小学六年级奥数第10讲 假设法解题(一)(含答案分析)
六年级奥数分册第10周 假设法解题-精华版
第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题1 甲、乙两数之和是185,已知甲数的14 与乙数的15的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15 ”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15 。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱? 2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人? 3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19 )=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个? 3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只 例题3。
六年级奥数 假设法解题(一)
第10讲 假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件, 然后再和已知条件配合推算. 有些题目用假设法思考, 能找到巧妙的解答思路.运用假设法时, 可以假设数量增加或减少, 从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样, 再根据乘法分配律求出这个分率对应的和, 最后依据它与实际条件的矛盾求解.二、精讲精练【例题1】甲、乙两数之和是185, 已知甲数的41与乙数的51的和是42, 求两数各是多少? 练习1:1、甲、乙两人共有钱150元, 甲的21与乙的101的钱数和是35元, 求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人. 抽调甲队人数的71, 乙队人数的31, 共抽调78人, 甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台. 如果彩色电视机卖出91, 则比黑白电视机多5台. 问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只, 如果姐姐卖掉71, 还比妹妹多10只, 姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个, 篮球借出31后, 比足球少1个, 原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个, 已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个, 师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台, 卖出彩色电视机的52和黑白电视机的73, 共卖出57台. 问:原来彩色电视机和黑白电视机各有多少台?2、甲、乙两个消防队共有336人, 抽调甲队人数的75、乙队人数的73, 共抽调188人参加灭火. 问:甲、乙两个消防队原来各有多少人?【例题4】甲、乙两数的和是300, 甲数的52比乙数的41多55, 甲、乙两数各是多少? 练习4:1、畜牧场有绵羊、山羊共800只, 山羊的2/5比绵羊的21多50只, 这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个, 师傅加工零件的个数的85比徒弟加工零件个数的32多60个, 师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人, 本学期男学生增加61, 女学生减少51, 共有710人, 本学期男、女学生各有多少人?练习5:1、金放在水里称, 重量减轻191, 银放在水里称, 重量减少101, 一块重770克的金银合金, 放在水里称是720克, 这块合金含金、银各多少克?2、某中学去年共招新生475人, 今年共招新生640人, 其中初中招的新生比去年增加48%, 高中招的新生比去年增加20%, 今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥, 已知四月份完成总数的31多50吨, 五月份完成总数的52少70吨, 还有420吨没完成, 第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只, 如果将鸡卖掉201, 还比鸭多17只, 小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个, 从中借出排球个数的41和足球个数的31后, 还剩下46个, 买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树, 乙班种的101比甲班种的31少16棵, 两个班各种多少棵?5、袋子里原有红球和黄球共119个. 将红球增加83, 黄球减少52后, 红球与黄球的总数变为121个. 原来袋子里有红球和黄球各多少个?面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.文档仅供参考2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.文档仅供参考。
小学奥数举一反三(六年级)A版
小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)=8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
六年级奥数分册第10周 假设法解题-最新精品
第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题1甲、 乙两数之和是185,已知甲数的14 与乙数的15的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15 ”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15 。
解: 乙:(185-42×4)÷(1-15×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只例题3。
六年级数学奥数讲义练习假设法解题(一)(全国通用版含答案)
六年级数学奥数讲义练习假设法解题(一)(全国通用版含答案)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1、甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【答案】1.甲有50元,乙有100元 2.甲有182人,乙有156人 3.1500吨【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
小学奥数举一反三(六年级)A版
小学奥数举一反三(六年级)A版小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
中六年级奥数第10讲 假设法解题(一)
第10讲 假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少?练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出91,则比黑白电视机多5台。
问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只,如果姐姐卖掉71,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个,篮球借出31后,比足球少1个,原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少? 解析:本题主要考查一元一次方程的应用。
根据题意设甲数是,则乙数是,根据题意可得方程,解得。
练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。
小学奥数举一反三(六年级)A版
小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
(完整word版)六年级奥数假设法解题答案
第十周 假设法解题(一)例题1甲、乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19 ,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的38 与徒弟加工零件个数的47的和为49个,师、徒各加工零件多少个? 【思路导航】假设师、徒两人都完成了47 ,一个能完成(105×47 )=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的38 与完成加工零件的47 相差的个数。
六年级奥数:假设法解题
六年级奥数:假设法解题六年级奥数:假设法解题假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)=8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
小学六年级奥数 第10周 假设法解题
第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题1甲、乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19 ,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19 )=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只例题3。
六年级奥数:第10讲 假设法解题(一)
第10講 假設法解題(一)一、知識要點假設法解體的思考方法是先通過假設來改變題目的條件,然後再和已知條件配合推算。
有些題目用假設法思考,能找到巧妙的解答思路。
運用假設法時,可以假設數量增加或減少,從而與已知條件產生聯繫;也可以假設某個量的分率與另一個量的分率一樣,再根據乘法分配律求出這個分率對應的和,最後依據它與實際條件的矛盾求解。
二、精講精練【例題1】甲、乙兩數之和是185,已知甲數的41與乙數的51的和是42,求兩數各是多少?練習1:1、甲、乙兩人共有錢150元,甲的21與乙的101的錢數和是35元,求甲、乙兩人各有多少元錢?2、甲、乙兩個消防隊共有338人。
抽調甲隊人數的71,乙隊人數的31,共抽調78人,甲、乙兩個消防隊原來各有多少人?1,則比【例題2】彩色電視機和黑白電視機共250臺。
如果彩色電視機賣出9黑白電視機多5臺。
問:兩種電視機原來各有多少臺?練習2:1,還比妹妹多10只,姐姐和妹妹1、姐妹倆養兔120只,如果姐姐賣掉7各養了多少只兔?1後,比足球少1個,原來籃球2、學校有籃球和足球共21個,籃球借出3和足球各有多少個?【例題3】師傅與徒弟兩人共加工零件105個,已知師傅加工零件個數的83與徒弟加工零件個數的74的和為49個,師、徒各加工零件多少個?練習3:1、某商店有彩色電視機和黑白電視機共136臺,賣出彩色電視機的52和黑白電視機的73,共賣出57臺。
問:原來彩色電視機和黑白電視機各有多少臺?2、甲、乙兩個消防隊共有336人,抽調甲隊人數的75、乙隊人數的73,共抽調188人參加滅火。
問:甲、乙兩個消防隊原來各有多少人?【例題4】甲、乙兩數的和是300,甲數的52比乙數的41多55,甲、乙兩數各是多少?練習4:1、畜牧場有綿羊、山羊共800只,山羊的2/5比綿羊的21多50只,這個畜牧場有山羊、綿羊各多少只?2、師傅和徒弟共加工零件840個,師傅加工零件的個數的85比徒弟加工零件個數的32多60個,師傅和徒弟各加工零件多少個?【例題5】育紅小學上學期共有學生750人,本學期男學生增加61,女學生減少51,共有710人,本學期男、女學生各有多少人?練習5:1、金放在水裏稱,重量減輕191,銀放在水裏稱,重量減少101,一塊重770克的金銀合金,放在水裏稱是720克,這塊合金含金、銀各多少克?2、某中學去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、課後作業1、海洋化肥廠計畫第二季度生產一批化肥,已知四月份完成總數的31多50噸,五月份完成總數的52少70噸,還有420噸沒完成,第二季度原計畫生產多少噸?2、小明甲養的雞和鴨共有100只,如果將雞賣掉201,還比鴨多17只,小明家原來養的雞和鴨各有多少只?3、學校買來足球和排球共64個,從中借出排球個數的41和足球個數的31後,還剩下46個,買來排球和足球各是多少個?4、某校六年級甲、乙兩個班共種100棵樹,乙班種的101比甲班種的31少16棵,兩個班各種多少棵?5、袋子裏原有紅球和黃球共119個。
小学奥数举一反三(六年级)A版
小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
六年级奥数分册第10周 假设法解题【精编】.doc
第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题1甲、乙两数之和是185,已知甲数的14 与乙数的15的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15 ”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15 。
解: 乙:(185-42×4)÷(1-15×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只例题3。
小学奥数举一反三(六年级)A版
小学奥数举一反三(六年级)A版小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
小学奥数举一反三(六年级)A版
小学奥数举一反三(六年级)A版第10讲假设法解题〔一〕一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练〔例题1〕甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?〔思路导航〕假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解;乙;〔185-42×4〕÷〔1-1/5×4〕=85答;甲数是100,乙数是85。
练习1;1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?〔例题2〕彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问;两种电视机原来各有多少台?〔思路导航〕从图中可以看出;假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的〔1-1/9〕= 8/9。
〔250+5〕÷〔1+1-1/9〕=135〔台〕250-125=115〔台〕答;彩色电视机原有135台,黑白电视机原有115台。
练习2;1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?〔例题3〕师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?〔思路导航〕假设师、徒两人都完成了4/7,一个能完成〔105×4/7〕=60个,和实际相差〔60-49〕=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
小学奥数举一反三(六年级)A版
小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10讲 假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少? 练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出91,则比黑白电视机多5台。
问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只,如果姐姐卖掉71,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个,篮球借出31后,比足球少1个,原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少?解析:本题主要考查一元一次方程的应用。
根据题意设甲数是,则乙数是,根据题意可得方程,解得。
练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。
将红球增加83,黄球减少52后,红球与黄球的总数变为121个。
原来袋子里有红球和黄球各多少个?第10讲 假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练 【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少? 【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解: 乙:(185-42×4)÷(1-1/5×4)=85 答:甲数是100,乙数是85。
练习1:1、甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【答案】1.甲有50元,乙有100元 2.甲有182人,乙有156人 3.1500吨【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1、姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3、小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【答案】1.姐姐70只,妹妹50只。
2.篮球12个,足球9个。
3.鸡:60只鸭:40只【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
这样就可以求出师傅加工了【11÷(4/7-3/8)】=56个。
即:师傅:(105×4/7-49)÷(4/7-3/8)=56(个)徒弟:105-56=49(个)答:师傅加工了56个,徒弟加工了49个。
练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的2/5和黑白电视机的3/7,共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?2、甲、乙两个消防队共有336人,抽调甲队人数的5/7、乙队人数的3/7,共抽调188人参加灭火。
问:甲、乙两个消防队原来各有多少人?3、学校买来足球和排球共64个,从中借出排球个数的1/4和足球个数的1/3后,还剩下46个,买来排球和足球各是多少个?【答案】1.彩色电视机45台,黑白电视机91台2.甲消防队154人,乙消防队182人。
3.排球40个,足球24个。
【例题4】甲、乙两数的和是300,甲数的2/5比乙数的1/4多55,甲、乙两数各是多少?【思路导航】甲数的2/5与乙数的2/5的和就是甲、乙两数的2/5,是300×2/5=120,因为甲数的2/5比乙数的1/4多55,所以从120中减去55所得的差就可以看成是乙数的1/4与乙数的2/5的和。
乙:(300×2/5-55)÷(2/5+1/4)=100甲:300-100=200答:甲数是200,乙数是100。
练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的1/2多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的5/8比徒弟加工零件个数的2/3多60个,师傅和徒弟各加工零件多少个?3、某校六年级甲、乙两个班共种100棵树,乙班种的1/10比甲班种的1/3少16棵,两个班各种多少棵?【答案】1.山羊500只,绵羊300只。
2.师傅加工零件480个,徒弟加工零件360个。
3.甲班种了60棵,乙班种了40棵。
【例题5】育红小学上学期共有学生750人,本学期男学生增加1/6,女学生减少1/5,共有710人,本学期男、女学生各有多少人?【思路导航】假设本学期女学生不是减少1/5,而是增加1/6,半学期应该有750×(1+1/6)=875人,比实际多875-710=165人,这165人是假设女学生也增加1/6多出的人数,而实际女学生减少1/5,所以,这165人对应着女学生的(1/5+1/6)=11/30。
上学期女生:【750×(1+1/6)-710】÷(1/5+1/6)=450(人)本学期女生:450×(1-1/5)=360(人)本学期男生:710-360=350(人)答:本学期男学生有350人,女学生有360人。
练习5:1、金放在水里称,重量减轻1/19,银放在水里称,重量减少1/10,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?3、袋子里原有红球和黄球共119个。
将红球增加3/8,黄球减少2/5后,红球与黄球的总数变为121个。
原来袋子里有红球和黄球各多少个?【答案】1.合金含金570克,含银200克2.初中招收新生370名,高中招收新生270名。
3.红球64个,黄球55个。