰(0℃/1个大气压)3、蒸汽-冰(> 0℃/611帕以下)的特征:水、蒸汽、冰三相共存(0.0098℃/611帕)* * 2.3.2水的重要物理性质256水的许多物理性质,如熔点、沸点、比热容、熔化热、汽化热、表面张力和束缚常数数,都明显较高。

*原因:水分子具有三维氢键缔合,1水的密度在4℃时最高,为1;水结冰时,0℃时冰密度为0.917,体积膨胀约为9%(1.62毫升/升)。

实际应用:是一种容易对冷冻食品的结构造成机械损伤的性质,是冷冻食品工业中应注意的问题。

水的沸点与气压成正比。

易伟食品化学答案

易伟食品化学答案

易伟食品化学答案食品化学答案第2章:水分1.如何从理论上解释水的独特理化性质?水分子中的O原子的电负性更大,O——H键的共用电子对强烈地偏向于O原子一边,使得H原子几乎成为带有一个正电荷的裸露质子,整个水分子发生偶极化,形成偶极分子.同时,其H原子也极易与另一水分子的O 原子外层上的孤电子对形成H键,水分子间通过这种H键产生了较强的缔合作用.由于每个水分子具有等数目的H键给体和受体,能狗在三维空间形成H键网络结构.水分子的H键网络结构为说明水的异常理化性质奠定了理论基础.2.食品中的离子、亲水性物质、疏水性物质分别以何种方式与水作用?食品中水的存在形式有哪些?各有何特点?答.(1)、水与离子及离子基团的相互作用:与离子和离子基团的相互作用的水是食品中结合最紧密的一部分水。

它们是通过离子或离子基团的电荷与水分子偶极子发生静电相互作用而产生水合作用。

对于既不具有氢键受体又没有供体的简单无机离子,它们与水相互作用时仅仅是极性结合,这种作用通常称为离子水合作用(属于静电相互作用)。

(2)、水与亲水性物质的相互作用:水与亲水性物质通过氢键而结合。

(3)、水与疏水性物质的相互作用:疏水基团和水形成笼形水合物及和蛋白质产生疏水相互作用。

水存在的形式及特点:食品中水的存在形式有体相水与结合水,体相水又分为滞化水、自由水、毛细管水。

结合水又分为化合水、邻近水(单层水)和多层水三种类型(1)化合水的性质:在-40℃下不结冰、无溶解溶质的能力、与纯水比较分子平均运动为0、不能被微生物利用(2)邻近水( Vicinal water) 的性质:在-40℃下不结冰、无溶解溶质的能力、与纯水比较分子平均运动大大减少、不能被微生物利用、此种水很稳定,不易引起Food的腐败、变质(3)多层水的性质:大多数多层水在-40℃下不结冰,其余可结冰,但冰点大大降低。

有一定溶解溶质的能力、与纯水比较分子平均运动大大降低、不能被微生物利用(4)体相水(游离水)的性质:能结冰,但冰点有所下降、溶解溶质的能力强,干燥时易被除去、与纯水分子平均运动接近、很适于微生物生长和大多数化学反应,易引起Food的腐败变质,但与食品的风味及功能性紧密相关。

食品化学第2章 水分

食品化学第2章    水分

食品化学第2章水分一、名词解释(1)、食品化学(2)、水分活度二、判断题(1)、在温差相等的情况下,生物组织的冷冻速率比解冻速率更快的原因是冰的热扩散速率比水的大。

()(2)、当水含量一定是,水分活度与温度呈反比的关系。

()(3)、因为降低食品的水分活度可以延缓酶促褐变和非酶褐变的进行,减少食品营养成分的破坏,防止水溶性色素的分解,因此在食品保鲜过程中要尽可能将食品的水分活度降到最低。

()三、填空题(1)、在水与非极性物质的相互作用中,水对于非极性物质产生的结构形成响应,其中重要的两个结果是和。

(2)、在水的滞后现象中,一般来说,当水分活度的值一定时,解吸过程中食品的水分含量回吸过程中的水分含量。

(3)、不同的食品具有不同的水分吸附等温线,但吸附等温线主要有两种形态。

其中大多数食品的水分吸附等温线呈,而水果、糖制品、含有大量糖和其他可溶性小分子的咖啡提取物以及多聚物含量不高的食品的水分吸附等温线为。

四、解答题(1)、简述现代冻藏工艺中提倡速冻的原因。

(2)、许多食品的水分吸附等温线都表现出滞后现象,而对于吸附滞后现象的确切解释却还未形成,但请简述滞后现象产生的大致原因。

参考答案一、(1)P2食品化学是利用化学的理论和方法研究食品本质的一门科学,即从化学角度和分子水平上研究食品的化学组成、结构、理化性质、营养素和安全性质以及它们在生产、加工、储藏和运销过程中的变化以及其对食品品质和安全性的影响。

(2)P23水分活度是指食品中水的蒸汽压与同温下纯水的饱和蒸汽压的比值。

二、(1)√ P13(2)× P24 公式(2-4)(3)× P32 注意当食品的水分活度过低时,会加速脂肪的氧化酸败。

因此在食品保质过程中最好是将食品的水分活度保持在结合水范围内。

三、(1)P20 笼形水合物的形成蛋白质中的疏水相互作用(2)P28 大于(3)P27 S形 J形四、(1)P16 因为在该工艺下形成的冰晶颗粒数目多且细小,使食品组织更小程度的受到破坏,此外,冻结时间缩短使微生物活动受到更大限制,因而食品品质更好。

食品化学 第二章 水分

食品化学 第二章 水分

18种同位素变体 量极少
水分子的缔合作用
一个水分子可以和周围四个水分子缔合, 形成三维空间网络结构。
2015年10月25日
第二章 水分
水分子缔合的原因:
H-O键间电荷的非对称分布使H-O键具
有极性,这种极性使分子之间产生引力. 由于每个水分子具有数目相等的氢键 供体和受体,因此可以在三维空间形成 多重氢键. 静电效应.
R(水合的)+R(水合的)→R2(水合 偶极-疏水性物质 疏水相互作用ΔG<0 的)+水
2015年10月25日
疏水水合ΔG>0
第二章 水分
1、水与离子和离子基团的相互作用
类 型 实 例 作用强度 (与水-水氢键比)
偶极-离子
水-游离离子 较大 水-有机分子上的带电基团 (离子水合作用)
水-蛋白质NH 水-蛋白质CO 水-侧链OH 水+R→R(水合的) R(水合的)+R(水合的)→R2 (水合的)+水

水分含量不是一个腐败性的可靠指标
水分活度Aw 水与非水成分缔合强度上的差别 比水分含量更可靠,也并非完全可靠

与微生物生长和许多降解反应具有相关性
第二章 水分
2015年10月25日
第四节
f Aw f0 f p f 0 po
差别1%
2015年10月25日
水分活度
f ——溶剂(水)的逸度 f0——纯溶剂(水)的逸度 逸度:溶剂从溶液逃脱的趋势
p Aw po
严格
p Aw po
第二章 水分
仅适合理想溶液
RVP,相对蒸汽
第四节
水分活度
一、定义: 指食品中水的蒸汽压和该温度下纯水 的饱和蒸汽压的比值
Aw=P/P0

食品化学复习题及答案

食品化学复习题及答案

⾷品化学复习题及答案第2章⽔分习题⼀、填空题1 从⽔分⼦结构来看,⽔分⼦中氧的 6 个价电⼦参与杂化,形成 4 个SP3杂化轨道,有近似四⾯体的结构。

2 冰在转变成⽔时,净密度增⼤,当继续升温⾄3.98时密度可达到最⼤_,继续升温密度逐渐减⼩。

3 液体纯⽔的结构并不是单纯的由氢键构成的四⾯体形状,通过H-桥的作⽤,形成短暂存在的多变形结构。

4 每个⽔分⼦最多能够和四个⽔分⼦通过氢键结合,每个⽔分⼦在三维空间有相同的氢键给体和氢键受体。

因此⽔分⼦间的吸引⼒⽐NH3和HF要⼤得多5 在⽣物⼤分⼦的两个部位或两个⼤分⼦之间,由于存在可产⽣氢键作⽤的基团,⽣物⼤分⼦之间可形成由⼏个⽔分⼦所构成的⽔桥。

6 当蛋⽩质的⾮极性基团暴露在⽔中时,会促使疏⽔基团缔合或发⽣疏⽔相互作⽤,引起蛋⽩质折叠;若降低温度,会使疏⽔相互作⽤减弱,⽽氢键增强__。

7 ⾷品体系中的双亲分⼦主要有脂肪酸盐、蛋⽩脂质、糖脂、极性脂类、核酸等,其特征是同⼀分⼦中同时存在亲⽔和疏⽔基团。

当⽔与双亲分⼦亲⽔部位羧基、羟基、磷酸基、羰基、含氮基团等基团缔合后,会导致双亲分⼦的表观增溶。

8 ⼀般来说,⾷品中的⽔分可分为结合⽔和体相⽔两⼤类。

其中,前者可根据被结合的牢固程度细分为化合⽔、邻近⽔、多层⽔,后者可根据其⾷品中的物理作⽤⽅式细分为滞化⽔、⽑细管⽔9 ⾷品中通常所说的⽔分含量,⼀般是指常压下,100~105℃条件下恒重后受试⾷品的减少量10 ⽔在⾷品中的存在状态主要取决于天然⾷品组织、加⼯⾷品中的化学成分、化学成分的物理状态。

⽔与不同类型溶质之间的相互作⽤主要表现在离⼦和离⼦基团的相互作⽤、与⾮极性物质的相互作⽤、与双亲分⼦的相互作⽤、与中性基团的相互作⽤等⽅⾯。

11 ⼀般来说,⼤多数⾷品的等温线呈S 形,⽽⽔果等⾷品的等温线为J 形。

12 吸着等温线的制作⽅法主要有_解吸等温线和回吸等温线两种。

对于同⼀样品⽽⾔,等温线的形状和位置主要与试样的组成、物理结构、预处理、温度、制作⽅法等因素有关。

食品化学习题与答案解析

食品化学习题与答案解析

习题集及答案卢金珍生物工程学院第二章水分一、名词解释1.结合水2.自由水3.毛细管水4.水分活度5.滞后现象6.吸湿等温线7.单分子层水8.疏水相互作用二、填空题1. 食品中的水是以自由水、单分子层水、多分子层水、化合水等状态存在的。

2. 水在食品中的存在形式主要有自由水和结合水两种形式。

3. 水分子之间是通过氢键相互缔合的。

4. 食品中的结合水不能为微生物利用。

5. 食品中水的蒸汽压p与纯水蒸汽压p0的比值称之为水分活度,即食品中水分的有效浓度。

6. 个水分子通过氢键结合,空间有相等数目的氢键给体和受体。

7. 由化学键联系着的水一般称为结合水,以联系着的水一般称为自由水。

8.在一定温度下,使食品吸湿或干燥,得到的食品水分活度与食品水分含量的关系曲线称为水分等温吸湿线。

9. 温度在冰点以上,食品的组分和温度影响其Aw;温度在冰点以下,温度影响食品的Aw。

10. 回吸和解吸等温线不重合,把这种现象称为滞后现象。

11、在一定A W12。

13、单个水分子的键角为__104°5′_______,接近正四面体的角度_109°28′_____,O-H 核间距_0.96_____,氢和氧的德华半径分别为1.2A0和1.4A0。

14、单分子层水是指__与非水物质或强极性基团结合的第一分子层水___,其意义在于可准确预测干制品最大稳定性时最大水分含量___。

15、结合水主要性质为:①零下40°不冻结②不能为微生物利用③不能作为溶剂④与纯水相比分子运动为零。

三、选择题1、属于结合水特点的是( BCD。

A具有流动性 B在-40℃下不结冰C不能作为外来溶质的溶剂 D具有滞后现象2、结合水的作用力有( ABCA配位键 B氢键 C部分离子键 D毛细管力3、属于自由水的有( BCD。

A单分子层水 B毛细管水 C自由流动水 D滞化水4、可与水形成氢键的中性基团有( ABCDA羟基 B氨基 C羰基 D羧基5、高于冰点时,影响水分活度A w的因素有( CD)。

2020年考研食品化学-水

2020年考研食品化学-水
所以,含水食品在冻结过程中组织结构遭到机械性破坏损伤
(2)水的热导率较大,而冰的热导率确是水同温度下的4 倍
所以,冰的热传导速度比非流动水(如动、植物组织内的水)快得 多
(3)冰的热扩散速度是水的9倍
所以,在一定环境条件下,冰的温度变化速度比水大得多
思考:
想一想:为什么在温差相等的情况下,生物组织的冷冻速率比解 冻速率更快
其他同位素变体
水的物理性质特殊性是由水的分子结构 所决定的
V型SP3杂化
H-O键是较强极性键
H-O键为104.5°
比正四面体要小(109°28′) ,成 角锥结构。
O-H核间距为0.096nm
氧和氢原子的范德华半径分别为 0.14nm和0.12nm。
(1)单个水分子的结构特征
H2O分子的四面体结构具有对称型 H-O共价键有离子性 氧的另外两对孤对电子有静电力 H-O键具有电负性
食品冻结应避免温度波动:温度升高导致解冻,温度回升(A FP)。温度再降低时,食品经历最大冰晶形成带,且为非速冻, 体系中慢慢形成大冰晶,造成食品组织机械性损伤
由于水的物理特性,使得含水食品的加工贮藏方法或工艺条件必须 以水作为重点进行考虑和设计。特别是在利用低温加工技术时,更 要充分重视食品中水的热传导和热扩散特点
(t>360ns)
过冷:由于无晶核存在,液体水温度降低到冰点仍不析出晶体。只 有当温度降低到零下某一温度时才可能出现冰晶。
过冷温度:开始出现稳定晶核时的温度。如果外加晶核,不必达到 过冷温度就能结冰,但此时形成的冰晶粗大(冰晶主要围绕有限数 量的晶核成长)。
趣味知识扩展:速冻与缓慢冻结的区别
FP:冰点 A:晶核形成的临界温度
FP—A温度范围内:体系温度维持在改范围之 内时,只能形成少量晶核,每个晶核可以很快长 大成大冰晶,称为:最大冰晶生成带,一般为 0℃~-5℃。

食品化学答案整理

食品化学答案整理

食品化学第二章水分1、名词解释:(1)水分活度:指食品的水分蒸汽压与相同温度下纯水的饱和蒸汽压的比值。

(2)水分的吸湿等温线:在恒定温度下,以食品中水分含量为纵坐标,以水分活度为横坐标绘制而成的曲线称为吸附等温线〔MSI〕。

(3)等温线的滞后现象:一种食物一般有两条吸附等温线。

一条是水分回吸等温线,是食品在吸湿时的吸附等温线;一条是水分解吸等温线,是食品在干燥时的吸附等温线;往往这两条曲线并不完全重叠,在中低水分含量部分张开了一细长的眼孔,把这种现象称为“滞后”现象。

2、问答题〔1〕水分活度与食品稳定性的关系。

①食品aw与微生物生长的关系:从微生物活动与食物水分活度的关系来看,各类微生物生长都需要一定的水分活度,一般说来:细菌为Aw>0.9;酵母为Aw>0.87;霉菌为Aw>0.8。

②食品aw与酶促反应的关系:一方面影响酶促反应的底物的可移动性,另一方面影响酶的构象。

食品体系中大多数的酶类物质在Aw<0.85 时,活性大幅度降低,如淀粉酶、酚氧化酶和多酚氧化酶等。

但也有一些酶例外,如酯酶在Aw为0.3甚至0.1时也能引起甘油三酯或甘油二酯的水解。

③食品aw与非酶化学反应的关系:降低食品的Aw ,可以延缓酶促反应和非酶反应的进行,减少食品营养成分的破坏,防止水溶性色素的分解。

但Aw过低,则会加速脂肪的氧化酸败,还能引起非酶褐变。

④食品aw与质地的关系:当水分活度从0.2~0.3增加到0.65时,大多数半干或干燥食品的硬度及黏着性增加。

水分活度为0.4~0.5时,肉干的硬度及耐嚼性最大。

(2)水分的吸附等温线的定义,以及3个区段的水分特性。

①在恒定温度下,以食品中水分含量为纵坐标,以水分活度为横坐标绘制而成的曲线称为吸附等温线。

②I区:为化合水和临近水区。

这部分水是食品中与非水物质结合最为紧密的水,为化合水和构成水,吸湿时最先吸入,干燥时最后排除;这部分水不能使干物质膨润,不能作为溶剂,在- 40℃不结冰。

食品化学-第二章水分

食品化学-第二章水分
三区 自由水 滞化水、毛细管水
五、等温吸湿曲线与食品类型、温度的关系 1、等温吸湿曲线(MSI)与食品类型的关系
大部分食品 “S”型
水果、糖制品、咖啡提取物含有大量 糖和其他可溶性小分子。 度越高,水分活度越大,曲线越低
滞后现象:同一食品按回吸或解吸两 种方法制作的MSI图形并不一致,不互相 重叠,这种现象称为滞后现象。
Aw随热力学温度升高而成正比例升高。
T Aw
冰点
以上时 成分+温度 以下时 温度
6 5 4 3 2 1 0
2℃
Aw
Aw
0℃
负2℃
Aw为0-1之间
负4℃
三、等温吸湿曲线的定义(MSI图) 在恒定温度下,食品水分含量与水温活度Aw之间的关系
四、等温吸湿曲线上不同部分的特性 右图中分为三区
一区 化合水 最牢固 大分子内部 一区---二区之间 单分子层水(BET) 二区 多分子层结合水
食品化学
石家庄科技信息职业学院 郝亮
第二章 水分
水分子 H2O 模型 sp3 四面体 液态水 分子间氢键 4℃密度最大

分子间氢键 晶体结构(几何)
第一节概述
一、水在生物体中的含量及作用 水分含量:常压下,100-105℃条件下恒重后受试食品的减少量,在总质量 中的比例。 水在生物体中的作用:生命必需、介质、反应物产物、载体、稳定剂、润滑作用
⑶解吸作用时,因组织改变,当再吸水时无法紧密结合水,由此可导致回吸相同 水分含量时处于较高的Aw;
⑷温度、解吸的速度和程度及食品类型等都影响滞后环的形状。
第三节 水分活度Aw与食品稳定性的关系
一、与微生物生长关系 水分活度Aw越大, 微生物生长越活跃
Aw<0.60 绝大多 数微生物无法生长

《食品化学》复习要点整理

《食品化学》复习要点整理

《食品化学》复习要点第2章:水分1.水具有的特殊物理性质?(是什么决定的)水的异常物理性质与断裂的水分子间氢键需要额外能量有关P152.水存在状态:例共价键,离子键的大小和顺序等等共价键>H2O-离子键>H2O- H2O3.可形成氢键的基团?羧基、羰基、氨基、亚胺基、羟基、巯基等。

4.疏水相互作用如果存在两个分离的非极性基团,那么不相容的水环境将促进它们之间的缔合,从而减少水-非极性实体界面面积,此过程是疏水水合的部分逆转,称为“疏水相互作用”。

△G <0 热力学有利R(水合)+R(水合) R2(水合)+H2O5.水存在形式结合水:化合水、邻近水、多层水,自由水:滞化水、毛细管水、自由流动水6.结合水的特点(不被蒸发,不被微生物利用):*结合水最牢固、在食品内部不能做溶剂、不容易被蒸发、-40以下不能结冰。

7.滞化水的特点是被组织中的显微结构与膜阻滞留住的水,不能自由流动。

8.水分活度(定义,意义,变化,与食品稳定性的关系,反正要掌握一切水分活度相关的知识点,必考)定义:食品中水分逸出的程度,可以用食品中水的蒸汽压与同温度下纯水饱和蒸汽压之比表示,也可以用平衡相对湿度表示。

Aw = f(溶液中水的逸度)水逃离的趋势fo(纯水的逸度)≈P(食品中水的蒸汽压)Po(纯水饱和蒸汽压)=ERH/100意义:9.冰点上和冰点下的水分活度冰点以上,A w是样品组成与温度的函数,前者是主要的因素;冰点以下,A w与样品组成无关,而仅与温度有关,即冰相存在时,A w不受所存在的溶质的种类或比例的影响,不能根据A w预测受溶质影响的反应过程;不能根据冰点以下温度A w预测冰点以上温度的A w;当温度改变到形成冰或熔化冰时,就食品稳定性而言,水分活度的意义也改变了。

10.吸湿等温线(定义,分区,掌握BET单层)定义:在恒定温度下,以食品的水分含量对它的水分活度绘图形成的曲线,称水分的吸湿等温线分区:•BET单层:区段I和区段II的边界,相当于食品的“BET单层”水分含量。

食品化学 第2章 水答案

食品化学  第2章  水答案

二、水的功能
水 在 食 品 生 物 学 方 面 的 功 能
水是良好的溶剂
水为必须的生物化学反应 提供一个物理环境
水是体内物质运输的载体
水是维持体温的载温体
水是体内摩擦的润滑剂
1. 水和冰的物理特性
Physical character of water and ice • 与元素周期表中邻近氧的某些元素的氢 化物比较(CH4、NH3、HF、H2S): 表面张力、介电常数、热容及相变热等 • 与冰比较(密度、热扩散率等)
• 据MSI可预测含水量对食品稳定性的影响。
• 从MSI还可看出食品中非水组分与水结合能 力的强弱。
2.5.5 滞后现象 Hysteresis
定义:采用回吸(resorption)的方法绘 制的MSI和按解吸(desorption)的方法 绘制的MSI并不互相重叠的现象称为 滞后现象。
回吸:把水加到干的样品中 解吸:先使样品吸水饱和,再干燥
氢键供体
氢键受体
(3)水的结构
目前提出的3类水的结构模型:P17
• 混合模型 • 连续模型 • 填隙式模型
水分子的结构特征
• 水是呈四面体的网状结构 • 水分子之间的氢键网络是动态的 • 水分子氢键键合程度取决于温度
(4)冰的结构
六方冰晶形成条件: ① 在最适度的低温冷却 剂中缓慢冷冻; ② 溶质的性质及浓度均 不严重干扰水分子的迁 移。
Aw与产品环境的百分平衡相对湿度(ERH)有关
p ERH Aw p0 100
ERH (Equlibrium Relative Humidity)
注意 水分活度的物理意义是表征生物组织和食品中能 参与各种生理作用的水分含量与总含水量的定量关 系。 应用aw =ERH/100时必须注意:① aw 是样品的内 在品质,而ERH是与样品中的水蒸气平衡时的大气性 质. ②仅当食品其环境达到平衡时才能应用。

第二章 食品中的水分

第二章 食品中的水分

不能被微生物所利用
多层水
处于邻近水外围,与邻近水通过氢键缔合在一起的水 特点:有一定厚度(多层),-40℃基本结冰,
弱溶剂能力,可被蒸发
结合水与体相水之间难以作定量的划分,但可定性的区别:
➢ 结合水的量与食品中所含极性物质的量估有比较固定的关系,如100g蛋白质大约可结合50g 的水, 100g淀粉的持水能力在30~40g;
➢ 结合水不能作为可溶性成分的溶剂,即丧失了溶剂能力; ➢ 结合水对食品品质和风味有较大的影响,当结合水被强行与食品分离时,食品质量、风味就会改变; ➢ 体相水可被微生物所利用,结合水则不能。
水对于生命是必需的。
战争之源 “下一场世界大战将是对水资源的争夺”
一、 水在食品中的作用
➢ 溶剂 ➢ 反应物或反应介质 ➢ 浸涨剂 ➢ 传热介质 ➢ 去除食品加工过程中的有害物质 ➢ 生物大分子化合物构象的稳定剂
水对食品的结构、外观、质地、 风味、新鲜度以及腐败变质的敏 感性都有极大的影响,从而也深 刻影响着食品的运销和商品价值。
(3)水分子的缔合
在水分子中,由于两种原子电负性的差别,氢、氧之间的共用电子 对强烈偏向氧原子,使氢原子成为带有部分正电荷,表现出裸质子 的特征;而氧原子则带有部分负电荷,具有吸引质子的能力。
这个半径很小并带有部分正电荷的质子,能与另外一个水分子中带有部分负电荷的氧原子之间产生的 静电引力,这种作用力比共价键弱,比纯水之间的作用力强,称之为“氢键”。
补充知识点4:介电常数
介电常数:溶剂对两个带相反电荷离子间引力的抗力的度量,是溶剂一个重要的性质。
0℃水与0℃冰的物理性质与食品质量关系
➢ 冰的密度比水小,表现出异常的膨胀行为
结果:含水食品在冻结过程中组织结构遭到破坏损伤

食品化学习题集名词解释及问答题答案

食品化学习题集名词解释及问答题答案

食品化学习题集名词解释及问答题答案第二章水四、名词释义1.水分活度:水分活度――食品中水分逸出的程度,可以近似地用食品中水的蒸汽分压与同温度下纯水饱和蒸汽压之比表示,也可以用平衡相对湿度表示。

2.吸湿等温线:在恒定温度下,根据aw绘制食物的含水量(每单位干物质质量的水质量)以获得吸湿等温线。

(在等温条件下,以食物含水量为纵坐标,以aw为横坐标得到的曲线。

)3.滞后现象:对于食品体系,水分回吸等温线很少与解吸等温线重叠,一般不能从水分回吸等温线预测解吸现象(解析过程中试样的水分含量大于回吸过程中的水分含量)。

水分回吸等温线和解吸等温线之间的不一致性被称为滞后现象。

五问答题1.食物中水的存在状态是什么?它们各自的特点是什么?答:食品中水的存在状态有结合水和自由水两种,其各自特点如下:① 结合水(结合水、化学结合水)可分为单层水和多层水作用力:配位键,氢键,部分离子键特点:在-40℃以上不结冰,不能作为外来溶质的溶剂。

② 自由水(散装水、自由水和吸湿水)可分为死水、毛管水和自由流动水(截留水和自由水)作用力:物理方式截留,生物膜或凝胶内大分子交联成的网络所截留;毛细管力特点:可结冰,溶解溶质;测定水分含量时的减少量;可被微生物利用。

2.食品的水分活度aw与吸湿等温线中的分区的关系如何?答:为了解释吸湿等温线的内在含义,并与水的存在状态密切相关,可将其分为I区、II区和III区:I区aw=0~0.25,约0~0.07g水/g干物质力:H2O离子,H2O偶极子,配位键属于单层水(包括水合电离内层水)不能作溶剂,-40℃以上不结冰,与腐败无关II区aw=0.25~0.8(加上I区,<0.45gh2o/g干)力:氢键:H2O―H2O―溶质属多分子层水,加上ⅰ区约占高水食品的5%,不作溶剂,-40℃以上不结冰,但接近0.8(aww)的食品,可能有变质现象。

三区新增水为自由水(截流+流动),可达20gh2o/g,干物质可冷冻,可用作溶剂划分区不是绝对的,可有交叉,连续变化3.当含水量一定时,可以选择哪些物质作为果脯和蔬菜水分活度的降低值?答:在食品中添加吸湿剂可以在保持水分含量不变的情况下降低aw值。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章主要考点题型解析
一、名词解释
1、结合水:
又称为束缚水,是指存在于食品中的与非水成分通过氢键结合的水,是食品中与非水成分结合的最牢固的水。

2、自由水:
是指食品中与非水成分有较弱作用或基本没有作用的水。

3、毛细管水:
指食品中由于天然形成的毛细管而保留的水分,是存在于生物体细胞间隙的水。

毛细管的直径越小,持水能力越强。

4、水分活度:
水分活度表示食品中十分可以被微生物所利用的程度,在物理化学上水分活度是指食品的水分蒸汽压与相同温度下纯水的蒸汽压的比值,可以用公式aw=P/P0,也可以用相对平衡湿度表示aw=ERH/100。

5、“滞后”现象:
一种食物一般有两条等温吸湿线,一条是吸附等温吸湿线,是食品在吸湿时的等温吸湿线,另一条是解吸等温吸湿线,是食品在干燥时的等温吸湿线,往往这两条曲线是不重合的,把这种现象称为“滞后”现象。

6、食品的等温吸湿线:
是指在恒定温度下表示食品水分活度与含水量关系的曲线。

7、单分子层水:
指与食品中非水成分的强极性基团如:羧基-、氨基+、羟基等直接以氢键结合
的第一个水分子层。

在食品中的水分中它与非水成分之间的结合能力最强,很难蒸发,与纯水相比其蒸发焓大为增加,它不能被微生物所利用。

三、问答题
1、什么是水分活度?食物冰点以上和冰点以下的水分活度之间有何区别与联
系?
答:水分活度表示食品中十分可以被微生物所利用的程度,在物理化学上水分活度是指食品的水分蒸汽压与相同温度下纯水的蒸汽压的比值,可以用公式aw=P/P0,也可以用相对平衡湿度表示aw=ERH/100。

食品在冻结点上下水分活度的比较: a 冰点以上,食物的水分活度是食物组成和食品温度的函数,并且主要与食品的组成有关;而在冰点以下,水分活度与食物的组成没有关系,而仅与食物的温度有关。

b 冰点上下食物的水分活度的大小与食物的理化特性的关系不同。

如在-15℃时,水分活度为0.80,微生物不会生长,化学反应缓慢,在20℃时,水分活度为0.80 时,化学反应快速进行,且微生物能较快的生长。

c 不能用食物冰点以下的水分活度来预测食物在冰点以上的水分活度,同样,也不能用食物冰点以上的水分活度来预测食物冰点以下的水分活度。

2试论述水分活度与食品的安全性的关系?
答:虽然在食物冻结后不能用水分活度来预测食物的安全性,但在未冻结时,食物的安全性确实与食物的水分活度有着密切的关系。

总的趋势是,水分活度越小的食物越稳定,较少出现腐败变质现象。

具体来说水分活度与食物的安全
性的关系可从以下按个方面进行阐述:a 从微生物活动与食物水分活度的关系来看:各类微生物生长都需要一定的水分活度,换句话说,只有食物的水分活度大于某一临界值时,特定的微生物才能生长。

一般说来,细菌为aw>0.9,酵母为aw>0.87,霉菌为aw>0.8。

一些耐渗透压微生物除外。

b 从酶促反应与食物水分活度的关系来看:水分活度对酶促反应的影响是两个方面的综合,一方面影响酶促反应的底物的可移动性,另一方面影响酶的构象。

食品体系中大多数的酶类物质在水分活度小于0.85 时,活性大幅度降低,如淀粉酶、酚氧化酶和多酚氧化酶等。

但也有一些酶例外,如酯酶在水分活度为0.3 甚至0.1 时也能引起甘油三酯或甘油二酯的水解。

c 从水分活度与非酶反应的关系来看:脂质氧化作用:在水分活度较低时食品中的水与氢过氧化物结合而使其不容易产生氧自由基而导致链氧化的结束,当水分活度大于0.4 水分活度的增加增大了食物中氧气的溶解。

加速了氧化,而当水分活度大于0.8 反应物被稀释,氧化作用降低。

Maillard 反应:水分活度大于0.7 时底物被稀释。

水解反应:水分是水解反应的反应物,所以随着水分活度的增大,水解反应的速度不断增大。

3、试说明水分活度对脂质氧化的影响规律并说明原因。

答:当aw 值非常小时,脂类的氧化和aw 之间出现异常的相互关系,从等温线的左端开始加入水至BHT 单分子层,脂类氧化速率随着aw 值的增加而降低,若进一步增加水,直至aw 值达到接近区间Ⅱ和区间Ⅲ分界线时,氧化速率逐渐增大,一般脂类氧化的速率最低点在aw0.35 左右。

因为十分干燥的样品中最初添加的那部分水(在区间Ⅰ)能与氢过氧化物结合并阻止其分解,
从而阻碍氧化的继续进行。

此外,这类水还能与催化氧化反应的金属离子发生水合,使催化效率明显降低。

当水的增加量超过区间I 和区间Ⅱ的边界时,氧化速率增大,因为等温线的这个区间增加的水可促使氧的溶解度增加和大分子溶胀,并暴露出更多催化位点。

当aw 大于0.80 时,氧化速率缓慢,这是由于水的增加对体系中的催化剂产生稀释效应。

相关文档
最新文档